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ABSTRACT: A Markov model is proposed to evaluate seismic performance and 
sensitivity to initial state of structural systems and determine the vulnerability of 
structures exposed to one or more earthquakes. The method of analysis is based 
on the seismic hazard modeled by a filtered Poisson process, nonlinear dynamic 
analysis for estimating structural response to earthquakes, uncertainty in initial 
damage state, and failure conditions incorporating damage accumulation during 
consecutive seismic events. Simple structures designed by the seismic design code 
are used to illustrate the proposed method. Effects of uncertainty in the initial state 
of these systems on seismic reliability are also investigated. 

INTRODUCTION 

A major objective of seismic design is the generation of structures that 
can survive earthquakes. Current methods for evaluating the overall seismic 
performance of structural systems are based on global damage indices and 
lifetime maximum seismic hazard. The global indices are obtained by heu- 
ristic combinations of local damage measures, and the seismic hazard is 
modeled without any consideration for cumulative damage during consec- 
utive seismic events. Such a global measure of damage cannot characterize 
structural state uniquely, provides only a crude estimate of structural per- 
formance during seismic events, and cannot be used to assess structural 
vulnerability to future loadings. Since most structures are designed to resist 
several earthquakes during their exposure time, the lifetime largest ground 
motion may not be meaningful as a design load parameter,  due to accu- 
mulation of damage between consecutive seismic events. This is particularly 
true and unavoidable for a series of earthquakes including preshocks, main 
events, and aftershocks, during which repairs of structural systems cannot 
be performed. 

In addition to the preceding limitations, current estimates of seismic re- 
liability analysis of building structures are based on: (1) Elementary ap- 
proximations of seismic hazard, e.g., by the lifetime maximum peak ground 
acceleration al0 that is exceeded at least once in 50 years with probability 
10%; (2) static method for structural stress analysis; and (3) assumption 
that the local failure (e.g., cross-section failure) yields system collapse. 
These simplified methods have also been used in studies (Ellingwood et al. 
1980; O 'Connor  and Ellingwood 1987; Rahman and Grigoriu 1989) to de- 
termine reliability indices for code-designed buildings subject to seismic 
ground shaking. Some of these simplifications can significantly affect seismic 
reliability (Rahman and Grigoriu 1989; Rahman 1991). 

Another  important issue in the evaluation of seismic performance is the 
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lack of exact knowledge in the initial state of structural systems. This un- 
certainty is primarily caused by manufacturing processes, errors in design, 
inadequate construction, unsatisfactory quality control for new structures, 
and lack of information concerning damage caused by previous seismic 
events for existing buildings. Reliability analysis based solely on current 
definitions of global damage indices cannot be applied to determine sen- 
sitivity to initial state of structural systems. Hence, any rational assessment 
of structural performance should simultaneously account for the mechanical 
degradation process of critical cross sections and components. 

The objectives of this paper are to evaluate the seismic performance and 
sensitivity to initial state of structural systems, and determine the vulner- 
ability of structures exposed to one or more earthquakes. A new method- 
ology based on a Markov model is proposed for seismic reliability analysis. 
The method of analysis is based on (1) Simple but realistic characterization 
of seismic hazard; (2) nonlinear dynamic analysis for estimating structural 
response to earthquakes; (3) uncertainty in initial state of structural systems; 
and (4) failure conditions incorporating damage accumulation during con- 
secutive seismic events. Simple structures designed by the Uniform Building 
Code (1988) are used to illustrate the proposed method. Effects of uncer- 
tainty in the initial state of these systems on seismic reliability are also 
investigated. 

SEISMIC AND MECHANICAL MODELS 
Seismic Hazard 

For simplicity, consider a site that is affected by a single seismic source 
characterized by a mean rate of earthquake occurrence k. It is assumed that 
(1) The earthquake arrivals follow a homogeneous Poisson process with 
mean rate k; (2) ground motions in different seismic events are independent 
stochastic processes Wi(t), i = 1, 2 . . . . .  N(, 0 where N(x) represents the 
random number of seismic events during lifetime period -r; and (3) seismic 
event i has random duration t i. The supposition of stationary Poisson process 
has the implication that the interarrival times are independent and follow 
the same exponential distribution. Although this representation provides 
an elementary model of the seismic environment, it has been found to be 
consistent with historical occurrences for ground motions associated with 
earthquakes that are of engineering interest in structural applications (A1- 
germissen 1983). Consequently, the Poisson assumption may still serve as 
a useful but simple model of seismic hazard (Cornell 1968). Fig. 1 shows 
the schematics of seismic environment at a site. 

Nonlinear Degrading Systems 
Consider a general multistory framed structure with nc critical cross sec- 

tions, each of which has np parameters to describe the restoring-force model. 
The stochastic seismic modeling of this multi-degree-of-freedom, hysteretic, 

Wl(t) WZ(t) wi(t) 

FIG. 1, Seismic Hazard at Site 
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and degrading system leads to the differential equations of the form (Rah- 
man 1991) 

mXi(t) + g/({Xi(s), Xi(s), 0 -< s - t}; t) = - m d W i ( t )  . . . . . . . . . . . . .  (1) 

with the initial conditions 

X'(0) : 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2a) 

and 

X'(0) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2b) 

where t = local time coordinate originating at the beginning of seismic event 
i; Xi(t) = vector of generalized displacements; ff = vector functional rep- 
resenting nonlinear hysteretic restoring forces; m = constant mass matrix; 
d = vector of influence coefficients; and W i ( t )  = stochastic process rep- 
resentation of ith seismic event. In earthquake engineering, the total re- 
storing force gi is usually modeled by the superposition of a nonhysteretic 
component 

g/h = eI~i(t) + k i n h ( X i ( t ) ) X i ( t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

and a hysteretic component  

g~ = k~,(Z~(t))Xi(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 
where c = constant viscous damping matrix; k~h = nonhysteretic part of 
stiffness matrix; k~ = hysteretic part of stiffness matrix; and Zi(t) = vector 
of additional hysteretic variables the time evolution of which can be modeled 
by a set of  general nonlinear ordinary differential equations 

Zi(t) : Fi(Xi(t) ,  f~i(t)~ Zi(/), l; Ai(t)) . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 

in which F i = general nonlinear vector function the explicit expression of 
which depends on the hysteretic rule governed by a particular constitutive 
law; and Ai(t) @ 9t" = damage state vector that has n = ncnp  components 
equal to the parameters of restoring forces at all critical cross section of a 
structural system at time t during seismic event i. A wide variety of  the 
explicit form of (5) is available in Rahman (1991). Following the state vector 
approach (Hurty and Rubinstein 1964; Meirovitch 1967) with the designa- 
tion of 

0~(t) = Xi(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6a) 

O~(t) = X(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6b) 

O~(t) = Zi(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6c) 

the equivalent system of first-order nonlinear differential equations in state 
variables become 

O~(t) = O~(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7a) 

()~(t) = - m - l [ c O ~ ( t )  + kih(Oil(t))Oil(t) + k~,(O~(t))O~(t)] - dWZ(t )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7b) 

0~(t) = Fi(O~(t), O~(t), O~(t), t; A'(t)) . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7c) 

which can be recast in a more compact form 
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0' ( t )  = hi(Oi( t ) ,  t; A ' ( t ) )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (8) 

with the initial conditions 

0e(0) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9) 

where hi( ) = vector function; Oi(t) = response state vector; A/(t) E ~ "  
= damage state vector representing state of parameters in the restoring 
force with ~n denoting n-dimensional real vector space, and are given by 

ros(o) 
Oi(t) = {O~(t)} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( lOa)  

- e -[O~(t) j 

and 

[A~(t)]  

Ae0,) = " " { A ~ ( t ) }  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (10b) 

L L {  A~(t)J 
When the excitation is random, Ae(I)  = vector stochastic process, and it 
characterizes structural state uniquely. 

MARKOV MODEL 

Damage State Vector 
Consider a damage state vector A i, which has n = ncnp components equal 

to parameters of restoring forces at all critical cross sections of a structural 
system at the end of ith seismic event. It can be obtained from 

A' = A;(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (11) 

where f = duration of ith seismic event and A~(t) was defined earlier in 
(5). State vector A; can be conveniently mapped into a normalized damage 
state vector D i by the relation 

Z~ 
D~ = 1 - ---6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

Aj 

where j = 1, 2 . . . .  , n represents an index for the component  of  vectors 
A i ~ ~R n and D e E ~ff". This simple transformation permits the domain of  
each component  of D e to lie between 0 and 1. Note that the state vector D e 
provides complete characterization of structural state at the end of  earth- 
quake i. Hence, one needs only D i to perform dynamic analysis and deter- 
mine structural performance through a new seismic event. 

A duty cycle (DC) is a repetitive period of  operation in the life of  a 
structure that causes an increase in damage. For  earthquake-resistant struc- 
ture, each seismic event corresponds to a DC. If  the earthquake is modeled 
as a filtered Poisson process, with each seismic event assumed to be an 
independent random process, damage-state vector D e at the end of an ith 
DC depends only on initial state D e- 1 at the start of the DC,  and on that 
D e  itself. It is independent of damage and loading history up to the start 
of that DC. In other words, the propagation of damage-state vector D i can 
be treated as Markov process evolving on a discrete time scale (Rahman 
and Grigoriu 1990a, 1990b; Rahman 1991). The evolution of a discrete 
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version of D ~ can be described by one-step transition matrix T(i) with the 
element Tpq(i) representing the probabili ty that damage changes f rom state 
p to state q due to seismic event i. This is explained in the forthcoming 
section. 

Transition Matrix 
Consider a domain ~ C_ ,~" (as shown in Fig. 2) having Prob(D i E ~ )  --- 

1 with K = H7=1/j cells (states) {Cp} such that ~ = U Kp=l Cp, Cp ~-~ Cq = 0 
(p ~ q); and lj represents the number  of discretized states o f j th  component  
of D i ~ ~n. Consider the change in stochastic vector process D i, i = 0, 1, 
2 . . . .  , N(-r), taking values in a finite, or countable,  number  of cells C1, 
C2 . . . .  , CK. Let Prob(D i E Cp) be the probabili ty that damage-state  vector 
D ~ is in cell C_ after i seismic events. Then the row vector P(i) = {Prob(D i 
E C1), Prob(D i E C2) . . . .  , Prob(D i E CK)} represents a K-dimensional 
probability vector with p th  (p = 1 . . . . .  K) component  defining the prob- 
ability that D ~ belongs to the cell Cp after i seismic events. 

Suppose the seismic events constitute a sequence of independent  random 
processes. Then the probabili ty Prob(D ~ E Cq[D i-1 E Cp, past history of t t 1 structural loading and damage)  is equal t o  Tpq(i) = Prob (D  E CqlD- 
Cp) because system performance is completely specified by the value of 
damage-state vector D ~-1 at the application of ear thquake i. Denote  T(i) 
={Tpq(i)};  p , q  = 1 ,2  . . . .  ; a n d  K = the one-step transition matrix from 
time i - 1 to t ime i associated with the ith DC. Hence,  {D ~, i = 0, 1, 2, 
. . . .  N(x)} is a discrete-state (DS),  discrete-time (DT) Markov vector 
process, where N(r )  is the total ( random) number  of seismic events at a 
site. Fig. 3 shows the diagram of transition probabilities for Markov process D i . 

The estimation of transition probabili ty Tpq(i) involves computat ion of 
conditional probabili ty density of the random vector D'ID ~-~ E C,, for all 
the cells Cp, p = 1, 2 . . . . .  K. The method of Monte  Carlo simulation can 

I Z . . . . . . . . .  ~ k  "'" I "'" t j  
-- I ~ * r ' ~- ' $ ' -- 'a = ' 

()a o . . . . . .  

Itj States] 

K = f i  Ij s t a t e s  j=l 
state Cq ~ , s e t  

~ B t a t e  Cp 

2) C_ ~", Pr(D; E 2)) ~ 1 

FIG. 2. Di$cretization of Sample Space 
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FIG. 3. Diagram for Transition Probabilities 

be used for this purpose due to the unavailability of analytic solutions. Each 
deterministic trial in the simulaton method requires nonlinear dynamic anal- 
ysis. Mathematically,  this corresponds to the computat ional  effort for solving 
the deterministic initial-value problem in (8) and (9). Various numerical 
integrators such as Runge-Kut ta  method (Kutta 1901; Runge 1895), Adam's  
or Gear ' s  method (Gear  1971; Shampine and Gear  1979), Bulirsch-Stoer 
extrapolation method (Bulirsch and Stoer 1966), and many  others can be 
applied to obtain the solution. The  selection of a particular method,  how- 
ever, depends on its computat ional  efficiency, numerical accuracy and sta- 
bility, and the stiffness of  the nonlinear system of differential equations. In 
this study, several numerical schemes are tested, and the fifth- and sixth- 
order Runge-Kutta  integrators are determined to be satisfactory and used 
for structural analysis. 

For a small increase in the dimension of damage-state  vector, there is a 
correspondingly large increase in the order  of transition matrix. For ex- 
ample, when the dimension n of D i is increased to n + 1, the order of T(i) 

n n + l  increases from II~=llj = K to II}=1 lj = l,+lK. This observation regarding 
rapid increase in computat ional  involvement suggests the initial use of a 
Markov model  for reduced degree-of-freedom models such as the shear 
beam idealization (Rahman 1991). 

Evolution of Distribution of D i 
Consider a K-dimensional row vector  that prescribes the joint probabili ty 

mass function of the random vector D i denoting damage after ith seismic 
event. The probabili ty of D i following i seismic events is (Parzen 1962; 
Rahman 1991) 

P(i) = P(i - 1)T(i) i = 1, 2 . . . . .  N(-r) . . . . . . . . . . . . . . . . . . . .  (13) 

When this equation is used recursively, the distribution of probabili ty of 
being in state Cp, p = 1, 2, 3 . . . . .  K after i seismic events becomes 
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P(i) = P(0) I~  T(j)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 
j = l  

where P(0) = initial vector representing probabili ty distribution of D ~ In 
general, (14) defines a nonstationary Markov Process due to differential 
severities of DCs. However ,  if one assumes independent  and identically 
distributed random processes for ear thquakes with same deterministic du- 
ration, the Markov process becomes stationary, and (14) takes the form 

P(i )  = P(0 )T;  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15)  

where the index j is dropped due to the invariance of transition matrix to 
severities of DCs. 

L i f e t i m e  D i s t r i b u t i o n  
The lifetime probabili ty distribution P(~), defined as the distribution of 

damage-index vector D u(~) in lifetime 7, can be obtained from the theorem 
of total probability 

P(~) = ~ P(i)Prob[N('r)  = i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16a) 
i = 0  

(X'O' 
P(~) = ~ P(i) ~ e x p ( - k ' r )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16b) 

i = 0  

i* (~kT)i  
P(~) = • P ( i ) ~  e x p ( - k ~ )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16c) 

i = 0  

in which i* = finite real integer to be determined from the observation that 
the i*th component  of  the preceding summation in (16) is negligibly small. 
For stationary Markov process, a more  compact  form of lifetime distribution 
can be obtained as 

(X~) i . 
P('r) = ~ P(0)T i ~ e x p t -  a t )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (17a) 

i = 0  

P(-r) = P ( 0 ) e x p ( - a t )  ~ (h'rT)i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (17b) 
i=0 i! 

P ( r )  = P ( 0 ) e x p [ - X , r ( I  - T ) ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 7 c )  

where I = K-dimensional identity matrix. Determinat ion of preceding prob- 
ability requires computat ion of e U where U = - h ' r ( I  - T). Appendix I 
describes the evaluation procedures of linear algebra to calculate e v for U 

~(9~ r • 9~K), where ~(9~ K x 9~ K) denotes a set of linear mapping from 
9~ r to 9~ K. 

Note that (15) and (17) are simplifed expressions of the event and the 
lifetime probabilities for stationary Markov process D i. This is true when 
the seismic events during lifetime of a structure are independent  and iden- 
tical random processes. This does not mean that the sample events (e.g., 
what actually happens in structures) are all identical; it only suggests that 
the probabilistic characteristics of these events are similar. To evaluate 
seismic performance due to one or more  earthquakes,  this assumption will 
be used in the numerical examples as an initial application of the proposed 
Markov model. When the probabilistic characteristics of these seismic events 
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are different, more generic versions of the preceding equations, such as (14) 
and (10,  should be used. In so doing, however, one will require enormous 
amount of data (which may be lacking) to quantitatively define each of these 
random processes during lifetime of a structure. They are not considered 
in this paper. 

Mean First-Passage Time 
Another quantity of engineering interest in seismic performance evalu- 

ation is the mean number of earthquakes before absorption to any unde- 
sirable damage state(s). Considering homogeneous Markov process with 
stationary transition probabilities, let ~a(p) denote the mean number of 
seismic events before the system enters a damage set e~ C ~ with .~ U ~c 
= ~ C_ ,~" (Fig. 2) if the initial damage state is Cp C Me. Then, the mean 
first-passage time is given by (Rahman and Grigoriu 1-990a, 1990b; Rahman 
1991) 

~ ( p )  = E(Absorption time[D0 ~ Cp) . . . . . . . . . . . . . . . . . . . . . . . .  (18a) 

Fa(P) = ~] E(Absorption time[D ~ @ Cp, D 1 ~ Cq) 
Cq~MC 

�9 Prob(D 1 @ Cql D~ E Cp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18b) 

I~.(p) = 1 + ~ E(Absorption timelinitial state is Cq)Tpq . . . . .  (18c) 
CqEMC 

p.~(p) = 1 + ~ ~ ( q ) T p q  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18d) 
CqEMC 

When the initial states are uncertain, the mean first-passage time can still 
be obtained from p.~(p) by averaging relative to the probability of D ~ Let 
~ represent the mean number of events that the system, starting at initial 
state Cp C ~c with probability Prob(D ~ E Cp), has to wait before absorption 
to damage set ~ C @. It is given by (Rahman 1991) 

p.~ = ~ p.~(p)Prob(D ~ @ Cp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19) 
Cp~E~c 

NUMERICAL EXAMPLE 

Seismic Hazard 
Consider two sites A and B in the western U.S. with mean earthquake- 

arrival rates h a : 0.92/year and X, = 0.024/year, respectively (Algermissen 
et al. 1982; Rahman and Grigoriu 1989; Rahman 1991). The sites are shown 
in Fig. 4. Site A is located in Riverside and San Diego counties, and site B 
is located mostly in Orange county in California. Both sites lie in the same 
seismic zone 4 of the Uniform Building Code (1988), and have the same 
value of al0 = 0.4g, which is defined as the 10% upper fractile of lifetime 
largest peak ground acceleration (Algermissen and Perkins 1976; Alger- 
missen et al. 1982). It is assumed that the ground motions in different seismic 
events are (1) Independent and identically distributed zero-mean band- 
limited white stationary Gaussian processes W(t) ,  which has the one-sided 
power spectral density 

G(co) = Go, 0 < o < 6J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (20a) 

G(to) = 0, otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (20b) 
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FIG. 4. Probabilistic Map of al0 for Western U.S. 

with intensity Go and bandwidth ~5; and (2) have the same determinist ic  
strong motion durat ion T,. 

The distribution of the peak  ground accelerat ion during a seismic event  
can be approximated  by 

f(w) d=ef Prob maxlW(t)[ < = exp -T-z" M exp - ~ o  . . . .  (21) 
k rs ~r 

where kk = f~ tokG(~o) d o  = kth spectral  moment  of W(t). Therefore ,  the 
cumulative-distr ibution function of the largest peak  ground accelerat ion W~ 
during a lifetime per iod  �9 is 

F,(w) = exp[-h-r{1 - f(w)}] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (22) 

From (21) and (22) with Xo = G0& and X2 = Go~3/3 ,  and the condit ion 
F,=5oyr(~o = alo) = 0.9 (Rahman and Grigor iu  1989) 

a~o 
Go = . . . . . . . . . . . . . . . . . . . . . .  (23) [ ( ,nO9 ] �9 rV~ In 1 + 

-2o5 In - T,~5 5~6-~--/ 

It is equal to 10,026 mm2/s 3 when k = h A = 0.92/year and 16,090 mm2/s 3 
when h = kB = 0.024/year for a determinist ic  strong motion durat ion Ts 
= 30 exp{-3.254(alo/g) ~ = 2.83 s and bandwidth ~ = 25v rad/s as 
proposed by Lai (1982). Sites A and B are character ized by frequent  small 
seismic events and rare large ear thquakes ,  respectively.  However ,  designs 
at both sites are identical according to the Uniform Building Code (1988). 
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Structural System 
Consider a special moment  resisting f ramed structure (Rahman  and Gri- 

goriu 1989, 1990a), which is modeled here as a hysteretic, degrading Bouc- 
Wen oscillator (Bouc 1967; Wen 1976, 1980) with linear damping ratio g = 
0.05; initial natural frequency ~Oo = 20.944 rad/s; mass m; and subjected to 
the ith seismic event Wi(t)  = W( t )  giving the equation of motion 

mXi( t )  + gi({Xi(s) ,  S i ( s ) ,  0 <~ S <- t}; t) = -- m W ( t )  . . . . . . . . . . . .  (24) 

where Xe(t) = relative displacement of oscillator with respect to ground 
motion at time t during seismic event i. The total restoring force giis assumed 
to admit an additive decomposit ion of nonhysteretic component  

g i h ( X i ( t ) ,  S i ( t ) )  = 2 ~ o o m X i ( t )  + o~(o2mSi ( t )  . . . . . . . . . . . . . . . . . . . .  (25) 

and hysteretic component  

gih({X~(s), X i (s ) ,  0 <-- s <-- t}; t) = (1 -- cOoo~mZi~(t) . . . . . . . . . . . . . . .  (26) 

in which a quantifies the participation of linear restoring force; and the 
hysteretic variable Zi( t )  satisfies the ordinary nonlinear differential equation 
(Bouc 1967; Wen 1980; 1976) 

Z i ( t )  = A i ( t ) S i ( t )  - 131ff(i(t)] I Z i ( t ) ] ~ - l Z i ( t )  - "fXi(t)lZ~(t)l ~ . . . . . .  (27) 

in which the model parameters  13, ~, and Ai( t )  govern the amplitude and 
shape of hysteretic loops; and the paramete r  Ix controls the smoothness of 
transition from elastic to inelastic region. It is assumed here that Ix, 13, ~/ 
are constants, and A~(t), which also controls system degradation, has the 
following implicit t ime dependency through the dissipated hysteretic energy 
e(t) at local t ime t (Baber  and Wen 1980) 

A~(t) = A~-I(T~) - ~z8(t)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (28) 

where ~A signifies constant rate of system deterioration with e(t) satisfying 
the differential equation 

~(t) = (1 - et)togmZi(t)Xi(t)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (29) 

The degradation law in (28) and (29) is defined here quite arbitrarily. It is 
obtained from one of the main choices available in the current literature. 
Further study with more  realistic buildings need to be undertaken to make 
decisions regarding the proper  selection of structural deterioration. The 
time-invariant parameters  governing hysteresis are chosen as a = 0.04, Ix 
= 1, 13 = 0.1505, and "1 = 0.1505, consistent with the initial stiffness and 
strength values of the oscillator (Sues et al. 1988; Rahman  1991). Structural 
deterioration is permit ted by assigning a small value of ~Z = 1.0 X 10 -6 
in (28). The structural characteristics are assumed to be deterministic. 

The state of structure is represented by A ~ = A~(Ts) ~ 9l denoting the 
value of parameter  X ( t )  of restoring force model  at the end of ith seismic 
event. The corresponding normalized damage index D ~ = 1 - A q A  ~ which 
varies from 0 to 1, is discretized into K = 11 = 16 distinct cells (states) of 
equal length 0.0625 (shown in Fig. 5). When this index is calibrated to the 
observed seismic damage in actual structures, each or group of these cells 
can be correlated with common engineering measures such as minor,  me- 
dium, severe, reparable,  nonreparable ,  collapse damage states, and so forth. 
Regardless, the discretized cells C1, Ca . . . . .  C16 in succession denote 
progressive states of structural damage.  Since the damage is an irreversible 
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process,  af ter  each  seismic even t  wi thou t  any subsequen t  repair ,  the  struc- 
tural  s tate advances  only to any of  the  h igher  n u m b e r e d  damage  states ,  or  
it may  remain  in the  same state.  In  o the r  words ,  once  D i-1 @ Cp, the re  is 
a zero  probabi l i ty  that  D ~ @ Cq w h e n  q < p for  all p = 1, 2, . . . , 16. 
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Specially for p = 16, i.e., for the cell C16 , which represents state of largest 
possible damage,  if the damage process ever enters that state, the probabili ty 
of remaining in that state becomes unity. It  is known as the absorbing or 
trapping state, since once entered the process is never  left. 

Structural  R e s p o n s e  and  Rel iab i l i ty  
As mentioned previously, (24), (27), and (29) can be rewritten as a system 

of first-order ordinary differential equations analogous to (8) and (9). This 
nonlinear system of equations for the initial value problem is then solved 
by using step-by-step numerical integration. Fifth- and sixth-order explicit 
Runge-Kutta integrators are used to obtain such solutions. 

The transition matrix T is constructed by performing several conditional 
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Monte Carlo simulations each with 1,000 samples. In brief, the effort in the 
simulation consists of the following three steps. First, the oscillator is preas- 
signed a damage index (before seismic event i), which is associated with 
the damage state Cp. A representative value, such as the midpoint of the 
cell Cp, can be used to define this deterministic damage index. This also 
defines the initial value Ai(0) of the degrading parameter A~(t) of the hys- 
teretic model during the ith seismic event. Second, with the condition D i- ~ 
E C_, 1,000 samples of random excitation representing the ith seismic event 
W(t~ are artificially generated. Third, 1,000 deterministic nonlinear dynamic 
analyses are carried out with the oscillator subjected to each of these re- 
alizations of W(t). This generates 1,000 samples of conditional damage index 
Dil D i-1 ~ Cp following seismic event i, from which its histogram can be 
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developed. Fig. 6 shows the histograms of DitD i-1 ~ Cp for the cells Cp, 
p = 1, 2, . . . , 15 obtained for both the sites A and B. Due to larger 
spectral intensity Go, the shapes of preceding histograms for site B exhibit 
more spread than those for site A. These histograms, which estimate the 
conditional probability densities, are used to construct the first 15 rows of 
corresponding transition matrix T. Since the cell C16 is absorbing state, the 
last row of the transition matrix is calculated by setting T16.q = 1 for q = 
16 and zero otherwise. Here, no repairs of structural systems are considered 
following each seismic event. This has the implication that T is an upper- 
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triangular 5matrix. In case there is a systematic maintenance program after 
each seismic event, the transition matrix will need to be modified based on 
inspection and repair methodologies. 

The event distribution of damage, starting from any damaged state of 
system, can be obtained from the transition matrices described earlier. Fig. 
7 shows the evolution of this distribution of D i, with respect to seismic event 
i, according to (15) for both sites A and B starting with deterministic initial 
state Cp = C1 of structural system [i.e., when Pp(0) representing the p th  
component of P(0) is 1 for p = 1 and zero otherwise]. However,  if the 
initial state is uncertain and particularly if it has uniform distribution with 
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FIG. 11. Mean First-Passage Times with Deterministic Initial States 

Pp(O) = 1/16 for all p = 1, 2 . . . . .  16, the same equation can be used to 
obtain the preceding evolution of damage probability P(i). Fig. 8 exhibits 
such probabilities for both sites A and B. 

The lifetime probability distribution of damage after N( '0  seismic events 
are computed using (17) with the assumption of  initially undamaged deter- 
ministic state of system, i.e., when Pp(O) = 1 f o r p  = 1 and zero otherwise. 
Fig. 9 shows the lifetime probability mass function of D u('~ with ,r --- 50 
years for both sites A and B. Based on these case-specific studies, buildings 
at sites with infrequent large earthquakes appear to sustain less damage 
than those at sites with frequent small seismic events. Similar results were 
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also found in Rahman and Grigoriu (1989) and Rahman (1991) for linear 
and nonlinear nondegrading models of structural systems. However, more 
studies need to be undertaken to make a generic conclusion. 

Fig. 10 shows the lifetime probabilities for $ = 50 years, starting from a 
uniform distribution of initial damage state for the sites A and B. Due to 
change in initial condition, the reliabilities can still be obtained directly from 
(17) and previous transition matrices. Results show that the uncertainty 
regarding initial condition can yield significant variation on seismic reliability 
estimates. 

Consider several damage sets s~l, ~ 2 ,  ~ 3 ,  S~4, and N5 (s~ = U1615_2iCp, 
i = 1, 2 . . . . .  5), which are defined in Fig. 5. These damage sets may 
represent collections of undesirable damage states, which may be prescribed 
for a specific design condition. The mean first-passage time providing the 
number of seismic events before absorption to these several sets of unde- 
sirable damage state(s) starting from any deterministic initial-damage state 
is exhibited in Fig. 11. For example, when site B is considered, if the 
deterministic initial state is C4 (i.e., p = 4), the structure will require the 
following number of earthquakes on the average to enter the following 
damage sets S~ 1 ~--- 13.4, ~ 2  = 9.46, s~ 3 = 6.42, ,9~ 4 ~--- 3.74, and ~/5 = 1.23 
(13.4 is the mean first-passage time for the damage set s~ 1, and so on). They 
are computed from (18), and are obtained for both sites A and B. Due to 
a large difference in the mean arrival times of the two sites, the mean first- 
passage time for site A is found to be considerably higher than that for site 
B. When the initial state is uncertain, and the probability of D O is uniformly 
distributed among all states, the corresponding mean absorption times for 
the sites A and B can still be calculated from (18) and (19). They are found 
to be s~l = 24.89, ~ 2  = 13.78, S~ 3 = 8.34, $2~ 4 ~--- 4.59, and s~ 5 = 2.09 
events for site A; and s~ = 7.53, N2 = 4.69, s~3 = 2.88, sl4 = 1.62, and 
s~5 = 0.75 events for site B. All these results provide useful information to 
make decisions for optimal inspection and repair of structural systems. 

The Markov model can also be applied to evaluate seismic performance 
of existing structures that have been exposed to past earthquakes. The 
analysis, however, requires calculation of transition matrix, which can be 
performed by two approaches, In the first approach, the transition proba- 
bilities can be computed explicitly by carrying out stochastic dynamic anal- 
ysis of new structures, as done here. One can then use the same transition 
matrix with an appropriate initial state characterizing damage state of the 
existing structures. In the second approach, an estimation procedure can 
be developed by obtaining the preceding probabilities from a suitable data 
base involving observed performance of existing structures. 

CONCLUSIONS 

A new methodology based on a Markov model is proposed to evaluate 
seismic performance and sensitivity to the initial state of structural systems 
and determine the vulnerability of structures exposed to one or more earth- 
quakes. The analysis accounts for simple but realistic characterization of 
seismic hazard, nonlinear dynamic analysis for estimating structural re- 
sponse, uncertainty in the initial state of structural systems, and failure 
conditions incorporating damage accumulation during consecutive seismic 
events. 

The method is based on theoretical development using general hysteretic 
restoring force characteristics that can be applied to both reinforced concrete 
and steel structures. It estimates both event and lifetime reliabilities, thus 
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providing a designer more  control in seismic performance evaluation. It can 
be used to determine the damage-probabil i ty  evolution during several earth- 
quakes, allowing investigation on seismic vulnerability of new and existing 
structures. The model  facilitates computat ion of mean first-passage time 
determining average number  of seismic events before the structure will suffer 
potential damage.  It also evaluates sensitivity of seismic reliability due to 
variability in the initial state of structural systems. 

The Markov model  developed in this paper  has been applied to evaluate 
seismic reliability measures of simple code-designed structures. Results sug- 
gest that designs by the Uniform Building Code have different reliabilities 
at sites with frequent small ear thquakes and infrequent large earthquakes,  
although the sites are characterized by the same value of al0. Similar findings 
were also obtained in Rahman  and Grigoriu (1989) when the reliabilities 
are calculated for nondegrading systems. However ,  more studies need to 
be undertaken to make a generic conclusion. 

The uncertainty regarding initial condition can yield significant variation 
on seismic reliability. Since variability regarding initial conditions can play 
a significant role in seismic reliability estimate,  it is essential that any reli- 
ability scheme has provisions of uncertain initial condition(s). Using the 
Markov structure, this is accomplished here with little effort. 

A small increase in the dimension of damage-state vector representing 
state of structural systems is associated with a comparat ively large increase 
in the order of transition matrix. Correspondingly,  the computational  in- 
volvement in obtaining transition probabilities may become significant. 

APPENDIX I. EVALUATION OF e U 

Consider a real K x K square matrix U. A nonzero vector x E ~K, 
satisfying the relation Ux = Ax for some scalar A E % is called the right 
eigenvector of U with the associated eigenvalue A where ~/~ is K-dimensional 
complex vector space. When xU = Ax, the vector x is known as the left 
eigenvector of U. Suppose there are K linearly independent  complete family 
X (1),  X (2),  . . . , X (K) of either right and left eigenvectors of U. Then there 
exists linearly independent  right eigenvectors 6 (1), (b (2) . . . . .  6 (m, and 
linearly independent  left eigenvectors qJ(~), 6(2), . . . , qj(K), which satisfy 
the orthogonality condition 

def K 
( r  0 _- ~ +i~G = '% 

k = l  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 3 0 )  

where ~(o = {+n, 6i2,. �9 �9 , qbiK}; qJ(/) = {+jl, r . . . . .  C/K}; ~)/k = complex 
conjugate of 6j~; and 8i~ = Kronecker  delta. Assume that AI, A 2 ,  . �9 �9 , A K  

are the eigenvalues (which may not be distinct) corresponding to the ei- 
genvectors 6 (1), 4~ (2), . . . , d0 (m. Then the matrix U can be represented by 

u = ~ A , I ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 3 1 )  

where 

F (])11 (~)21 ' ' '  (~K1 7 
~622 

o _ -  �9 

Lr +2,, "'" + %  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (32a) 
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[ * , ,  '12 "'" * , K 1  
, =  /@..2, @22 *..2K / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (32b) 

[A0 ] 
A = 0. A.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (32c) 

0 0 A~( 

From (30), it can be shown that 

* ~  = ~ = I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (33) 

where I is the K-dimensional identity matrix. This immediately gives 

U m = ~ A ' ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (34) 

with 

1 Am = ~ A.~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (35) 

L 0 A~ 

Consider now the expansion of e U given by 

e U = (36) 
= 0 ~ .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

which, when combined with (34) and (35), reduces to 

e U = ~ ~ A ' ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (37a) 
m=o m! 

e U = ~ ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (37b) 
0 

e U = ~ e A ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (37C) 

where 

[ e i l  0 "'" i l e  •2 
e A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (38) 

0 e AK 
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APPENDIX III. NOTATION 

The following symbols are used in this paper: 

Ai(t) = damage-state vector during seismic event i; 
al0 = 10% upper fractile of lifetime maximum peak ground 

acceleration; 
Cp = p th  damage state (cell); 

c = damping matrix; 
Di(t) = normalized damage-state vector during seismic event i; 

d = vector of influence coefficients; 
F(w), F.(w) = event and lifetime distributions of peak ground acceler- 

ation; 
F i = vector function representing restoring forces; 

G(~o) = one-sided spectral density; 
Go = one-sided spectral intensity; 
g~ = vector functional representing restoring forces; 

I = K-dimensional identity matrix; 
K = dimension of transition matrix; total number of discrete 

states; 
l~h, k]. = nonhysteretic and hysteretic parts of stiffness matrix; 

m = mass matrix; 
N(-r) = number of seismic events during lifetime .r; 

n = dimension of damage-state vector Dr(t) or A~(t); nc x np; 
nc = number  of critical components;  
n p =  number of parameters of restoring force at each critical 

cross section; 
P(i) = vector (row) of damage probabilities following seismic 

event i; 
P( '0 = vector (row) of damage probabilities during lifetime 7; 

T, = deterministic strong motion duration; 
T(i) = one-step transition matrix for seismic event i; 
t, t i = time and random duration of ith seismic event; 

U = real square matrix; 
W~(t) = ith seismic event with strong motion duration ti; 

Xi(t), X~(t) = Generalized displacement and velocity vector during seis- 
mic event i; 

Zi(t) = vector of hysteretic variables during seismic event i; 
0[, ~,  ~W, ~L, ~A = parameters of Bouc-Wen restoring force model; 

% = Kronecker delta; 
s(t) = dissipated hysteretic energy until time t; 

4, ~o0 = damping ratio and initial natural frequency of an oscil- 
lator; 

Oi(t) = response state vector during seismic event i; [X~(t), X~(t), 
Z'(t)]r; 

A = eigenvalue of U; 
A = diag(A1, A1, �9 . �9 , AK); 

k, kA, k~ = mean rate of earthquake occurrence; 
Xi = ith spectral moment ;  

p.~ = mean first passage time with uncertain initial state; 
I~ (p)  = mean first passage time with deterministic initial state Cp; 
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S~ i = 

= 

~(m:,,  x ~ t - )  = 

matrix of right and left eigenvectors; 
ith right and ith left eigenvectors; 
bandwidth of spectral density of white noise; 
ith damage set; U~6_2iCp; 
n-dimensional complex vector space; 
domain of D~; 
set of linear mapping from ~t n to 9~n; and 
n-dimensional real vector space. 
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