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A Generalized ANOVA Dimensional Decomposition for Dependent Probability
Measures∗
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Abstract. This article explores the generalized analysis-of-variance, or ANOVA, dimensional decomposition
(ADD) for multivariate functions of dependent random variables. Two notable properties, stem-
ming from weakened annihilating conditions, reveal that the component functions of the generalized
ADD have zero means and are hierarchically orthogonal. By exploiting these properties, a simple
alternative approach is presented to derive a coupled system of equations that the generalized ADD
component functions satisfy. The coupled equations, which subsume as a special case the classical
ADD, reproduce the component functions for independent probability measures. To determine the
component functions of the generalized ADD, a new constructive method is proposed by employ-
ing measure-consistent, multivariate orthogonal polynomials as bases and calculating the expansion
coefficients involved from the solution of linear algebraic equations. New generalized formulae are
presented for the second-moment characteristics, including triplets of global sensitivity indices, for
dependent probability distributions. Furthermore, the generalized ADD leads to extended definitions
of effective dimensions, reported in the current literature for the classical ADD. Numerical results
demonstrate that the correlation structure of random variables can significantly alter the compo-
sition of component functions, producing widely varying global sensitivity indices and, therefore,
distinct rankings of random variables. An application to random eigenvalue analysis demonstrates
the usefulness of the proposed approximation.
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1. Introduction. Uncertainty quantification of complex systems, whether natural or en-
gineered, is a crucial ingredient in numerous fields of engineering, science, and medicine. The
remarkable growth of computing power, complemented by matching gains in algorithmic speed
and accuracy, has led to near-ubiquity of computational methods for estimating the statistical
moments, probability laws, and other relevant properties of such systems. However, most ex-
isting methods [4, 10, 32], while successful in tackling small to moderate numbers of random
variables, begin to break down for truly high-dimensional problems. The root deterrence to
practical computability is often related to high dimension of the multivariate integration or
interpolation problem, known as the curse of dimensionality [1]. The dimensional decom-
position of a multivariate function [9, 27, 18, 13] addresses the curse of dimensionality to
some extent by developing an input-output behavior of complex systems with low effective
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dimensions [2], wherein the degrees of interactions between input variables attenuate rapidly
or vanish altogether.

A well-known prototype of dimensional decomposition is the analysis-of-variance, or
ANOVA, dimensional decomposition (ADD), first presented by Hoeffding in the 1940s in
relation to his seminal work on U -statistics [9]. Since then, ADD has been studied by numer-
ous researchers in disparate fields of mathematics [24, 8], statistics [16, 6], finance [7], and
basic and applied sciences [17], including engineering disciplines, where its polynomial ver-
sions have been successfully applied for uncertainty quantification of high-dimensional com-
plex systems [21, 20, 35]. However, the existing ADD, referred to as the classical ADD in
this paper, is strictly valid for independent, product-type probability measures of random
input. In reality, there may exist significant correlation or dependence among input vari-
ables. The author rules out the Rosenblatt transformation [23] or others commonly used
for mapping dependent to independent variables, as they may induce overly large nonlin-
earity to a stochastic response, potentially degrading the convergence properties of proba-
bilistic solutions [20]. Therefore, the classical ADD must be generalized for an arbitrary,
non-product-type probability measure. Doing so will require modifying the original annihi-
lating conditions that will endow desirable orthogonal properties, insofar as is possible, to
the generalization. Indeed, inspired by Stone [28] and employing a set of weakened anni-
hilating conditions, Hooker [11] provided an existential proof of a unique ANOVA decom-
position for dependent variables, referred to as the generalized ADD in this paper, subject
to a mild restriction on the probability measure. Furthermore, he introduced a computa-
tional method for determining the component functions of the generalized ADD by minimiz-
ing a mean-squared error with weakened annihilating conditions as constraints. However,
the method turns out to be computationally demanding and even potentially prohibitive
when there exist a moderate number of variables. Chastaing, Gamboa, and Prieur [3] pre-
sented a boundedness assumption on the joint probability density function of random vari-
ables for the availability of a generalized ANOVA decomposition. Li and Rabitz [14] pro-
posed combining hierarchically selected univariate orthogonal polynomials and regression,
applied to input-output data, to approximate the component functions of the generalized
ADD.

The purpose of this paper is threefold. First, a brief exposition of the classical ADD is
given in section 3, setting the stage for the generalized ADD presented in section 4. Two
propositions and a theorem, proven herein, reveal two special properties of the generalized
ADD, leading to a coupled system of equations satisfied by the component functions. These
theoretical results, which subsume the classical ADD as a special case, are shown to reproduce
the component functions for independent probability measures. Second, section 5 introduces
general multivariate orthogonal polynomials that are consistent with the probability measures
of dependent input variables. A theorem and its proof, presented in this section, describe a new
constructive method for finding the component functions of the generalized ADD in terms of
measure-consistent, multivariate orthogonal polynomials. Third, the second-moment analysis
of the generalized ADD is described in section 6. It entails global sensitivity analysis, including
triplets of sensitivity indices, for dependent probability distributions. Using insights from the
generalized ADD, extended definitions of two effective dimensions are proposed. Numerical
results, including approximate solutions of a random eigenvalue problem, are reported in
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section 7 to affirm the theoretical findings. Mathematical notation and conclusions are defined
or drawn in sections 2 and 8, respectively.

2. Notation. Let N, N0, R, and R+
0 represent the sets of positive integer (natural), non-

negative integer, real, and nonnegative real numbers, respectively. For k ∈ N, denote by Rk

the k-dimensional Euclidean space and by Rk×k the set of k × k real-valued matrices. These
standard notations will be used throughout the paper.

Let (Ω,F , P ) be a complete probability space, where Ω is a sample space, F is a σ-field
on Ω, and P : F → [0, 1] is a probability measure. With BN representing the Borel σ-
field on RN , N ∈ N, consider an RN -valued random vector X := (X1, . . . ,XN ) : (Ω,F) →
(RN ,BN ) describing the statistical uncertainties in all system and input parameters of a high-
dimensional stochastic problem. The probability law of X, assumed to be continuous, is
completely defined by its joint probability density function fX : RN → R+

0 . Let u be a subset
of {1, . . . , N} with the complementary set −u := {1, . . . , N}\u and cardinality 0 ≤ |u| ≤ N ,
and let Xu = (Xi1 , . . . ,Xi|u|), u �= ∅, 1 ≤ i1 < · · · < i|u| ≤ N , be a subvector of X with X−u :=
X{1,...,N}\u defining its complementary subvector. Then, for a given ∅ �= u ⊆ {1, . . . , N}, the
marginal density function of Xu is fu(xu) :=

∫
RN−|u| fX(x)dx−u.

Let y(X) := y(X1, . . . ,XN ), a real-valued, measurable transformation on (Ω,F), define
a high-dimensional stochastic response of interest, and let L2(Ω,F , P ) represent a Hilbert
space of square-integrable functions y with respect to the induced generic measure fX(x)dx
supported on RN . Although it is well known in the current literature, section 3 briefly de-
scribes the classical ADD, so that it can be contrasted with the generalized ADD presented
in section 4, the main theme of this paper.

3. Classical ANOVA dimensional decomposition. The classical ADD is established by
assuming independent coordinates of X and selecting a product-type probability measure,
fX(x)dx = ΠN

i=1f{i}(xi)dxi, of X, where f{i} : R → R+
0 is the marginal probability density

function of Xi, defined on the probability triple (Ωi,Fi, Pi) with a bounded or an unbounded
support on R. The ADD, expressed by the compact form [24, 18, 13]

(3.1) y(X) =
∑

u⊆{1,...,N}
yu,C(Xu),

is a finite, hierarchical expansion in terms of its input variables with increasing dimensions,
where yu,C is a |u|-variate component function describing a constant or the interactive effect
of Xu on y when |u| = 0 or |u| > 0. The symbol C in the subscript of yu,C is a reminder
that the component functions belong to the classical ADD. The summation in (3.1) comprises
2N component functions, with each function depending on a group of variables indexed by a
particular subset of {1, . . . , N}, including the empty set ∅. Applying strong annihilating con-
ditions, the component functions are endowed with desirable orthogonal properties, explained
as follows.

3.1. Strong annihilating conditions. The strong annihilating conditions relevant to the
classical ADD require all nonconstant component functions yu,C to integrate to zero with
respect to the marginal density of each random variable in u, that is [26, 17, 18, 13],

(3.2)

∫
R
yu,C(xu)f{i}(xi)dxi = 0 for i ∈ u �= ∅,
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resulting in two remarkable properties, described by Propositions 3.1 and 3.2.
Proposition 3.1. The classical ADD component functions yu,C, where ∅ �= u ⊆ {1, . . . , N},

have zero means, i.e.,

E [yu,C(Xu)] = 0.

Proposition 3.2. Two distinct classical ADD component functions yu,C and yv,C , where
∅ �= u ⊆ {1, . . . , N}, ∅ �= v ⊆ {1, . . . , N}, and u �= v, are orthogonal; i.e., they satisfy the
property

E [yu,C(Xu)yv,C(Xv)] = 0.

Integrating (3.1) with respect to the measure f−u(x−u)dx−u =
∏N

i=1,i/∈u f{i}(xi)dxi, that
is, over all variables except xu, and using (3.2) yields the component functions [24, 18, 13]

y∅,C =

∫
RN

y(x)

N∏
i=1

f{i}(xi)dxi,(3.3a)

yu,C(Xu) =

∫
RN−|u|

y(Xu,x−u)

N∏
i=1,i/∈u

f{i}(xi)dxi −
∑
v⊂u

yv,C(Xv).(3.3b)

In (3.3b), (Xu,x−u) denotes an N -dimensional vector whose ith component is Xi if i ∈ u and
xi if i /∈ u.When u = ∅, the sum in (3.3b) vanishes, resulting in the expression of the constant
function y∅,C in (3.3a). When u = {1, . . . , N}, the integration in the last line of (3.3b) is
on the empty set, reproducing identity (3.1) and hence finding the last function y{1,...,N},C .
Indeed, all component functions of y in (3.1) can be obtained by interpreting literally (3.3b).

Traditionally, (3.1), (3.3a), and (3.3b) with Xj , j = 1, . . . , N , following independent,
standard uniform distributions, that is, f{i} = 1, are identified as the classical ANOVA de-
composition [24]. However, recent works reveal no fundamental requirement for a specific
probability measure of X, provided that the resultant integrals in (3.3a) and (3.3b) exist and
are finite [18]. This generalization is trivial as long as X is endowed with a product-type
probability measure.

3.2. Second-moment statistics. Applying the expectation operators on y(X) in (3.1)
and (y(X)− μ)2 and recognizing Propositions 3.1 and 3.2, the mean of y is

(3.4) μ := E [y(X)] = y∅,C ,

whereas its variance

(3.5) σ2 := E
[
(y(X)− μ)2

]
=

∑
∅�=u⊆{1,...,N}

E
[
y2u,C(Xu)

]

splits into variances of all zero-mean, nonconstant component functions of y. According to
(3.5), the variance decomposition follows the same structure of y− y∅,C from (3.1), explaining
why the acronym “ANOVA” was also coined for the function decomposition.
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4. Generalized ANOVA dimensional decomposition. Consider a dependent random vec-
tor with an arbitrary non-product-type probability density function fX : RN → R+

0 that has
marginal probability density function fu of Xu, where ∅ �= u ⊆ {1, . . . , N}. Assume that
the support of fX is grid-closed [11]. The grid closure implies that there exists a grid for
every point x of supp(fX) ⊆ RN ; that is, for any point x ∈ supp(fX), one can traverse in
each coordinate direction and find another point x′ ∈ supp(fX). Under this mild regularity
requirement, fulfilled by common probability distributions, a square-integrable multivariate
function y with respect to the marginal probability measure fu(xu)dxu supported on R|u| also
admits a unique, finite, hierarchical expansion [11]

(4.1) y(X) =
∑

u⊆{1,...,N}
yu,G(Xu),

referred to as the generalized ADD, in terms of component functions yu,G, u ⊆ {1, . . . , N}, of
input variables with increasing dimensions. The existence and uniqueness of the decomposition
in (4.1) have been proven under conditions (C.1) and (C.2) in [3], but (4.1) works well in
practice under more general assumptions [11, 28]. The symbol G in the subscript of yu,G
is meant to distinguish the component functions of the generalized ADD from those of the
classical ADD. Similar to the classical ADD, the summation in (4.1) comprises 2N component
functions, with each function depending on a group of variables indexed by a particular subset
of {1, . . . , N}, including the empty set ∅. However, the component functions of the generalized
ADD, different from those of the classical ADD, cannot be derived from the strong annihilating
conditions expressed by (3.2). This is because some of the orthogonal properties that stem
from (3.2) cannot be duplicated when the random variables are dependent. Having said so, the
functions yu,G, u ⊆ {1, . . . , N}, can also be obtained from a similar perspective by adjusting
classical annihilating conditions, described as follows.

4.1. Weak annihilating conditions. The weak annihilating conditions appropriate for the
generalized ADD mandate all nonconstant component functions yu,G to integrate to zero with
respect to the marginal density of Xu in each coordinate direction of u, that is [11],

(4.2)

∫
R
yu,G(xu)fu(xu)dxi = 0 for i ∈ u �= ∅.

Compared with (3.2), (4.2) represents a milder version, but it still produces two remarkable
properties of the generalized ADD, described by Propositions 4.1 and 4.2.

Proposition 4.1. The generalized ADD component functions yu,G, where ∅ �= u ⊆ {1, . . . , N},
have zero means, i.e.,

E [yu,G(Xu)] = 0.
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Proof. For any subset ∅ �= u ⊆ {1, . . . , N}, let i ∈ u. Then

E [yu,G(Xu)] :=

∫
RN

yu,G(xu)fX(x)dx

=

∫
R|u|

yu,G(xu)fu(xu)dxu

=

∫
R|u|−1

∫
R
yu,G(xu)fu(xu)dxi

∏
j∈u,j �=i

dxj

= 0,

where the last line follows from using (4.2).
Proposition 4.2. Two distinct generalized ADD component functions yu,G and yv,G, where

∅ �= u ⊆ {1, . . . , N}, ∅ �= v ⊆ {1, . . . , N}, and v ⊂ u, are orthogonal; i.e., they satisfy the
property

E [yu,G(Xu)yv,G(Xv)] = 0.

Proof. For any two subsets ∅ �= u ⊆ {1, . . . , N} and ∅ �= v ⊆ {1, . . . , N}, where v ⊂ u, the
subset u = v ∪ (u \ v). Let i ∈ (u \ v) ⊆ u. Then

E [yu,G(Xu)yv,G(Xv)] :=

∫
RN

yu,G(xu)yv,G(xv)fX(x)dx

=

∫
R|u|

yu,G(xu)yv,G(xv)fu(xu)dxu

=

∫
R|v|

yv,G(xv)

∫
R|u\v|

yu,G(xu)fu(xu)dxu\vdxv

=

∫
R|v|

yv,G(xv)

∫
R|u\v|−1

∫
R
yu,G(xu)fu(xu)dxi

∏
j∈(u\v)

j �=i

dxjdxv

= 0,

where the equality to zero results from using (4.2).
It is elementary to show that (4.2) shrinks to (3.2) for independent random variables,

that is, when Xu has a product-type probability density fu(xu) = Πi∈uf{i}(xi) for ∅ �= u ⊆
{1, . . . , N}.

From Propositions 3.1 and 4.1, all nonconstant component functions of ADD, whether
classical or generalized, have zero means. Therefore, a non-product-type probability measure,
relevant to the generalized ADD, does not vitiate the first-moment properties of the classical
ADD. However, Propositions 3.2 and 4.2, which describe the second-moment properties of
ADD, tell a slightly different tale: any two distinct nonconstant component functions of the
classical ADD are orthogonal, whereas two distinct nonconstant component functions of the
generalized ADD are orthogonal only if the index set of one function is a proper subset of the
index set of the other function. As an example, consider N = 3 with 23 − 1 = 7 nonconstant
component functions. Then the generalized ADD permits orthogonality between (1) y{i},G and
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y{i1,i2},G, where i = 1, 2, 3; i1 = i, i2 = 1, 2, 3, i1 < i2; i2 = i, i1 = 1, 2, 3, i1 < i2; (2) y{i},G and
y{123},G, where i = 1, 2, 3; and (3) y{i1,i2},G and y{1,2,3},G, where i1, i2 = 1, 2, 3, i1 < i2. This
nested orthogonality, originally presented and referred to as the hierarchical orthogonality by
Hooker [11], is the result of imposing weakened annihilating conditions on the generalized
ADD.

4.2. A coupled system of equations. Hooker [11] proposed finding component func-
tions of the generalized ADD by minimizing a mean-squared error subject to the hierarchical
orthogonality described by Propositions 4.1 and 4.2. A simpler alternative proposed here
entails integrating (4.1) with respect to a judiciously chosen marginal probability measure
and implementing the weak annihilating conditions when required. Lemma 4.3 and Theorem
4.4 illuminate this alternative approach, which sidesteps the need to solve the optimization
problem altogether. The end result is a coupled system of equations satisfied by component
functions.

Lemma 4.3. The generalized ADD component functions yv,G, ∅ �= v ⊆ {1, . . . , N}, of a
square-integrable function y : RN → R, when integrated with respect to the probability measure
f−u(x−u)dx−u, u ⊆ {1, . . . , N}, reduce to

(4.3)

∫
RN−|u|

yv,G(xv)f−u(x−u)dx−u

=

⎧⎪⎨
⎪⎩
∫
R|v∩−u| yv,G(xv)fv∩−u(xv∩−u)dxv∩−u if v ∩ u �= ∅ and v � u,

yv,G(xv) if v ∩ u �= ∅ and v ⊆ u,

0 if v ∩ u = ∅.

Proof. For any two subsets ∅ �= v ⊆ {1, . . . , N}, u ⊆ {1, . . . , N}, one can write (v ∩−u) ⊆
−u and −u = (−u \ (v ∩−u))∪ (v ∩−u). Let v ∩ u �= ∅, where v � u in general. Then one of
the two nontrivial results of (4.3) is obtained as∫

RN−|u|
yv,G(xv)f−u(x−u)dx−u=

∫
R|v∩−u|

yv,G(xv)

∫
RN−|u|−|v∩−u|

f−u(x−u\(v∩−u),xv∩−u)

× dx−u\(v∩−u)dxv∩−u

=

∫
R|v∩−u|

yv,G(xv)fv∩−u(xv∩−u)dxv∩−u.

(4.4)

If v ⊆ u, then yv(xv) does not depend on x−u, resulting in∫
RN−|u|

yv,G(xv)f−u(x−u)dx−u = yv,G(xv)

∫
RN−|u|

f−u(x−u)dx−u = yv,G(xv),

the other nontrivial result of (4.3). Finally, if v∩u = ∅, then v∩−u = v. Let i ∈ v. Therefore,
the last line of (4.4), also valid for v ∩ u = ∅, becomes∫

RN−|u|
yv,G(xv)f−u(x−u)dx−u =

∫
R|v|

yv,G(xv)fv(xv)dxv

=

∫
R|v|−1

(∫
R
yv,G(xv)fv(xv)dxi

) ∏
j∈v,j �=i

dxj

= 0,
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where the equality to zero follows from using (4.2).
Theorem 4.4. The generalized ADD component functions yu,G, u ⊆ {1, . . . , N}, of a square-

integrable function y : RN → R for a given probability measure fX(x)dx of X ∈ RN satisfy

y∅,G =

∫
RN

y(x)fX(x)dx,(4.5a)

yu,G(Xu) =

∫
RN−|u|

y(Xu,x−u)f−u(x−u)dx−u −
∑
v⊂u

yv,G(Xv)

−
∑

∅�=v⊆{1,...,N}
v∩u �=∅,v�u

∫
R|v∩−u|

yv,G(Xv∩u,xv∩−u)fv∩−u(xv∩−u)dxv∩−u.(4.5b)

Proof. Changing the dummy index from u to v, replacing X with x, and integrating both
sides of (4.1) with respect to the measure f−u(x−u)dx−u, that is, over all variables except xu,
yields

(4.6)

∫
RN−|u|

y(x)f−u(x−u)dx−u =
∑

v⊆{1,...,N}

∫
RN−|u|

yv,G(xv)f−u(x−u)dx−u,

which is valid for any u ⊆ {1, . . . , N}, including the empty set ∅. To obtain the constant
component function of y, let u = ∅. Then −u = {1, . . . , N} and f−u(x−u)dx−u = fX(x)dx,
resulting in

(4.7)

∫
RN y(x)fX(x)dx = y∅,G +

∑
∅�=v⊆{1,...,N}

∫
RN

yv,G(xv)fX(x)dx

= y∅,G +
∑

∅�=v⊆{1,...,N}
E [yv,G(Xv)].

Invoking Proposition 4.1, each expectation of the sum in (4.7) vanishes, yielding (4.5a). To
derive the nonconstant component functions, apply Lemma 4.3, that is, (4.3), to simplify the
right side of (4.6) into

(4.8)

∑
v⊆{1,...,N}

∫
RN−|u|

yv,G(xv)f−u(x−u)dx−u

= yu,G(xu) +
∑
v⊂u

yv,G(xv) +
∑

∅�=v⊆{1,...,N}
v∩u �=∅,v�u

∫
R|v∩−u|

yv,G(xv)fv∩−u(xv∩−u)dxv∩−u

with ⊂ representing the proper subset (strict inclusion). Substituting (4.8) into (4.6) and
recognizing v = (v ∩ u) ∪ (v ∩ −u) produces (4.5b), completing the proof.

The constant component function of ADD, whether classical (y∅,C) or generalized (y∅,G),
is the same as the expected value of y(X). According to (3.3b), all nonconstant component
functions of the classical ADD are hierarchically ordered in terms of the cardinality of subsets
of {1, . . . , N} and are determined sequentially. This is possible because for a given ∅ �= u ⊆
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{1, . . . , N}, the component function yu,C depends only on the component functions yv,C such
that v ⊂ u, including ∅. In contrast, the component functions of the generalized ADD,
satisfying (4.5b), are coupled and must be solved simultaneously. In the latter case, for a
given ∅ �= u ⊆ {1, . . . , N}, the component function yu,G depends not only on the component
functions yv,G, where v ⊂ u, but also on the component functions yv,G, where v ∩ u �= ∅,
v � u. As an example, consider u = {1} and N = 3. The classical and generalized component
functions depending on x1 are

y{1},C =

∫
R2

y(x1, x2, x3)f{2}(x2)f{3}(x3)dx2dx3 − y∅,C

and

y{1},G =

∫
R2

y(x1, x2, x3)f{2,3}(x2, x3)dx2dx3 − y∅,G

−
∫
R
y{1,2},G(x1, x2)f{2}(x2)dx2 −

∫
R
y{1,3},G(x1, x3)f{3}(x3)dx3

−
∫
R2

y{1,2,3},G(x1, x2, x3)f{2,3}(x2, x3)dx2dx3,

respectively. For the generalized ADD, there exist 2N − 1 such coupled equations, the right
number of equations to determine uniquely all nonconstant component functions. A new
computational method solving this system of equations will be formally presented in the
following section.

Corollary 4.5. The univariate, bivariate, and trivariate component functions of a square-
integrable function y : RN → R, obtained by setting (1) u = {i}, i = 1, . . . , N , and 1 ≤ N <∞;
(2) u = {i1, i2}, i1 = 1, . . . , N−1, i2 = i1+1, . . . , N , and 2 ≤ N <∞; and (3) u = {i1, i2, i3},
i1 = 1, . . . , N − 2, i2 = i1 + 1, . . . , N − 1, i3 = i2 + 1, . . . , N , and 3 ≤ N <∞, respectively, in
(4.5b) are

y{i},G(Xi) =

∫
RN−1

y(Xi,x−{i})f−{i}(x−{i})dx−{i} − y∅,G

−
∑

∅�=v⊆{1,...,N}
v∩{i}�=∅,v�{i}

∫
R|v∩−{i}|

yv,G(Xv∩{i},xv∩−{i})fv∩−{i}(xv∩−{i})dxv∩−{i},

y{i1,i2},G(Xi1 ,Xi2) =

∫
RN−2

y(Xi1 ,Xi2 ,x−{i1,i2})f−{i1,i2}(x−{i1,i2})dx−{i1,i2}

− y∅,G − y{i1},G(Xi1)− y{i2},G(Xi2)

−
∑

∅�=v⊆{1,...,N}
v∩{i1,i2}�=∅,v�{i1,i2}

∫
R|v∩−{i1,i2}|

yv,G(Xv∩{i1,i2},xv∩−{i1,i2})

× fv∩−{i1,i2}(xv∩−{i1,i2})dxv∩−{i1 ,i2},
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y{i1,i2,i3},G(Xi1 ,Xi2 ,Xi3) =

∫
RN−3

y(Xi1 ,Xi2 ,Xi3 ,x−{i1,i2,i3})f−{i1,i2,i3}(x−{i1,i2,i3})dx−{i1,i2,i3}

− y∅,G − y{i1},G(Xi1)− y{i2},G(Xi2)− y{i3},G(Xi3)

− y{i1,i2},G(Xi1 ,Xi2)− y{i1,i3},G(Xi1 ,Xi3)− y{i2,i3},G(Xi2 ,Xi3)

−
∑

∅�=v⊆{1,...,N}
v∩{i1,i2,i3}�=∅,v�{i1,i2,i3}

∫
R|v∩−{i1,i2,i3}|

yv,G(Xv∩{i1,i2,i3},xv∩−{i1,i2,i3})

× fv∩−{i1,i2,i3}(xv∩−{i1 ,i2,i3})dxv∩−{i1 ,i2,i3}.

The specialized formulae for the component functions in Corollary 4.5 were previously
derived by Li and Rabitz [14]. Theorem 4.4, in contrast, is general and provides a single
master formula to concisely represent all component functions of the generalized ADD.

Corollary 4.6. If X = (X1, . . . ,XN ) ∈ RN comprises independent random variables, which
follow arbitrary probability measures f{i}(xi)dxi, i = 1, . . . , N , then the generalized ADD
degenerates to the classical ADD.

Proof. For independent coordinates of X, all joint probability density functions are prod-
ucts of their marginals, that is, fu(xu) = Πi∈uf{i}(xi), where ∅ �= u ⊆ {1, . . . , N}. Using this
product structure of probability measures, which makes the strong and weak annihilating con-
ditions coincide, it is elementary to show that yu,G = yu,C for any u ⊆ {1, . . . , N}, including
y∅,G = y∅,C . Therefore, the generalized ADD reduces to the classical ADD.

5. A constructive method for determining component functions. This section presents a
new computational method, employing measure-consistent, multivariate orthonormal polyno-
mials as basis functions, for solving the coupled system of equations satisfied by the component
functions of the generalized ADD.

5.1. Multivariate orthonormal polynomials. For the rest of the paper, the standard
multi-index notation will be used in describing orthogonal polynomials in several variables.

Accordingly, for a given ∅ �= u ⊆ {1, . . . , N}, 1 ≤ |u| ≤ N , let j|u| = (j1, . . . , j|u|) ∈ N|u|
0 repre-

sent a |u|-dimensional multi-index with each component a nonnegative integer. For j|u| ∈ N|u|
0

and xu = (xi1 , . . . , xi|u|) ∈ R|u|, where 1 ≤ i1 < · · · < i|u| ≤ N , a monomial in xu of index

j|u| is defined by x
j|u|
u := xj1i1 × · · · × x

j|u|
i|u| . The nonnegative integer |j|u|| := j1 + · · · + j|u|,

which is equal to the 1-norm of j|u|, is called the total degree of x
j|u|
u . A linear combination of

x
j|u|
u , where |j|u|| = mu and mu ∈ N, is a homogeneous polynomial of degree mu. Denote by

Pu
mu

:= span{xj|u|
u : |j|u|| = mu, j|u| ∈ N|u|

0 } the space of homogeneous polynomials of degree

mu, by Πu
mu

:= span{xj|u|
u : |j|u|| ≤ mu, j|u| ∈ N|u|

0 } the space of polynomials of degree at most
mu, and by Πu the space of all polynomials of |u| variables. It is well known that [5]

dimPu
mu

=

(
mu + |u| − 1

mu

)
and dimΠu

mu
=

(
mu + |u|
mu

)
.

Assume that, for j|u| ∈ N|u|
0 , the moments

∫
R|u| x

j|u|
u fu(xu)dxu of Xu exist and are finite, and∫

R|u| ψ2
uj|u|(xu)fu(xu)dxu > 0 for every ψuj|u| ∈ Πu, where ψuj|u| �= 0 is a polynomial in xu of
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degree j|u|. Consistent with the probability measure fu(xu)dxu, define an inner product

(5.1) (g, h)fu :=

∫
R|u|

g(xu)h(xu)fu(xu)dxu =: E [g(Xu)h(Xu)]

of two |u|-variate functions g and h. Then there exist orthogonal polynomials in xu with
respect to the inner product defined by (5.1). More precisely, a polynomial ψuj|u| ∈ Πu

mu
is

called orthogonal with respect to (·, ·)fu if (ψuj|u| , ψuk|u|)fu = E
[
ψuj|u|(Xu)ψuk|u|(Xu)

]
= 0

for |k|u|| < |j|u||, that is, for all ψuk|u| ∈ Πu
mu−1. This means that ψuj|u| is orthogonal to all

polynomials of lower degrees, but it may not be orthogonal to other orthogonal polynomials
of the same degree. Define Vu

mu
:= {ψuj|u| ∈ Πu

mu
: (ψuj|u| , ψuk|u|)fu = 0, ψuk|u| ∈ Πu

mu−1} as
the space of orthogonal polynomials of degree of exactly mu. It is elementary to show that
the dimVu

mu
= dimPu

mu
. If, in addition, (ψuj|u| , ψuj|u|)fu = E

[
ψ2
uj|u|(Xu)

]
= 1, then ψuj|u| is

called an orthonormal polynomial in xu of degree |j|u||, to be used in the remainder of this
paper.

5.2. Fourier-Polynomial Expansion. Let {ψuj|u|(Xu), j|u| ∈ N|u|
0 } be a set of multivariate

orthonormal polynomials that is consistent with the probability measure fu(xu)dxu of Xu.
For ∅ �= u = {i1, . . . , i|u|} ⊆ {1, . . . , N}, where 1 ≤ |u| ≤ N and 1 ≤ i1 < · · · < i|u| ≤ N , let
(Ωu,Fu, Pu) be the probability triple of Xu = (Xi1 , . . . ,Xi|u|). Denote the associated space of
the |u|-variate component functions of y by

L2(Ωu,Fu, Pu) :=

{
yu,G :

∫
R|u|

y2u,G(xu)fu(xu)dxu <∞
}
,

which is a Hilbert space. Then {ψuj|u|(Xu), j|u| ∈ N|u|
0 , j1, . . . , j|u| �= 0}, if it is dense, con-

stitutes a basis of L2(Ωu,Fu, Pu). The standard Hilbert space theory states that every non-
constant component function yu,G ∈ L2(Ωu,Fu, Pu) of y can be expanded as [5]

(5.2) yu,G(Xu) =
∑

j|u|∈N|u|
0

j1,...,j|u| �=0

Cuj|u|ψuj|u|(Xu)

with

(5.3) Cuj|u| :=

∫
R|u|

yu,G(xu)ψuj|u|(xu)fu(xu)dxu

defining associated expansion coefficients. Note that the summation in (5.2) precludes j1, . . . , j|u|
= 0; that is, the individual degree of each variable Xi in ψuj|u| , i ∈ u, cannot be zero since yu,G
is a strictly |u|-variate function and has a zero mean following Proposition 4.1. For a more
precise interpretation, the selection of multivariate Hermite polynomials as basis functions is
described as follows.

Consider quadratic approximations of the univariate (|u| = 1) and bivariate (|u| = 2) com-
ponent functions of y(X), where X = (X1, . . . ,XN ) is a zero-mean, N -dimensional Gaussian
random vector with positive-definite covariance matrix ΣX = E[XXT ] = [ρijσiσj ], comprising
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variances σ2i = 1 of Xi and correlation coefficients ρij between Xi and Xj, i, j = 1, . . . , N ,
and joint probability density function

(5.4) fX(x) = (2π)−
N
2 (detΣX)

− 1
2 exp

[
−1

2
xTΣ−1

X x

]
=: φX(x;ΣX).

The marginal probability densities of Xu, ∅ �= u ⊆ {1, . . . , N}, are also Gaussian, and are
easily derived as

(5.5) fu(xu) = (2π)−
|u|
2 (detΣu)

− 1
2 exp

[
−1

2
xu

TΣ−1
u xu

]
=: φu(xu;Σu),

where Σu := E[XuXu
T ] is the covariance matrix of Xu. The probability density φu(xu;Σu)

induces multivariate Hermite orthogonal polynomials

(5.6) ψ̃uj|u|(xu) =
(−1)|j|u||

φu(xu;Σu)

(
∂

∂xu

)j|u|
φu(xu;Σu), j|u| ∈ N|u|

0 ,

where (∂/∂xu)
j|u| := ∂j1+···+j|u|/∂xj1i1 · · · ∂x

j|u|
i|u| . They eventually form a set of multivariate

Hermite orthonormal polynomials

(5.7)
{
ψuj|u| := ψ̃uj|u|/(ψ̃uj|u| , ψ̃uj|u|)φu , j|u| ∈ N|u|

0

}
that are consistent with the probability measure φu(xu;Σu)dxu of Xu. For example, when
u = {i}, i = 1, . . . , N , and j1 ≤ 2, (5.6) and (5.7) yield

ψ{i}0(Xi) = 1, ψ{i}1(Xi) = Xi, ψ{i}2(Xi) =
X2

i − 1√
2

,

a sequence of orthonormal polynomials for quadratic approximation of any square-integrable
univariate function of Xi. Clearly, the complete basis set for a general function is {ψ{i}0, ψ{i}1,
ψ{i}2}. However, since E[y{i},G(Xi)] = 0 as per Proposition 4.1, only a linear combination of
ψ{i}1 and ψ{i}2, without including ψ{i}0—that is, the basis subset {ψ{i}1, ψ{i}2}—is sufficient
to approximate y{i},G. Similarly, when u = {i1, i2}, i1 = 1, . . . , N − 1, i2 = i1 + 1, . . . , N , and
|j2| ≤ 2, (5.6) and (5.7) result in

ψ{i1,i2}00(Xi1 ,Xi2) = 1,

ψ{i1,i2}10(Xi1 ,Xi2) =
Xi1 − ρi1i2Xi2√

1− ρ2i1i2

, ψ{i1,i2}01(Xi1 ,Xi2) =
Xi2 − ρi1i2Xi1√

1− ρ2i1i2

,

ψ{i1,i2}20(Xi1 ,Xi2) =
X2

i1
+ ρ2i1i2

(
1 +X2

i2

)− 2ρi1i2Xi1Xi2 − 1√
2
(
1− ρ2i1i2

) ,

ψ{i1,i2}02(Xi1 ,Xi2) =
X2

i2
+ ρ2i1i2

(
1 +X2

i1

)− 2ρi1i2Xi1Xi2 − 1√
2
(
1− ρ2i1i2

) ,

ψ{i1,i2}11(Xi1 ,Xi2) =

√
1 + ρ2i1i2

ρ2i1i2 − 1

[
ρi1i2

(
X2

i1
+X2

i2

)
1 + ρ2i1i2

−Xi1Xi2+
ρi1i2

(
ρ2i1i2 − 1

)
1 + ρ2i1i2

]
,
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a sequence of orthonormal polynomials for quadratic approximation of any square-integrable
bivariate function of Xi1 andXi2 . There are multiple ways to choose a set of basis functions for
y{i1,i2},G. The author proposes selecting a nested basis set {ψ{i1}1, ψ{i1}2, ψ{i2}1, ψ{i2}2, ψ{i1,i2}11},
which subsumes the basis functions for y{i1},G and y{i2},G. It is elementary to show that
the members of such a nested basis set have zero means and are hierarchically orthogonal,
that is, E[ψ{i1,i2}j1j2(Xi1 ,Xi2)ψ{i1}j1(Xi1)] = 0 and E[ψ{i1,i2}j1j2(Xi1 ,Xi2)ψ{i2}j2(Xi2)] = 0 for
|j2| ≤ 2, j1, j2 �= 0. Again, since E[y{i1,i2},G(Xi1 ,Xi2)] = 0 following Proposition 4.1, a con-
stant multiplier of ψ{i1,i2}11, excluding ψ{i1}1, ψ{i1}2, ψ{i2}1, ψ{i2}2—that is, the basis subset
{ψ{i1,i2}11}—is adequate to approximate y{i1,i2},G. In both instances, the power jk for each

Xik , k ∈ u, of the monomial X
j|u|
u := Xj1

i1
× · · · ×X

j|u|
i|u| in the basis subset, whether |u| = 1 or

|u| = 2, is not zero. Therefore, the condition j1, . . . , j|u| �= 0 is required for selecting the basis
functions of a general |u|-variate component function in (5.2) and (5.3).

The selection of nested basis functions, as explained in the preceding paragraph for
u = {i1, i2} and v = {i1} or {i2} and Gaussian probability measure, easily extends to a general
|u|-variate function and general probability measure fu(xu)dxu. Given ∅ �= u ⊆ {1, . . . , N}, let
{ψvk|v|(Xv), ∅ �= v ⊆ u,k|v| ∈ N|v|

0 , k1, . . . , k|v| �= 0} be a nested set of measure-consistent ortho-
normal polynomial basis functions for yu,G, which comprises as a subset measure-consistent
orthonormal polynomial basis functions for yv,G, ∅ �= v ⊂ u. Then, from fundamental
properties of multivariate orthogonal polynomials, (1) ψuj|u|(Xu) has a zero mean for any
∅ �= u ⊆ {1, . . . , N} and j1, . . . , j|u| �= 0; and (2) ψuj|u|(Xu) is orthogonal to ψvk|v|(Xv) for any
∅ �= v ⊂ u, j1, . . . , j|u| �= 0, and k1, . . . , k|v| �= 0. Therefore, the zero-mean property of yu,G
and hierarchical orthogonality between yu,G and yv,G, ∅ �= v ⊂ u, as required by Propositions
4.1 and 4.2, are naturally satisfied.

The constant function y∅,G defined in (4.5a) is an N -dimensional integral, which must be
calculated or estimated by some means. The evaluation of nonconstant component functions
yu,G(xu), ∅ �= u ⊆ {1, . . . , N}, requires calculation of the expansion coefficients defined in
(5.3), which are similar integrals on at most RN . But, since yu,G is unknown, the coefficients
cannot be determined from their definitions alone. Two new results, Theorem 5.1 and Corol-
lary 5.2, describe how these coefficients can be calculated from the solution of a linear system
of algebraic equations.

Theorem 5.1. Let y be a square-integrable function of X, admitting a generalized ADD,
where X = (X1, . . . ,XN ) is an RN -valued dependent random vector with an arbitrary non-
product-type joint probability density function fX : RN → R+

0 and a marginal probability
density function fu of Xu. Given ∅ �= u ⊆ {1, . . . , N}, let {ψvk|v|(Xv), ∅ �= v ⊆ u,k|v| ∈
N|v|
0 , k1, . . . , k|v| �= 0} be a nested set of measure-consistent orthonormal polynomial basis

functions such that E[ψuj|u|(Xu)] = 0 and E[ψuj|u|(Xu)ψvk|v|(Xv)] = 0 for ∅ �= v ⊂ u,
j1, . . . , j|u| �= 0, and k1, . . . , k|v| �= 0. Then the expansion coefficients of the polynomial repre-
sentation of nonconstant component functions of y in (5.2) and (5.3) satisfy

(5.8) Cuj|u| +
∑

∅�=v⊆{1,...,N}
v∩u �=∅,v�u

∑
k|v|∈N|v|

0
k1,...,k|v| �=0

Cvk|v|Juj|u|,vk|v| = Iuj|u|,
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where the integrals

Iuj|u| :=

∫
RN

y(x)ψuj|u|(xu)fu(xu)f−u(x−u)dx,(5.9a)

Juj|u|,vk|v| :=

∫
R|v∪u|

ψuj|u|(xu)ψvk|v|(xv)fu(xu)fv∩−u(xv∩−u)dxv∪u.(5.9b)

Proof. Replace yu,G in (5.3) with the right side of (4.5b) to write

(5.10)

Cuj|u| =

∫
RN

y(x)ψuj|u|(xu)fu(xu)f−u(x−u)dx

−
∑

∅�=v⊂u

∫
R|u| yv,G(xv)ψuj|u|(xu)fu(xu)dxu

−
∑

∅�=v⊆{1,...,N}
v∩u �=∅,v�u

∫
R|v∪u|

yv,G(xv)ψuj|u|(xu)fu(xu)fv∩−u(xv∩−u)dxv∪u,

where in the second line the integral associated with v = ∅, that is,
∫
R|u|

y∅,Gψuj|u|(xu)fu(xu)dxu = y∅,GE
[
ψuj|u|(Xu)

]

drops out for all ∅ �= u ⊆ {1, . . . , N}, consistent with the definition of orthonormal poly-
nomials. Now substitute all component functions of y involved in (5.10) with their Fourier-
polynomial expansions, as described by (5.2), which results in

(5.11)

Cuj|u| =

∫
RN

y(x)ψuj|u|(xu)fu(xu)f−u(x−u)dx

−
∑

∅�=v⊂u

∑
k|v|∈N|v|

0

k1,...,k|v| �=0

Cvk|v|
∫
R|u| ψuj|u|(xu)ψvk|v|(xv)fu(xu)dxu

−
∑

∅�=v⊆{1,...,N}
v∩u �=∅,v�u

∑
k|v|∈N|v|

0

k1,...,k|v| �=0

Cvk|v|

×
∫
R|v∪u|

ψuj|u|(xu)ψvk|v|(xv)fu(xu)fv∩−u(xv∩−u)dxv∪u.

From fundamental properties of orthogonal polynomials and nested construction of basis func-
tions, ψuj|u|(Xu) is orthogonal to ψvk|v|(Xv), that is, the expectation or the integral

E
[
ψuj|u|(Xu)ψvk|v|(Xv)

]
=

∫
R|u|

ψuj|u|(xu)ψvk|v|(xv)fu(xu)dxu = 0
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for any ∅ �= v ⊂ u, j1, . . . , j|u| �= 0, and k1, . . . , k|v| �= 0. Therefore, (5.11) reduces to

(5.12)

Cuj|u| =

∫
RN

y(x)ψuj|u|(xu)fu(xu)f−u(x−u)dx

−
∑

∅�=v⊆{1,...,N}
v∩u �=∅,v�u

∑
k|v|∈N|v|

0
k1,...,k|v| �=0

Cvk|v|

×
∫
R|v∪u|

ψuj|u|(xu)ψvk|v|(xv)fu(xu)fv∩−u(xv∩−u)dxv∪u.

Defining integrals Iuj|u| and Juj|u|,vk|v| , as in (5.9a) and (5.9b), (5.12) simplifies to (5.8), proving
the theorem.

5.3. Finite-dimensional approximation. Equation (5.8) describes an infinite-dimensional
system involving an infinite number of coefficients. Therefore, a finite-dimensional approxi-
mation, leading to approximate expansion coefficients and a truncated generalized ADD, must
be used in practice. Corollary 5.2 provides such a solution.

Corollary 5.2. When truncated at |u| = S and |j|u|| := j1+ · · ·+ j|u| = m, where 1 ≤ S < N

and S ≤ m <∞, the approximate expansion coefficients C̃uj|u| satisfy

(5.13)
C̃uj|u| +

∑
∅�=v⊆{1,...,N}
v∩u �=∅,v�u

m∑
k=1

∑
|k|v||=k

k1,...,k|v| �=0

C̃vk|v|Juj|u|,vk|v| = Iuj|u| , 1 ≤ |u| ≤ S, 1 ≤ |j|u|| ≤ m,

and

(5.14) C̃uj|u| = 0, 1 ≤ |u| ≤ S, m+ 1 ≤ |j|u|| <∞; S + 1 ≤ |u| ≤ N, 1 ≤ |j|u|| <∞.

Expressed compactly, the system of equations in (5.13) for nontrivial solutions of C̃uj|u|
forms an LS,m × LS,m matrix equation: Az = b, where A ∈ RLS,m×LS,m contains integrals
Juj|u|,vk|v| , b ∈ RLS,m comprises integrals Iuj|u|, and z ∈ RLS,m is the solution vector of the
approximate expansion coefficients. The size of the matrix equation is

LS,m =

S∑
k=1

(
N

k

)(
m

k

)
,

where
(m
k

)
= 0 if k > m, when the measure-consistent orthonormal polynomials are con-

structed by satisfying the condition j1, . . . , j|u| �= 0, as explained previously. The matrix form
of (5.13) is easy to implement and solve, and is scalable to higher dimensions in a straight-
forward way. It is elementary to show that C̃uj|u| → Cuj|u| as S → N and m→ ∞.

The truncations introduced in Corollary 5.2 engender an S-variate, mth-order generalized
ADD approximation

(5.15) ỹS,m(X) = y∅,G +
∑

∅�=u⊆{1,...,N}
1≤|u|≤S

m∑
k=1

∑
|j|u||=k

j1,...,j|u| �=0

C̃uj|u|ψuj|u|
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of y(X) in (4.1), which is grounded on a fundamental conjecture known to be true in many real-
world applications: given a high-dimensional function y, its |u|-variate component functions
decay rapidly with respect to |u|, leading to accurate lower-variate approximations of y. For
instance, by selecting S = 1 or 2, the functions ỹ1,m and ỹ2,m, respectively, provide univariate
and bivariate approximations of y. The higher the value of S and/or m, the higher the
accuracy, but also the concomitant computational effort. When S → N and m → ∞, ỹS,m
converges to y in the mean-square sense, generating a hierarchical and convergent sequence
of approximations.

The computational effort in determining the expansion coefficients y∅,G and C̃uj|u| is
rooted in efficient and accurate calculations of various N -dimensional integrals, including
Iuj|u|, u ⊆ {1, . . . , N}, 1 ≤ |u| ≤ S, |j|u|| ≤ m. For large N , a full numerical integration em-
ploying an N -dimensional tensor product of a univariate quadrature rule is computationally
prohibitive. Instead, a dimension-reduction integration scheme, developed by Xu and Rahman
[33], can be applied to estimate the coefficients efficiently. The scheme entails approximating
a high-dimensional integral of interest by a finite sum of lower-dimensional integrations. The
computational complexity is Sth-order polynomial—for instance, linear or quadratic when
S = 1 or 2—with respect to the number of variables or integration points, alleviating the
curse of dimensionality to an extent determined by S. See the work of Xu and Rahman [33]
for further details.

If the function y is a sum of at most S-variate, mth-order polynomials, then (5.13) and
(5.14) yield the exact solution of the expansion coefficients Cuj|u| and (5.15) exactly reproduces
y, provided that the integrals Iuj|u| and Juj|u|,vk|v| are calculated exactly. Numerical results
corroborating theoretical findings will be presented in section 7.

6. Second-moment analysis. Once the component functions of the generalized ADD have
been determined, subsequent evaluations of their second-moment characteristics, including
global sensitivity analysis, are conducted as follows.

6.1. Mean and variance. Applying the expectation operator on (4.1) and noting Propo-
sition 4.1, the mean

(6.1) μ := E[y(X)] = y∅,G

of y(X) matches the constant component function of the generalized ADD. This is similar to
(3.4), the result from the classical ADD, although the respective constants involved are not
the same. Applying the expectation operator again, this time on (y(X)−μ)2, and recognizing
Proposition 4.2 results in the variance

(6.2) σ2 := E
[
(y(X)− μ)2

]
=

∑
∅�=u⊆{1,...,N}

E
[
y2u,G(Xu)

]
+

∑
∅�=u,v⊆{1,...,N}

u�v�u

E [yu,G(Xu)yv,G(Xv)]

of y(X), where the first sum represents variance contributions from all nonconstant compo-
nent functions. In contrast, the second sum in (6.2) typifies covariance contributions from
two distinct nonconstant component functions that are not orthogonal—a ramification of im-
posing the weak annihilating conditions appropriate for the generalized ADD. The latter sum
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disappears altogether in the classical ADD because of the strong annihilating conditions that
are possible to enforce for independent probability measures. Nonetheless, (6.1) and (6.2)
furnish new generalized formulae for the second-moment statistics of y(X) in terms of the
moments of relevant component functions.

6.2. Global sensitivity indices. Mathematical modeling of complex systems often requires
sensitivity analysis to determine how an output variable of interest is influenced by individual
or subsets of input variables. A global sensitivity analysis constitutes the study of how the
output variance from a mathematical model is divvied up, qualitatively or quantitatively, to
distinct sources of input variation in the model [25]. There exist a multitudes of methods or
techniques for calculating the global sensitivity indices of a function of independent variables:
the random balance design method [31], state-dependent parameter metamodel [22], Sobol’s
method [26], polynomial chaos expansion [30], polynomial dimensional decomposition [19],
nonparametric regression procedures [29], and many others. In contrast, only a few methods,
such as those presented by Li and Rabitz [14], Kucherenko, Tarantola, and Annoni [12], and
Chastaing, Gamboa, and Prieur [3], are available for models with dependent or correlated
input. In this section, a triplet of global sensitivity indices is defined for problems involving
dependent probability distributions of input variables.

Three |u|-variate global sensitivity indices of a stochastic response function y(X) for a
subset Xu of input variables X, denoted by Su,v, Su,c, and Su, are defined as the ratios

(6.3) Su,v :=
E
[
y2u,G(Xu)

]
σ2

,

(6.4) Su,c :=

∑
∅�=v⊆{1,...,N}

u�v�u

E [yu,G(Xu)yv,G(Xv)]

σ2
,

(6.5) Su := Su,v + Su,c,

provided that the variance 0 < σ2 < ∞. The first two indices, Su,v and Su,c, represent
the normalized versions of the variance contribution from yu,G to σ2 and of the covariance
contributions from yu,G and all yv,G, such that u � v � u, to σ2. They will be named
the variance-driven global sensitivity index and the covariance-driven global sensitivity index,
respectively, of y(X) for Xu. The third index, Su, referred to as the total global sensitivity
index of y(X) for Xu, is the sum of variance and covariance contributions from or associated
with yu,G to σ2. Since ∅ �= u ⊆ {1, . . . , N}, there exist 2N − 1 such triplets of indices, adding
up to

(6.6)
∑

∅�=u⊆{1,...,N}
Su =

∑
∅�=u⊆{1,...,N}

Su,v +
∑

∅�=u⊆{1,...,N}
Su,c = 1.
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From the definitions, the variance-driven sensitivity index Su,v is a nonnegative, real-valued
number. It reflects the contribution of Xu through yu(Xu) in the system structure of y(X).
In contrast, the covariance-driven sensitivity index Su,v can be negative, positive, or zero,
depending on the correlation between Xu and Xv. It represents the contribution of Xu by the
interaction of yu(Xu) and yv(Xv), when u � v � u, due to dependent probability distribution.
Depending on whether Su,c is positive or negative, Su,c strengthens or weakens Su, provided
that Su > 0. The individual sums of these two indices in (6.6) over all ∅ �= u ⊆ {1, . . . , N}
may exceed unity or be negative, but the sum of these two individual sums is always equal
to one. When the random variables are independent, the covariance-driven contribution to
the total sensitivity index vanishes, leaving behind only one sensitivity index for the classical
ADD. The global sensitivity indices, whether derived from the generalized or classical ADD,
can be used to rank variables, fix unessential variables, and reduce dimensions of large-scale
problems. They also facilitate a means to define effective dimensions of the function y, as
follows.

Li et al. [15] have presented similar definitions of the three sensitivity indices under the
names structural, correlative, and total sensitivity indices. However, their correlative sensitiv-
ity index, defined by

S′
u,c :=

∑
∅�=v⊆{1,...,N}

v �=u

E [yu,G(Xu)yv,G(Xv)]

σ2
,

represents an unreduced version of the covariance-driven sensitivity index Su,c defined in
(6.4). The difference between these two definitions stems from not recognizing the hierarchical
orthogonality condition. Indeed, using Proposition 4.2, the condition u �= v reduces to u �
v � u, resulting in S′

u,c = Su,c.

6.3. Effective dimensions. For many practical applications, the multivariate function y
of N variables, fortunately, can be effectively approximated by a sum of at most S-variate
component functions yu,G, 1 ≤ |u| ≤ S ≤ N , of the generalized ADD in (4.1). The truncation
can be achieved by the notion of effective dimension, introduced by Caflisch, Morokoff, and
Owen [2], who exploited the classical ADD-based low effective dimension to explain why
the quasi–Monte Carlo method outperforms the crude Monte Carlo algorithm for evaluating
a certain class of high-dimensional integrals. In this section, extended definitions of two
generalized effective dimensions, stemming from the generalized ADD and global sensitivity
indices, are presented.

Definition 6.1. A square-integrable multivariate function y of X ∈ RN with finite variance
0 < σ2 < ∞ has a generalized effective dimension 1 ≤ Ss ≤ N in the superposition sense,
henceforth denoted as the superposition dimension, if

Ss := min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S : 1 ≤ S ≤ N such that

∣∣∣∣∣∣∣∣∣
1−

∑
∅�=u⊆{1,...,N}

1≤|u|≤S

Su

∣∣∣∣∣∣∣∣∣
≤ 1− p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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and a generalized effective dimension 1 ≤ St ≤ N in the truncation sense, henceforth denoted
as the truncation dimension, if

St := min

⎧⎨
⎩S : 1 ≤ S ≤ N such that

∣∣∣∣∣∣1−
∑

u⊆{1,...,S}
Su

∣∣∣∣∣∣ ≤ 1− p

⎫⎬
⎭ ,

where Su is the total global sensitivity index of y(X) for Xu, ∅ �= u ⊆ {1, . . . , N}, and 0 ≤ p ≤ 1
is a percentile threshold.

Caflisch et al. used the 99th percentile for p, but it can be treated as a threshold parameter
linked to the desired accuracy of a stochastic solution. Both definitions capture the notion
in which the function y is almost Ss- or St-dimensional. The relevance of the truncation
or superposition dimension depends on the nature of the function. The former signifies the
number of important random variables and is appropriate when some variables are more
important than others in an ordered set. In contrast, the latter determines whether the
low-variate component functions of dimensional decomposition dominate the function and is
appropriate when all variables are equally important. For truly high-dimensional problems,
all variables contribute to a function value; therefore, the superposition dimension is more
useful than the truncation dimension.

According to the definitions, evaluations of the generalized effective dimensions require
calculating the variance σ2 exactly, which is infeasible, if not impossible, for a general function
y of an arbitrary number of variables. However, the S-variate, mth-order approximation
ỹS,m(X), discussed in conjunction with Corollary 5.2, can be used to estimate the variance
of y(X), furnishing a practical means to calculate the effective dimensions. In this case,
a convergence analysis with respect to S and m, or an adaptive version of (5.15), briefly
described in section 6.4, will be required.

6.4. Adaptive-sparse approximation. The global sensitivity indices can be exploited to
create an adaptive-sparse ADD approximation of a high-dimensional function. Let ε1 ≥ 0 and
ε2 ≥ 0 denote two nonnegative error tolerances that specify the minimum values of S̃u,mu ,
which is the muth-order approximation of Su, and ΔS̃u,mu := (S̃u,mu − S̃u,mu−1)/S̃u,mu−1,
provided that S̃u,mu−1 �= 0 . Then an adaptive-sparse ADD approximation

ȳ(X) := y∅,G +
∑

∅�=u⊆{1,...,N}

∞∑
mu=1

∑
|j|u||=mu, j1,...,j|u| �=0

S̃u,mu>ε1,ΔS̃u,mu>ε2

Cuj|u|ψuj|u|(Xu)

of y(X) is formed by the subset of ANOVA component functions, satisfying two inclusion
criteria: (1) S̃u,mu > ε1; and (2) ΔS̃u,mu > ε2 for all 1 ≤ |u| ≤ N and 1 ≤ mu <∞. The first
criterion requires the contribution of an muth-order polynomial approximation of yu,G(Xu)
toward the variance of y(X) to exceed ε1 in order to be accommodated within the resultant
truncation. The second criterion identifies the augmentation in the variance contribution
from yu,G(Xu) evoked by a single increment in the polynomial order mu and determines if
it surpasses ε2. In other words, these two criteria ascertain which interactive effects between
two or more input random variables are retained and dictate the largest order of polynomials
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in a component function, formulating a fully adaptive-sparse ANOVA approximation. No
truncation parameters, that is, S,m of the truncated ADD, need to be selected a priori or
arbitrarily. Although successfully developed for independent variables [34], additional efforts
are needed for numerical implementation of the adaptive-sparse approximation for dependent
variables.

7. Examples. Two illustrative examples, the one entailing an explicit mathematical func-
tion and the other involving an implicit function derived from finite-element analysis, are
presented.

7.1. A mathematical function. Consider a quadratic polynomial function

y = (a0 + a1X1)(b0 + b1X2) + (a0 + a1X1)(c0 + c1X3) + (b0 + b1X2)(c0 + c1X3)

of a trivariate Gaussian random vector X = (X1,X2,X3)
T ∈ R3, which has mean E[X] = 0 ∈

R3, positive-definite covariance matrix

ΣX = E
[
XXT

]
=

⎡
⎣ σ21 ρ12σ1σ2 ρ13σ1σ3

σ22 ρ23σ2σ3
(sym.) σ23

⎤
⎦ ∈ R3×3,

comprising variances σ2i = 1 of Xi for i = 1, 2, 3 and correlation coefficients ρij between Xi

and Xj , i, j = 1, 2, 3, i �= j, and joint probability density function described by (5.4) for
N = 3. Four sets of correlation coefficients with varied strengths and types of statistical
dependence among random variables were examined: (1) ρ12 = ρ13 = ρ23 = 0 (uncorrelated);
(2) ρ12 = ρ13 = ρ23 = 1/5 (equally correlated); (3) ρ12 = 1/5, ρ13 = 2/5, ρ23 = 4/5
(positively correlated); and (4) ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5 (mixedly correlated). The
deterministic parameters are a0 = b0 = c0 = 2, a1 = b1 = c1 = 1, rendering y a symmetric
function. The objective of this simple yet insightful example is to explain how the proposed
methods can be applied to determine the component functions of and global sensitivity indices
from the generalized ADD.

Given the Gaussian probability density function of X, the marginal probability densities
of Xu, ∅ �= u ⊆ {1, 2, 3}, are also Gaussian and are described by (5.5). The probability density
φu(xu;Σu) induces multivariate Hermite orthonormal polynomials {ψuj|u|}, as described by
(5.6) and (5.7), that are consistent with the probability measure of Xu. From these orthonor-
mal polynomials and the function y, the integrals Iuj|u| and Juj|u|,vk|v| were exactly calculated
from their definitions in (5.9a) and (5.9b). Using Corollary 5.2, that is, (5.13), S = 2, m = 2,
and these two sets of integrals, a system of linear equations was generated and then solved to
determine exactly the expansion coefficients C̃uj|u| for ∅ �= u ⊆ {1, 2, 3} and |j|u|| ≤ m. Since
y is a sum of at most bivariate, second-order polynomials, the selection of S = 2 and m = 2 is
adequate to produce C̃uj|u| = Cuj|u| , thereby exactly reproducing y from the generalized ADD.

Table 1 presents all eight component functions of y, obtained exactly using the proposed
methods in sections 5 and 6, for four distinct cases of correlation properties of X. It is ele-
mentary to verify that all component functions have zero means (Proposition 3.1 or 4.1) and
are either fully orthogonal (Proposition 3.2) for Case 1 or hierarchically orthogonal (Propo-
sition 4.2) for Cases 2 through 4. When there is no correlation between any two random
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Table 1
The generalized ADD component functions and second-moment statistics of y.(a)

Case Component functions Moments

y∅,G = y∅,C = 12

y{1},G = y{1},C = 4X1

y{2},G = y{2},C = 4X2

Case 1: Uncorrelated y{3},G = y{3},C = 4X3 μ = 12

(ρ12 = ρ13 = ρ23 = 0) y{1,2},G = y{1,2},C = X1X2 σ2 = 51

y{1,3},G = y{1,3},C = X1X3

y{2,3},G = y{2,3},C = X2X3

y{1,2,3},G = y{1,2,3},C = 0

y∅,G = 63
5

y{1},G = − 5
13

+ 4X1 + 5
13
X2

1

y{2},G = − 5
13

+ 4X2 + 5
13
X2

2

Case 2: Equally correlated y{3},G = − 5
13

+ 4X3 + 5
13
X2

3 μ = 63
5

(ρ12 = ρ13 = ρ23 = 1/5) y{1,2},G = 12
65

− 5
26
X2

1 +X1X2 − 5
26
X2

2 σ2 = 1794
25

y{1,3},G = 12
65

− 5
26
X2

1 +X1X3 − 5
26
X2

3

y{2,3},G = 12
65

− 5
26
X2

2 +X2X3 − 5
26
X2

3

y{1,2,3},G = 0

y∅,G = 67
5

y{1},G = − 405
754

+ 4X1 + 405
754

X2
1

y{2},G = − 725
1066

+ 4X2 + 725
1066

X2
2

Case 3: Positively correlated y{3},G = − 990
1189

+ 4X3 + 990
1189

X2
3 μ = 67

5

(ρ12 = 1/5, ρ13 = 2/5, ρ23 = 4/5) y{1,2},G = 12
65

− 5
26
X2

1 +X1X2 − 5
26
X2

2 σ2 = 2514
25

y{1,3},G = 42
145

− 10
29
X2

1 +X1X3 − 10
29
X2

3

y{2,3},G = 36
205

− 20
41
X2

2 +X2X3 − 20
41
X2

3

y{1,2,3},G = 0

y∅,G = 57
5

y{1},G = − 115
754

+ 4X1 + 115
754

X2
1

y{2},G = 725
1066

+ 4X2 − 725
1066

X2
2

Case 4: Mixedly correlated y{3},G = 170
1189

+ 4X3 − 170
1189

X2
3 μ = 57

5

(ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5) y{1,2},G = − 12
65

+ 5
26
X2

1 +X1X2 +
5
26
X2

2 σ2 = 774
25

y{1,3},G = 42
145

− 10
29
X2

1 +X1X3 − 10
29
X2

3

y{2,3},G = − 36
205

+ 20
41
X2

2 +X2X3 +
20
41
X2

3

y{1,2,3},G = 0

(a) y = 12 + 4X1 + 4X2 + 4X3 +X1X2 +X1X3 +X2X3, where a0 = b0 = c0 = 2, a1 = b1 = c1 = 1.
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variables, that is, ρ12 = ρ13 = ρ23 = 0, the proposed method replicates exactly the component
functions of the classical ADD. Clearly, the component functions vary with the correlation
structure, but when added together they reconstruct the function y regardless of whether or
not the random variables are independent. It is important to note that the univariate parts
of y, which are strictly linear functions of Xi, are exactly reproduced only when there is no
correlation between any two random variables, that is, when invoking the classical ADD. In
contrast, the univariate component functions derived from the generalized ADD with a non-
trivial correlation structure contain second-order terms and are generally nonlinear. This is
due to statistical dependence among random variables, inducing higher-order univariate terms
that are not present in the original function to begin with. A similar behavior is observed when
comparing the bivariate component functions in Table 1. The additional higher-order terms
generated by dependent probability measures vanish when summing all component functions
of a generalized ADD. The mean and variance of y for all four cases, calculated using (6.1)
and (6.2), are also displayed in Table 1.

The component functions listed in Table 1 were employed for calculating the variance-
driven, covariance-driven, and total global sensitivity indices defined in (6.3), (6.4), and (6.5).
The expectations involved in (6.3) and (6.4) were exactly evaluated from their respective
integral definitions. Table 2 enumerates the triplets of sensitivity indices, Su,v, Su,c, and Su, of
y for X1, X2, X3, (X1,X2), (X1,X3), (X2,X3), and (X1,X2,X3), calculated separately for the
uncorrelated case and the three correlated cases. Three key findings jump out as follows. First,
the total sensitivity indices from the generalized ADD for all three correlated cases comprise
both variance- and covariance-driven contributions, whereas the total sensitivity indices from
the generalized ADD for the uncorrelated case or from the classical ADD emanate solely from
the variances of component functions. Second, for the mixedly correlated case, the sum of
the variance-driven indices may exceed unity, while the sum of the covariance-driven indices
may be negative, as specifically demonstrated when ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5.
Third, the stronger the correlations among random variables, the larger the covariance-driven
contributions to the total sensitivity indices.

Using the total sensitivity indices in Table 2, the total effect sensitivity indices of y with
respect to Xi, defined as S̄i :=

∑
i∈u Su, i = 1, 2, 3, were calculated to decipher the importance

of each random variable. Table 3 displays the total effect sensitivity indices with respect to
three random variables for the four cases of correlation properties. The parenthetical numbers
indicate relative rankings of all three variables, except when there is a tie. For identical
correlation structures, such as the uncorrelated and equally correlated cases, all three variables
are equally important, yielding a three-way tie, as y is a symmetric function. For the positively
correlated case, where the correlation coefficient increases monotonically from 1/5 to 4/5, X1

and X3 are the least and the most important variables, respectively, while the significance of
X2 is intermediary. The order of ranking should reverse if the correlation coefficient decreases
monotonically. When the correlation coefficients are both positive and negative, that is, for
the mixedly correlated case, X1 and X2 become the most and the least important variables,
respectively. Clearly, the correlation structure of random variables heavily influences the
composition of component functions as well as global sensitivity analysis.
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Table 2
Triplets of global sensitivity indices from the generalized ADD of y.(a)

Su,v Su,c Su Su,v Su,c Su

Case 1: Uncorrelated Case 2: Equally correlated

Xu (ρ12 = ρ13 = ρ23 = 0) (ρ12 = ρ13 = ρ23 = 1/5)

X1 0.313725 0 0.313725 0.227088 0.089780 0.316868

X2 0.313725 0 0.313725 0.227088 0.089780 0.316868

X3 0.313725 0 0.313725 0.227088 0.089780 0.316868

(X1, X2) 0.019608 0 0.019608 0.012349 0.004116 0.016465

(X1, X3) 0.019608 0 0.019608 0.012349 0.004116 0.016465

(X2, X3) 0.019608 0 0.019608 0.012349 0.004116 0.016465

(X1, X2, X3) 0 0 0 0 0 0
∑

1 0 1 0.718312 0.281688 1

Case 3: Positively correlated Case 4: Mixedly correlated

(ρ12 = 1/5, ρ13 = 2/5, ρ23 = 4/5) (ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5)

X1 0.164847 0.096992 0.261839 0.518299 0.103039 0.621337

X2 0.168309 0.165600 0.333909 0.546677 −0.509771 0.036905

X3 0.172897 0.202314 0.375211 0.518116 −0.201389 0.316728

(X1, X2) 0.008812 0.008812 0.017624 0.028623 −0.014311 0.014311

(X1, X3) 0.006049 0.004321 0.010370 0.019647 −0.014034 0.005614

(X2, X3) 0.000786 0.000262 0.001048 0.002553 0.002553 0.005105

(X1, X2, X3) 0 0 0 0 0 0
∑

0.5217 0.4783 1 1.63391 −0.63391 1

(a) y = 12 + 4X1 + 4X2 + 4X3 +X1X2 +X1X3 +X2X3, where a0 = b0 = c0 = 2, a1 = b1 = c1 = 1.

Table 3
Total effects of random variables on the variance of y and relative rankings.(a)

S̄1 S̄2 S̄3

Case (rank) (rank) (rank)

Case 1: Uncorrelated 0.352941 0.352941 0.352941

(ρ12 = ρ13 = ρ23 = 0) (Three-way tie) (Three-way tie) (Three-way tie)

Case 2: Equally correlated 0.349798 0.349798 0.349798

(ρ12 = ρ13 = ρ23 = 1/5) (Three-way tie) (Three-way tie) (Three-way tie)

Case 3: Positively correlated 0.289833 0.352581 0.386628

(ρ12 = 1/5, ρ13 = 2/5, ρ23 = 4/5) (3) (2) (1)

Case 4: Mixedly correlated 0.641262 0.056322 0.327446

(ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5) (1) (3) (2)

(a) The total effect of random variable Xi is defined as S̄i :=
∑

i∈u Su, i = 1, 2, 3, ∅ �= u ⊆ {1, 2, 3}.

7.2. A random eigenvalue problem. The motivation for the next example lies in solving
a practical problem involving uncertainty quantification of natural frequencies of a vibrating
cantilever plate, as shown in Figure 1(a). The plate has the following deterministic geometric
and material properties: length L = 2 in (50.8 mm), width W = 1 in (25.4 mm), Young’s



GENERALIZED ANOVA DIMENSIONAL DECOMPOSITION 693

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

W 

t(ξ) 
ξ 

L 

Figure 1. A cantilever plate; (a) geometry; (b) finite-element discrete model.

modulus, E = 30 × 106 psi (206.8 GPa), Poisson’s ratio ν = 0.3, and mass density ρ =
7.324 × 10−4 lb-s2/in4 (7827 kg/mm3). The randomness in natural frequencies arises due to
random thickness t(ξ), which is spatially varying in the longitudinal direction ξ only. The
thickness is represented by a homogeneous, lognormal random field t(ξ) = c exp[α(ξ)] with
mean μt = 0.01 in (0.254 mm), variance σ2t = v2t μ

2
t , and coefficient of variation vt = 0.2, where

c = μt/
√

1 + v2t and α(ξ) is a zero-mean, homogeneous, Gaussian random field with variance
σ2α = ln(1 + v2t ) and covariance function Γα(τ) = E[α(ξ)α(ξ + τ) = σ2α exp[−|τ |/(0.2L)].
A 10 × 20 finite-element mesh of the plate, consisting of 200 eight-noded, second-order shell
elements and 661 nodes, is shown in Figure 1(b). Using this mesh and the well-known midpoint
method, the random field α(ξ) was discretized into a zero-mean, 20-dimensional, dependent
Gaussian random vector X with covariance matrix ΣX = [Γα(ξi − ξj)], i, j = 1, . . . , 20, where
ξi is the coordinate of the center of the ith column of elements in Figure 1(b). The same mesh
was used to calculate the natural frequencies, which are the square roots of eigenvalues.
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Table 4
Means and standard deviations of the first four natural frequencies of the cantilever plate.

Generalized ADD

(S = 2, m = 2)

Generalized ADD

(S = 2, m = 4)

Crude MCS

(5000 samples)

Mode
Mean

(Hz)

St.dev.

(Hz)

Mean

(Hz)

St.dev.

(Hz)

Mean

(Hz)

St.dev.

(Hz)

1 80.94 15.68 80.98 15.97 80.75 17.06

2 355.13 54.21 355.16 55.22 355.45 55.31

3 508.27 64.21 508.43 64.98 508.20 68.58

4 1169.63 137.45 1169.83 140.64 1170.55 142.29

The bivariate, second-order approximation and the bivariate, fourth-order approximation,
that is, (5.15) truncated at S = 2, m = 2 and S = 2, m = 4, respectively, were employed to
estimate various probabilistic characteristics of the first four natural frequencies of the plate.
The construction of orthonormal polynomials is identical to that in the first example. How-
ever, the integrals involved in determining the coefficients of (5.15) were estimated from the
dimension-reduction integration scheme [33], entailing at most two-dimensional integrations.
For the three-point (= m + 1, m = 2) and five-point (= m + 1, m = 4) Gauss–Hermite
quadrature rules selected, the two proposed approximations require 20× (20− 1)(3− 1)2/2+
(20× (3− 1) + 1 = 801 and 20× (20− 1)(5− 1)2/2 + (20× (5− 1) + 1 = 3121 finite-element
analyses, respectively [33].

Table 4 presents the means and standard deviations of the first four natural frequencies,
ωi, i = 1, . . . , 6, of the plate by three different methods: the two proposed bivariate approxi-
mations and crude Monte Carlo simulation (MCS). In all three methods, the solution of the
matrix characteristic equation for a given input is equivalent to performing a finite-element
analysis. Therefore, computational efficiency, even for this simple plate model, is a practical
requirement in solving random eigenvalue problems. The statistics by the proposed methods
were obtained using 5000 samples of (5.15), which consist of repeated yet inexpensive evalua-
tions of elementary functions. Due to expensive finite-element analysis, however, crude MCS
was conducted only up to 5000 realizations, which should be adequate for providing bench-
mark solutions of the second-moment characteristics. The agreement between the means and
standard deviations by the proposed methods and crude MCS in Table 4 is very good even
for the second-order approximation.

Figure 2 depicts the marginal probability densities of the four natural frequencies by the
proposed approximations and crude MCS. Due to the computational expense inherent to finite-
element analysis, the same 5000 samples generated for verifying the statistics in Table 4 were
utilized to develop the histograms in Figure 2. However, since the proposed methods yield
explicit eigenvalue approximations, an arbitrarily large sample size, e.g., 50,000 in this par-
ticular example, was selected to sample (5.15) for estimating the respective densities. Again,
the results of the proposed methods and crude MCS match well, given the relatively small
sample size of crude MCS. Nonetheless, there exist slight discrepancies in the tail regions of a
few densities, suggesting a need for improvements by invoking higher-variate approximations.

The proposed methods, especially the bivariate, second-order approximation, are compu-
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Figure 2. Marginal probability density functions of the first four natural frequencies of the cantilever plate.

tationally more efficient than crude MCS. Comparing the results of Table 4, the fourth-order
approximation produces at most a modest improvement in the second-moment properties
by the second-order approximation. Moreover, the respective marginal densities in Figure 2
obtained by both approximations are practically coincident. Therefore, the second-order ap-
proximation provides satisfactory results without incurring the significantly higher cost of
the fourth-order approximation, at least for this example. Having said so, the cost scaling
of a bivariate approximation, whether second-order or fourth-order, is still quadratic with
respect to the number of random variables. Therefore, future efforts on developing adaptive-
sparse approximations, where global sensitivity indices can be used to filter out unimportant
component functions, should be explored.

8. Conclusion. A generalized ADD for dependent random variables, representing a finite
sum of lower-dimensional component functions of a multivariate function, was studied. The
classical annihilating conditions, when appropriately weakened, reveal two important proper-
ties of the generalized ADD: the component functions have zero means and are hierarchically
orthogonal. A simple alternative approach is proposed for deriving the coupled system of
equations satisfied by the component functions. The coupled equations, which subsume as
a special case the classical ADD, reproduces the component functions for independent prob-
ability measures. By exploiting measure-consistent, multivariate orthogonal polynomials as
bases, a new constructive method is proposed for determining the component functions of
the generalized ADD. The method leads to a coupled system of linear algebraic equations
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for the expansion coefficients of the component functions that is not only easy to implement
and solve, but also supports scalability to higher dimensions. New generalized formulae are
presented for the second-moment characteristics of a general stochastic function, including
three distinct global sensitivity indices, relevant to dependent probability distributions. Anal-
ogous to the component functions, the generalized formulae shrink to the existing formulae
from the classical ADD when the random variables are independent. Gaining insights from
the generalized ADD, two generalized effective dimensions, one in the superposition sense
and the other in the truncation sense, are defined. Numerical results from a simple yet in-
sightful example indicate that the statistical dependence among random variables induces
higher-order terms in the generalized ADD that may not be present in the original function
or in the classical ADD. In addition, the component functions depend significantly on the
correlation coefficients of random variables. Consequently, the global sensitivity indices may
also vary widely, producing distinct rankings of random variables. Finally, an application to
solving random eigenvalue problems demonstrates that the proposed approximation provides
not only accurate but also computationally efficient estimates of the statistical moments and
probability densities of natural frequencies.
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