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Mathematical Properties of Polynomial Dimensional Decomposition∗

Sharif Rahman†

Abstract. Many high-dimensional uncertainty quantification problems are solved by polynomial dimensional
decomposition (PDD), which represents Fourier-like series expansion in terms of random orthonor-
mal polynomials with increasing dimensions. This study constructs dimensionwise and orthogonal
splitting of polynomial spaces, proves completeness of polynomial orthogonal basis for prescribed
assumptions, and demonstrates mean-square convergence to the correct limit—all associated with
PDD. A second-moment error analysis reveals that PDD cannot commit larger error than polynomial
chaos expansion (PCE) for the appropriately chosen truncation parameters. From the comparison
of computational efforts, required to estimate with the same precision the variance of an output
function involving exponentially attenuating expansion coefficients, the PDD approximation can be
markedly more efficient than the PCE approximation.
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1. Introduction. Polynomial dimensional decomposition (PDD) is a hierarchical, infinite
series expansion of a square-integrable random variable involving measure-consistent orthog-
onal polynomials in independent random variables. Introduced by the author [20, 21] as a
polynomial variant of the well-known analysis-of-variance (ANOVA) dimensional decomposi-
tion (ADD), PDD deflates the curse of dimensionality [3] to some extent by developing an
input-output behavior of complex systems with low effective dimensions [4], wherein the ef-
fects of degrees of interactions among input variables weaken rapidly or vanish altogether.
Approximations stemming from truncated PDD are commonly used for solving uncertainty
quantification problems in engineering and applied sciences, including multiscale fracture me-
chanics [6], random eigenvalue problems [24], computational fluid dynamics [27], and stochas-
tic design optimization [25], to name a few. However, all existing works on PDD are focused
on practical applications with almost no mathematical analysis of PDD. Indeed, a number
of mathematical issues concerning necessary and sufficient conditions for the completeness of
PDD basis functions; convergence, exactness, and optimal analyses of PDD; and approxima-
tion quality of the truncated PDD have yet to be studied or resolved. This paper fills the gap
by establishing fundamental mathematical properties to empower PDD with a solid founda-
tion, so that PDD can be as credible as its close cousin, polynomial chaos expansion (PCE)
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 817

[5, 10, 28, 29], providing an alternative, if not a better, choice for uncertainty quantification
in computational science and engineering.

The principal objective of this work is to examine important mathematical properties of
PDD, not studied heretofore, for arbitrary but independent probability measures of input ran-
dom variables. The paper is organized as follows. Section 2 defines or discusses mathematical
notations and preliminaries. Two sets of assumptions on the input probability measures re-
quired by PDD are explained. A brief exposition of univariate and multivariate orthogonal
polynomials consistent with a general but product-type probability measure, including their
second moment properties, is given in section 3. The section also describes relevant polynomial
spaces and construction of their dimensionwise orthogonal decompositions. The orthogonal
basis and completeness of multivariate orthogonal polynomials have also been proved. Section
4 briefly explains ADD, followed by presentations of PDD for a square-integrable random vari-
able. The convergence and exactness of PDD are explained. In the same section, a truncated
PDD and its approximation quality are discussed. The formulae for the mean and variance
of a truncated PDD are also derived. The section ends with an explanation on how and when
the PDD can be extended for infinitely many input variables. Section 5 briefly describes
degreewise orthogonal decompositions of polynomial spaces, leading to PCE. In section 6, a
second-moment error analysis of PDD is conducted, followed by a comparison with that of
PCE. Finally, conclusions are drawn in section 7.

2. Input random variables. Let N := {1, 2, . . .}, N0 := N ∪ {0}, and R := (−∞,+∞)
represent the sets of positive integer (natural), nonnegative integer, and real numbers, respec-
tively. Denote by A{i}, i = 1, . . . , N , an ith bounded or unbounded subdomain of R, so that
AN := ×N

i=1A{i} ⊆ RN .
Let (Ω,F ,P) be a complete probability space, where Ω is a sample space representing an

abstract set of elementary events, F is a σ-algebra on Ω, and P : F → [0, 1] is a probability
measure. With BN := B(AN ) representing the Borel σ-algebra on AN ⊆ RN , consider an
AN -valued input random vector X := (X1, . . . , XN )T : (Ω,F) → (AN ,BN ), describing the
statistical uncertainties in all system parameters of a stochastic problem. The input random
variables are also referred to as basic random variables [10]. The nonzero, finite integer N
represents the number of input random variables and is often referred to as the dimension of
the stochastic problem.

Denote by FX(x) := P(∩Ni=1{Xi ≤ xi}) the joint distribution function of X, admitting
the joint probability density function fX(x) := ∂NFX(x)/∂x1 · · · ∂xN . Given the abstract
probability space (Ω,F ,P) of X, the image probability space is (AN ,BN , fXdx), where AN can
be viewed as the image of Ω from the mapping X : Ω→ AN , and is also the support of fX(x).
Similarly, each component random variable Xi is defined on the abstract marginal probability
space (Ω{i},F{i},P{i}) comprising sample space Ω{i}, σ-algebra F{i}, and probability measure
P{i}. Then, the corresponding image probability space is (A{i},B{i}, fXidxi), where A{i} ⊆ R
is the image sample space of Xi, B{i} is the Borel σ-algebra on A{i}, and fXi(xi) is the
marginal probability density function of Xi. Relevant statements and objects in the abstract
probability space have obvious counterparts in the associated image probability space. Both
probability spaces will be used in this paper.

Two sets of assumptions used by PDD are as follows.
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818 SHARIF RAHMAN

Assumption 2.1. The input random vector X := (X1, . . . , XN )T : (Ω,F) → (AN ,BN )
satisfies all of the following conditions:

(1) Each input random variable Xi : (Ω{i},F{i})→ (A{i},B{i}) has absolutely continuous
marginal distribution function FXi(xi) := P(Xi ≤ xi) and continuous marginal density
function fXi(xi) := ∂FXi(xi)/∂xi with a bounded or unbounded support A{i} ⊆ R.

(2) All component random variables Xi, i = 1, . . . , N , are statistically independent, but
not necessarily identical. In consequence, X is endowed with a product-type probability
density function, that is, fX(x) =

∏N
i=1 fXi(xi) with a bounded or unbounded support

AN ⊆ RN .
(3) Each input random variable Xi possesses finite moments of all orders, that is, for all

i = 1, . . . , N and l ∈ N0,

(2.1) µi,l := E
[
X l

i

]
:=

∫
Ω
X l

i(ω)dP(ω) =

∫
AN

xlifX(x)dx =

∫
A{i}

xlifXi(xi)dxi <∞,

where E is the expectation operator with respect to the probability measure P or fX(x)dx.

Assumption 2.2. The moments and marginal density function of each input random vari-
able Xi, where i = 1, . . . , N , satisfy at least one of the following conditions [10]:

(1) The density function fXi(xi) has a compact support, that is, there exists a compact
interval [ai, bi], ai, bi ∈ R, such that P(ai ≤ Xi ≤ bi) = 1.

(2) For the moment sequence {µi,l}l∈N0 for Xi, there holds

(2.2) lim
l→∞

inf
(µi,2l)

1/2l

2l
<∞.

(3) For the moment sequence {µi,l}l∈N0 for Xi, there holds

(2.3)
∑
l∈N0

1

(µi,2l)1/2l
=∞.

(4) The random variable Xi is exponentially integrable, that is, there exists a real number
a > 0 such that

(2.4)

∫
A{i}

exp(a|xi|)fXi(xi)dxi <∞.

(5) If the density function fXi(xi) is symmetric, differentiable, and strictly positive, then
there exists a real number a > 0 such that

(2.5)

∫
A{i}
− ln fXi(xi)

1 + x2
i

dxi =∞ and
−xidfXi(xi)/dxi

fXi(xi)
→∞ as (xi →∞, xi ≥ a).

Assumption 2.1 ensures the existence of an infinite sequence of orthogonal polynomials
consistent with the input probability measure. Assumption 2.2, in addition to Assumption
2.1, guarantees the input probability measure to be determinate, resulting in a complete or-
thogonal polynomial basis of a function space of interest. Both assumptions impose only mild
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 819

restrictions on the probability measure. Examples of input random variables satisfying As-
sumptions 2.1 and 2.2 are Gaussian, uniform, exponential, beta, and gamma variables, which
are commonly used in uncertainty quantification. These assumptions, to be explained in the
next section, are vitally important for the determinacy of the probability measure and the
completeness of the orthogonal polynomial basis. Therefore, for both PDD and PCE, which
entail orthogonal polynomial expansions, Assumptions 2.1 and 2.2 are necessary. Unfortu-
nately, they are not always clearly specified in the PDD or PCE literature. A prototypical
example where Assumption 2.1 is satisfied, but Assumption 2.2 is not, is the case of a lognor-
mal random variable. As noted by Ernst et al. [10], the violation of Assumption 2.2 leads to
indeterminacy of the input probability measure and thereby fails to form a complete orthogo-
nal polynomial basis. Finally, Assumptions 2.1 and 2.2 can be modified to account for random
variables with discrete or mixed distributions [11] or dependent random variables [23]. The
discrete or mixed distributions and dependent variables are not considered in this paper.

3. Measure-consistent orthogonal polynomials and polynomial spaces.

3.1. Univariate orthogonal polynomials. Consider an ith random variable Xi defined
on the abstract probability space (Ω{i},F{i},P{i}) with its image (A{i},B{i}, fXidxi). Let
Π{i} := R[xi] be the space of real polynomials in xi. For any polynomial pair P{i}, Q{i} ∈ Π{i},
define an inner product

(3.1) (P{i}, Q{i})fXi
dxi

:=

∫
A{i}

P{i}(xi)Q{i}(xi)fXi(xi)dxi =: E
[
P{i}(Xi)Q{i}(Xi)

]
with respect to the probability measure fXi(xi)dxi and the induced norm

‖P{i}‖fXi
dxi

:=
√

(P{i}, P{i})fXi
dxi

=

(∫
A{i}

P 2
{i}(xi)fXi(xi)dxi

)1/2

=:

√
E
[
P 2
{i}(Xi)

]
.

Under Assumption 2.1, moments of Xi of all orders exist and are finite, including zero-order
moments µi,0 :=

∫
A{i} fXi(xi)dxi = 1, i = 1, . . . , N , that are always positive. Clearly, ‖P{i}‖ >

0 for all nonzero P{i} ∈ Π{i}. Then, according to Gautschi [12], the inner product in (3.1)

is positive-definite on Π{i}. Therefore, there exists an infinite set of univariate orthogonal
polynomials, say, {P{i},ji(xi) : ji ∈ N0}, P{i},ji 6= 0, which is consistent with the probability
measure fXi(xi)dxi, satisfying

(3.2)
(
P{i},ji , P{i},ki

)
fXi

dxi
=

{
E[P 2

{i},ji(Xi)], ji = ki,

0, ji 6= ki,

for ki ∈ N0, where 0 < E[P 2
{i},ji(Xi)] <∞. Here, in the notation for the polynomial P{i},ji(xi),

the first and second indices refer to the ith variable and degree ji, respectively. Prominent
examples of classical univariate orthogonal polynomials comprise Hermite, Laguerre, and Ja-
cobi polynomials, which are consistent with the measures defined by Gaussian, gamma, and
beta densities on the whole real line, semi-infinite interval, and bounded interval, respec-
tively. Many orthogonal polynomials, including the three classical polynomials mentioned,
can be expressed in a unified way by invoking hypergeometric series, incorporated in a tree
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820 SHARIF RAHMAN

structure of the Askey scheme [1]. For even more general measures, established numerical
techniques, such as Gram–Schmidt [13] and Stieltjes’ procedure [26], can be used to generate
any measure-consistent orthogonal polynomials.

3.2. Multivariate orthogonal polynomials. For N ∈ N, denote by {1, . . . , N} an index
set, so that u ⊆ {1, . . . , N} is a subset, including the empty set ∅, with cardinality 0 ≤ |u| ≤ N .
When ∅ 6= u ⊆ {1, . . . , N}, a |u|-dimensional multi-index is denoted by ju := (ji1 , . . . , ji|u|) ∈
N|u|0 with degree |ju| := ji1 + · · · + ji|u| , where jip ∈ N0, p = 1, . . . , |u|, represents the pth

component of ju.1

For ∅ 6= u ⊆ {1, . . . , N}, let Xu := (Xi1 , . . . , Xi|u|)
T , a subvector of X, be defined on

the abstract probability space (Ωu,Fu,Pu), where Ωu is the sample space of Xu, Fu is a
σ-algebra on Ωu, and Pu is a probability measure. The corresponding image probability space
is (Au,Bu, fXudxu), where Au := ×i∈uA{i} ⊆ R|u| is the image sample space of Xu, Bu is
the Borel σ-algebra on Au, and fXu(xu) is the marginal probability density function of Xu

supported on Au. Under Assumption 2.1, fXu(xu) =
∏

i∈u fXi(xi). Denote by

Πu := R[xu] = R[xi1 , . . . , xi|u| ]

the space of all real polynomials in xu. Then, given the inner product

(Pu, Qu)fXudxu
:=

∫
Au

Pu(xu)Qu(xu)fXu(xu)dxu =: E [Pu(Xu)Qu(Xu)] ,

two polynomials Pu ∈ Πu andQu ∈ Πu in xu are called orthogonal to each other if (Pu, Qu)fXudxu

= 0 [8]. Moreover, a polynomial Pu ∈ Πu is said to be an orthogonal polynomial with respect
to fXudxu if it is orthogonal to all polynomials of lower degree, that is, if [8]

(3.3) (Pu, Qu)fXudxu
= 0 ∀Qu ∈ Πu with degQu < degPu.

Let {Pu,ju(xu) : ju ∈ N|u|0 }, ∅ 6= u ⊆ {1, . . . , N}, represent an infinite set of multivari-
ate orthogonal polynomials, which is consistent with the probability measure fXu(xu)dxu,
satisfying

(3.4) (Pu,ju , Pu,ku)fXudxu
=: E [Pu,ju(Xu)Pu,ku(Xu)] = 0 ∀ju 6= ku, ku ∈ N|u|0 .

Clearly, each Pu,ju ∈ Πu is a multivariate orthogonal polynomial satisfying (3.3). Due to
the product-type probability measure of Xu, a consequence of statistical independence from
Assumption 2.1, such multivariate polynomials exist and are easily constructed by tensorizing
univariate orthogonal polynomials.

Proposition 3.1. Let X := (X1, . . . , XN )T : (Ω,F)→ (AN ,BN ) be a vector of N ∈ N input
random variables fulfilling Assumption 2.1. Suppose that the sets of univariate orthogonal
polynomials for all marginal measures are obtained as {P{i},ji(xi) : ji ∈ N0}, i = 1, . . . , N .

1The same symbol | · | is used for designating both the cardinality of a set and the degree of a multi-index
in this paper.

c© 2018 Sharif Rahman

D
ow

nl
oa

de
d 

06
/1

9/
18

 to
 1

28
.2

55
.1

9.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



POLYNOMIAL DIMENSIONAL DECOMPOSITION 821

Then, for ∅ 6= u ⊆ {1, . . . , N}, the set of multivariate orthogonal polynomials in xu consistent
with the probability measure fXu(xu)dxu is

(3.5)
{
Pu,ju(xu) : ju ∈ N|u|0

}
=
⊗
i∈u

{
P{i},ji(xi) : ji ∈ N0

}
,

where the symbol
⊗

denotes the tensor product. In terms of an element, the multivariate
orthogonal polynomial of degree |ju| = ji1 + · · ·+ ji|u| is

(3.6) Pu,ju(xu) =
∏
i∈u

P{i},ji(xi).

Proof. Consider two distinct polynomials Pu,ju(xu) and Pu,ku(xu) from the set {Pu,ju(xu) :

ju ∈ N|u|0 } satisfying (3.5). Since ju 6= ku, ju, and ku must differ in at least one component.
Without loss of generality, suppose that ji1 6= ki1 . Then, by Fubini’s theorem, with statistical
independence of random variables in mind,

(3.7)

(Pu,juPu,ku)fXudxu
=

∫
Au Pu,ju(xu)Pu,ku(xu)fXu(xu)dxu

=
∫
×|u|p=2A

{ip}

|u|∏
p=2

[
P{ip},jip (xip)P{ip},kip (xip)fXip

(xip)dxip

]
×
∫
A{i1} P{i1},ji1 (xi1)P{i1},ki1 (xi1)fXi1

(xi1)dxi1
= 0,

where the equality to zero in the last line results from the recognition that the inner integral
vanishes by setting i = i1 in (3.2).

In addition, for ju ∈ N|u|0 ,

(3.8) (Pu,juPu,ju)fXudxu
=: E

[
P 2
u,ju(Xu)

]
=
∏
i∈u

E
[
P 2
{i},ji(Xi)

]
> 0

and is finite by virtue of the existence of the set of univariate orthogonal polynomials {P{i},ji(xi) :

ji ∈ N0} for i = 1, . . . , N . Therefore, {Pu,ju(xu) : ju ∈ N|u|0 } satisfying (3.5) is a set of multi-
variate orthogonal polynomials consistent with the probability measure fXu(xu)dxu.

Once the multivariate orthogonal polynomials are obtained, they can be scaled to generate
multivariate orthonormal polynomials, as follows.

Definition 3.2. A multivariate orthonormal polynomial Ψu,ju(xu), ∅ 6= u ⊆ {1, . . . , N},
ju ∈ N|u|0 , of degree |ju| = ji1 + · · · + ji|u| that is consistent with the probability measure
fXu(xu)dxu is defined as

(3.9) Ψu,ju(xu) :=
Pu,ju(xu)√
E[P 2

u,ju
(Xu)]

=
∏
i∈u

P{i},ji(xi)√
E
[
P 2
{i},ji(Xi)

] =:
∏
i∈u

Ψ{i},ji(xi),

where Ψ{i},ji(xi) := P{i},ji(xi)/
√
E[P 2

{i},ji(Xi)] is a univariate orthonormal polynomial in xi

of degree ji that is consistent with the probability measure fXi(xi)dxi.
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822 SHARIF RAHMAN

3.3. Dimensionwise orthogonal decomposition of polynomial spaces. An orthogonal
decomposition of polynomial spaces entailing dimensionwise splitting leads to PDD. Here, to
facilitate such splitting of the polynomial space Πu for any ∅ 6= u ⊆ {1, . . . , N}, limit the
power jip of the ipth variable, where ip ∈ u ⊆ {1, . . . , N}, p = 1, . . . , |u|, and |u| > 0, to take

on only positive integer values. In consequence, ju := (ji1 , . . . , ji|u|) ∈ N|u|, the multi-index of
Pu,ju(xu), has degree |ju| = ji1 + · · ·+ ji|u|, varying from |u| to ∞ as ji1 6= · · · ji|u| 6= 0.

For ju ∈ N|u| and xu := (xi1 , . . . , xi|u), a monomial in the variables xi1 , . . . , xi|u| is the

product xju
u = x

ji1
i1
. . . x

ji|u|
i|u|

and has a total degree |ju|. A linear combination of xju
u , where

|ju| = l, |u| ≤ l ≤ ∞, is a homogeneous polynomial in xu of degree l. For ∅ 6= u ⊆ {1, . . . , N},
denote by

Qu
l := span{xju

u : |ju| = l, ju ∈ N|u|}, |u| ≤ l <∞,

the space of homogeneous polynomials in xu of degree l where the individual degree of each
variable is nonzero and by

Θu
m := span{xju

u : |u| ≤ |ju| ≤ m, ju ∈ N|u|}, |u| ≤ m <∞,

the space of polynomials in xu of degree at least |u| and at most m where the individual degree
of each variable is nonzero. The dimensions of the vector spaces Qu

l and Θu
m, respectively, are

(3.10) dimQu
l = #

{
ju ∈ N|u| : |ju| = l

}
=

(
l − 1

|u| − 1

)
and

(3.11) dim Θu
m =

m∑
l=|u|

dimQu
l =

m∑
l=|u|

(
l − 1

|u| − 1

)
=

(
m

|u|

)
.

Let Zu
|u| := Θu

|u|. For each |u| + 1 ≤ l < ∞, denote by Zu
l ⊂ Θu

l the space of orthogonal
polynomials of degree exactly l that are orthogonal to all polynomials in Θu

l−1, that is,

Zu
l := {Pu ∈ Θu

l : (Pu, Qu)fXudxu = 0 ∀Qu ∈ Θu
l−1}, |u|+ 1 ≤ l <∞.

Then Zu
l , provided that the support of fXu(xu) has nonempty interior, is a vector space of

dimension

Mu,l := dimZu
l = dimQu

l =

(
l − 1

|u| − 1

)
.

Many choices exist for the basis of Zu
l . Here, to be formally proved in section 3.5, select

{Pu,ju(xu) : |ju| = l, ju ∈ N|u|} ⊂ Zu
l to be a basis of Zu

l , comprising Mu,l number of basis
functions. Each basis function Pu,ju(xu) is a multivariate orthogonal polynomial of degree |ju|
as defined earlier. Clearly,

Zu
l = span{Pu,ju(xu) : |ju| = l, ju ∈ N|u|}, |u| ≤ l <∞.

According to Proposition 3.3, to be presented later, Pu,ju(Xu) is orthogonal to Pv,kv(Xv)
whenever (1) u 6= v and ju,kv are arbitrary; or (2) u = v and ju 6= kv. Therefore, any two
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 823

distinct polynomial subspaces Zu
l and Zv

l′ , where ∅ 6= u ⊆ {1, . . . , N}, ∅ 6= v ⊆ {1, . . . , N},
|u| ≤ l <∞, and |v| ≤ l′ <∞, are orthogonal whenever u 6= v or l 6= l′. In consequence, there
exist orthogonal decompositions of

Θu
m =

m⊕
l=|u|

Zu
l =

m⊕
l=|u|

span{Pu,ju(xu) : |ju| = l, ju ∈ N|u|}

= span{Pu,ju(xu) : |u| ≤ |ju| ≤ m, ju ∈ N|u|}

with the symbol ⊕ representing the orthogonal sum and

(3.12)

Πu = 1⊕
⊕
∅6=v⊆u

∞⊕
l=|v|

Zv
l = 1⊕

⊕
∅6=v⊆u

∞⊕
l=|v|

span{Pv,jv(xv) : |jv| = l, jv ∈ N|v|}

= 1⊕
⊕
∅6=v⊆u

span{Pv,jv(xv) : jv ∈ N|v|},

where 1 := span{1}, the constant subspace, needs to be added because the subspace Zv
l

excludes constant functions.
Recall that ΠN is the space of all real polynomials in x. Then, setting u = {1, . . . , N} in

(3.12) first and then swapping v for u yields yet another orthogonal decomposition of

(3.13)

ΠN = 1⊕
⊕

∅6=u⊆{1,...,N}

∞⊕
l=|u|

Zu
l

= 1⊕
⊕

∅6=u⊆{1,...,N}

∞⊕
l=|u|

span{Pu,ju(xu) : |ju| = l, ju ∈ N|u|}

= 1⊕
⊕

∅6=u⊆{1,...,N}

span{Pu,ju(xu) : ju ∈ N|u|}.

Note that the last expression of (3.13) is equal to the span of

(3.14)
{
Pj(x) : j ∈ NN

0

}
:=

N⊗
i=1

{
P{i},ji(xi) : ji ∈ N0

}
,

representing an infinite set of orthogonal polynomials in x.
Given the dimensionwise orthogonal splitting of ΠN , any square-integrable function of

input random vector X can be expanded as a Fourier-like series of hierarchically ordered mul-
tivariate orthogonal or orthonormal polynomials in Xu, ∅ 6= u ⊆ {1, . . . , N}. The expansion
is referred to as PDD, to be formally presented and analyzed in section 4.

3.4. Statistical properties of random multivariate polynomials. When the input random
variables X1, . . . , XN , instead of real variables x1, . . . , xN , are inserted in the argument, the
multivariate polynomials Pu,ju(Xu) and Ψu,ju(Xu), where ∅ 6= u ⊆ {1, . . . , N} and ju ∈ N|u|,
become functions of random input variables. Therefore, it is important to establish their
second-moment properties, to be exploited in the remaining part of this section and section
4.
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824 SHARIF RAHMAN

Proposition 3.3. Let X := (X1, . . . , XN ) be a vector of N ∈ N input random variables
fulfilling Assumption 2.1. For ∅ 6= u, v ⊆ {1, . . . , N}, ju ∈ N|u|, and kv ∈ N|v|, the first- and
second-order moments of multivariate orthogonal polynomials are

(3.15) E [Pu,ju(Xu)] = 0

and

(3.16) E [Pu,ju(Xu)Pv,kv(Xv)] =


∏
i∈u

E
[
P 2
{i},ji(Xi)

]
, u = v, ju = kv,

0 otherwise,

respectively.

Proof. Using (3.6) and statistical independence of random variables, E[Pu,ju(Xu)] =∏
i∈u E[P{i},ji(Xi] for any ju ∈ N|u|. Since each component of ju is nonzero, (3.2), with

the constant function P{i},0 6= 0 in mind, produces E[P{i},ji(Xi] = 0 for any i ∈ u, ji ∈ N,
resulting in (3.15).

To obtain the nontrivial result of (3.16), set u = v and ju = kv and use (3.8) directly.
The trivial result of (3.16) is obtained by considering two subcases. First, when u = v and
ju 6= kv, (3.7) yields the result already. Second, when u 6= v and ju,kv ∈ N|v| are arbitrary,
then u and v differ by at least one element. Suppose that i ∈ (u∪ v) is that element with the
associated degree ji ∈ N. Using the statistical independence of random variables and the fact
that E[P{i},ji(Xi] = 0, as already demonstrated, produces the desired result.

Corollary 3.4. For ∅ 6= u, v ⊆ {1, . . . , N}, ju ∈ N|u|, and kv ∈ N|v|, the first- and second-
order moments of multivariate orthonormal polynomials are

(3.17) E [Ψu,ju(Xu)] = 0

and

(3.18) E [Ψu,ju(Xu)Ψv,kv(Xv)] =

{
1, u = v, ju = kv,

0 otherwise,

respectively.

3.5. Orthogonal basis and completeness. An important question regarding multivariate
orthogonal polynomials discussed in the preceding subsection is whether they constitute a
complete basis in a function space of interest, such as a Hilbert space. Let L2(AN ,BN , fXdx)
represent a Hilbert space of square-integrable functions with respect to the probability measure
fX(x)dx supported on AN . The following two propositions show that, indeed, measure-
consistent orthogonal polynomials span various spaces of interest.

Proposition 3.5. Let X := (X1, . . . , XN )T : (Ω,F) → (AN ,BN ) be a vector of N ∈ N
input random variables fulfilling Assumption 2.1 and let Xu := (Xi1 , . . . , Xi|u|)

T : (Ωu,Fu)→
(Au,Bu), ∅ 6= u ⊆ {1, . . . , N}, be a subvector of X. Then {Pu,ju(xu) : |ju| = l, ju ∈ N|u|},
the set of multivariate orthogonal polynomials of degree l, |u| ≤ l < ∞, consistent with the
probability measure fXu(xu)dxu, is a basis of Zu

l .
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 825

Proof. Under Assumption 2.1, orthogonal polynomials consistent with the probability

measure fXu(xu)dxu exist. Denote by Pu,l = (P
(1)
u,l , . . . , P

(Mu,l)
u,l )T a column vector of the

elements of {Pu,ju(Xu) : |ju| = l, ju ∈ N|u|} arranged according to some monomial order. Let

aTu,l = (a
(1)
u,l , . . . , a

(Mu,l)
u,l ) be a row vector comprising some constants a

(j)
u,l ∈ R, j = 1, . . . ,Mu,l.

Set aTu,lPu,l = 0. Multiply both sides of the equality from the right by PT
u,l, integrate with

respect to the measure fXu(xu)dxu over Au, and apply transposition to obtain

(3.19) Gu,lau,l = 0,

where Gu,l = E[Pu,lP
T
u,l] is an Mu,l ×Mu,l matrix with its (p, q)th element

G
(pq)
u,l =

∫
Au

P
(p)
u,l (xu)P

(q)
u,l (xu)fXu(xu)dxu = E

[
P

(p)
u,l (Xu)P

(q)
u,l (Xu)

]
representing the covariance between two elements of Pu,l. According to Proposition 3.3,
any two distinct polynomials from {Pu,ju(xu) : |ju| = l, ju ∈ N|u|} are orthogonal, meaning

that E[P
(p)
u,l P

(q)
u,l ] is zero if p 6= q and positive and finite if p = q. Consequently, Gu,l is

a diagonal, positive-definite matrix and hence invertible. Therefore, (3.19) yields au,l = 0,
proving linear independence of the elements of Pu,l or the set {Pu,ju(xu) : |ju| = l, ju ∈ N|u|}.
Furthermore, the dimension of Zu

l , which is Mu,l, matches exactly the number of elements of
the aforementioned set. Therefore, the spanning set {Pu,ju(xu) : |ju| = l, ju ∈ N|u|} forms a
basis of Zu

l .

Proposition 3.6. Let X := (X1, . . . , XN )T : (Ω,F)→ (AN ,BN ) be a vector of N ∈ N input
random variables fulfilling both Assumptions 2.1 and 2.2 and let Xu := (Xi1 , . . . , Xi|u|)

T :
(Ωu,Fu)→ (Au,Bu), ∅ 6= u ⊆ {1, . . . , N}, be a subvector of X. Consistent with the probability
measure fXu(xu)dxu, let {Pu,ju(xu) : |ju| = l, ju ∈ N|u|}, the set of multivariate orthogonal
polynomials of degree l, |u| ≤ l < ∞, be a basis of Zu

l . Then the set of polynomials from the
orthogonal sum

1⊕
⊕

∅6=u⊆{1,...,N}

∞⊕
l=|u|

span{Pu,ju(xu) : |ju| = l, ju ∈ N|u|}

is dense in L2(AN ,BN , fXdx). Moreover,

(3.20) L2(AN ,BN , fXdx) = 1⊕
⊕

∅6=u⊆{1,...,N}

∞⊕
l=|u|

Zu
l ,

where the overline denotes set closure.

Proof. Under Assumption 2.1, orthogonal polynomials exist. According to Theorem 3.4
of Ernst et al. [10], which exploits Assumption 2.2, the polynomial space Π{i} = R[xi] is dense
in L2(A{i},B{i}, fXidxi). Now use Theorem 4 of Petersen [19], which asserts that if, for p ≥ 1
and all i = 1, . . . , N , Π{i} is dense in Lp(A{i},B{i}, fXidxi), then so is ΠN = R[x1, . . . , xN ]
in Lp(AN ,BN , fXdx). Therefore, the set of polynomials from the orthogonal sum, which is
equal to ΠN as per (3.13), is dense in L2(AN ,BN , fXdx). Including the limit points of the
orthogonal sum yields (3.20).
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826 SHARIF RAHMAN

4. Polynomial dimensional decomposition. Let y(X) := y(X1, . . . , XN ) be a real-valued,
square-integrable output random variable defined on the same probability space (Ω,F ,P). The
vector space L2(Ω,F ,P) is a Hilbert space such that

E
[
y2(X)

]
:=

∫
Ω
y2(X(ω))dP(ω) =

∫
AN

y2(x)fX(x)dx <∞

with inner product

(y(X), z(X))L2(Ω,F ,P) :=

∫
Ω
y(X(ω))z(X(ω))dP(ω) =

∫
AN

y(x)z(x)fX(x)dx =: (y(x), z(x))fXdx

and norm

‖y(X)‖L2(Ω,F ,P) :=
√

(y(X), y(X))L2(Ω,F ,P) =
√

(y(x), y(x))fXdx =: ‖y(x)‖fXdx.

It is elementary to show that y(X(ω)) ∈ L2(Ω,F ,P) if and only if y(x) ∈ L2(AN ,BN , fXdx).

4.1. ADD. The ADD, expressed by the recursive form [17, 22]

y(X) = y∅ +
∑

∅6=u⊆{1,...,N}

yu(Xu),(4.1a)

y∅ =

∫
AN

y(x)fX(x)dx,(4.1b)

yu(Xu) =

∫
AN−|u|

y(Xu,x−u)fX−u(x−u)dx−u −
∑
v⊂u

yv(Xv),(4.1c)

is a finite, hierarchical expansion of y in terms of its input variables with increasing dimensions,
where u ⊆ {1, . . . , N} is a subset with the complementary set −u = {1, . . . , N}\u and yu is
a |u|-variate component function describing a constant or an |u|-variate interaction of Xu =
(Xi1 , . . . , Xi|u|) on y when |u| = 0 or |u| > 0. Here, (Xu,x−u) denotes an N -dimensional
vector whose ith component is Xi if i ∈ u and xi if i /∈ u. The summation in (4.1a) comprises
2N −1 terms with each term depending on a group of variables indexed by a particular subset
of {1, . . . , N}. When u = ∅, the sum in (4.1c) vanishes, resulting in the expression of the
constant function y∅ in (4.1b). When u = {1, . . . , N}, the integration in the last line of
(4.1c) is on the empty set, reproducing (4.1a) and hence finding the last function y{1,...,N}.
Indeed, all component functions of y can be obtained by interpreting literally (4.1c). This
decomposition, first presented by Hoeffding [16] in relation to his seminal work on U -statistics,
has been studied by many other researchers described by Efron and Stein [9], the author [22],
and references cited therein.

The ADD can also be generated by tensorizing a univariate function space decomposition
into its constant subspace and remainder, producing [14]

(4.2) L2(AN ,BN , fXdx) = 1⊕
⊕

∅6=u⊆{1,...,N}

Wu,
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 827

where

Wu :=
{
yu ∈ L2(Au,Bu, fXudxu) : E [yu(Xu)yv(Xv)] = 0 if u 6= v, v ⊆ {1, . . . , N}

}
is an ADD subspace comprising |u|-variate component functions of y. However, the subspaces
Wu, ∅ 6= u ⊆ {1, . . . , N}, are, in general, infinite-dimensional; therefore, further discretization
of Wu is necessary. For instance, by introducing measure-consistent orthogonal polynomial
basis discussed in section 3, a component function yu(Xu) ∈ Wu can be expressed as a linear
combination of these basis functions. Indeed, comparing (3.20) and (4.2) yields the closure of
an orthogonal decomposition of

(4.3) Wu =

∞⊕
l=|u|

Zu
l

into polynomial spaces Zu
l , |u| ≤ l <∞. The result is a polynomial refinement of ADD, which

is commonly referred to as PDD.

4.2. PDD. The PDD of a square-integrable random variable y(X) ∈ L2(Ω,F ,P) is sim-
ply the expansion of y(X) with respect to a complete, hierarchically ordered, orthonormal
polynomial basis of L2(Ω,F ,P). There are at least two ways to explain PDD: a polynomial
variant of ADD and a dimensionwise orthogonal polynomial expansion.

4.2.1. Polynomial variant of ADD. The first approach, explained by the author in a
prior work [20], involves the following two steps: (1) expand the ANOVA component function

(4.4) yu(Xu) ∼
∑

ju∈N|u|
Cu,juΨu,ju(Xu)

in terms of the basis of Wu, which originally stems from the basis of Zu
l , |u| ≤ l <∞, with

(4.5) Cu,ju =

∫
Au

yu(xu)Ψu,ju(xu)fXu(xu)dxu, ∅ 6= u ⊆ {1, . . . , N}, ju ∈ N|u|,

representing the associated expansion coefficients; and (2) apply (4.1c) to (4.5) and exploit
orthogonal properties of the basis. The end result is the PDD [20] of

(4.6) y(X) ∼ y∅ +
∑

∅6=u⊆{1,...,N}

∑
ju∈N|u|

Cu,juΨu,ju(Xu),

where, eventually,

(4.7) Cu,ju =

∫
AN

y(x)Ψu,ju(xu)fX(x)dx.

Comparing (4.1) and (4.6), the connection between PDD and ADD is clearly palpable, where
the former can be viewed as a polynomial variant of the latter. For instance, Cu,juΨu,ju(Xu)
in (4.6) represents a |u|-variate, |ju|th-order PDD component function of y(X), describing
the |ju|th-order polynomial approximation of yu(Xu). In addition, PDD inherits all desirable
properties of ADD [20].
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828 SHARIF RAHMAN

4.2.2. Dimensionwise orthogonal polynomial expansion. The second approach entails
polynomial expansion associated with the dimensionwise orthogonal splitting of polynomial
spaces, as explained in section 3.3. The latter approach is new, has not been published
elsewhere, and is, therefore, formally presented here as Theorem 4.1.

Theorem 4.1. Let X := (X1, . . . , XN )T : (Ω,F) → (AN ,BN ) be a vector of N ∈ N in-
put random variables fulfilling Assumptions 2.1 and 2.2. For ∅ 6= u ⊆ {1, . . . , N} and
Xu := (Xi1 , . . . , Xi|u|)

T : (Ωu,Fu) → (Au,Bu), denote by {Ψu,ju(Xu): ju ∈ N|u|} the set
of multivariate orthonormal polynomials consistent with the probability measure fXu(xu)dxu.
Then

(1) any random variable y(X) ∈ L2(Ω,F ,P) can be hierarchically expanded as a Fourier-
like series, referred to as the PDD of

(4.8)

y(X) ∼ y∅ +
∑

∅6=u⊆{1,...,N}

∞∑
l=|u|

∑
ju∈N|u|
|ju|=l

Cu,juΨu,ju(Xu)

= y∅ +
∑

∅6=u⊆{1,...,N}

∑
ju∈N|u|

Cu,juΨu,ju(Xu),

where the expansion coefficients y∅ ∈ R and Cu,ju ∈ R, ∅ 6= u ⊆ {1, . . . , N}, ju ∈ N|u|,
are defined by

(4.9) y∅ := E [y(X)] :=

∫
AN

y(x)fX(x)dx,

(4.10) Cu,ju := E [y(X)Ψu,ju(Xu)] :=

∫
AN

y(x)Ψu,ju(xu)fX(x)dx;

and
(2) the PDD of y(X) ∈ L2(Ω,F ,P) converges to y(X) in mean-square; furthermore, the

PDD converges in probability and in distribution.

Proof. Under Assumptions 2.1 and 2.2, a complete infinite set of multivariate orthogonal
polynomials in xu consistent with the probability measure fXu(xu)dxu exists. From Propo-
sition 3.6 and the fact that orthonormality is merely scaling, the set of polynomials from the
orthogonal sum

(4.11) 1⊕
⊕

∅6=u⊆{1,...,N}

∞⊕
l=|u|

span{Ψu,ju(xu) : |ju| = l, ju ∈ N|u|} = ΠN

is also dense in L2(AN ,BN , fXdx). Therefore, any square-integrable random variable y(X)
can be expanded as shown in (4.8). Combining the two inner sums of the expansion forms
the equality in the second line of (4.8).

From the denseness, one has the Bessel’s inequality [7]

(4.12) E

[
y∅ +

∑
∅6=u⊆{1,...,N}

∑
ju∈N|u|

Cu,juΨu,ju(Xu)

]2

≤ E
[
y2(X)

]
,
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 829

proving that the PDD converges in mean-square or L2. To determine the limit of convergence,
invoke again Proposition 3.6, which implies that the set on the left side of (4.11) is complete
in L2(AN ,BN , fXdx). Therefore, Bessel’s inequality becomes an equality

(4.13) E

[
y∅ +

∑
∅6=u⊆{1,...,N}

∑
ju∈N|u|

Cu,juΨu,ju(Xu)

]2

= E
[
y2(X)

]
,

known as the Parseval identity [7] for a multivariate orthonormal system, for every random
variable y(X) ∈ L2(Ω,F ,P). Furthermore, as the PDD converges in mean-square, it does
so in probability. Moreover, as the expansion converges in probability, it also converges in
distribution.

Finally, to find the expansion coefficients, define a second moment

(4.14) ePDD := E

[
y(X)− y∅ −

∑
∅6=v⊆{1,...,N}

∑
kv∈N|v|

Cv,kvΨv,kv(Xv)

]2

of the difference between y(X) and its full PDD. Differentiate both sides of (4.14) with respect
to y∅ and Cu,ju , ∅ 6= u ⊆ {1, . . . , N}, ju ∈ N|u|, to write

(4.15)

∂ePDD

∂y∅
=

∂

∂y∅
E

[
y(X)− y∅ −

∑
∅6=v⊆{1,...,N}

∑
kv∈N|v|

Cv,kvΨv,kv(Xv)

]2

= E

[
∂

∂y∅

{
y(X)− y∅ −

∑
∅6=v⊆{1,...,N}

∑
kv∈N|v|

Cv,kvΨv,kv(Xv)

}2]

= 2E

[{
y∅ +

∑
∅6=v⊆{1,...,N}

∑
kv∈N|v|

Cv,kvΨv,kv(Xv)− y(X)

}
× 1

]
= 2 {y∅ − E [y(X)]}

and

(4.16)

∂ePDD

∂Cu,ju

=
∂

∂Cu,ju

E

[
y(X)− y∅ −

∑
∅6=v⊆{1,...,N}

∑
kv∈N|v|

Cv,kvΨv,kv(Xv)

]2

= E

[
∂

∂Cu,ju

{
y(X)− y∅ −

∑
∅6=v⊆{1,...,N}

∑
kv∈N|v|

Cv,kvΨv,kv(Xv)

}2]

= 2E

[{
y∅ +

∑
∅6=v⊆{1,...,N}

∑
kv∈N|v|

Cv,kvΨv,kv(Xv)− y(X)

}
Ψu,ju(Xu)

]
= 2 {Cu,ju − E [y(X)Ψu,ju(Xu)]} .

Here, the second, third, and last lines of both (4.15) and (4.16) are obtained by interchanging
the differential and expectation operators, performing the differentiation, swapping the expec-
tation and summation operators and applying Corollary 3.4, respectively. The interchanges
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830 SHARIF RAHMAN

are permissible as the infinite sum is convergent as demonstrated in the preceding paragraph.
Setting ∂ePDD/∂y∅ = 0 in (4.15) and ∂ePDD/∂Cu,ju = 0 in (4.16) yields (4.9) and (4.10),
respectively, completing the proof.

The expressions of the expansion coefficients can also be derived by simply replacing y(X)
in (4.9) and (4.10) with the full PDD and then using Corollary 3.4. In contrast, the proof
given here demonstrates that the PDD coefficients are determined optimally.

It should be emphasized that the function y must be square-integrable for the mean-square
and other convergences to hold. However, the rate of convergence depends on the smoothness
of the function. The smoother the function, the faster the convergence. If the function is a
polynomial, then its PDD exactly reproduces the function. These results can be easily proved
using classical approximation theory.

A related expansion, known by the name of RS-HDMR [18], also involves orthogonal
polynomials in connection with ADD. However, the existence, convergence, and approximation
quality of the expansion, including its behavior for infinitely many input variables, have not
been reported.

4.3. Truncation. The full PDD contains an infinite number of orthonormal polynomials
or coefficients. In practice, the number must be finite, meaning that PDD must be truncated.
However, there are multiple ways to perform the truncation. A straightforward approach
adopted in this work entails (1) keeping all polynomials in at most 0 ≤ S ≤ N variables,
thereby retaining the degrees of interaction among input variables less than or equal to S,
and (2) preserving polynomial expansion orders (total) less than or equal to S ≤ m < ∞.
The result is an S-variate, mth-order PDD approximation2

(4.17)

yS,m(X) = y∅ +
S∑

s=1

m∑
l=s

∑
∅6=u⊆{1,...,N}

|u|=s

∑
ju∈N|u|
|ju|=l

Cu,juΨu,ju(Xu)

= y∅ +
∑

∅6=u⊆{1,...,N}
1≤|u|≤S

∑
ju∈N|u|
|u|≤|ju|≤m

Cu,juΨu,ju(Xu)

of y(X), containing

(4.18) LS,m = 1 +

S∑
s=1

(
N

s

)(
m

s

)
number of expansion coefficients including y∅. It is important to clarify a few things about
the truncated PDD proposed. First, a different truncation with respect to the polynomial
expansion order based on∞-norm as opposed to 1-norm, that is, ‖ju‖∞ ≤ m, was employed in
prior works [20, 21, 24]. Therefore, comparing (4.17) and (4.18) with the existing truncation,
if it is desired, should be done with care. Having said this, the proposed truncation has
one advantage over the existing one: a direct comparison with a truncated PCE is possible;

2The nouns degree and order associated with PDD or orthogonal polynomials are used synonymously in
the paper.
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 831

this will be further explained in the forthcoming sections. Second, the right side of (4.17)
contains sums of at most S-dimensional orthonormal polynomials, representing at most S-
variate PDD component functions of y. Therefore, the term “S-variate” used for the PDD
approximation should be interpreted in the context of including at most S-degree interaction
of input variables, even though yS,m is strictly an N -variate function. Third, when S = 0,
y0,m = y∅ for any m as the outer sums of (4.17) vanish. Finally, when S → N and m →
∞, yS,m converges to y in the mean-square sense, generating a hierarchical and convergent
sequence of PDD approximations. Readers interested in an adaptive version of PDD, where
the truncation parameters are automatically chosen, are directed to the work of Yadav and
Rahman [30], including an application to design optimization [25].

It is natural to ask about the approximation quality of (4.17). Since the set of polynomials
from the orthogonal sum in (4.11) is complete in L2(AN ,BN , fXdx), the truncation error
y(X)− yS,m(X) is orthogonal to any element of the subspace from which yS,m(X) is chosen,
as demonstrated below.

Proposition 4.2. For any y(X) ∈ L2(Ω,F ,P), let yS,m(X) be its S-variate, mth-order PDD
approximation. Then the truncation error y(X)− yS,m(X) is orthogonal to the subspace

(4.19) ΠN
S,m := 1⊕

⊕
∅6=u⊆{1,...,N}

1≤|u|≤S

⊕
ju∈N|u|
|u|≤|ju|≤m

span{Ψu,ju(Xu) : ju ∈ N|u|} ⊆ L2(Ω,F ,P),

comprising all polynomials in X with the degree of interaction at most S and order at most
m, including constants. Moreover, E[y(X)− yS,m(X)]2 → 0 as S → N and m→∞.

Proof. Let

(4.20) ȳS,m(X) := ȳ∅ +
∑

∅6=v⊆{1,...,N}
1≤|v|≤S

∑
kv∈N|v|
|v|≤|kv |≤m

C̄v,kvΨv,kv(Xv),

with arbitrary expansion coefficients ȳ∅ and C̄v,kv , be any element of the subspace ΠN
S,m of

L2(Ω,F ,P) described by (4.19). Then
(4.21)

E [{y(X)− yS,m(X)}ȳS,m(X)]

= E

[{ ∑
∅6=u⊆{1,...,N}

1≤|u|≤S

∑
ju∈N|u|

m+1≤|ju|<∞

Cu,juΨu,ju(Xu) +
∑

∅6=u⊆{1,...,N}
S+1≤|u|≤N

∑
ju∈N|u|
|u|≤|ju|<∞

Cu,juΨu,ju(Xu)

}

×

{
ȳ∅ +

∑
∅6=v⊆{1,...,N}

1≤|v|≤S

∑
kv∈N|v|
|v|≤|kv |≤m

C̄v,kvΨv,kv(Xv)

}]

= 0,

where the last line follows from Corollary 3.4, proving the first part of the proposition. For
the latter part, the Pythagoras theorem yields

(4.22) E[{y(X)− yS,m(X)}2] + E[y2
S,m(X)] = E[y2(X)].
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832 SHARIF RAHMAN

From Theorem 4.1, E[y2
S,m(X)] → E[y2(X)] as S → N and m → ∞. Therefore, E[{y(X) −

yS,m(X)}2]→ 0 as S → N and m→∞.

The second part of Proposition 4.2 entails L2 convergence, which is the same as the mean-
square convergence described in Theorem 4.1. However, an alternative route is chosen for
the proof of the proposition. Besides, Proposition 4.2 implies that the PDD approximation
is optimal as it recovers the best approximation from the subspace ΠN

S,m, as described by
Corollary 4.3.

Corollary 4.3. Let ΠN
S,m in (4.19) define the subspace of all polynomials in X with the degree

of interaction at most S and order at most m, including constants. Then the S-variate, mth-
order PDD approximation yS,m(X) of y(X) ∈ L2(Ω,F ,P) is the best approximation in the
sense that

(4.23) E [y(X)− yS,m(X)]2 = inf
ȳS,m∈ΠN

S,m

E [y(X)− ȳS,m(X)]2 .

Proof. Consider two elements yS,m(X) and ȳS,m(X) of the subspace ΠN
S,m, where the

former is the S-variate, mth-order PDD approximation of y(X) with the expansion coefficients
defined by (4.9) and (4.10) and the latter is any S-variate, mth-order polynomial function,
described by (4.20), with arbitrary chosen expansion coefficients. From Proposition 4.2, the
truncation error y(X)−yS,m(X) is orthogonal to both yS,m(X) and ȳS,m(X) and is, therefore,
orthogonal to their linear combinations, yielding

E [{y(X)− yS,m(X)}{yS,m(X)]− ȳS,m(X)}] = 0.

Consequently,

(4.24)
E [y(X)− ȳS,m(X)]2 = E [y(X)− yS,m(X)]2 + E [yS,m(X)− ȳS,m(X)]2

≥ E [y(X)− yS,m(X)]2 ,

as the second expectation on the right side of the first line of (4.24) is nonnegative, thereby
proving the mean-square optimality of the S-variate, mth-order PDD approximation.

The motivations behind ADD- and PDD-derived approximations are the following. In a
practical setting, the function y(X), fortunately, has an effective dimension [4] much lower
than N , meaning that the right side of (4.1a) can be effectively approximated by a sum of
lower-dimensional component functions yu, |u| � N , but still maintaining all random variables
X of a high-dimensional uncertainty quantification problem. Furthermore, an S-variate, mth-
order PDD approximation is grounded on a fundamental conjecture known to be true in many
real-world uncertainty quantification problems: given a high-dimensional function y, its |u|-
variate, |ju|th-order PDD component function Cu,juΨu,ju(Xu), where S + 1 ≤ |u| ≤ N and
m + 1 ≤ |ju| < ∞, is small and hence negligible, leading to an accurate low-variate, low-
order approximation of y. The computational complexity of a truncated PDD is polynomial,
as opposed to exponential, thereby alleviating the curse of dimensionality to a substantial
extent. Although PCE contains the same orthogonal polynomials, a recent work on random
eigenvalue analysis of dynamic systems reveals markedly higher convergence rate of the PDD
approximation than the PCE approximation [24].
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 833

4.4. Output statistics and other probabilistic characteristics. The S-variate, mth-order
PDD approximation yS,m(X) can be viewed as a surrogate of y(X). Therefore, relevant
probabilistic characteristics of y(X), including its first two moments and probability density
function, if it exists, can be estimated from the statistical properties of yS,m(X).

Applying the expectation operator on yS,m(X) and y(X) in (4.17) and (4.8) and imposing
Corollary 3.4, their means

(4.25) E [yS,m(X)] = E [y(X)] = y∅

are the same and independent of S and m. Therefore, the PDD truncated for any values of
0 ≤ S ≤ N and S ≤ m <∞ yields the exact mean. Nonetheless, E[yS,m(X)] will be referred
to as the S-variate, mth-order PDD approximation of the mean of y(X).

Applying the expectation operator again, this time on [yS,m(X) − y∅]2 and [y(X) − y∅]2,
and employing Corollary 3.4 results in the variances

(4.26) var [yS,m(X)] =
∑

∅6=u⊆{1,...,N}
1≤|u|≤S

∑
ju∈N|u|
|u|≤|ju|≤m

C2
u,ju

and

(4.27) var [y(X)] =
∑

∅6=u⊆{1,...,N}

∑
ju∈N|u|

C2
u,ju

of yS,m(X) and y(X), respectively. Again, var[yS,m(X)] will be referred to as the S-variate,
mth-order PDD approximation of the variance of y(X). Clearly, var[yS,m(X)] approaches
var[y(X)], the exact variance of y(X), as S → N and m→∞.

Being convergent in probability and distribution, the probability density function of y(X),
if it exists, can also be estimated by that of yS,m(X). However, no analytical formula exists for
the density function. In that case, the density can be estimated by sampling methods, such as
Monte Carlo simulation (MCS) of yS,m(X). Such simulation should not be confused with crude
MCS of y(X), commonly used for producing benchmark results whenever possible. The crude
MCS can be expensive or even prohibitive, particularly when the sample size needs to be very
large for estimating tail probabilistic characteristics. In contrast, the MCS embedded in the
PDD approximation requires evaluations of simple polynomial functions that describe yS,m.
Therefore, a relatively large sample size can be accommodated in the PDD approximation
even when y is expensive to evaluate.

4.5. Infinitely many input variables. In many fields, such as uncertainty quantification,
information theory, and stochastic process, functions depending on a countable sequence
{Xi}i∈N of input random variables need to be considered [15]. Under certain assumptions,
PDD is still applicable as in the case of finitely many random variables, as demonstrated by
the following proposition.

Proposition 4.4. Let {Xi}i∈N be a countable sequence of input random variables defined
on the probability space (Ω,F∞,P), where F∞ := σ({Xi}i∈N) is the associated σ-algebra
generated. If the sequence {Xi}i∈N satisfies Assumptions 2.1 and 2.2, then the PDD of
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834 SHARIF RAHMAN

y({Xi}i∈N) ∈ L2(Ω,F∞,P), where y : AN → R, converges to y({Xi}i∈N) in mean-square.
Moreover, the PDD converges in probability and in distribution.

Proof. According to Proposition 3.6, ΠN is dense in L2(AN ,BN , fXdx) and hence in
L2(Ω,FN ,P) for every N ∈ N, where FN := σ({Xi}Ni=1) is the associated σ-algebra gen-
erated by {Xi}Ni=1. Here, with a certain abuse of notation, ΠN is used as a set of polynomial
functions of both real variables x and random variables X. Now, apply Theorem 3.8 of Ernst
et al. [10], which says that if ΠN is dense in L2(Ω,FN ,P) for every N ∈ N, then

Π∞ :=
∞⋃

N=1

ΠN ,

a subspace of L2(Ω,F∞,P), is also dense in L2(Ω,F∞,P). But, using (4.11),

Π∞ =

∞⋃
N=1

1⊕
⊕

∅6=u⊆{1,...,N}

∞⊕
l=|u|

span{Ψu,ju : |ju| = l, ju ∈ N|u|}

= 1⊕
⊕
∅6=u⊆N

∞⊕
l=|u|

span{Ψu,ju : |ju| = l, ju ∈ N|u|},

demonstrating that the set of polynomials from the orthogonal sum in the last line is dense in
L2(Ω,F∞,P). Therefore, the PDD of y({Xi}i∈N) ∈ L2(Ω,F∞,P) converges to y({Xi}i∈N) in
mean-square. Since the mean-square convergence is stronger than the convergence in proba-
bility or in distribution, the latter modes of convergence follow readily.

5. Polynomial chaos expansion. In contrast to the dimensionwise splitting of polynomial
spaces in PDD, a degreewise orthogonal splitting of polynomial spaces results in PCE. The
latter decomposition is briefly summarized here as PCE will be compared with PDD in the
next section.

5.1. Degreewise orthogonal decomposition of polynomial spaces. Let j := j{1,...,N} =

(j1, . . . , , jN ) ∈ NN
0 , ji ∈ N0, i ∈ {1, . . . , N}, define an N -dimensional multi-index. For

x = (x1, . . . , xN ) ∈ AN ⊆ RN , a monomial in the variables x1, . . . , xN is the product xj =
xj11 · · ·x

jN
N and has a total degree |j| = j1 + · · ·+ jN . Denote by

ΠN
p := span{xj : 0 ≤ |j| ≤ p, j ∈ NN

0 }, p ∈ N0,

the space of real polynomials in x of degree at most p. Let VN0 := ΠN
0 = span{1} be the

space of constant functions. For each 1 ≤ l <∞, denote by VNl ⊂ ΠN
l the space of orthogonal

polynomials of degree exactly l that are orthogonal to all polynomials in ΠN
l−1, that is,

VNl := {P ∈ ΠN
l : (P,Q)fXdx = 0 ∀Q ∈ ΠN

l−1}, 1 ≤ l <∞.

From section 3, with u = {1, . . . , N} in mind, select {Pj(x) : |j| = l, j ∈ NN
0 } ⊂ VNl to be a

basis of VNl . Each basis function Pj(x) is a multivariate orthogonal polynomial in x of degree
|j|. Obviously,

VNl = span{Pj(x) : |j| = l, j ∈ NN
0 }, 0 ≤ l <∞.
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 835

According to (3.7) with u = {1, . . . , N}, Pj(x) is orthogonal to Pk(x) whenever j 6= k.
Therefore, any two polynomial subspaces VNl and VNr , where 0 ≤ l, r < ∞, are orthogonal
whenever l 6= r. In consequence, there exists another orthogonal decomposition of

(5.1) ΠN =
⊕
l∈N0

VNl =
⊕
l∈N0

span{Pj(x) : |j| = l, j ∈ NN
0 } = span{Pj(x) : j ∈ NN

0 }.

Compared with (3.13), (5.1) represents a degreewise orthogonal decomposition of ΠN .

5.2. PCE. Given the degreewise orthogonal decomposition of ΠN , the PCE of any square-
integrable output random variable y(X) is expressed by [5, 10, 28, 29]

(5.2) y(X) ∼
∞∑
l=0

∑
j∈NN

0
|j|=l

CjΨj(X) =
∑
j∈NN

0

CjΨj(X),

where {Ψj(X) : j ∈ NN
0 } is an infinite set of measure-consistent multivariate orthonormal

polynomials in X that can be obtained by scaling Pj in (3.14) and Cj ∈ R, j ∈ NN
0 , are the

PCE expansion coefficients. Like PDD, the PCE of y(X) ∈ L2(Ω,F ,P) under Assumptions
2.1 and 2.2 also converges to y(X) in mean-square, in probability, and in distribution.

Since the PCE of y(X) in (5.2) is an infinite series, it must also be truncated in applications.
A commonly adopted truncation is based on retaining orders of polynomials less than or equal
to a specified total degree. In this regard, given 0 ≤ p <∞, the pth-order PCE approximation
of y(X) ∈ L2(Ω,F ,P) reads

(5.3) yp(X) =

p∑
l=0

∑
j∈NN

0
|j|=l

CjΨj(X) =
∑
j∈NN

0
0≤|j|≤p

CjΨj(X).

This kind of truncation is related to the total degree index set{
j ∈ NN

0 :
N∑
i=1

ji ≤ p

}
for defining the recovered multivariate polynomial space of a pth-order PCE approximation.
Other kinds of truncation entail{

j ∈ NN
0 : max

i=1,...,N
ji ≤ p

}
and

{
j ∈ NN

0 :
N∏
i=1

(ji + 1) ≤ p+ 1

}
,

describing the tensor product and hyperbolic cross index sets, respectively, to name just two.
The total degree and tensor product index sets are common choices, although the latter one
suffers from the curse of dimensionality, making it impractical for high-dimensional problems.
The hyperbolic cross index set, originally introduced for approximating periodic functions
by trigonometric polynomials [2], is relatively a new idea and has yet to receive widespread
attention. All of these choices and possibly others, including their anisotropic versions, can
be used for truncating PCE. In this work, however, only the total degree index set is used for
the PCE approximation. This is consistent with the 1-norm of ju used for truncating PDD in
(4.17).
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836 SHARIF RAHMAN

6. Error analysis.

6.1. PDD error. Define a second-moment error,

(6.1) eS,m := E [y(X)− yS,m(X)]2 ,

stemming from the S-variate, mth-order PDD approximation presented in the preceding sec-
tion. Replacing y(X) and yS,m(X) in (6.1) with the right sides of (4.8) and (4.17), respectively,
produces

(6.2) eS,m =
S∑

s=1

∞∑
l=m+1

∑
∅6=u⊆{1,...,N}

|u|=s

∑
ju∈N|u|
|ju|=l

C2
u,ju +

N∑
s=S+1

∞∑
l=s

∑
∅6=u⊆{1,...,N}

|u|=s

∑
ju∈N|u|
|ju|=l

C2
u,ju ,

where the second term vanishes expectedly when S = N as the lower limit of the outer sum
exceeds the upper limit. In (6.2), the first term of the PDD error is due to the truncation
of polynomial expansion orders involving interactive effects of at most S variables, whereas
the second term of the PDD error is contributed by ignoring the interactive effects of larger
than S variables. Obviously, the error for a general function y depends on which expansion
coefficients decay and how they decay with respect to S and m. Nonetheless, the error decays
monotonically with respect to S and/or m as stated in Proposition 6.1. Other than that,
nothing more can be said about the PDD error.

Proposition 6.1. For a general function y, eS+i,m+j ≤ eS,m, where 0 ≤ S < N , S ≤ m <
∞, and i and j are equal to either 0 or 1, but not both equal to 0.

Proof. Setting i = 1, j = 0, and using (6.2),

eS+1,m − eS,m =
∞∑

l=m+1

∑
∅6=u⊆{1,...,N}
|u|=S+1

∑
ju∈N|u|
|ju|=l

C2
u,ju −

∞∑
l=S+1

∑
∅6=u⊆{1,...,N}
|u|=S+1

∑
ju∈N|u|
|ju|=l

C2
u,ju ≤ 0,

where the inequality to zero results from the fact that, as S ≤ m, the first term is less than
or equal to the second term. Similarly, setting i = 0, j = 1, and using (6.2),

eS,m+1 − eS,m = −
S∑

s=1

∑
∅6=u⊆{1,...,N}

|u|=s

∑
ju∈N|u|
|ju|=m+1

C2
u,ju ≤ 0.

Finally, setting i = 1, j = 1,

eS+1,m+1 − eS,m = eS+1,m+1 − eS,m+1 + eS,m+1 − eS,m ≤ 0,

as eS+1,m+1 − eS,m+1 ≤ 0 and eS,m+1 − eS,m ≤ 0.

Corollary 6.2. For a general function y, eS′,m′ ≤ eS,m whenever S′ ≥ S and m′ ≥ m.
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 837

In practice, the effects of interaction among input variables and polynomial expansion
order become increasingly weaker as |u| and |ju| grow. In this case, C2

u,ju
, which is equal to

the variance of Cu,juΨu,ju(Xu), decreases with |u| and |ju|. Given the rates at which C2
u,ju

decreases with |u| and |ju|, a question arises on how fast does eS,m decay with respect to S
and m. Proposition 6.3, Corollary 6.4, and subsequent discussions provide a few insights.

Proposition 6.3. For a class of functions y, assume that C2
u,ju

, ∅ 6= u ⊆ {1, . . . , N}, ju ∈
N|u|, attenuates according to C2

u,ju
≤ Cp

−|u|
1 p

−|ju|
2 , where C > 0, p1 > 1, and p2 > 1 are three

real-valued constants. Then it holds that

(6.3) var [y(X)] ≤ C

[{
1 + p1 (p2 − 1)

p1 (p2 − 1)

}N

− 1

]

and

(6.4) eS,m ≤ C

[
S∑

s=1

∞∑
l=m+1

(
N

s

)(
l − 1

s− 1

)
p−s1 p−l2 +

N∑
s=S+1

∞∑
l=s

(
N

s

)(
l − 1

s− 1

)
p−s1 p−l2

]
.

Proof. With the recognition that

#{∅ 6= u ⊆ {1, . . . , N} : |u| = s} =

(
N

s

)
, #{ju ∈ N|u| : |ju| = l} =

(
l − 1

|u| − 1

)
,

use C2
u,ju
≤ Cp−|u|1 p

−|ju|
2 in (4.27) and (6.2) to obtain (6.3) and (6.4).

Corollary 6.4. For the function class described in Proposition 6.3, eS+i,m+j < eS,m, where
0 ≤ S < N , S ≤ m <∞, and i and j are equal to either 0 or 1, but not both equal to 0.

According to Corollary 6.4, eS,m decays strictly monotonically with respect to S and/or
m for any rate parameters p1 > 1 and p2 > 1. When the equality holds in (6.3) and (6.4)
from Proposition 6.3, Figure 1, comprising three subfigures, presents three sets of plots of
the relative error, eS,m/var[y(X)], against m for five distinct values of S = 1, 2, 3, 5, 9. These
subfigures, each obtained for N = 20, correspond to three distinct cases of the values of p1

and p2: (1) p1 = 500, p2 = 5; (2) p1 = 5, p2 = 500; and (3) p1 = 500, p2 = 500. In
all cases, the error for a given S decays first with respect to m, and then levels off at a
respective limit when m is sufficiently large. The limits get progressively smaller when S
increases as expected. However, the magnitude of this behavior depends on the rates at which
the expansion coefficient attenuates with respect to the degree of interaction and polynomial
expansion order. When p1 > p2, as in case 1 (Figure 1 (top)), the error for a given S decays
slowly with respect to m due to a relatively weaker attenuation rate associated with the
polynomial expansion order. The trend reverses when the attenuation rate becomes stronger
and reaches the condition p1 < p2, as in case 2 (Figure 1 (middle)). For larger values of S,
for example, S = 5 or 9, the respective limits are significantly lower in case 2 than in case
1. When the attenuation rates are the same and large, as in case 3 (Figure 1 (bottom)), the
decay rate of error accelerates substantially.
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838 SHARIF RAHMAN

Figure 1. PDD errors for various attenuation rates of the expansion coefficients; (top) p1 = 500, p2 = 5;
(middle) p1 = 5, p2 = 500; (bottom) p1 = 500, p2 = 500.
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 839

6.2. Relationship between PDD and PCE. Since PDD and PCE share the same or-
thonormal polynomials, they are related. Indeed, the relationship was first studied by Rah-
man and Yadav [24], who determined that any one of the two infinite series from PDD and
PCE defined by (4.8) and (5.2) can be rearranged to derive the other. In other words, the
PDD can also be viewed as a reshuffled PCE and vice versa. However, due to a strong connec-
tion to ADD endowed with a desired hierarchical structure, PDD merits its own appellation.
More importantly, the PDD and PCE, when truncated, are not the same. In fact, two im-
portant observations stand out prominently. First, the terms in the PCE approximation are
organized with respect to the order of polynomials. In contrast, the PDD approximation
is structured with respect to the degree of interaction between a finite number of random
variables. Therefore, significant differences may exist regarding the accuracy, efficiency, and
convergence properties of their truncated sum. Second, if a stochastic response is highly non-
linear, but contains rapidly diminishing interactive effects of multiple random variables, the
PDD approximation is expected to be more effective than the PCE approximation. This is be-
cause the lower-variate terms of the PDD approximation can be just as nonlinear by selecting
appropriate values of m in (4.17). In contrast, many more terms and expansion coefficients
are required to be included in the PCE approximation to capture such high nonlinearity. In
this work, a theoretical comparison between PDD and PCE in the context of error analysis,
not studied in prior works, is presented.

For error analysis, it is convenient to write a PCE approximation in terms of a PDD ap-
proximation. Indeed, there exists a striking result connecting PCE with PDD approximations,
as explained in Proposition 6.3.

Proposition 6.5. Let yp(X) and yS,m(X) be the pth-order PCE approximation and S-variate,
mth-order PDD approximation of y(X) ∈ L2(Ω,F ,P), respectively, where 0 ≤ S ≤ N ,
S ≤ m < ∞, and 0 ≤ p < ∞. Then the pth-order PCE approximation and the (p ∧ N)-
variate, pth-order PDD approximation are the same; that is,

(6.5) yp(X) = yp∧N,p(X),

where y0,0(X) = y∅ and p ∧N denotes the minimum of p and N .

Proof. According to Rahman and Yadav [24], the right side of (5.3) can be reshuffled,
resulting in a long form of the PCE approximation, expressed by

(6.6) yp(X) = y∅ +
N∑
s=1

[
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

p−s+1∑
ji1=1

· · ·
p−s+1∑
jis=1︸ ︷︷ ︸

s sums;ji1+···+jis≤p

C{i1···is},(ji1 ···jis )

s∏
q=1

ψiqjiq (Xiq)

]
,

in terms of the PDD expansion coefficients. Note that, depending on the condition p ≤ N
or p ≥ N , at most p-dimensional or N -dimensional sums survive in (6.6), meaning that
the pth-order PCE approximation retains effects of at most (p ∧ N)-degree interaction and
at most pth-order polynomial expansion order. Accordingly, the compact form of the PCE
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approximation can be written as

(6.7) yp(X) = y∅ +

p∧N∑
s=1

p∑
l=s

∑
∅6=u⊆{1,...,N}

|u|=s

∑
ju∈N|u|
|ju|=l

Cu,juΨu,ju(Xu) = yp∧N,p(X),

completing the proof.

Using Proposition 6.5, the number of expansion coefficients, say, Lp associated with the
pth-order PCE approximation can be calculated from that required by the (p ∧ N)-variate,
pth-order PDD approximation. Accordingly, setting S = p ∧N and m = p in (4.18),

(6.8) Lp = Lp∧N,p = 1 +

p∧N∑
s=1

(
N

s

)(
p

s

)
=

(N + p)!

N !p!

with the last expression commonly found in the PCE literature [29]. The advantage of (6.7)
over (5.3) is obvious: the PDD coefficients, once determined, can be reused for the PCE
approximation and subsequent error analysis, thereby sidestepping calculations of the PCE
coefficients.

6.3. PDD versus PCE errors. Define another second-moment error,

(6.9) ep := E [y(X)− yp(X)]2 ,

resulting from the pth-order PCE approximation yp(X) of y(X). Using Proposition 6.5, ep =
ep∧N,p, meaning that the PCE error analysis can be conducted using the PDD approximation.

Proposition 6.6. For a general function y, let eS,m and ep denote the PDD and PCE errors
defined by (6.1) and (6.9), respectively. Given a truncation parameter 0 ≤ p <∞ of the PCE
approximation, if the truncation parameters of the PDD approximation are chosen such that
p ∧N ≤ S ≤ N and p ∨ S ≤ m <∞, then

(6.10) eS,m ≤ ep,

where p ∨ S denotes the maximum of p and S.

Proof. The result follows from Propositions 6.1 and 6.5, and Corollary 6.2.

Proposition 6.6 aids in selecting appropriate truncation parameters to contrast the second-
moment errors due to PDD and PCE approximations. However, the proposition does not say
anything about the computational effort. Proposition 6.7 and subsequent discussion explain
the relationship between computational effort and error committed by both PDD and PCE
approximations for a special class of functions.

Proposition 6.7. For a special class of functions y, assume that C2
u,ju

, ∅ 6= u ⊆ {1, . . . , N},
ju ∈ N|u|, diminishes according to C2

u,ju
≤ Cp

−|u|
1 p

−|ju|
2 , where C > 0, p1 > 1, and p2 > 1 are

three real-valued constants. Then it holds that

(6.11) ep ≤ C

p∧N∑
s=1

∞∑
l=p+1

(
N

s

)(
l − 1

s− 1

)
p−s1 p−l2 +

N∑
s=p∧N+1

∞∑
l=s

(
N

s

)(
l − 1

s− 1

)
p−s1 p−l2

 .
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 841

Proof. Replacing S and m in (6.4) with p ∧N and p, respectively, obtains the result.

Theoretically, the numbers of expansion coefficients required by the PDD and PCE ap-
proximations can be used to compare their respective computational efforts. Table 1 presents
for N = 20 the requisite numbers of expansion coefficients when PDD is truncated at S =
1, 2, 3, 5, 9 and m = 1 − 20, and when PCE is truncated at p = 1 − 20. They are calculated
using (4.18) and (6.8) for PDD and PCE approximations, respectively. According to Table
1, the growth of the number of expansion coefficients in PCE is steeper than that in PDD.
The growth rate increases markedly when the polynomial expansion order is large. This is
primarily because a PCE approximation is solely dictated by a single truncation parameter p,
which controls the largest polynomial expansion order preserved, but not the degree of inter-
action independently. In contrast, two different truncation parameters S and m are involved
in a PDD approximation, affording a greater flexibility in retaining the largest degree of in-
teraction and largest polynomial expansion order. In consequence, the numbers of expansion
coefficients and hence the computational efforts by the PDD and PCE approximations can
vary appreciably.

Table 1
Growth of expansion coefficients in the PDD and PCE approximations.

LS,m

m or p S = 1 S = 2 S = 3 S = 5 S = 9 Lp

1 21 21
2 41 231 231
3 61 631 1771 1771
5 101 2001 13,401 53,130 53,130
9 181 7021 102,781 2,666,755 10,015,005 10,015,005
12 241 12,781 263,581 14,941,024 211,457,454 225,792,840
15 301 20,251 538,951 53,710,888 2,397,802,638 3,247,943,160
20 401 36,501 1,336,101 265,184,142 51,855,874,642 137,846,528,820

Using the equalities in (6.3), (6.4), and (6.11), Figure 2 depicts how the relative PDD
error, eS,m/var[y(X)], and the relative PCE error ep/var[y(X)], vary with respect to the
number of expansion coefficients required for N = 20. Again, the three preceding cases of
the attenuation rates p1 and p2 with respect to the degree of interaction and polynomial
expansion order are studied. In all cases, the PDD or PCE errors decay with respect to
S, m, and p as expected. However, in the PDD approximation, the error for a fixed S
may decline even further by increasing m, whereas no such possibility exists in the PCE
approximation. This behavior is pronounced in case 1, that is, when p1 > p2 (Figure 2 (top)).
For example, in case 1, the bivariate, sixth-order PDD approximation (S = 2, m = 6) achieves
a relative error of 8.54×10−5 employing only 2971 expansion coefficients. In contrast, to match
the same-order error, the sixth-order PCE approximation (p = 6) is needed, committing a
relative error of 7.15 × 10−5 at the cost of 230,230 expansion coefficients. Therefore, the
PDD approximation is substantially more economical than the PCE approximation for a
similar accuracy. However, when p1 < p2, as in case 2 (Figure 2 (middle)), the computational
advantage of PDD over PCE approximations disappears as the attenuation rate associated
with the polynomial expansion order is dominant over that associated with the degree of
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842 SHARIF RAHMAN

Figure 2. PDD versus PCE errors for various attenuation rates of the expansion coefficients; (top) p1 =
500, p2 = 5; (middle) p1 = 5, p2 = 500; (bottom) p1 = 500, p2 = 500.
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interaction. Nonetheless, in case 2, the S-variate, mth-order PDD approximation with the
lowest m possible cannot commit more errors than the mth-order PCE approximation for
the same computational effort. Finally, when the attenuation rates are the same, as in case
3 (Figure 2 (bottom)), the PDD approximation is still more computationally efficient than
the PCE approximation. For instance, the trivariate, fifth-order PDD (S = 3, m = 5) and
fifth-order PCE (p = 6) approximations require 13,401 and 53,130 expansion coefficients to
commit the same-order errors of 5.07 × 10−14 and 3.51 × 10−14, respectively. But, unlike in
case 1, an unnecessarily large polynomial expansion order may render the PDD approximation
more expensive than required.

Readers should take note that the comparative error analyses reported here are limited to
PDD and PCE approximations derived from truncations according to the total degree index
set. For other index sets, such as the tensor product and hyperbolic cross index sets, it would
be intriguing to find whether a similar conclusion arises.

7. Conclusion. The fundamental mathematical properties of PDD, representing Fourier-
like series expansion in terms of random orthogonal polynomials with increasing dimensions,
were studied. A dimensionwise splitting of appropriate polynomial spaces into orthogonal
subspaces, each spanned by measure-consistent orthogonal polynomials, was constructed, re-
sulting in a polynomial refinement of ADD and eventually PDD. Under prescribed assump-
tions, the set of measure-consistent orthogonal polynomials was proved to form a complete
basis of each subspace, leading to an orthogonal sum of such sets of basis functions, including
the constant subspace, to span the space of all polynomials. In addition, the orthogonal sum
is dense in a Hilbert space of square-integrable functions, leading to mean-square convergence
of PDD to the correct limit, including for the case of infinitely many random variables. The
optimality of PDD and the approximation quality due to truncation were demonstrated or
discussed. From the second-moment error analysis of a general function of 1 ≤ N <∞ random
variables, given 0 ≤ p <∞, the (p∧N)-variate, pth-order PDD approximation and pth-order
PCE approximation are the same. Therefore, an S-variate, mth-order PDD approximation
cannot commit a larger error than a pth-order PCE approximation if p ∧ N ≤ S ≤ N and
p ∨ S ≤ m < ∞. From the comparison of computational efforts, required to estimate with
the same accuracy the variance of an output function entailing exponentially attenuating ex-
pansion coefficients, the PDD approximation can be substantially more economical than the
PCE approximation.
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