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A B S T R A C T

This paper leverages recent progress on orthonormal splines for solving uncertainty quan-
tification (UQ) problems from linear structural dynamics. The resulting methods, premised
on spline chaos expansion (SCE) and spline dimensional decomposition (SDD), both construe
Fourier-like expansion of a dynamic system response of interest with respect to measure-
consistent orthonormalized basis splines in input random variables and standard least-squares
regression for estimating the expansion coefficients. The SCE and SDD methods are capable
of capturing high nonlinearity and non-smoothness, if they exist, in a stochastic dynamic
response markedly better than the polynomial chaos expansion (PCE) method. However, due
to the tensor-product structure, SCE, like PCE, also suffers from the curse of dimensionality. In
contrast, SDD, equipped with a desirable dimensional hierarchy of input variables, deflates the
curse of dimensionality to a great extent. Numerical results from frequency response analysis
of a two-degree-of-freedom dynamic system indicate that a low-order SCE with fewer basis
functions removes or markedly reduces the spurious oscillations generated by high-order PCE
in estimating the response statistics. Finally, a high-dimensional modal analysis of a fighter jet
comprising 110 random variables was conducted, demonstrating the ability of SDD in solving
large-scale UQ problems.

. Introduction

Computational modeling and simulation of complex dynamical systems in engineering and applied sciences often mandate
ncertainty quantification (UQ) due to the natural variability of system properties, external excitations, and initial/boundary
onditions [1,2]. The propagation of uncertainties from the input to the output of a dynamic system is commonly associated with
he sampling-based methods, for instance, Monte Carlo simulation (MCS), which are robust but not suitable when only a small
umber of full-scale dynamic simulations are manageable. As a result, UQ is now witnessing a massive surge in the development of
urrogate or approximate computational methods with the goal of achieving risk mitigation through scientific prediction. Indeed,
here exists a myriad of UQ methods, namely, polynomial chaos expansion (PCE) [3,4], polynomial dimensional decomposition
PDD) [5,6], the stochastic collocation methods [7,8], and sparse-grid quadrature [9,10], which are often viewed as surrogates for
xpensive-to-run MCS and its variants [11,12]. These methods and a few others not explicitly stated here for brevity, while successful
n conducting UQ analysis of quasi-static problems, are known to face severe technical hurdles when dealing with time-dependent or
tochastic-dynamics problems [13–15]. In addition, most existing methods begin to break down for truly high-dimensional problems,
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List of abbreviations

CDF Cumulative distribution function
COV Coefficient of variation
FEA Finite-element analysis
FRF Frequency response function
MCS Monte Carlo simulation
PCE Polynomial chaos expansion
PDD Polynomial dimensional decomposition
PDF Probability density function
SCE Spline chaos expansion
SDD Spline dimensional decomposition
SLS Standard least-squares
UQ Uncertainty quantification

where hundreds of input random variables are necessary to characterize dynamic system states and forecast their evolution in time.
Therefore, development of new surrogate methods capable of effectively handling high-dimensional stochastic-dynamics problems
is desirable.

For linear systems subject to harmonic excitations, determining frequency response functions (FRFs) is a fundamental task
n structural dynamics. They provide valuable dynamic response characteristics over a frequency range with a clear physical
nterpretation. However, due to possible uncertainty in mass, damping, and stiffness properties, FRFs are actually random functions,
equiring evaluation of their probabilistic attributes. Relevant works entail mode-based meta models for probabilistic analysis of
RFs [16], modal approaches for stochastic dynamic analysis in the frequency domain [17], and polynomial expansion leading
o bounds of statistical properties of FRFs [18], to name a few. Later on, Kundu and Adhikari [19] obtained FRFs of a stochastic
ystem by projecting the response on a reduced subspace of eigenvectors. A few additional studies employing PCE as the surrogate
ethod of UQ analysis have also been reported. For instance, Jacquelin et al. [20] exploited PCE in calculating the second-moment

tatistics of FRFs for a two-degree-of-freedom system. They reported spurious oscillations generated by standard PCE around resonant
requencies. The problem becomes further compounded when the uncertainty in the system properties causes the randomness of
atural frequencies. Through numerical experiments, they showed that the PCE approximations converge very slowly, requiring
mpractically large expansion orders to produce satisfactory estimates of the second-moment properties of FRF. Their subsequent
ork involved convergence acceleration of PCE using Aitken’s transformation [21]. A more recent work on PCE consists of a

ransformation of FRF, where the expansion is applied on a scaled frequency axis [22]. While these latter works helped in resolving
ome of the PCE-related issues, UQ methods exploiting basis functions more powerful than polynomials have yet to materialize.

Another prominent topic in UQ for dynamic systems is solving random eigenvalue problems. The fundamental objective of
andom eigenvalue analysis is to characterize quantitatively the uncertainty of the natural frequencies and mode shapes from the
nown probability distribution of mass, damping, and stiffness properties. Classical methods for solving random eigenvalue problems
re dominated by the perturbation method [23], a long-standing staple, but no longer contemporary, as it is restricted to problems
ith small uncertainties or small nonlinearities. Other methods include the iteration method [23], the Ritz method [24], the crossing

heory [25], PCE [26], and PDD [27,28], to mention just five. Moreover, the foregoing stochastic collocation and sparse-grid
uadrature can be applied to solve random eigenvalue problems. All of these methods are known to offer significant computational
dvantages over MCS. However, for truly high-dimensional problems, the PCE or collocation methods require astronomically large
umbers of basis functions, succumbing to the curse of dimensionality [29]. Although basis splines (B-splines) have been employed
o construct the sparse-grid quadrature, they are neither orthogonal nor measure-consistent, meaning that the underlying basis
unctions are not adapted to the probability measure of input random variables. While PDD is known to reduce PCE’s computational
ost to a significant margin [30], both expansions, founded on globally supported polynomial basis, are largely predicated on the
moothness assumption of the output function. For oscillatory, non-smooth, or discontinuous responses, PDD also requires overly
arge expansion orders, causing unreliable predictions of stochastic performance. This is chiefly because polynomials, being too
mooth, are susceptible to unstable swings when the expansion order exceeds four or five [31]. The authors contend that alternative
xpansions, such as those rooted in low-order splines, should be exploited to generate an accurate but practical way of solving
andom eigenvalue problems. The rationale for selecting locally supported splines over globally supported polynomials stems from
he argument that a highly nonlinear or non-smooth stochastic response, be it an eigenvalue or an eigenfunction, is better suited to
e picked up accurately by the former, which comprises smoothly connected locally polynomial functions.

The principal objective of this study is to introduce two novel expansions, referred to as spline chaos expansion (SCE) and
pline dimensional decomposition (SDD), for solving UQ problems in structural dynamics involving frequency response analysis
nd modal analysis. While this paper focuses on the computational and practical aspects of the expansions, readers interested
n rigorous mathematical analyses of SCE and SDD, including theoretical results and their formal proofs, should consult the
espective prequels [32,33]. The paper is organized as follows. Section 2 begins with mathematical preliminaries and requisite
ssumptions. Section 3 presents a problem description for each class of UQ analysis addressed in this work, leading to a consolidated
2
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general problem statement. Section 4 describes the construction of measure-consistent, univariate orthonormalized B-splines in each
coordinate direction. Section 5 introduces SCE and SDD for a square-integrable output random variable of interest, including the
approximations or methods emanating from their truncations. In the same section, analytical formulae for the mean and variance of
a truncated SCE/SDD are derived. The calculation of the SCE/SDD coefficients is discussed in Section 6. Two numerical examples,
one focusing on the FRFs of two-degree-of-freedom dynamic systems and the other entailing the natural frequencies and mode shapes
of a 110-dimensional, industrial-scale engineering problem, are provided in Section 7. Finally, conclusions are drawn in Section 8.

2. Input random variables and dynamic system matrices

Let N ∶= {1, 2,…}, N0 ∶= N∪ {0}, R ∶= (−∞,+∞), R+
0 ∶= [0,+∞), R+ ∶= (0,+∞), and C be the sets of positive integers (natural),

non-negative integers, all real numbers, non-negative real numbers, positive real numbers, and complex numbers, respectively.
Denote by [𝑎𝑘, 𝑏𝑘] a finite closed interval, where 𝑎𝑘, 𝑏𝑘 ∈ R and 𝑏𝑘 > 𝑎𝑘. Then, given 𝑁 ∈ N, A𝑁 = ×𝑁𝑘=1[𝑎𝑘, 𝑏𝑘] represents a closed
bounded domain of R𝑁 .

Let (𝛺, ,P) be a probability space, where 𝛺 is a sample space representing an abstract set of elementary events,  is a 𝜎-algebra
on 𝛺, and P ∶  → [0, 1] is a probability measure. Defined on this probability space, consider an 𝑁-dimensional input random vector
𝐗 ∶= (𝑋1,… , 𝑋𝑁 )⊺, describing the statistical uncertainties in the mass, damping, and stiffness properties of a linear dynamic system.
Denote by 𝐹𝐗(𝐱) ∶= P(∩𝑁𝑖=1{𝑋𝑘 ≤ 𝑥𝑘}) the joint cumulative distribution function (CDF) of 𝐗. The 𝑘th component of 𝐗 is a random
variable 𝑋𝑘, which has the marginal CDF 𝐹𝑋𝑘 (𝑥𝑘) ∶= P(𝑋𝑘 ≤ 𝑥𝑘). The positive integer 𝑁 , which represents the total number of input
random variables, is often referred to as the dimension of the stochastic or UQ problem.

For 𝑀 ∈ N, consider a linear, 𝑀-degree-of-freedom, dynamic system with random mass matrix 𝐌(𝐗) ∈ R𝑀×𝑀 , random damping
matrix 𝐂(𝐗) ∈ R𝑀×𝑀 , and random stiffness matrix 𝐊(𝐗) ∈ R𝑀×𝑀 . The probabilistic characteristics of these system matrices are
derived from the probability law of 𝐗. As an example, consider a mass–spring–damper model of a single-degree-of-freedom dynamic
system with mass 𝑀 , damping coefficient 𝐶, and spring constant 𝐾. If all of these input parameters are modeled as random variables,
then 𝐗 ∶= (𝑀,𝐶,𝐾)⊺ with stochastic dimension 𝑁 = 3.

The requisite assumptions on input random variables and dynamic system matrices are as follows.

Assumption 1. The input random vector 𝐗 ∶= (𝑋1,… , 𝑋𝑁 )⊺ satisfies all of the following conditions:

(1) All component random variables 𝑋𝑘, 𝑘 = 1,… , 𝑁 , are statistically independent, but not necessarily identically distributed.
(2) Each input random variable 𝑋𝑘 is defined on a bounded interval [𝑎𝑘, 𝑏𝑘] ⊂ R. Therefore, all moments of 𝑋𝑘 exist, that is, for

all 𝑙 ∈ N,

E
[

𝑋𝑙
𝑘
]

∶= ∫𝛺
𝑋𝑙
𝑘(𝜔) dP(𝜔) < ∞, (1)

where E is the expectation operator with respect to the probability measure P.
(3) Each input random variable 𝑋𝑘 has absolutely continuous marginal CDF 𝐹𝑋𝑘 (𝑥𝑘) and continuous marginal probability density

function (PDF) 𝑓𝑋𝑘 (𝑥𝑘) ∶= 𝜕𝐹𝑋𝑘 (𝑥𝑘)∕𝜕𝑥𝑘 with a bounded support [𝑎𝑘, 𝑏𝑘] ⊂ R. Consequently, with Items (1) and (2) in mind,
the joint CDF 𝐹𝐗(𝐱) and joint PDF 𝑓𝐗(𝐱) ∶= 𝜕𝑁𝐹𝐗(𝐱)∕𝜕𝑥1 ⋯ 𝜕𝑥𝑁 of 𝐗 are obtained from

𝐹𝐗(𝐱) =
𝑁
∏

𝑘=1
𝐹𝑋𝑘 (𝑥𝑘) and 𝑓𝐗(𝐱) =

𝑁
∏

𝑘=1
𝑓𝑋𝑘 (𝑥𝑘), (2)

respectively, with a bounded support A𝑁 ⊂ R𝑁 of the density function.

Assumption 2. The dynamic system matrices fulfill all of the following conditions:

(1) The mass matrix 𝐌(𝐗) is real, symmetric, and positive-definite, whereas the stiffness matrix 𝐊(𝐗) and damping matrix 𝐂(𝐗)
are real, symmetric, and positive semi-definite.

(2) The damping matrix 𝐂(𝐗) can be proportional or non-proportional. If proportional, the damping matrix is a linear combination
of the mass and stiffness matrices.

Assumption 1 ensures the existence of a relevant sequence of orthogonal polynomials or splines consistent with the input
probability measure. Assumption 2 guarantees real-valued eigensolutions for undamped or proportionally damped systems. For
non-proportionally damped systems, the eigensolutions can be real-valued or complex-valued, depending on the damping matrix.

3. UQ problems in structural dynamics

Consider a linear, 𝑀-degree-of-freedom, dynamic system with random mass matrix 𝐌(𝐗) ∈ R𝑀×𝑀 , random damping matrix
𝐂(𝐗) ∈ R𝑀×𝑀 , and random stiffness matrix 𝐊(𝐗) ∈ R𝑀×𝑀 , satisfying Assumption 2. Under external excitation with an
𝑀-dimensional deterministic force vector 𝐟 (𝑡), the governing equation of motion in the time domain is

𝐌(𝐗)�̈�(𝑡;𝐗) + 𝐂(𝐗)�̇�(𝑡;𝐗) +𝐊(𝐗)𝐳(𝑡;𝐗) = 𝐟 (𝑡), (3)

where 𝑡 ∈ [0, 𝑇 ] ⊆ R+
0 , 𝑇 ∈ R+, is time, 𝐳(𝑡;𝐗) is the 𝑀-dimensional displacement vector, �̇�(𝑡;𝐗) is the 𝑀-dimensional velocity

vector, and �̈�(𝑡;𝐗) is the 𝑀-dimensional acceleration vector. The second arguments of the displacement, velocity, and acceleration
responses indicate that they also depend on the input random vector 𝐗. Two prominent UQ problems from structural dynamics in
conjunction with frequency response analysis and modal analysis are described as follows.
3
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3.1. Frequency response analysis

Consider a deterministic harmonic excitation with the complex-valued force vector

𝐟 (𝑡) = 𝐅(𝜔) exp(i𝜔𝑡), (4)

where i =
√

−1, 𝜔 ∈ [𝜔𝑙 , 𝜔𝑟] ⊆ R+, 0 ≤ 𝜔𝑙 < 𝜔𝑟 < ∞, is the excitation (angular) frequency, and 𝐅(𝜔) ∈ R𝑀 is the real-valued force
amplitude vector. For a linear system, the steady-state displacement response is

𝐳(𝑡;𝐗) = 𝐙(𝜔;𝐗) exp(i𝜔𝑡), (5)

where 𝐙(𝜔;𝐗) ∈ C𝑀 is the complex-valued displacement amplitude vector that also depends on 𝐗. It is elementary to show that
𝐙(𝜔;𝐗) satisfies

[

−𝜔2𝐌(𝐗) + i𝜔𝐂(𝐗) +𝐊(𝐗)
]

𝐙(𝜔;𝐗) = 𝐅(𝜔), (6)

the governing equation of motion in frequency domain. Inverting Eq. (6), the displacement amplitude

𝐙(𝜔;𝐗) =
[

−𝜔2𝐌(𝐗) + i𝜔𝐂(𝐗) +𝐊(𝐗)
]−1 𝐅(𝜔) = 𝐇(𝜔;𝐗)𝐅(𝜔), (7)

where, in the second equality,

𝐇(𝜔;𝐗) ∶=
[

−𝜔2𝐌(𝐗) + i𝜔𝐂(𝐗) +𝐊(𝐗)
]−1 ∈ C𝑀×𝑀 (8)

defines a matrix of complex-valued FRFs for the dynamic system. In UQ analysis, one is interested in propagating the uncertainty
of input 𝐗 to FRFs, leading to the probabilistic characterization of 𝐙(𝜔;𝐗).

Consider a special case where the 𝑖th component of 𝐅(𝜔) is one and other components are zero. Then, from Eq. (7), the 𝑖th
component of 𝐙(𝜔;𝐗), denoted by 𝑍𝑖(𝜔;𝐗) ∈ C, is

𝑍𝑖(𝜔;𝐗) = 𝐻𝑖𝑖(𝜔;𝐗), 𝑖 = 1,… ,𝑀, (9)

where 𝐻𝑖𝑖(𝜔;𝐗) ∈ C is the 𝑖th diagonal element of 𝐇(𝜔;𝐗). Define by

|𝑍𝑖(𝜔;𝐗)| ∶= |𝐻𝑖𝑖(𝜔;𝐗)| ∶=
√

[

Re(𝐻𝑖𝑖(𝜔;𝐗))
]2 +

[

Im(𝐻𝑖𝑖(𝜔;𝐗))
]2, 𝑖 = 1,… ,𝑀, (10)

the modulus or magnitude of 𝑍𝑖(𝜔;𝐗) or 𝐻𝑖𝑖(𝜔;𝐗) with Re(⋅) and Im(⋅) representing, respectively, the real and imaginary parts. Here,
UQ for frequency response analysis is aimed at calculating the probabilistic characteristics of |𝐻𝑖𝑖(𝜔;𝐗)| when the input uncertainty
is arbitrarily prescribed, provided that Assumptions 1 and 2 are fulfilled.

According to Eq. (10), only the point FRFs have been considered. The extension to the analysis of cross FRFs is trivial.

3.2. Modal analysis

Consider, again, an 𝑀-degree-of-freedom, dynamic system with the system matrices 𝐌(𝐗), 𝐂(𝐗), and 𝐊(𝐗) defined earlier and
a general nonlinear function 𝑓 . The probabilistic characteristics of the system matrices can be derived from the known probability
law of 𝐗. A non-trivial solution of

𝑓 (𝜆(𝐗);𝐌(𝐗),𝐂(𝐗),𝐊(𝐗))𝝓(𝐗) = 𝟎, (11)

if it exists, defines the random eigenvalue 𝜆(𝐗) ∈ R or C and the random eigenvector 𝝓(𝐗) ∈ R𝑀 or C𝑀 of a general nonlinear
eigenvalue problem. Depending on the applications, a wide variety of functions 𝑓 and, hence, eigenvalue problems exists. Table 1,
reported by Rahman and Yadav [30], lists a few examples of random eigenvalue problems frequently encountered in dynamic
systems. Two prominent examples are a linear eigenvalue problem associated with an undamped or proportionally damped system
and a quadratic eigenvalue problem affiliated with a non-proportionally damped system. Other types of nonlinear eigenvalue
problems, such as palindromic, polynomial, and rational eigenvalue problems, may appear in various applications, where additional
system matrices are involved. In the latter cases, dedicated eigenvalue solvers must be used to find a solution, as discussed in modal
analysis of viscoelastic sandwich plates [34]. In this work, only linear or quadratic eigenvalue problems are considered.

In general, the eigensolutions depend on the random input 𝐗 via solution of the matrix characteristic equation

det [𝑓 (𝜆(𝐗);𝐌(𝐗),𝐂(𝐗),𝐊(𝐗))] = 0 (12)

and subsequent solution of Eq. (11). A principal objective in solving a random eigenvalue problem is to determine the probabilistic
characteristics of eigenpairs

{

𝜆(𝑖)(𝐗),𝝓(𝑖)(𝐗)
}

, 𝑖 = 1,… ,𝑀,

from the known probability distribution of the input random vector 𝐗. For an undamped linear dynamic system, the natural
frequencies are the square-root of eigenvalues, whereas the mode shapes are the same as the eigenvectors.

Once the random eigenvalues 𝜆(𝑖)(𝐗) and random eigenvectors 𝝓(𝑖)(𝐗) are determined, say, for a proportionally damped system,
4

they can be used for either time domain or frequency domain analysis. For time domain analysis, the displacement vector 𝐳(𝑡;𝐗)
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Table 1
Random eigenvalue problems in dynamical systems [30].

Eigenvalue problema Problem type and application(s)

[−𝜆(𝐗)𝐌(𝐗) +𝐊(𝑿)]𝝓(𝐗) = 𝟎 𝐿𝑖𝑛𝑒𝑎𝑟; undamped or proportionally
damped systems

[

𝜆2(𝐗)𝐌(𝐗) + 𝜆(𝐗)𝐂(𝐗) +𝐊(𝐗)
]

𝝓(𝐗) = 𝟎 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐; non-proportionally damped
systems, singularity problems

[

𝜆(𝐗)𝐌1(𝐗) +𝐌0(𝐗) +𝐌⊺
1(𝐗)∕𝜆(𝐗)

]

𝝓(𝐗) = 𝟎 𝑃𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑚𝑖𝑐; acoustic emissions in
high-speed trains

[

∑

𝑘
𝜆𝑘(𝐗)𝑨𝑘(𝐗)

]

𝝓(𝐗) = 𝟎 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙; control and dynamics
problems

[

𝜆(𝐗)𝐌(𝐗) −𝐊(𝐗) +
∑

𝑘

𝜆𝑞 (𝐗)𝐂𝑘(𝐗)
𝑎𝑘 − 𝜆(𝐗)

]

𝝓(𝐗) = 𝟎
𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙; plate vibration (𝑞 = 1), f luid−
structure vibration (𝑞 = 2), vibration of
viscoelastic materials

a𝐌(𝐗), 𝐂(𝐗), and 𝐊(𝐗) are mass, damping, stiffness matrices, respectively; 𝐌0(𝐗), 𝐌1(𝐗), 𝐀𝑘(𝐗), and 𝐂𝑘(𝐗) are various coefficient
matrices.

s obtained from the linear transformation 𝐳(𝑡;𝐗) = 𝜱(𝐗)𝐪(𝑡;𝐗), where 𝐪(𝑡,𝐗) ∈ R𝑀 is the vector of normal coordinates and
(𝐗) ∈ R𝑀×𝑀 is the matrix of 𝑀 random eigenvectors as its columns. Due to proportional damping, the governing equations for a
ulti-degree-of-freedom system are uncoupled in normal coordinates, thus obtaining 𝐪(𝑡;𝐗) by solving a series of governing ordinary
ifferential equations for single-degree-of-freedom systems. For frequency domain analysis, under the assumption of viscous damping
nd mass-normalized eigenvectors, an FRF can also be expressed as a nonlinear function of natural frequencies, mode shapes, and
odal damping. Therefore, the solution of random eigenvalue problems has several applications in stochastic dynamic analysis.

.3. A general problem statement

Given an input random vector 𝐗 ∶= (𝑋1,… , 𝑋𝑁 )⊺ ∶ (𝛺, ) → (A𝑁 ,𝑁 ) with known PDF 𝑓𝐗(𝐱) on A𝑁 ⊂ R𝑁 , denote by
(𝐗) ∶= 𝑦(𝑋1,… , 𝑋𝑁 ) a real-valued, measurable transformation on (𝛺, ), describing a general output response of a stochastic
ynamic system. For instance, 𝑦(𝐗) = |𝐻𝑖𝑖(𝜔;𝐗)| from frequency response analysis in Eq. (10); or 𝑦(𝐗) = 𝜆(𝐗) from eigenvalue

analysis in Eq. (12). For eigenvalue analysis, 𝑦(𝐗) may also represent any component of the eigenvector 𝝓(𝐗) in Eq. (11), provided
that a consistent normalization of the mode shape is employed. If the eigensolutions are complex-valued, then 𝑦(𝐗) represents either
the real or imaginary parts of eigenvalues and eigenvectors. Regardless of which stochastic-dynamics problem is being solved, the
output function 𝑦 is implicit, is not analytically available, and can only be viewed as a high-dimensional input–output mapping,
where the evaluation of the output function 𝑦 for a given sample input 𝐱 requires expensive finite-element analysis (FEA). A major
objective of UQ analysis is to estimate the probabilistic characteristics of an output random variable 𝑌 = 𝑦(𝐗), including its statistical
moments and CDF, when the probability law of the input random vector 𝐗 is prescribed. More often than not, 𝑌 is assumed to belong
to a reasonably large class of random variables, such as the weighted 𝐿2 space

𝐿2(𝛺, ,P) ∶=

{

𝑌 ∶ 𝛺 → R ∶ ∫𝛺
|𝑦(𝐗(𝜔))|2 dP(𝜔) = ∫A𝑁

|𝑦(𝐱)|2 𝑓𝐗(𝐱) d𝐱 <∞

}

, (13)

hich is a Hilbert space with the inner product

(𝑦(𝐗), 𝑧(𝐗))𝐿2(𝛺, ,P) ∶= ∫𝛺
𝑦(𝐗(𝜔))𝑧(𝐗(𝜔)) dP(𝜔) = ∫A𝑁

𝑦(𝐱)𝑧(𝐱)𝑓𝐗(𝐱) d𝐱 (14)

nd norm

‖𝑦(𝐗)‖𝐿2(𝛺, ,P) ∶=
√

(𝑦(𝐗), 𝑦(𝐗))𝐿2(𝛺, ,P) =

√

∫𝛺
𝑦2(𝐗(𝜔)) dP(𝜔) =

√

∫A𝑁
𝑦2(𝐱)𝑓𝐗(𝐱) d𝐱. (15)

. Univariate basis functions

Let 𝐱 = (𝑥1,… , 𝑥𝑁 ) be an arbitrary point in A𝑁 . For the coordinate direction 𝑘, 𝑘 = 1,… , 𝑁 , define a non-negative integer
𝑘 ∈ N0 and a positive integer 𝑛𝑘 ≥ 𝑝𝑘 + 1, representing the degree or order2 and total number of basis functions, respectively. The
est of this section briefly describes necessary details of univariate B-splines.

2 Degree and order are used interchangeably in this paper.
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4.1. Standard B-splines

For the coordinate direction 𝑘 = 1,… , 𝑁 , define a knot vector

𝝃𝑘 ∶= {𝜉𝑘,𝑖𝑘}
𝑛𝑘+𝑝𝑘+1
𝑖𝑘=1

= {𝑎𝑘 = 𝜉𝑘,1, 𝜉𝑘,2,… , 𝜉𝑘,𝑛𝑘+𝑝𝑘+1 = 𝑏𝑘} (16)

n the interval [𝑎𝑘, 𝑏𝑘] by a non-decreasing sequence of real numbers, where 𝜉𝑘,𝑖𝑘 is the 𝑖𝑘th knot with 𝑖𝑘 = 1, 2,… , 𝑛𝑘 + 𝑝𝑘 + 1. Any
not may appear up to 𝑝𝑘 + 1 times in the sequence. Hence, the knot vector can be rewritten as

𝝃𝑘 = {𝑎𝑘 =

𝑚𝑘,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑚𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,… ,

𝑚𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1,… , 𝜁𝑘,𝑟𝑘−1,

𝑚𝑘,𝑟𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 <⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 = 𝑏𝑘,

(17)

here 𝜁𝑘,𝑗𝑘 , 𝑗𝑘 = 1, 2,… , 𝑟𝑘, are 𝑟𝑘 unique knots, each of which has multiplicity 1 ≤ 𝑚𝑘,𝑗𝑘 ≤ 𝑝𝑘+1. A knot vector is called (𝑝𝑘+1)-open
f the end knots have multiplicities 𝑝𝑘 +1. In this work, only (𝑝𝑘 +1)-open knot vectors are considered. For more details, readers are
eferred to Appendix of this paper and Chapter 2 of the book by Cottrell et al. [35].

Denote by 𝐵𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘) the 𝑖𝑘th univariate B-spline with degree 𝑝𝑘. Given the knot vector 𝝃𝑘 and zero-degree basis functions, all
igher-order B-spline functions on [𝑎𝑘, 𝑏𝑘] are defined recursively, where 1 ≤ 𝑘 ≤ 𝑁 , 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘, and 1 ≤ 𝑝𝑘 < ∞. See Appendix for
n explicit definition of 𝐵𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘).

The B-splines are bequeathed with a number of attractive properties, delivering superb approximating power to numerical
ethods. More precisely, they are [35,36]: (1) non-negative; (2) locally supported on the interval [𝜉𝑘,𝑖𝑘 , 𝜉𝑘,𝑖𝑘+𝑝𝑘+1) for all 𝑖𝑘; (3)

inearly independent; (4) committed to partition of unity; and (5) pointwise 𝐶∞-continuous everywhere except at the knots 𝜁𝑘,𝑗𝑘 of
ultiplicity 𝑚𝑘,𝑗𝑘 for all 𝑗𝑘, where they are 𝐶𝑝𝑘−𝑚𝑘,𝑗𝑘 -continuous, provided that 1 ≤ 𝑚𝑘,𝑗𝑘 < 𝑝𝑘 + 1.

.2. Measure-consistent orthonormalized B-splines

The aforementioned B-splines, although they form a basis of the spline space of degree 𝑝𝑘 and knot vector 𝝃𝑘, are not necessarily
rthogonal with respect to the probability measure 𝑓𝑋𝑘 (𝑥𝑘) d𝑥𝑘 of𝑋𝑘. A three-step procedure, originally proposed in a past work [32],
s summarized here to generate their orthonormal version.

(1) Given a set of B-splines of degree 𝑝𝑘, create an auxiliary set by replacing any element, arbitrarily chosen to be the first, with
one. Arrange the elements of the set into an 𝑛𝑘-dimensional vector

𝐏𝑘(𝑥𝑘) ∶=
(

1, 𝐵𝑘2,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘),… , 𝐵𝑘𝑛𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘)
)⊺

(18)

comprising the auxiliary B-splines. The linear independence of the auxiliary B-splines is preserved [32].
(2) Construct an 𝑛𝑘 × 𝑛𝑘 spline moment matrix

𝐆𝑘 ∶= E[𝐏𝑘(𝑋𝑘)𝐏
⊺
𝑘(𝑋𝑘)]. (19)

The matrix 𝐆𝑘 exists because 𝑋𝑘 has finite moments up to order 2𝑝𝑘, as stated in Assumption 1. Furthermore, it is symmetric
and positive-definite [32], ensuring the existence of a non-singular 𝑛𝑘 × 𝑛𝑘 whitening matrix 𝐖𝑘 such that

𝐖⊺
𝑘𝐖𝑘 = 𝐆−1

𝑘 . (20)

(3) Apply a whitening transformation to create a vector of orthonormalized B-splines

𝝍𝑘(𝑥𝑘) = 𝐖𝑘𝐏𝑘(𝑥𝑘), (21)

consisting of uncorrelated components

𝜓𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘), 𝑖𝑘 = 1,… , 𝑛𝑘, 𝑘 = 1,… , 𝑁.

Note that the invertibility of 𝐆𝑘 does not uniquely determine 𝐖𝑘. Indeed, there are several ways to choose 𝐖𝑘 such that the
condition described in Step (2) is satisfied [32]. One prominent, relatively stable option is to invoke the Cholesky factorization
𝐆𝑘 = 𝐐𝑘𝐐

⊺
𝑘, leading to

𝐖𝑘 = 𝐐−1
𝑘 , (22)

where 𝐐𝑘 is an 𝑛𝑘 × 𝑛𝑘 lower-triangular matrix. As a result, the transformation becomes

𝝍𝑘(𝑥𝑘) = 𝐐−1
𝑘 𝐏𝑘(𝑥𝑘), (23)

where the orthonormal splines are obtained by linear combinations of auxiliary B-splines. The rest of the paper will use the
Cholesky factorization.
6
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5. Orthogonal spline expansions

In this section, two novel UQ methods exploiting measure-consistent B-splines are presented for solving both classes of UQ
roblems discussed in Section 3. The methods are founded on Fourier-spline expansion of any square-integrable output function of
nterest.

.1. Spline chaos expansion

The input random vector 𝐗, as it subsumes independent components, is endowed with a product-type probability measure.
herefore, multivariate orthonormalized B-splines in 𝑁 variables are readily constructed from an 𝑁-dimensional tensor product of

univariate orthonormalized B-splines, resulting in SCE.

5.1.1. Multivariate orthonormalized basis
Define three multi-indices 𝐢 ∶= (𝑖1,… , 𝑖𝑁 ) ∈ N𝑁 , 𝐧 ∶= (𝑛1,… , 𝑛𝑁 ) ∈ N𝑁 , and 𝐩 ∶= (𝑝1,… , 𝑝𝑁 ) ∈ N𝑁0 , representing the knot

indices, numbers of basis functions, and degrees of splines, respectively, in all 𝑁 coordinate directions. Denote by 𝜩 ∶= {𝝃1,… , 𝝃𝑁}
a family of all 𝑁 knot vectors. Associated with 𝐢, define an index set

𝐧 ∶=
{

𝐢 = (𝑖1,… , 𝑖𝑁 ) ∶ 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘, 𝑘 = 1,… , 𝑁
}

⊂ N𝑁 (24)

with cardinality

|𝐧| =
𝑁
∏

𝑘=1
𝑛𝑘. (25)

For the coordinate direction 𝑘, define by

𝐼𝑘 ∶= 𝑟𝑘 − 1 (26)

the number of subintervals corresponding to the knot vector 𝝃𝑘 with 𝑟𝑘 distinct knots. Then the partition defined by the knot
sequences 𝝃𝑘, 𝑘 = 1,… , 𝑁 , splits A𝑁 ∶= ×𝑁𝑘=1[𝑎𝑘, 𝑏𝑘] into smaller 𝑁-dimensional rectangles

{

𝐱 = (𝑥1,… , 𝑥𝑁 ) ∶ 𝜁𝑘,𝑗𝑘 ≤ 𝑥𝑘 < 𝜁𝑘,𝑗𝑘+1, 𝑘 = 1,… , 𝑁
}

, 𝑗𝑘 = 1,… , 𝐼𝑘, (27)

where 𝜁𝑘,𝑗𝑘 is the 𝑗𝑘th distinct knot in the coordinate direction 𝑘. A mesh is defined by a partition of A𝑁 into such rectangular
elements. Define the largest element size in each coordinate direction 𝑘 by

ℎ𝑘 ∶= max
𝑗𝑘=1,…,𝐼𝑘

(

𝜁𝑘,𝑗𝑘+1 − 𝜁𝑘,𝑗𝑘
)

, 𝑘 = 1,… , 𝑁. (28)

Then, given the family of knot sequences 𝜩 = {𝝃1,… , 𝝃𝑁},

𝐡 ∶= (ℎ1,… , ℎ𝑁 ) and ℎ ∶= max
𝑘=1,…,𝑁

ℎ𝑘 (29)

define a vector of the largest element sizes in all 𝑁 coordinates and the global element size, respectively, for the domain A𝑁 . As
a result, the multivariate orthonormalized B-splines in 𝐱 consistent with the probability measure 𝑓𝐗(𝐱)𝑑𝐱 are obtained from the
product

𝛹𝐢,𝐩,𝜩 (𝐱) ∶=
𝑁
∏

𝑘=1
𝜓𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘), 𝐢 = (𝑖1,… , 𝑖𝑁 ) ∈ 𝐧. (30)

When the input random variables 𝑋1,… , 𝑋𝑁 , instead of real variables 𝑥1,… , 𝑥𝑁 , are inserted in the argument, the multivariate
splines 𝛹𝐢,𝐩,𝜩 (𝐗), 𝐢 ∈ 𝐧, become functions of input random variables. Their second-moment properties are [32]

E
[

𝛹𝐢,𝐩,𝜩 (𝐗)
]

=

{

1, 𝐢 = 𝟏 ∶= (1,… , 1),
0, 𝐢 ≠ 𝟏,

(31)

and

E
[

𝛹𝐢,𝐩,𝜩 (𝐗)𝛹𝐣,𝐩,𝜩 (𝐗)
]

=

{

1, 𝐢 = 𝐣,
0, 𝐢 ≠ 𝐣.

(32)

5.1.2. SCE approximation
Given a degree 𝐩 and a family of knot sequences 𝜩, recall that {𝛹𝐢,𝐩,𝜩 (𝐗) ∶ 𝐢 ∈ 𝐧} represents the set comprising multivariate

orthonormalized B-splines that is consistent with the probability measure 𝑓𝐗(𝐱)𝑑𝐱. Then, for any random variable 𝑦(𝐗) ∈ 𝐿2(𝛺, ,P),
there exists an orthogonal expansion in multivariate orthonormal splines in 𝐗, referred to as an SCE approximation [32]

𝑦𝐩,𝜩 (𝐗) ∶=
∑

𝐶𝐢,𝐩,𝜩𝛹𝐢,𝐩,𝜩 (𝐗) (33)
7
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of 𝑦(𝐗), where the SCE expansion coefficients 𝐶𝐢,𝐩,𝜩 ∈ R, 𝐢 ∈ 𝐧, are defined as

𝐶𝐢,𝐩,𝜩 ∶= E
[

𝑦(𝐗)𝛹𝐢,𝐩,𝜩 (𝐗)
]

∶= ∫A𝑁
𝑦(𝐱)𝛹𝐢,𝐩,𝜩 (𝐱)𝑓𝐗(𝐱)𝑑𝐱, 𝐢 ∈ 𝐧. (34)

According to Eq. (33), the SCE of any random variable 𝑦(𝐗) ∈ 𝐿2(𝛺, ,P) is an orthogonal projection onto the spline space 𝐩,𝜩
(say) spanning the set of measure-consistent multivariate orthonormalized B-splines.

5.2. Spline dimensional decomposition

Due to the tensor-product structure, the number of basis functions of SCE escalates rapidly when confronted with high-
dimensional UQ problems. Therefore, development of an alternative expansion, referred to as SDD, which is capable of exploiting
low effective dimensions [37] of high-dimensional functions, is desirable.

5.2.1. Dimensionwise multivariate orthonormal basis
Denote by ∅ ≠ 𝑢 = {𝑘1,… , 𝑘

|𝑢|} ⊆ {1,… , 𝑁} a non-empty subset of the index set {1,… , 𝑁} with cardinality 1 ≤ |𝑢| ≤ 𝑁 . For
such a subset, let 𝐗𝑢 ∶= (𝑋𝑘1 ,… , 𝑋𝑘

|𝑢|
)⊺ be a subvector of 𝐗 defined on the abstract probability space (𝛺𝑢,𝑢,P𝑢), where 𝛺𝑢 is the

sample space of 𝐗𝑢, 𝑢 is a 𝜎-algebra on 𝛺𝑢, and P𝑢 is a probability measure. As 𝐗 comprises independent random variables, the
PDF of 𝐗𝑢 is

𝑓𝐗𝑢 (𝐱𝑢) =
∏

𝑘∈𝑢
𝑓𝑋𝑘 (𝑥𝑘) =

|𝑢|
∏

𝑙=1
𝑓𝑋𝑘𝑙 (𝑥𝑘𝑙 ), 𝐱𝑢 ∶= (𝑥𝑘1 ,… , 𝑥𝑘

|𝑢|
)⊺. (35)

Define three multi-indices 𝐢𝑢 ∶= (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∈ N|𝑢|, 𝐧𝑢 ∶= (𝑛𝑘1 ,… , 𝑛𝑘

|𝑢|
) ∈ N|𝑢|, and 𝐩𝑢 ∶= (𝑝𝑘1 ,… , 𝑝𝑘

|𝑢|
) ∈ N|𝑢|

0 , representing
the knot indices, numbers of basis functions, and degrees of splines, respectively, in all |𝑢| coordinate directions. Denote by
𝜩𝑢 ∶= {𝝃𝑘1 ,… , 𝝃𝑘

|𝑢|
} a family of all |𝑢| knot sequences. Associated with 𝐢𝑢, define an index set

𝑢,𝐧𝑢 ∶=
{

𝐢𝑢 = (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∶ 1 ≤ 𝑖𝑘𝑙 ≤ 𝑛𝑘𝑙 , 𝑙 = 1,… , |𝑢|

}

⊂ N|𝑢| (36)

with cardinality

|𝑢,𝐧𝑢 | =
∏

𝑘∈𝑢
𝑛𝑘. (37)

For the coordinate direction 𝑘𝑙, define by

𝐼𝑘𝑙 ∶= 𝑟𝑘𝑙 − 1 (38)

the number of subintervals corresponding to the knot vector 𝝃𝑘𝑙 with 𝑟𝑘𝑙 distinct knots. Then the partition, defined by the knot
vectors 𝝃𝑘1 ,… , 𝝃𝑘

|𝑢|
, decomposes the |𝑢|-dimensional rectangle A𝑢 ∶= ×𝑘∈𝑢[𝑎𝑘, 𝑏𝑘] into smaller rectangles

{

𝐱𝑢 = (𝑥𝑘1 ,… , 𝑥𝑘
|𝑢|
) ∶ 𝜁𝑘𝑙 ,𝑗𝑘𝑙 ≤ 𝑥𝑘𝑙 < 𝜁𝑘𝑙 ,𝑗𝑘𝑙+1 , 𝑙 = 1,… , |𝑢|

}

, 𝑗𝑘𝑙 = 1,… , 𝐼𝑘𝑙 , (39)

where 𝜁𝑘𝑙 ,𝑗𝑘𝑙 is the 𝑗𝑘𝑙 th distinct knot in the coordinate direction 𝑘𝑙. A mesh is defined by a partition of A𝑢 into such rectangular
elements. Define the largest element size in each coordinate direction 𝑘 ∈ 𝑢 by

ℎ𝑢,𝑘𝑙 ∶= max
𝑗𝑘𝑙=1,…,𝐼𝑘𝑙

(

𝜁𝑘𝑙 ,𝑗𝑘𝑙+1 − 𝜁𝑘𝑙 ,𝑗𝑘𝑙

)

, 𝑙 = 1,… , |𝑢|. (40)

Then, given the knot vectors 𝜩𝑢 = {𝝃𝑘1 ,… , 𝝃𝑘
|𝑢|
},

𝐡𝑢 ∶= (ℎ𝑢,𝑘1 ,… , ℎ𝑢,𝑘
|𝑢|
) and ℎ𝑢 ∶= max

𝑙=1,…,|𝑢|
ℎ𝑢,𝑘𝑙 (41)

define a vector of the largest element sizes in all |𝑢| coordinates and the global mesh size, respectively, for the domain A𝑢.
Consequently, for ∅ ≠ 𝑢 = {𝑘1,… , 𝑘

|𝑢|} ⊆ {1,… , 𝑁}, with 𝐩𝑢 = (𝑝𝑘1 ,… , 𝑝𝑘
|𝑢|
) ∈ N|𝑢|

0 and 𝜩𝑢 = {𝝃𝑘1 ,… , 𝝃𝑘
|𝑢|
} in mind, the multivariate

orthonormalized B-splines in 𝐱𝑢 = (𝑥𝑘1 ,… , 𝑥𝑘
|𝑢|
) consistent with the probability measure 𝑓𝐗𝑢 (𝐱𝑢) d𝐱𝑢 are

𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐱𝑢) =
∏

𝑘∈𝑢
𝜓𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘) =

|𝑢|
∏

𝑙=1
𝜓𝑘𝑙𝑖𝑘𝑙 ,𝑝𝑘𝑙 ,𝝃𝑘𝑙

(𝑥𝑘𝑙 ), 𝐢𝑢 = (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∈ ̄𝑢,𝐧𝑢 , (42)

here

̄𝑢,𝐧𝑢 ∶=
{

𝐢𝑢 = (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∶ 2 ≤ 𝑖𝑘𝑙 ≤ 𝑛𝑘𝑙 , 𝑙 = 1,… , |𝑢|

}

⊂ (N ⧵ {1})|𝑢| (43)

is a reduced index set, which has cardinality

|̄𝑢,𝐧𝑢 | ∶=
∏

(𝑛𝑘 − 1). (44)
8
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The key difference between the index sets ̄𝑢,𝐧𝑢 and 𝑢,𝐧𝑢 is that the former limits the range of index 𝑖𝑘𝑙 , 𝑙 = 1,… , |𝑢|, associated
with the 𝑘𝑙th variable 𝑥𝑘𝑙 , to 2,… , 𝑛𝑘𝑙 . The exclusion of 𝑖𝑘𝑙 = 1 removes the first constant element of 𝝍𝑘𝑙 (𝑥𝑘𝑙 ) in order to prevent
reduction of the degree of interaction of the corresponding multivariate spline basis below |𝑢|.

When the input random variables 𝑋1,… , 𝑋𝑁 , instead of real variables 𝑥1,… , 𝑥𝑁 , are inserted in the argument, the multivariate
splines 𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐗𝑢), ∅ ≠ 𝑢 ⊆ {1,… , 𝑁}, 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢 , become functions of random input variables. Then, for ∅ ≠ 𝑢, 𝑣 ⊆ {1,… , 𝑁},
𝐢𝑢 ∈ ̄𝑢,𝐧𝑢 , and 𝐣𝑣 ∈ ̄𝑣,𝐧𝑣 , the first- and second-order moments of multivariate orthonormalized B-splines are [33]

E
[

𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐗𝑢)
]

= 0 (45)

and

E
[

𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐗𝑢)𝛹
𝑣
𝐣𝑣 ,𝐩𝑣 ,𝜩𝑣

(𝐗𝑣)
]

=

{

1, 𝑢 = 𝑣 and 𝐢𝑢 = 𝐣𝑣,
0, otherwise,

(46)

respectively.

5.2.2. SDD approximation
Suppose the degree and family of knot sequences in all coordinate directions have been specified as 𝐩 = (𝑝1,… , 𝑝𝑁 ) ∈ N|𝑢|

0 and
𝜩 = {𝝃1,… , 𝝃𝑁}, respectively. For ∅ ≠ 𝑢 ⊆ {1,… , 𝑁} and 𝐗𝑢 ∶= (𝑋𝑘1 ,… , 𝑋𝑘

|𝑢|
)⊺ ∶ (𝛺𝑢,𝑢) → (A𝑢,𝑢), with 𝐩𝑢 = (𝑝𝑘1 ,… , 𝑝𝑘

|𝑢|
) ∈ N|𝑢|

0
and 𝜩𝑢 = {𝝃𝑘1 ,… , 𝝃𝑘

|𝑢|
} in mind, denote by {𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐗𝑢) ∶ 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢} a set comprising multivariate orthonormalized B-splines that

is consistent with the probability measure 𝑓𝐗𝑢 (𝐱𝑢)𝑑𝐱𝑢. Then, for any random variable 𝑦(𝐗) ∈ 𝐿2(𝛺, ,P), there exists a hierarchically
expanded Fourier-like series in multivariate orthonormal splines in 𝐗𝑢, referred to as the SDD [33]

𝑦𝐩,𝜩 (𝐗) ∶= 𝑦∅ +
∑

∅≠𝑢⊆{1,…,𝑁}

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢𝛹
𝑢
𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢

(𝐗𝑢) (47)

of 𝑦(𝐗), where the SDD expansion coefficients 𝑦∅ ∈ R and 𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 ∈ R, ∅ ≠ 𝑢 ⊆ {1,… , 𝑁}, 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢 , are defined as

𝑦∅ ∶= E [𝑦(𝐗)] ∶= ∫A𝑁
𝑦(𝐱)𝑓𝐗(𝐱)𝑑𝐱, (48)

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 ∶= E
[

𝑦(𝐗)𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐗𝑢)
]

∶= ∫A𝑁
𝑦(𝐱)𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐱𝑢)𝑓𝐗(𝐱)𝑑𝐱, 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢 . (49)

In a practical setting, the output function 𝑦(𝐗) is likely to have an effective dimension [37] much lower than 𝑁 , meaning that
he right side of Eq. (47) can be effectively approximated by a sum of lower-dimensional component functions of 𝑦𝐩,𝜩 (𝐗) but still
aintain all random variables 𝐗 of a high-dimensional UQ problem. Due to the dimensional hierarchical structure of SDD, this

an be done keeping all basis functions in at most 1 ≤ 𝑆 ≤ 𝑁 variables, thereby retaining the degrees of interaction among input
ariables less than or equal to 𝑆. The result is an 𝑆-variate SDD approximation

𝑦𝑆,𝐩,𝜩 (𝐗) ∶= 𝑦∅ +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢𝛹
𝑢
𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢

(𝐗𝑢) (50)

f 𝑦(𝐗). When 𝑆 ≪ 𝑁 , as it is anticipated to hold in real-life applications, the number of coefficients in the SDD approximation
rops precipitously, ushering in substantial savings of computational effort.

When 𝑆 = 1 or 𝑆 = 2, the resulting SDD approximations are referred to as univariate and bivariate SDD approximations,
espectively. In such cases, the functions 𝑦1,𝐩,𝜩 (𝐗) or 𝑦2,𝐩,𝜩 (𝐗) should not be interpreted as first- and second-order approximations,

as 𝑆 does not limit the accuracy of SDD in capturing the potential nonlinearity of 𝑦(𝐗). On the contrary, depending on how
the orders and knot vectors are chosen, arbitrarily high-order univariate and bivariate terms of 𝑦(𝐗), including discontinuity and
onsmoothness, could be lurking inside 𝑦1,𝐩,𝜩 (𝐗) or 𝑦2,𝐩,𝜩 (𝐗).

5.3. Computational cost

The computational cost and complexity of SCE and SDD approximations with respect to stochastic dimension 𝑁 can be judged
by examining the corresponding numbers of basis functions involved. To do so, consider the SCE approximation in Eq. (33) and the
𝑆-variate SDD approximation in Eq. (50). The numbers of basis functions from such SCE and SDD approximations are

𝐿𝐩,𝜩 =
𝑁
∏

𝑘=1
𝑛𝑘 (51)

and

𝐿𝑆,𝐩,𝜩 = 1 +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∏

𝑘∈𝑢
(𝑛𝑘 − 1) ≤

𝑁
∏

𝑘=1
𝑛𝑘 = 𝐿𝐩,𝜩 , (52)

respectively. If 𝑛𝑘 = 𝑛 for all 𝑘 = 1,… , 𝑁 , then 𝐿𝐩,𝜩 = (𝑛𝑁 ) from Eq. (51) and 𝐿𝑆,𝐩,𝜩 = (𝑛𝑆𝑁𝑆 ) from Eq. (52). Hence, given a fixed
alue of 𝑛, the computational effort with respect to 𝑁 grows exponentially for the SCE approximation and 𝑆-degree polynomially
9
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for the SDD approximation. For example, when 𝑁 = 10 and 𝑛 = 5, the univariate (𝑆 = 1) and bivariate (𝑆 = 2) SDD approximations
nvolve 41 and 761 basis functions, respectively. In contrast, the number of basis functions in the SCE approximation jumps to
10, which is significantly greater than that required by either of the two SDD approximations. Therefore, SDD reduces the curse
f dimensionality of SCE by a substantial extent. Having said this, SCE is still useful for fundamental studies on low-dimensional
cademic-type problems, while SDD, due to its improved scalability, is meant for tackling high-dimensional practical problems
xpected in real-life applications. Numerical examples featuring SCE and SDD will be presented in a forthcoming section.

.4. Convergence

For any 𝑦(𝐗) ∈ 𝐿2(𝛺, ,P), a sequence of SCE approximations {𝑦𝐩,𝜩 (𝐗)}𝐡>𝟎, with 𝐡 = (ℎ1,… , ℎ𝑁 ) representing the vector of
largest element sizes, converges to 𝑦(𝐗) in mean-square [32], that is,

lim
𝐡→𝟎

E
[

|

|

|

𝑦(𝐗) − 𝑦𝐩,𝜩 (𝐗)
|

|

|

2
]

= 0. (53)

In addition, if 𝑆 = 𝑁 , then 𝑦𝑁,𝐩,𝜩 (𝐗) = 𝑦𝐩,𝜩 (𝐗). Therefore, the sequence of SDD approximations {𝑦𝑆,𝐩,𝜩 (𝐗)}1≤𝑆≤𝑁, 𝐡>𝟎 also converges
to 𝑦(𝐗) in mean-square [33], that is,

lim
𝑆→𝑁, 𝐡→𝟎

E
[

|

|

|

𝑦(𝐗) − 𝑦𝑆,𝐩,𝜩 (𝐗)
|

|

|

2
]

= 0. (54)

Moreover, as the SCE and SDD approximations both converge in mean-square, they also converge in probability and in distribution.
Readers interested in formal proofs are directed to prior theoretical works [32,33].

5.5. Output statistics and other properties

The SCE and SDD approximations 𝑦𝐩,𝜩 (𝐗) and 𝑦𝑆,𝐩,𝜩 (𝐗) can both be viewed as surrogates of 𝑦(𝐗). Therefore, relevant probabilistic
characteristics of 𝑦(𝐗), including its first two moments and PDF, if it exists, can be estimated from the statistical properties of these
approximations.

Applying the expectation operator on 𝑦𝐩,𝜩 (𝐗) in Eq. (33) and 𝑦𝑆,𝐩,𝜩 (𝐗) in Eq. (50) and recognizing Eqs. (31) and (45), the means
of SCE and SDD approximations

E
[

𝑦𝐩,𝜩 (𝐗)
]

= E
[

𝑦𝑆,𝐩,𝜩 (𝐗)
]

= 𝐶𝟏,𝐩,𝜩 = 𝑦∅ = E [𝑦(𝐗)] , 𝟏 = (1,… , 1), (55)

are the same and independent of 𝑆, 𝐩, and 𝜩. More importantly, the SCE and SDD approximations always yield the exact mean,
provided that the expansion coefficient 𝐶𝟏,𝐩,𝜩 or 𝑦∅ is determined exactly.

Applying the expectation operator on [𝑦𝐩,𝜩 (𝐗)−𝐶𝟏,𝐩,𝜩 ]2 and [𝑦𝑆,𝐩,𝜩 (𝐗)−𝑦∅]2 and employing Eqs. (31), (32), (45), and (46) results
in the variance

var
[

𝑦𝐩,𝜩 (𝐗)
]

=
∑

𝐢∈𝐧

𝐶2
𝐢,𝐩,𝜩 − 𝐶2

𝟏,𝐩,𝜩 ≤ var [𝑦(𝐗)] (56)

of 𝑦𝐩,𝜩 (𝐗) and in the variance

var
[

𝑦𝑆,𝐩,𝜩 (𝐗)
]

=
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

(

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢

)2
≤ var [𝑦(𝐗)] (57)

of 𝑦𝑆,𝐩,𝜩 (𝐗). Therefore, the second-moment properties of SCE/SDD approximations are solely determined by the relevant expansion
coefficients. The formulae for the mean and variance of the SCE/SDD approximations are the same as those reported for the PCE/PDD
approximations [3,5], although the respective expansion coefficients involved are not. The primary reason for this similarity is rooted
in the use of the orthonormal basis in both expansions.

Being convergent in probability and in distribution, the PDF and CDF of 𝑦(𝐗), if they exist, can also be estimated economically
by resampling 𝑦𝐩,𝜩 (𝐗) or 𝑦𝑆,𝐩,𝜩 (𝐗). They will be illustrated in numerical examples.

5.6. A few remarks

From the independence of input random variables stated in Assumption 1, the stochastic domain A𝑁 is always a rectangle.
Therefore, B-splines are appropriate or adequate for function approximations on that domain. If the domain is non-rectangular, such
as those expected for dependent random variables, then more advanced non-uniform rational basis splines (NURBS) or T-splines may
be considered. However, tackling dependent random variables head-on is not a trivial task in general, because multivariate basis
functions can no longer be constructed from the tensorization of univariate basis functions. Having said so, the use of NURBS or T-
spline becomes necessary for function approximations on physical domains with boundary described by free-form surfaces and conic
sections, such as circles, ellipses, cylinders, spheres, ellipsoids, and tori. In this case, NURBS functions equipped with judiciously
selected weights can represent the physical domain exactly [35]. This was exemplified in the authors’ recent work on stochastic
isogeometric analysis where NURBS are used for describing geometry, displacement responses, and random field discretization, but
B-splines are still used for stochastic analysis [38]. It is worth mentioning that a deterministic meta modeling technique using NURBS
10
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in tandem with an optimization strategy has been reported to ascertain the NURBS parameters automatically [39]. Additionally,
there exists an enhanced version of SDD where the knot vectors have been derived optimally [40].

The orthonormalized B-splines in SCE and SDD are both consistent with arbitrary probability measures of input random variables
ith bounded domains. However, there are many UQ problems where there exist random variables with unbounded domains. In

uch a case, an appropriate probability preserving transformation, mapping a random variable with unbounded domain to another
ith bounded domain is required. The transformation will be identified when numerical examples are presented.

. Calculation of expansion coefficients

A natural propensity for calculating the SCE and SDD coefficients is to invoke their respective definitions in Eqs. (34), (48), and
49), followed by numerical integration. However, in practical applications, the output function 𝑦 is often determined algorithmically

by performing time-consuming FEA or other expensive numerical calculations. Clearly, for a high-dimensional UQ problem, say, with
𝑁 exceeding ten, evaluating the 𝑁-dimensional sums stemming from an 𝑁-dimensional numerical integration is computationally
formidable and likely prohibitive. While reduced-order methods, such as the dimension-reduction techniques [38,41], have been
used to curb the computational demand by a great magnitude, here, a more practical alternative to numerical integration, such as
regression analysis, is exploited to estimate these coefficients.

6.1. SCE and SDD approximations: single-index versions

For a simpler description of SCE/SDD approximations, consider listing the terms of the expansions with respect to a single index.
In reference to the concise forms of SCE in (33) and SDD in (50), arrange the elements of the sets

{

𝛹𝐢,𝐩,𝜩 (𝐗) ∶ 𝐢 ∈ 𝐧𝑢
}

=
{

𝜙1(𝐗),… , 𝜙𝐿𝐩,𝜩
(𝐗)

}

(58)

and
{

𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐗𝑢) ∶ 1 ≤ |𝑢| ≤ 𝑆, 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢
}

=
{

𝜑2(𝐗),… , 𝜑𝐿𝑆,𝐩,𝜩 (𝐗)
}

, 𝜑1(𝐗) = 1, (59)

consisting of 𝐿𝐩,𝜩 and 𝐿𝑆,𝐩,𝜩 basis functions, respectively. By doing so, the same basis functions of SCE and SDD in the sets are
indexed with a single integer 𝑖. Obviously, the basis functions 𝜙𝑖(𝐗) and 𝜑𝑖(𝐗) also depend on 𝐩 and 𝜩, but the latter symbols are
uppressed for brevity.

Associated with each 𝑖 = 1,… , 𝐿𝐩,𝜩 or 𝑖 = 1,… , 𝐿𝑆,𝐩,𝜩 , denote by 𝐶𝑖 ∈ R or �̄�𝑖 ∈ R the 𝑖th SCE or SDD coefficient. As a result,
he SCE and 𝑆-variate SDD approximations can also be written as

𝑦𝐩,𝜩 (𝐗) ∶=
𝐿𝐩,𝜩
∑

𝑖=1
𝐶𝑖𝜙𝑖(𝐗), 𝐶𝑖 ∶= ∫A𝑁

𝑦(𝐱)𝜙𝑖(𝐗)𝑓𝐗(𝐱) d𝐱, 𝑖 = 1,… , 𝐿𝐩,𝜩 . (60)

and

𝑦𝑆,𝐩,𝜩 (𝐗) ∶=
𝐿𝑆,𝐩,𝜩
∑

𝑖=1
�̄�𝑖𝜑𝑖(𝐗), �̄�𝑖 ∶= ∫A𝑁

𝑦(𝐱)𝜑𝑖(𝐗)𝑓𝐗(𝐱) d𝐱, 𝑖 = 1,… , 𝐿𝑆,𝐩,𝜩 , (61)

respectively.
Henceforth, the mean and variances of 𝑦𝐩,𝜩 (𝐗) and 𝑦𝑆,𝐩,𝜩 (𝐗) are calculated from the expansion coefficients as

E
[

𝑦𝐩,𝜩 (𝐗)
]

= E
[

𝑦𝑆,𝐩,𝜩 (𝐗)
]

= 𝐶1 = �̄�1 = E [𝑦(𝐗)] (62)

and

var
[

𝑦𝐩,𝜩 (𝐗)
]

=
𝐿𝐩,𝜩
∑

𝑖=2
𝐶2
𝑖 ≤ var [𝑦(𝐗)] , var

[

𝑦𝑆,𝐩,𝜩 (𝐗)
]

=
𝐿𝑆,𝐩,𝜩
∑

𝑖=2
�̄�2
𝑖 ≤ var [𝑦(𝐗)] , (63)

respectively.

6.2. Least-squares regression

The standard least-squares (SLS) regression is predicated on the best approximation properties of SCE and SDD methods, which
are described, in the mean-square sense, by [32]

E
[

𝑦(𝐗) − 𝑦𝐩,𝜩 (𝐗)
]2 = inf

𝑔∈𝐩,𝜩
E [𝑦(𝐗) − 𝑔(𝐗)]2 (64)

and

E
[

𝑦(𝐗) − 𝑦𝑆,𝐩,𝜩 (𝐗)
]2 = inf E [𝑦(𝐗) − ℎ(𝐗)]2 , (65)
11
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where 𝐩,𝜩 and 𝑆,𝐩,𝜩 are relevant spline spaces. Therefore, the approximate expansion coefficients of 𝑦𝐩,𝜩 (𝐗) and 𝑦𝑆,𝐩,𝜩 (𝐗) are
etermined from the minimizations of

E
⎡

⎢

⎢

⎣

𝑦(𝐗) −
𝐿𝐩
∑

𝑖=1
𝐶𝑖𝜙𝑖(𝐗)

⎤

⎥

⎥

⎦

2

and E
⎡

⎢

⎢

⎣

𝑦(𝐗) −
𝐿𝑆,𝐩,𝜩
∑

𝑖=1
�̄�𝑖𝜑𝑖(𝐗)

⎤

⎥

⎥

⎦

2

. (66)

Given a UQ problem with known distribution of random input 𝐗 and an output function 𝑦 ∶ A𝑁 → R, consider an input–output
data set {𝐱(𝑙), 𝑦(𝐱(𝑙))}𝐿𝑙=1 of size 𝐿 ∈ N. The mapping 𝑦 can be as simple as an explicitly defined mathematical function or as intricate
s an implicitly described function obtained via computational simulation, such as FEA of complex dynamical systems. In either
ase, the data set, often referred to as the experimental design, can be generated by calculating the function 𝑦(𝐱(𝑙)) at each input
ata point 𝐱(𝑙). Various sampling methods, namely, standard MCS, quasi MCS, and Latin hypercube sampling, can be used to build
he experimental design.

According to SLS, the expansion coefficients of the SCE and SDD approximation are estimated by minimizing

𝑒𝐩,𝜩 ∶= 1
𝐿

𝐿
∑

𝑙=1

⎡

⎢

⎢

⎣

𝑦(𝐱(𝑙)) −
𝐿𝐩,𝜩
∑

𝑖=1
𝐶𝑖𝜙𝑖(𝐱(𝑙))

⎤

⎥

⎥

⎦

2

(67)

and

𝑒𝑆,𝐩,𝜩 ∶= 1
𝐿

𝐿
∑

𝑙=1

⎡

⎢

⎢

⎣

𝑦(𝐱(𝑙)) −
𝐿𝑆,𝐩,𝜩
∑

𝑖=1
�̄�𝑖𝜑𝑖(𝐱(𝑙))

⎤

⎥

⎥

⎦

2

, (68)

respectively, which are empirical analogs of Eq. (66). Denote by

𝐀 ∶=

⎡

⎢

⎢

⎢

⎣

𝜙1(𝐱(1)) ⋯ 𝜙𝐿𝐩,𝜩
(𝐱(1))

⋮ ⋱ ⋮
𝜙1(𝐱(𝐿)) ⋯ 𝜙𝐿𝐩,𝜩

(𝐱(𝐿))

⎤

⎥

⎥

⎥

⎦

, �̄� ∶=

⎡

⎢

⎢

⎢

⎣

𝜑1(𝐱(1)) ⋯ 𝜑𝐿𝑆,𝐩,𝜩 (𝐱
(1))

⋮ ⋱ ⋮
𝜑1(𝐱(𝐿)) ⋯ 𝜑𝐿𝑆,𝐩,𝜩 (𝐱

(𝐿))

⎤

⎥

⎥

⎥

⎦

, (69)

and

𝐛 ∶=
(

𝑦(𝐱(1)),… , 𝑦(𝐱(𝐿))
)⊺ (70)

an 𝐿 × 𝐿𝐩,𝜩 matrix, 𝐿 × 𝐿𝑆,𝐩,𝜩 matrix, and 𝐿-dimensional column vector, respectively, comprising evaluations of the orthonormal
spline basis functions from SCE and SDD approximations and output function at the data points, respectively. Then, the estimated
coefficients �̂�𝑖, 𝑖 = 1,… , 𝐿𝐩,𝜩 , of SCE and ̂̄𝐶𝑖, 𝑖 = 1,… , 𝐿𝑆,𝐩,𝜩 , of SDD are obtained as

�̂� ∶=
(

�̂�1,… , �̂�𝐿𝐩,𝜩

)⊺
=
(

𝐀⊺𝐀
)−1 𝐀⊺𝐛 (71)

and

̂̄𝐜 ∶=
(

̂̄𝐶1,… , ̂̄𝐶𝐿𝑆,𝐩,𝜩
)⊺

=
(

�̄�⊺�̄�
)−1 �̄�⊺𝐛, (72)

respectively. Here, 𝐀⊺𝐀 is an 𝐿𝐩,𝜩 × 𝐿𝐩,𝜩 matrix, while �̄�⊺�̄� is an 𝐿𝑆,𝐩,𝜩 × 𝐿𝑆,𝐩,𝜩 matrix; each of them is often referred to as the
information or data matrix. A necessary condition for the SLS solution is 𝐿 > 𝐿𝐩,𝜩 or 𝐿 > 𝐿𝑆,𝐩,𝜩 , that is, the data size must be larger
than the respective number of coefficients involved. Therefore, the computational cost of SCE/SDD approximations, which primarily
comes from generating 𝐿 samples of an output response, is directly proportional to the number of basis functions or coefficients, as
alluded to in Section 5.3. Even when this condition is satisfied, the experimental design must be judiciously selected in such a way
that the information matrices are well-conditioned.

In lieu of Eq. (66), different error measures are possible to estimate the SCE and SDD coefficients [39]. However, convergence
properties associated with such error measures in the context of SCE/SDD approximations have yet to be studied rigorously.

7. Numerical examples

Two numerical examples illustrating the SCE and SDD approximations are presented for solving UQ problems in structural
dynamics. The first example discusses frequency response analysis by SCE, whereas the second example addresses modal analysis
by SDD. For the SCE/SDD methods, the degrees 𝑝𝑘 and knot vectors 𝝃𝑘 are identical in all coordinate directions. Therefore, the
index 𝑘 will be dropped when discussing the degrees 𝑝, knot vectors 𝝃, and number of subintervals 𝐼 in this section. In addition, all
knot vectors are (𝑝𝑘 +1)-open with simple (Examples 1 and 2) or repeated (Example 1) knots. Depending on the example, the knots
are uniformly spaced and/or non-uniformly spaced. The optimal determination of these B-spline parameters, as demonstrated, for
12
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Fig. 1. A two-degree-of-freedom spring–mass–damper system.

7.1. Example 1: frequency response analysis of a two-degree-of-freedom system (𝑁 = 1 or 3)

Consider a two-degree-of-freedom, proportionally damped, dynamic system, shown in Fig. 1, with possibly random masses,
damping coefficients, and spring constants

𝑀1 =𝑀2 = (1 + 𝛿𝑀𝑋𝑀 ) kg, 𝐶1 = 𝐶2 = (1 + 𝛿𝐶𝑋𝐶 ) N/(ms),

and 𝐾1 = 𝐾2 = 15000(1 + 𝛿𝐾𝑋𝐾 ) N/m,
respectively, where 𝑋𝑀 , 𝑋𝐶 , and 𝑋𝐾 are independent, standard Gaussian random variables with 𝛿𝑀 , 𝛿𝐶 , and 𝛿𝐾 representing their
corresponding coefficients of variation (COVs). By selecting appropriate values of the COVs, various dynamic systems, whether fully
deterministic (all COVs = 0), fully random (all COVs ≠ 0), or a random-deterministic combination (some COVs = 0), can be studied.
Therefore, for a fully random dynamic system, the input random vector 𝐗 = {𝑋𝑀 , 𝑋𝐶 , 𝑋𝐾}⊺.

The dynamic system is subjected to a harmonic excitation force vector 𝐟 (𝑡) = 𝐅𝜔 exp(i𝜔𝑡) with the force amplitude vector 𝑭 =
{1, 0}⊺ N and angular frequency 20𝜋 ≤ 𝜔 ≤ 70𝜋 rad/s. In terms of ordinary frequency 𝑓 ∶= 𝜔∕(2𝜋), the range is 10 ≤ 𝑓 ≤ 35 Hz. From
linear dynamics, the steady-state displacement response vector is 𝐳(𝑡) = 𝐙(𝜔;𝐗) exp(i𝜔𝑡), where the complex-valued displacement
amplitude vector 𝐙(𝜔;𝐗) = (𝑍1(𝜔;𝐗), 𝑍2(𝜔;𝐗))⊺ satisfies

(

−𝜔2
[

𝑀1 0
0 𝑀2

]

+ i𝜔
[

𝐶1 + 𝐶2 −𝐶2
−𝐶2 𝐶2

]

+
[

𝐾1 +𝐾2 −𝐾2
−𝐾2 𝐾2

])(

𝑍1(𝜔;𝐗)
𝑍2(𝜔;𝐗)

)

=
(

1
0

)

. (73)

The objective of this example is to calculate the second-moment statistics and probability distributions of |𝑍1(𝜔;𝐗)| or |𝑍1(2𝜋𝑓 ;𝐗)|
by PCE and SCE for a range of frequencies due to the uncertainty in system properties.

For UQ analysis, the basis functions of PCE are orthonormal Hermite polynomials that are consistent with the standard Gaussian
probability distribution of input random variables. In contrast, the basis functions of SCE are orthonormal splines that are consistent
with the truncated Gaussian probability distribution on the bounded domain [−3,+3]𝑁 of input random variables. In addition, for
SCE, the output function was transformed to a function of truncated Gaussian variable by matching the CDFs of standard and
truncated Gaussian variables. It is necessary to do so because splines require bounded support by definition. It is best practice to
select a transformation yielding as little difference between the original and mapped distributions as is possible. Hence, the truncated
Gaussian distribution is an appropriate choice for the transformation.

All expansion coefficients of PCE and SCE were calculated from their respective definitions, requiring 𝑁-dimensional integrations,
such as Eq. (34) from SCE. These integrals were subsequently estimated by respective Gauss quadrature rules for both PCE and
SCE, where the quadrature in the latter was performed in each subinterval determined by the chosen knot vector. Therefore, the
following results of PCE and SCE are due to not only their respective projections, but also due to numerical approximations of
expansion coefficients. No detailed numerical study was performed to eliminate the error from the latter.

Two distinct cases, one considering the randomness of the spring stiffness only (𝑁 = 1) and the other allowing the randomness of
mass, damping, and stiffness properties (𝑁 = 3), were studied. For the mean input in both cases, the natural (ordinary) frequencies
are 𝑓1 ∶= 𝜔1∕(2𝜋) = 12.047 Hz and 𝑓2 ∶= 𝜔2∕(2𝜋) = 31.539 Hz.

7.1.1. Case 1: randomness in stiffness only (𝑁 = 1)
For the first case, set 𝛿𝑀 = 𝛿𝐶 = 0 and 𝛿𝐾 = 0.05, and assume 𝑋𝐾 to be a standard Gaussian random variable with zero mean

and standard deviation of one. Therefore, the system has deterministic masses 𝑀1 =𝑀2 = 1 kg, deterministic damping coefficients
𝐶1 = 𝐶2 = 1 N/(ms), and random spring constants 𝐾1 = 𝐾2 = 15000(1 + 0.05𝑋𝐾 ) N/m. There is only one input random variable, so
that 𝐗 = {𝑋𝐾} and 𝑁 = 1. Although the Gaussian assumption theoretically allows a negative value of spring stiffness, the probability
of such event is very low, given the smallness (5%) of the COV used. Moreover, such an assumption permits a fair comparison with
past studies [20,21], where the old results can be compared with the new ones produced from this work.

Five UQ methods — a 50th-order PCE (𝑚 = 50), two linear or first-order SCEs (𝑝 = 1, 𝐼 = 8; 𝑝 = 1, 𝐼 = 16), two quadratic or
second-order SCEs (𝑝 = 2, 𝐼 = 8; 𝑝 = 2, 𝐼 = 16) — along with crude MCS (100,000 samples) as a benchmark solution were employed
to calculate the statistical properties of |𝑍1(2𝜋𝑓 ;𝑋𝐾 )| for this one-dimensional UQ problem. Here, 𝑝 and 𝐼 refer to the B-spline
order and the number of subintervals, respectively, of SCE. Table 2 lists both instances of uniformly spaced and non-uniformly
13
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Table 2
Uniformly spaced and non-uniformly spaced knot vectors for the SCE approximations in Example 1.
SCE method Knot vector

(a) Uniformly spaced knots

1st-order (𝑝 = 1, 𝐼 = 8) 𝝃 = {−3,−3,−2.25,−1.5,−0.75, 0, 0.75, 1.5, 2.25, 3, 3}

1st-order (𝑝 = 1, 𝐼 = 16) 𝝃 = {−3,−3,−2.625,−2.25,−1.875,−1.5,−1.125,−0.75,−0.375,
0, 0.375, 0.75, 1.125, 1.5, 1.875, 2.25, 2.625, 3, 3}

2nd-order (𝑝 = 2, 𝐼 = 8) 𝝃 = {−3,−3,−3,−2.25,−1.5,−0.75, 0, 0.75, 1.5, 2.25, 3, 3, 3}

2nd-order (𝑝 = 2, 𝐼 = 16) 𝝃 = {−3,−3,−3,−2.625,−2.25,−1.875,−1.5,−1.125,−0.75,−0.375,
0, 0.375, 0.75, 1.125, 1.5, 1.875, 2.25, 2.625, 3, 3, 3}

(b) Non-uniformly spaced knots

1st-order (𝑝 = 1, 𝐼 = 8) 𝝃 = {−3,−3,−1.5,−0.65,−0.25, 0, 0.25, 0.65, 1.5, 3, 3}

1st-order (𝑝 = 1, 𝐼 = 16) 𝝃 = {−3,−3,−2.25,−1.75,−1.25,−0.8,−0.4,−0.25,−0.1,
0, 0.1, 0.25, 0.4, 0.8, 1.25, 1.75, 2.25, 3, 3}

2nd-order (𝑝 = 2, 𝐼 = 8) 𝝃 = {−3,−3,−3,−1.5,−0.65,−0.25, 0, 0, 0.25, 0.65, 1.5, 3, 3, 3}

2nd-order (𝑝 = 2, 𝐼 = 16) 𝝃 = {−3,−3,−3,−2.25,−1.75,−1.25,−0.8,−0.4,−0.25,−0.1,
0, 0, 0.1, 0.25, 0.4, 0.8, 1.25, 1.75, 2.25, 3, 3, 3}

spaced knots considered in this example. For linear SCEs (𝑝 = 1), all knot vectors comprise simple knots, whereas for quadratic
SCEs (𝑝 = 2), the knot vectors have either uniformly spaced simple knots or non-uniformly spaced repeated knots. The need for
a very high-order PCE is justified based on past works [20,21], where lower-order expansions provided vastly erroneous results.
The number of polynomial basis functions required by the PCE approximation is 51, whereas only 9 or 17 spline basis functions
are involved in the first-order (𝑝 = 1) SCE approximations associated with 𝐼 = 8 and 𝐼 = 16, respectively. For the second-order
(𝑝 = 2) SCE methods, there are 10 or 18 basis functions for uniformly spaced knots and 11 or 19 basis functions for non-uniformly
spaced knots for 𝐼 = 8 and 𝐼 = 16, respectively. The expansion coefficients were estimated by numerical integration as follows: for
PCE coefficients, the (𝑚+20)-point Gauss-Hermite quadrature rule was employed, whereas for SCE coefficients, the Gauss-Legendre
quadrature rule was used with 𝑝 + 20 Gauss points on each subinterval of the knot vectors defined.

Figs. 2(a) and 2(b) present the plots of the standard deviations of |𝑍1(2𝜋𝑓 ;𝑋𝐾 )| for the range of external (ordinary) frequency
𝑓 between 10 and 35 Hz, obtained by the abovementioned SCE approximations with uniformly spaced knots and non-uniformly
spaced knots, respectively. The PCE estimates, also shown in both figures, are in good agreement with the MCS results only for the
non-resonant frequencies. In the vicinity of the resonant frequencies (12.047 Hz, 31.539 Hz), PCE, even with such a high order,
exhibits spurious oscillations that have no physical meaning. Displayed on the right by the enlarged views of the parts of these
plots, such oscillations are more pronounced in the neighborhood of the lower natural frequency. This is primarily because FRFs
are non-smooth functions, emanating from sudden changes of the amplitude that occur around resonant frequencies. For instance,
when |𝑍1(2𝜋𝑓1; 𝑥𝐾 )|, determined at 𝑓 = 𝑓1 = 12.047 Hz, is plotted against the real variable 𝑥𝐾 , the non-smoothness at 𝑥𝐾 = 0
is clearly visible in Figs. 3(a) or 3(b). In contrast, the PCE approximation of |𝑍1(2𝜋𝑓1; 𝑥𝐾 )|, also presented in the aforementioned
figures, is smooth and oscillatory, despite the use of an ultra high-order (𝑚 = 50) expansion. Note that the harshness of the actual
response function in the vicinity of the resonant frequencies also makes the numerical integration, required to estimate the high-
order PCE coefficients, daunting. To reduce the magnitudes of such oscillations, an impractically large-order PCE as well as an
extremely accurate numerical integration scheme are required, which are computationally prohibitive for large-scale systems. On
the other hand, the SCE-generated function approximations and standard deviations, also plotted in the two foregoing sets of figures,
demonstrate more stable behavior by markedly reducing the oscillations around the resonant frequencies. For quadratic (𝑝 = 2) SCE

ethods, the approximations [Fig. 3(b)] improve significantly by using repeated knots at 𝑥𝐾 = 0, which is due to the nonsmoothness
f the original function at 𝑥𝐾 = 0. For non-uniformly spaced knots, the SCE and MCS results are nearly coincident or extremely close
o each other, regardless of the approximation order or the number of subintervals. This is possible because splines are more flexible
han polynomials in selecting expansion orders and dealing with subdomains. In consequence, low-degree SCE approximations with
ppropriate knot vectors produce results superior to those of high-order PCE approximations. Furthermore, SCE achieves this feat
sing at most nearly a third of the number of basis functions mandated by PCE.

Once the aforementioned PCE and SCE approximations are constructed, they are re-sampled 100,000 times, facilitating
alculation of the PDF or CDF of |𝑍1(2𝜋𝑓1;𝑋𝐾 )| at the chosen frequency of 𝑓 = 𝑓1 = 12.047 Hz. Figs. 4(a) and 4(b) exhibit the
lots of such PDFs and CDFs, where the SCE results are reported separately for uniformly spaced knots and non-uniformly spaced
nots, respectively. The comparisons with the CDF/PDF generated by crude MCS (100,000 samples), also depicted in these figures,
ndicate that SCE calculates the probabilistic characteristics of FRFs, especially at the tail region, more accurately than PCE as
ell, provided that the number of subintervals is adequately large (𝐼 = 16) for either linear or quadratic SCE. Furthermore, the
uality of SCE results enhances substantially when non-uniformly spaced knots [Fig. 4(b)] are used as opposed to uniformly spaced
nots [Fig. 4(a)]. This is obviously due to SCE’s finer approximation quality with non-uniformly spaced knots and the presence of
epeated knots for quadratic SCE approximations of non-smooth functions, as established in Fig. 3(b). Indeed, given the harshness of
he functions under study, the SCE results are convergent with the increase in the number of subintervals, and quadratic SCE (𝑝 = 2,
= 16) outperforms the 50th-order PCE. Hence, the proposed SCE method is extremely powerful in handling random functions,

specially those involving non-smoothness or heavily oscillatory behavior.
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Fig. 2. Standard deviations of |𝑍1(2𝜋𝑓 ;𝑋𝐾 )| for 10 ≤ 𝑓 ≤ 35 Hz obtained by SCE and other methods for Case 1: (a) uniformly spaced knots; (b) non-uniformly
spaced knots.

7.1.2. Case 2: randomness in mass, damping, and stiffness (𝑁 = 3)

The second case involves modeling mass, damping, and stiffness to be all random variables, that is, 𝑀1 =𝑀2 = (1+0.05𝑋𝑀 ) kg,
𝐶 = 𝐶 = (1+ 0.05𝑋 ) N/(ms), and 𝐾 = 𝐾 = 15000(1 + 0.05𝑋 ) N/m, obtained by selecting 𝛿 = 𝛿 = 𝛿 = 0.05. Therefore, there
15
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Fig. 3. |𝑍1(2𝜋𝑓1; 𝑥𝐾 )| at 𝑓 = 𝑓1 = 12.047 Hz vs. 𝑥𝐾 and its approximations by SCE and PCE for Case 1: (a) uniformly spaced knots; (b) non-uniformly spaced
knots.

are three input random variables, so that 𝐗 = {𝑋𝑀 , 𝑋𝐶 , 𝑋𝑀}⊺ and 𝑁 = 3. All three random variables are mutually independent and
follow standard Gaussian probability distributions.

Figs. 5(a) and 5(b) feature similar plots of the second-moment properties of |𝑍1(2𝜋𝑓 ;𝐗)| for the aforementioned range of
frequencies, obtained using (1) a 20th-order PCE (𝑚 = 20), (2) a first-order SCE (𝑝 = 1, 𝐼 = 8), and (3) a relatively finer first-order
SCE (𝑝 = 1, 𝐼 = 16). Once again, uniformly spaced and non-uniformly spaced simple knots as those defined in Table 1 are used in
the SCE approximations, where the B-spline order (𝑝) and the number of subintervals (𝐼) are identical in all coordinate directions
𝑘 = 1, 2, 3 of the stochastic domain. The numbers of respective basis functions by the PCE (𝑚 = 20), SCE (𝑝 = 1, 𝐼 = 8), and SCE
(𝑝 = 1, 𝐼 = 16) methods are 9261, 729, and 4913, respectively. All expansion coefficients were calculated using tensor-products of
(𝑚 + 5)- or (𝑝 + 5)-point Gauss-Hermite or Gause-Legendre quadrature rules for PCE or SCE coefficients, respectively, where 𝑝 + 5 is
associated with each subinterval of the knot vectors used in SCE. When compared with the results of crude MCS (100,000 samples),
SCE for this three-dimensional UQ problem also substantially reduces oscillations around the resonant frequencies, whereas PCE
continues to struggle. Once again, SCE outperforms PCE, using significantly fewer basis functions than those required by the latter.
Indeed, the results of both Cases 1 and 2, which are qualitatively the same, reveal greater approximation quality of splines over
polynomials.

Despite the success of SCE in probabilistic analysis of FRFs, its application is limited to solving low-dimensional UQ problems
(𝑁 < 10). For high-dimensional problems (𝑁 > 10), SCE becomes computationally prohibitive, raising the need for SDD as a practical
remedy. The SDD will be featured next in the context of modal analysis.

7.2. Example 2: modal analysis of Dassault Rafale fighter jet (𝑁 = 110)

The second example delves into solving a practical UQ problem in tandem with modal analysis of a Dassault Rafale fighter jet
introduced in 2001 [42]. The problem is large-scale, as there are 110 random variables, and the aim is to quantify the uncertainties
in the natural frequencies and mode shapes of the jet by means of the proposed SDD method. The principal objective is to investigate
the accuracy and efficiency of the SDD method in solving this industrial-scale engineering problem.

A picture of the actual jet is shown in Fig. 6(a). While the material composition of the jet is not publicly available in detail,
Fig. 6(b) uses color coding to illustrate 11 types of materials considered for use in manufacturing the different parts of the jet.
The materials, including Kevlar, composite, Aluminum 2024 alloy, and Titanium Ti6Al4V alloy, are all common in the aerospace
industry. All 11 materials have orthotropic elastic properties. According to the data provided in Table 3, each material has three
random Young’s moduli 𝐸𝑥, 𝐸𝑦, and 𝐸𝑧 in GPa, three random shear moduli 𝐺𝑥𝑦, 𝐺𝑥𝑧, and 𝐺𝑦𝑧 in GPa, three random Poisson’s ratios
𝜈𝑥𝑦, 𝜈𝑥𝑧, and 𝜈𝑦𝑧, and one random mass density 𝜌 in kg/m3, adding up to 10 random variables. No damping is included. Therefore,
there are 110 random variables in this UQ problem. Such high-dimensional problems are extremely challenging and provide an
onerous test for the SDD method.
16
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Fig. 4. CDF and PDF of |𝑍1(2𝜋𝑓1;𝑋𝐾 )| at 𝑓 = 𝑓1 = 12.047 Hz obtained by SCE and other methods for Case 1: (a) uniformly spaced knots; (b) non-uniformly
spaced knots.

In reference to Assumption 1, recall that for an SDD method to be applicable, all probability distributions of input random
variables must be defined on bounded domains [𝑎𝑘, 𝑏𝑘], 𝑘 = 1,… , 110.3 The mass densities in Table 3 all follow truncated Gaussian
distributions, while the Young’s moduli, the shear moduli, and the Poisson’s ratios all have uniform probability distributions. For
each material in Table 3, the mean, COV, and bound limits [𝑎, 𝑏] are defined for 𝐸𝑥, 𝐸𝑦, 𝐸𝑧, 𝐺𝑥𝑦, 𝐺𝑥𝑧, 𝐺𝑦𝑧, 𝜈𝑥𝑦, 𝜈𝑥𝑧, 𝜈𝑦𝑧, and 𝜌. In
the table, the subscript 𝑘 has been dropped from 𝑎𝑘 and 𝑏𝑘 for brevity.

As the deterministic black-box solver, an FEA model, with the mesh delineated in Fig. 6(c), was developed using ABAQUS (Version
2019) [43]. The model consists of 30,869 linear tetrahedral elements and 9247 nodes and was not constrained to mimic free-free
vibration. Note that the problem was solved for a fixed FEA model. In other words, the impact of ABAQUS mesh refinement on

3 If an input random variable has unbounded distribution, then a transformation to a random variable with bounded distribution is required. For further
details, the readers are referred to a prior work by the authors [38].
17
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Fig. 5. Standard deviations of |𝑍1(2𝜋𝑓 ;𝐗)| for 10 ≤ 𝑓 ≤ 35 Hz obtained by SCE and other methods for Case 2: (a) uniformly spaced knots; (b) non-uniformly
spaced knots.

the quality of the results was not studied. Nevertheless, the model demonstrated in Fig. 6(c) was deemed satisfactory in terms of
accuracy and computational expediency. To solve for the natural frequencies and mode shapes, the standard Lanczos method [44]
was employed.

For UQ analysis, the statistical moments of the natural frequencies and mode shapes were estimated by crude MCS with 10,000
samples (FEA) as the benchmark solution and three univariate SDD methods, comprising two of linear orders (𝑝 = 1, 𝐼 = 2, 4)
and one of the quadratic order (𝑝 = 2, 𝐼 = 4). Here, 𝑝 and 𝐼 refer to the B-spline order and the number of subintervals, equal in
18
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Fig. 6. Dassault Rafale fighter jet problem [42]: (a) the actual jet; (b) a CAD model showing eleven materials; and (c) an FEA model. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

all coordinate directions 𝑘 = 1,… , 110 of the stochastic domain. Moreover, only univariate SDD methods would be affordable to
efficiently solve this ultra high-dimensional UQ problem. In other words, 𝑆 = 1 in all three SDD methods described earlier. Overall,
there were 221, 441, and 551 basis functions in the SDD (𝑝 = 1, 𝐼 = 2), SDD (𝑝 = 1, 𝐼 = 4), and SDD (𝑝 = 2, 𝐼 = 4) methods,
respectively.

The SDD coefficients were estimated by the SLS regression with the data size being slightly more than four times the number
of basis functions used by the SDD methods. Note that although there are some rules of thumb for how many samples to pick for
regression purposes, there is no perfect suggestion that would guarantee obtaining good results by SLS. Eventually, 972, 1940, and
2424 samples (FEA) were used for estimating the expansion coefficients of the SDD (𝑝 = 1, 𝐼 = 2), SDD (𝑝 = 1, 𝐼 = 4), and SDD
(𝑝 = 2, 𝐼 = 4) methods, respectively, which are larger than four times the number of basis functions for each SDD method.

The results will be presented in two subsections: one for the second-moment analysis of the natural frequencies and mode shapes,
and the other for the CDF analysis of an output random variable of interest.

7.2.1. Second-moment analysis
As the FEA model was not constrained, the first six mode shapes correspond to rigid-body motions with their associated

frequencies practically zero. Therefore, Table 4 lists the means and standard deviations of the first ten non-rigid-body natural
frequencies of the jet computed by the crude MCS and three SDD methods. As observed from the table, there is an outstanding match
between the results obtained by all three SDD methods and those provided by crude MCS as the reference solution. Moreover, the
mean values are estimated more accurately, which is expected, since in UQ, relatively higher-order moments – standard deviation in
this case – are generally more challenging to accurately compute. Nevertheless, the SDD methods are able to economically estimate
the second-moment statistical properties of the natural frequencies. For instance, the SDD (𝑝 = 1, 𝐼 = 2) method does so by using
only 972 samples (FEA), which is less than one tenth of the number of FEA employed by MCS.

Figs. 7 and 8 illustrate the standard deviations of the fifth and sixth non-rigid-body mode shapes, respectively, calculated by MCS
and three SDD methods. Consistent with the results of natural frequencies in Table 4, the contour plots are generally similar, although
those of the SDD (𝑝 = 2, 𝐼 = 4) method are the closest to their MCS counterparts. This match between the SDD (𝑝 = 2, 𝐼 = 4) and
MCS methods is more perceptible to the naked eye in Fig. 8. Hence, the proposed SDD method is able to accurately and efficiently
estimate the second statistical moments of the outputs of interest for this 110-dimensional problem by taking advantage of the
dimensionwise expansion of the random function.
19
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Table 3
Mean, COV, and bound limits associated with the random material properties for the jet problem.

Material Type 𝐸𝑥 𝐸𝑦 𝐸𝑧 𝐺𝑥𝑦 𝐺𝑥𝑧 𝐺𝑦𝑧 𝜈𝑥𝑦 𝜈𝑥𝑧 𝜈𝑦𝑧 𝜌
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m3)

1 Kevlar Mean 65.2 78.4 51.9 24.1 36.4 27.4 0.41 0.38 0.32 1440
COV 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
𝑎 58.7 70.6 46.7 21.7 32.8 24.7 0.37 0.34 0.29 1152
𝑏 71.7 86.2 57.1 26.5 40.0 30.1 0.45 0.42 0.35 1728

2 Composite Mean 441 409 462 167 190 171 0.32 0.38 0.33 1870
COV 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08
𝑎 397 368 416 151 171 154 0.29 0.34 0.30 1403
𝑏 485 450 508 184 209 188 0.35 0.42 0.36 2338

3 Aluminum 2024 Mean 62.1 78.7 70.3 28.8 38.0 23.5 0.29 0.23 0.25 2781
COV 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.1
𝑎 52.8 66.9 59.8 24.5 32.3 20.0 0.25 0.20 0.21 1947
𝑏 71.4 90.5 80.8 33.1 43.7 27.0 0.33 0.26 0.29 3615

4 Aluminum 2024 Mean 71.8 84.0 63.9 29.1 23.5 32.3 0.27 0.31 0.26 2653
COV 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.1
𝑎 64.6 75.6 57.5 26.2 21.2 29.1 0.24 0.28 0.23 1857
𝑏 79.0 92.4 70.3 32.0 25.9 35.5 0.30 0.34 0.29 3449

5 Titanium Ti6Al4V Mean 121.7 103.6 107.7 35.5 48.2 42 0.31 0.28 0.34 4407
COV 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1
𝑎 97.4 82.9 86.2 28.4 38.6 33.6 0.25 0.22 0.27 3085
𝑏 146 124 129 42.6 57.8 50.4 0.37 0.34 0.41 5729

6 Aluminum 2024 Mean 67.5 70.9 78.4 33.1 30.9 26.2 0.37 0.34 0.28 2835
COV 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08
𝑎 60.8 63.8 70.6 29.8 27.8 23.6 0.33 0.31 0.25 1985
𝑏 74.2 78.0 86.2 36.4 34.0 28.8 0.41 0.37 0.31 3686

7 Kevlar Mean 79.9 66.8 70.0 27.6 25.3 21.9 0.41 0.38 0.32 1389
COV 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.05
𝑎 67.9 56.8 59.5 23.5 21.5 18.6 0.35 0.32 0.27 1111
𝑏 91.9 76.8 80.5 31.7 29.1 25.2 0.47 0.44 0.37 1667

8 Composite Mean 410 463 457 159 177 142 0.33 0.32 0.27 1935
COV 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08
𝑎 369 417 412 143 159 127 0.30 0.29 0.24 1451
𝑏 451 510 503 175 194 156 0.36 0.35 0.30 2419

9 Composite Mean 423 451 434 166 177 155 0.29 0.35 0.32 1903
COV 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08
𝑎 380 406 391 149 159 140 0.26 0.32 0.29 1427
𝑏 465 497 477 183 194 171 0.32 0.39 0.35 2379

10 Kevlar Mean 69.9 59.3 63.1 25.5 22.4 29.8 0.39 0.41 0.37 1463
COV 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.05
𝑎 59.4 50.4 53.6 21.7 19.0 25.3 0.33 0.35 0.31 1170
𝑏 80.4 68.2 72.6 29.3 25.8 34.3 0.45 0.47 0.43 1756

11 Aluminum 2024 Mean 72.8 66.3 61.9 29.9 25.7 35.3 0.25 0.26 0.29 2859
COV 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1
𝑎 58.2 53.0 49.5 23.9 20.6 28.2 0.20 0.21 0.23 2001
𝑏 87.4 79.6 74.3 35.9 30.8 42.4 0.30 0.31 0.35 3717

7.2.2. CDF analysis
The results presented in the previous section cover only up to the second-order statistical moment, namely mean and standard

eviation. However, in many applications, the PDF or CDF are required because they include all statistical moments of an output
andom variable of interest and important probabilistic information. The CDF is generally challenging to efficiently calculate by
he UQ methods, especially in a tail region, which is crucial for evaluating probability of failure, including applications to design
ptimization.

Fig. 9 presents four estimates of the CDF of the first non-rigid-body mode natural frequency, denoted by 𝐹𝑓1 (𝑓1,0) ∶= P[𝑓1 ≤ 𝑓1,0].
The CDF curves generated by the MCS and SDD methods match very well and are consistent with the second-moment statistics
provided in the previous section. In addition, SLS has proven to be successful in providing accurate estimates of the expansion
coefficients. For the SDD methods, however, the CDFs do not change significantly by increasing either 𝑝 or 𝐼 . This clearly shows
that the proposed SDD method can handle this UQ problem by using very low-order basis functions and only 2 or 4 subintervals.
Evidently, this is because the original function under study is dominantly univariate. In other words, by truncating the SDD expansion
at 𝑆 = 1 and retaining only the univariate component functions, not much is lost in terms of accuracy. However, even solving such
20
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Table 4
Mean and standard deviation values of the first ten non-rigid-body frequencies of the jet by various methods.

Mode Univariate SDD methodsa Crude MCSa

𝑝 = 1, 𝐼 = 2 𝑝 = 1, 𝐼 = 4 𝑝 = 2, 𝐼 = 4 (10,000 samples)

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

1 44.614 2.343 44.614 2.349 44.614 2.351 44.609 2.412
2 45.033 2.331 45.039 2.338 45.039 2.338 45.032 2.395
3 49.344 2.332 49.345 2.334 49.344 2.334 49.342 2.391
4 50.463 2.608 50.466 2.613 50.465 2.614 50.462 2.669
5 71.979 2.417 71.980 2.401 71.978 2.402 71.963 2.477
6 80.128 1.589 80.103 1.603 80.098 1.668 80.088 1.677
7 82.177 1.779 82.207 1.776 82.213 1.839 82.177 1.829
8 90.364 2.982 90.379 2.994 90.377 3.025 90.335 2.998
9 101.25 5.154 101.25 5.187 101.26 5.207 101.24 5.206
10 109.54 5.739 109.55 5.756 109.55 5.756 109.53 5.769

aAll frequencies are reported in Hz.

Fig. 7. Standard deviation contour plot of the fifth non-rigid-body mode shape.

hindered, if not prohibited, when the stochastic dimension is generally greater than 10. The bottom line here is that the proposed
SDD method can solve very high-dimensional UQ problems accurately and economically.

Notwithstanding the achievement of the univariate SDD approximations in this particular example, it is possible that higher-
variate SDD approximations, prominently, the bivariate SDD approximations, may be required in other applications [30]. In this
case, the computational effort of SDD will slowly ramp up, pointing to a need for further improvement in efficiency.
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Fig. 8. Standard deviation contour plot of the sixth non-rigid-body mode shape.

8. Conclusion

Two novel spline expansions, designated as SCE and SDD, were studied for solving UQ problems commonly encountered in
structural dynamics of linear systems. Both methods feature Fourier-like expansions of a dynamic system response of interest with
respect to measure-consistent orthonormalized B-splines in input random variables and SLS regression for estimating the expansion
coefficients. SCE is similar to PCE, but by swapping polynomials for B-splines, SCE achieves a greater flexibility in selecting expansion
orders and dealing with subdomains. For this very reason, SCE can effectively tackle stochastic responses that contain locally high
fluctuations and that are non-smooth. However, due to the tensor-product structure, SCE, like its polynomial sibling, suffers from the
curse of dimensionality. This is chiefly because the number of SCE’s multivariate B-splines grows exponentially with the number of
input random variables. In contrast, SDD impedes the proliferation of the requisite number of such basis functions as much as possible
while maintaining the desired accuracy in stochastic solutions. SDD accomplishes this task by exploiting multivariate B-splines in a
progressive, dimensionwise way to create the resulting expansion. Consequently, SDD alleviates the curse of dimensionality to an
appreciable magnitude.

Numerical results from frequency response analysis of a two-degree-of-freedom dynamic system indicate that a low-order SCE
with fewer basis functions eliminates or substantially mitigates the spurious oscillations generated by high-order PCE in calculating
the second-moment statistics and probability distributions of FRFs. A truly high-dimensional UQ problem, encompassing modal
analysis of a fighter jet with 110 random variables, was solved by SDD and crude MCS. From the comparisons of results, SDD
produces satisfactory estimates of the probabilistic characteristics of natural frequencies and mode shapes incurring less than ten
percent of the computational effort by MCS. Therefore, SDD, unlike SCE, is capable of solving large-scale UQ problems from real-life
applications.
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Fig. 9. CDF of the first non-rigid-body mode frequency.
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Appendix. Univariate B-splines

Let 𝐱 = (𝑥1,… , 𝑥𝑁 ) be an arbitrary point in A𝑁 . For the coordinate direction 𝑘, 𝑘 = 1,… , 𝑁 , define a positive integer 𝑛𝑘 ∈ N
and a non-negative integer 𝑝𝑘 ∈ N0, representing the total number of basis functions and polynomial degree, respectively. The rest
of this appendix briefly describes paraphernalia of univariate B-splines.

A.1. Knot vector

In order to define B-splines, the concept of knot vector, also referred to as knot sequence, for each coordinate direction 𝑘 is
needed.

Definition 3. A knot vector 𝝃𝑘 for the interval [𝑎𝑘, 𝑏𝑘] ⊂ R, given 𝑛𝑘 > 𝑝𝑘 ≥ 0, is a vector comprising a non-decreasing sequence of
real numbers

𝝃𝑘 ∶= {𝜉𝑘,𝑖𝑘}
𝑛𝑘+𝑝𝑘+1
𝑖𝑘=1

= {𝑎𝑘 = 𝜉𝑘,1, 𝜉𝑘,2,… , 𝜉𝑘,𝑛𝑘+𝑝𝑘+1 = 𝑏𝑘},

𝜉𝑘,1 ≤ 𝜉𝑘,2 ≤ ⋯ ≤ 𝜉𝑘,𝑛𝑘+𝑝𝑘+1,
(A.1)

where 𝜉𝑘,𝑖𝑘 is the 𝑖𝑘th knot with 𝑖𝑘 = 1, 2,… , 𝑛𝑘 + 𝑝𝑘 + 1 representing the knot index for the coordinate direction 𝑘. The elements of
𝝃𝑘 are called knots.

According to Eq. (A.1), there are a total of 𝑛𝑘+𝑝𝑘+1 knots, which may be equally or unequally spaced. To monitor knots without
repetitions, denote by 𝜁 ,… , 𝜁 the 𝑟 distinct knots in 𝝃 with respective multiplicities 𝑚 ,… , 𝑚 . Then the knot vector in
23
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Eq. (A.1) can be expressed more compactly by

𝝃𝑘 = {𝑎𝑘 =

𝑚𝑘,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑚𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,… ,

𝑚𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1,… , 𝜁𝑘,𝑟𝑘−1,

𝑚𝑘,𝑟𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 < ⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 = 𝑏𝑘,

(A.2)

which consists of a total number of
𝑟𝑘
∑

𝑗𝑘=1
𝑚𝑘,𝑗𝑘 = 𝑛𝑘 + 𝑝𝑘 + 1 (A.3)

knots. As shown in Eq. (A.2), each knot, whether interior or exterior, may appear 1 ≤ 𝑚𝑘,𝑗𝑘 ≤ 𝑝𝑘 + 1 times, where 𝑚𝑘,𝑗𝑘 is referred
to as its multiplicity. The multiplicity has important implications on the regularity properties of B-spline functions. A knot vector is
called open if the end knots have multiplicities 𝑝𝑘 + 1. In this case, definitions of more specific knot vectors are in order.

Definition 4. A knot vector is said to be (𝑝𝑘 + 1)-open if the first and last knots appear 𝑝𝑘 + 1 times, that is, if

𝝃𝑘 = {𝑎𝑘 =

𝑝𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑚𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,… ,

𝑚𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1,… , 𝜁𝑘,𝑟𝑘−1,

𝑝𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 < ⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 = 𝑏𝑘.

(A.4)

Definition 5. A knot vector is said to be (𝑝𝑘 + 1)-open with simple knots if it is (𝑝𝑘 + 1)-open and all interior knots appear only
once, that is, if

𝝃𝑘 = {𝑎𝑘 =

𝑝𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1, 𝜁𝑘,2,… , 𝜁𝑘,𝑟𝑘−1,

𝑝𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 < ⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 = 𝑏𝑘.

(A.5)

A (𝑝𝑘 + 1)-open knot vector with or without simple knots is commonly found in applications [35]. However, only simple knots
are used in this work.

A.2. B-splines

The B-spline functions for a given degree are defined in a recursive manner using the knot vector as follows.

Definition 6. Let 𝝃𝑘 be a general knot vector of length at least 𝑝𝑘 + 2 for the interval [𝑎𝑘, 𝑏𝑘], as defined by Eq. (A.1). Denote by
𝐵𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘) the 𝑖𝑘th univariate B-spline function with degree 𝑝𝑘 ∈ N0 for the coordinate direction 𝑘. Given the zero-degree basis
functions,

𝐵𝑘𝑖𝑘 ,0,𝝃𝑘 (𝑥𝑘) ∶=

{

1, 𝜉𝑘,𝑖𝑘 ≤ 𝑥𝑘 < 𝜉𝑘,𝑖𝑘+1,
0, otherwise,

(A.6)

for 𝑘 = 1,… , 𝑁 , all higher-order B-spline functions on R are defined recursively by

𝐵𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑥𝑘) =
𝑥𝑘 − 𝜉𝑘,𝑖𝑘

𝜉𝑘,𝑖𝑘+𝑝𝑘 − 𝜉𝑘,𝑖𝑘
𝐵𝑘𝑖𝑘 ,𝑝𝑘−1,𝝃𝑘 (𝑥𝑘) +

𝜉𝑘,𝑖𝑘+𝑝𝑘+1 − 𝑥𝑘
𝜉𝑘,𝑖𝑘+𝑝𝑘+1 − 𝜉𝑘,𝑖𝑘+1

𝐵𝑘𝑖𝑘+1,𝑝𝑘−1,𝝃𝑘 (𝑥𝑘), (A.7)

where 1 ≤ 𝑘 ≤ 𝑁 , 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘, 1 ≤ 𝑝𝑘 <∞, and 0∕0 is considered as zero.

The recursive formula in Definition 6 was derived by Cox [45] and de Boor [36].
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