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This paper presents a polynomial dimensional decomposition method for calculating the
probability distributions of random crack-driving forces commonly encountered in
elastic-plastic fracture analysis of ductile solids. The method involves a hierarchical
decomposition of a multivariate function in terms of variables with increasing dimen-
sions, a broad range of orthonormal polynomial bases consistent with the probability
measure for Fourier-polynomial expansion of component functions, and an innovative
dimension-reduction integration for calculating the expansion coefficients. Unlike the
previous development, the new decomposition does not require sample points, yet it
generates a convergent sequence of lower-variate estimates of the probability distribu-
tions of crack-driving forces. Numerical results, including the probability of fracture
initiation of a through-walled-cracked pipe, indicate that the decomposition method de-
veloped provides accurate, convergent, and computationally efficient estimates of the
probabilistic characteristics of the J-integral. �DOI: 10.1115/1.4000159�

Keywords: J-integral, stochastic fracture, polynomial dimensional decomposition,
Fourier-polynomial expansion, pipe
Introduction
Probabilistic fracture mechanics �PFM� accounts for both
echanistic and statistical aspects of a crack-driving force, lead-

ng to the probabilistic characteristics of fracture initiation and
rowth of an existing crack, real or postulated, in an engineering
tructure. The most common methods employed in PFM are the
rst- and second-order reliability methods �FORM/SORM� �1,2�
nd simulation or sampling methods �3,4�. FORM/SORM are ap-
roximate methods and are based on linear or quadratic approxi-
ation of a performance function at the most probable point,
hich in turn requires first- or second-order response sensitivities
r gradients. When response sensitivities are not available or a
ensitivity analysis is computationally intensive, FORM/SORM
re ineffective. In addition, for highly nonlinear performance
unctions, which exist in many fracture problems, FORM/SORM
ay produce inadequate reliability estimates. In contrast, sam-

ling methods generally require a large number of simulations to
alculate low failure probability and are impractical when each
imulation involves expensive finite element calculations. Conse-
uently, sampling methods have been traditionally employed as a
ast resort or for benchmarking approximate solutions.

Recently, the author developed a dimensional decomposition
ethod for reliability analysis of general cracked structures sub-

ect to random loads, material properties, and crack geometry �5�.
owever, the existing decomposition method requires a reference
oint, commonly assumed to be the mean value of the random
nput and sample points surrounding that reference point. Based
n these sample points, deterministic calculations of crack-driving
orces, either exactly or numerically, are conducted to generate
agrange interpolations of various component functions embed-
ed in the decomposition. There are two weaknesses in this pro-
edure. First, the decomposition constructed above depends on the
elected reference point, which, if improperly selected, can spoil
he approximation. Second, and more importantly, the sample
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points are vaguely selected with no strict guidelines. If an input
variable is strictly positive or strictly negative, or follows a prob-
ability density with compact support, the resultant sample points
may fall outside the physical domain; in this case, existing decom-
position methods may produce unrealistic sample properties of a
random crack-driving force. Therefore, alternative means of ap-
proximating the component functions by dropping the sample
points altogether are desirable.

This paper presents a polynomial dimensional decomposition
method for calculating the probability distributions of the
J-integral frequently encountered in elastic-plastic fracture me-
chanics. The method is based on �1� a hierarchical decomposition
of a multivariate function in terms of variables with increasing
dimensions, �2� a broad range of orthonormal polynomial bases
consistent with the probability measure for Fourier-polynomial
expansion of component functions, and �3� an innovative
dimension-reduction integration for calculating the expansion co-
efficients. Section 2 defines the random parameters and discusses
their impact on propagating uncertainties to the J-integral. Section
3 describes the polynomial decomposition method, comprising
multivariate function decomposition, Fourier-polynomial expan-
sion, and dimension-reduction integration, and then discusses
computational effort. Two numerical examples illustrate the accu-
racy, convergence, and computational efficiency of the proposed
method in Sec. 4. Finally, the conclusions are drawn in Sec. 5.

2 Random Parameters and Fracture Response
Let �� ,F , P� be a complete probability space, where � is a

sample space, F is a �-field on �, and P :F→ �0,1� is a prob-
ability measure, and RN be an N-dimensional real vector space.
Defined on the probability space �� ,F , P�, let X= �X1 , ¯ ,XN�T

denote an N-dimensional input random vector, which character-
izes statistical uncertainties of all relevant input parameters, in-
cluding loads, material properties, and geometry. For example, if
the crack length 2a, tensile properties E, �0, and m0, and ex-
ternal loads F1 , ¯ ,FM are stochastic variables in nonlinear
fracture analysis of a homogeneous solid, then X
= �2a ,E ,�0 ,m0 ,F1 , ¯ ,FM�T. The input random vector X�RN
must be characterized by its joint probability density function
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fX�x�. However, in most practical applications, complete informa-
ion required to derive the joint probability density may not be
vailable. In this work, the ith random variable Xi on the prob-
bility triple ��i ,Fi , Pi� is assumed to be independent with known
arginal probability density f i�xi�, so that fX�x�=�i=1

i=Nfi�xi�.
Consider the J-integral for a crack tip in an elastic-plastic solid

hat can be calculated using standard finite element analysis
FEA� for a given input. Suppose that a failure is defined when the
rack propagation is initiated at that crack tip, i.e., when J�JIc,
here JIc is a relevant mode-I fracture toughness of the material
easured in terms of the J-integral. This requirement cannot be

atisfied with certainty since J is dependent on the input vector X,
hich is random, and JIc itself may be a random variable. Hence,

he performance of the cracked structure should be evaluated by
he reliability or its complement, the probability of failure PF,
efined as the multifold integral

PF ª P�J�X� � JIc�X�� ª�
JIc�x�−J�x��0

fX�x�dx �1�

here x is a realization of X. The evaluation of the multidimen-
ional integral in Eq. �1�, either analytically or numerically, is not
ossible because N is large, X is generally non-Gaussian, and J�x�
s a highly nonlinear function of x. Crude Monte Carlo simulation
s impractical for calculating small failure probabilities since the
valuation of J�x� entails expensive FEA.

Equation �1� represents the probability of initiation of crack
rowth, which provides a conservative estimate of structural per-
ormance. A less conservative evaluation requires calculating the
robability when crack growth, if occurs, is unstable. The latter
robability, known as the probability of fracture instability, is
ore difficult to compute since it must be obtained by incorporat-

ng automatic crack growth simulation in a stochastic fracture
echanics analysis. In this paper, all probabilistic calculations are

imited to fracture initiation, although any performance function
escribing input-output system behavior is applicable.

Polynomial Dimensional Decomposition
Let J�X�, a real-valued, measurable transformation on �� ,F�,

efine a relevant crack-driving force for a generic elastic-plastic
racture problem. In general, the multivariate function J :RN→R
s implicit, is not analytically available, and can only be viewed as
high-dimensional input-output mapping, where the evaluation of

he output function J for a given input x requires expensive FEA.
herefore, methods employed in stochastic analysis must be ca-
able of generating accurate probabilistic characteristics of J�X�
ith an acceptably small number of output function evaluations.

3.1 Multivariate Function Decomposition. Consider a func-
ion J�x� that depends on x= �x1 , ¯ ,xN�T�RN. The dimensional
ecomposition of J�x�, also known as analysis of variance �6� or
igh-dimensional model representation �7,8�, represents a finite,
ierarchical, convergent expansion of �9�

J�x� = J0 + 	
i=1

N

Ji�xi� + 	
i1,i2=1;i1�i2

N

Ji1i2
�xi1

,xi2
� + ¯

+ 	
i1,¯,iS=1;i1�¯�iS

N

Ji1¯iS
�xi1

, ¯ ,xiS
� + ¯

+ J12¯N�x1, ¯ ,xN� �2�

n terms of input variables with increasing dimensions, where J0 is
constant, Ji�xi� is a univariate component function representing

ndividual contribution to J�x� by input variable xi acting alone,

i1i2
�xi1

,xi2
� is a bivariate component function describing the co-

perative influence of two input variables Ji1
and Ji2

,

i1¯iS
�xi1

, ¯ ,xiS
� is an S-variate component function quantifying
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the cooperative effects of S input variables xi1
, ¯ ,xiS

, and so on.
The last term in Eq. �2� represents any residual dependence of all
input variables cooperatively locked together to affect the output
function J. If

J̃S�x� = J0 + 	
i=1

N

Ji�xi� + 	
i1,i2=1;i1�i2

N

Ji1i2
�xi1

,xi2
� + ¯

+ 	
i1,¯,iS=1;i1�¯�iS

N

Ji1¯iS
�xi1

, ¯ ,xiS
� �3�

represents a general S-variate approximation of J�x�, the univari-

ate �S=1� and bivariate �S=2� approximations, J̃1�x� and J̃2�x�,
respectively, provide the two- and three-term approximants of the
finite decomposition in Eq. �2�. Similarly, trivariate, quadrivariate,
and other higher-variate approximations can be derived by appro-
priately selecting the value of S. The fundamental conjecture un-
derlying this decomposition is that component functions arising in
the function decomposition will exhibit insignificant S-variate ef-
fects cooperatively when S→N, leading to useful lower-variate

approximations of J�x�. When S=N, J̃S�x� converges to the exact
function J�x�. In other words, Eq. �3� generates a hierarchical and
convergent sequence of approximations of J�x�.

3.2 Fourier-Polynomial Expansion. Let L2��i ,Fi , Pi� be a
Hilbert space that is equipped with a set of complete orthonormal
bases ��ij�xi� ; j=0,1 ,¯�, which is consistent with the probabil-
ity measure of Xi. For example, classical orthonormal polynomi-
als, including Hermite, Legendre, and Jacobi polynomials, can be
used when Xi follows Gaussian, uniform, and Beta probability
distributions, respectively �10�. Defined on the product probability
triple ��k=1

k=S�ik
,�k=1

k=SFik
,�k=1

k=SPik
�, denote the space of square in-

tegrable S-variate component functions of J by

L2��k=1
k=S�ik

,�k=1
k=SFik

,�k=1
k=SPik

�

ª
Ji1¯iS
�Xi1

, ¯ ,XiS
�:�

RS

Ji1¯iS
2 �xi1

, ¯ ,xiS
�

��
k=1

S

f ik
�xik

�dxik
� � � �4�

which is also a Hilbert space. Since the joint probability density of
�Xi1

, ¯ ,XiS
�T is separable �independent�, the tensor product

��k=1
S �ikjk

�xik
�� constitutes an orthonormal polynomial basis in

L2��k=1
k=S�ik

,�k=1
k=SFik

,�k=1
k=SPik

�. Therefore, there exists a Fourier-
polynomial expansion

Ji1¯iS
�xi1

, ¯ ,xiS
� = 	

jS=1

�

¯ 	
j1=1

�

Ci1¯iSj1¯jS�
k=1

S

�ikjk
�xik

� �5�

with

Ci1¯iSj1¯jS
=�

RS

Ji1¯iS
�xi1

, ¯ ,xiS
��

k=1

S

�ikjk
�xik

�f ik
�xik

�dxik
�6�

representing the expansion coefficient for the S-variate component
function. By minimizing an error functional associated with a
given J�x� and the joint probability density of �Xi1

, ¯ ,XiS
�T, the

coefficients J0 and Ci1¯iSj1¯jS
can be expressed by N-dimensional

integrals �9�

J0 =�
RN

J�x�fX�x�dx �7�
and
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Ci1¯iSj1¯jS
=�

RN

J�x��
k=1

S

�ikjk
�xik

�fX�x�dx �8�

ince the right side of Eq. �5� is an infinite series, it must be
runcated, say, by m-terms in each variable, yielding a Fourier-
olynomial approximation

Ji1¯iS
�xi1

, ¯ ,xiS
� � 	

jS=1

m

¯ 	
j1=1

m

Ci1¯iSj1¯jS�
k=1

S

�ikjk
�xik

� �9�

hich approaches Ji1¯iS
�xi1

, ¯ ,xiS
� in Eq. �5� in the mean square

ense as m→�.
The Fourier-polynomial approximation is valid for any finite-

imensional Hilbert space L2��k=1
k=S�ik

,�k=1
k=SFik

,�k=1
k=SPik

� with 1
S	N. In other words, Eq. �9� can represent all component func-

ions of the multivariate function decomposition in Eq. �2�. In
articular, when S=1 and 2, Eq. �9� reduces to

Ji�xi� � 	
j=1

m

�ij�ij�xi� �10�

nd

Ji1i2
�xi1

,xi2
� � 	

j2=1

m

	
j1=1

m


i1i2j1j2
�i1j1

�xi1
��i2j2

�xi2
� �11�

here

�ij ª�
RN

J�x��ij�xi�fX�x�dx �12�

nd


i1i2j1j2
ª�

RN

J�x��i1j1
�xi1

��i2j2
�xi2

�fX�x�dx �13�

re the corresponding expansion coefficients. Applying Eqs.
9�–�13� into an S-variate approximation of Eq. �2� yields

J̃S�X� � J0 + 	
i=1

N

	
j=1

m

�ij�ij�Xi�

+ 	
i1,i2=1;i1�i2

N

	
j2=1

m

	
j1=1

m


i1i2j1j2
�i1j1

�Xi1
��i2j2

�Xi2
� + ¯

+ 	
i1,¯,iS=1;i1�¯�iS

N

	
jS=1

m

¯	
j1=1

m

Ci1¯iSj1¯jS�
k=1

S

�ikjk
�Xik

�

�14�

hich, for S=N, converges to J�X� in the mean square sense as

→�. Once the embedded coefficients J0, �ij, 
i1i2j1j2

, and

s=1 s=1

ournal of Pressure Vessel Technology
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Ci1¯iSj1¯jS
are calculated, as described in Sec. 3.3, Eq. �14� fur-

nishes an approximate but explicit map J̃S :RN→R that can be
viewed as a surrogate of the exact map J :RN→R, which de-
scribes the input-output relation from a complex fracture mechan-
ics simulation. Therefore, any probabilistic characteristic of J�X�,
including its statistical moments and probability distribution, can
be easily estimated by performing Monte Carlo simulation of

JS�X� rather than of J�X�. The simulation of J̃S�X�, which entails
evaluation of simple analytical functions, can be performed for an
arbitrarily large sample size. In contrast, the simulation of J�X�,
referred to as crude Monte Carlo simulation in this paper, requires
expensive numerical calculations and can therefore be prohibitive
when estimating small probabilities.

3.3 Dimension-Reduction Integration for Calculating Ex-
pansion Coefficients. The determination of the expansion coeffi-
cients, which involve N-dimensional integrals over RN, is compu-
tationally prohibitive when N is large. Instead, a dimension-
reduction integration, presented as follows, can be applied to
estimate the coefficients efficiently.

Let c= �c1 , ¯ ,cN�T be the mean value of X and
J�c1 , ¯ ,ck1−1 ,xk1

,ck1+1 , ¯ ,ckR−k−1 ,xkR−k
,ckR−k+1 , ¯ ,cN� repre-

sent an �R−k�th dimensional component function of J�x�, where
S	R�N and k=0, ¯ ,R. For example, when R=1, the zero-
dimensional component function, which is constant, is J�c�, and
the one-dimensional component functions are J�x1 ,c2 , ¯ ,cN�,
J�c1 ,x2 , ¯ ,cN�, …, J�c1 ,c2 , ¯ ,xN�. Using the multivariate func-
tion theorem of Xu and Rahman �11�, it can be shown that a
special R-variate approximation of J�x�, defined by

ĴR�x� ª 	
k=0

R

�− 1�kN − R + k − 1

k
� � 	

k1,¯,kR−k=1;k1�¯�kR−k

N

�J�c1, ¯ ,ck1−1,xk1
,ck1+1, ¯ ,ckR−k−1,xkR−k

,ckR−k+1, ¯ ,cN�

�15�

consists of all terms of the Taylor series of J�x� that have less than
or equal to R variables. The expanded form of Eq. �15�, when
compared with the Taylor expansion of J�x�, reveals that the re-

sidual error in ĴR�x� includes terms of dimensions R+1 and
higher. All higher-order R- and lower-variate terms of J�x� are
included in Eq. �15�, which should therefore generally provide a
higher-order approximation of a multivariate function than equa-
tions derived from first- or second-order Taylor expansions.
Therefore, for R�N, an N-dimensional integral can be efficiently
estimated by at most R-dimensional integrations, if the contribu-
tions from terms of dimensions R+1 and higher are negligible.

Substituting J�x� in Eqs. �7� and �8� by ĴR�x�, the coefficients

can be estimated from
J0 � 	
k=0

R

�− 1�kN − R + k − 1

k
� � 	

k1,¯,kR−k=1;k1�¯�kR−k

N

��
RR−k

J�c1, ¯ ,ck1−1,xk1
,ck1+1, ¯ ,ckR−k−1,xkR−k

,ckR−k+1, ¯ ,cN��
s=1

R−k

fks
�xks

�dxks

�16�
nd

Ci1¯iSj1¯jS
� 	

k=0

R

�− 1�kN − R + k − 1

k
� � 	

k1,¯,kR−k=1;k1�¯�kR−k

N

��
RR−k

J�c1, ¯ ,ck1−1,xk1
,ck1+1, ¯ ,ckR−k−1,xkR−k

,ckR−k+1, ¯ ,cN�

� �
S

�isjs
�xis

��
R−k

fks
�xks

�dxks
�17�
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hich require evaluating at most R-dimensional integrals. The
roposed equations �Eqs. �16� and �17�� are substantially simpler
nd more efficient than performing one N-dimensional integra-
ion, as in Eqs. �7� and �8�, particularly when R�N. Hence, the
omputational effort in calculating the coefficients is significantly
owered using the dimension-reduction integration. When R=1 or
, Eqs. �16� and �17� involve one- and at most two-dimensional
ntegrations, respectively. Nonetheless, numerical integration is
till required for a general function J. The integration nodes and
ssociated weights, which depend on the probability distribution
f Xi, can be obtained from Gauss quadrature rules. In performing
he dimension-reduction integration, the value of R should be se-
ected in such a way that it is either equal to or greater than the
alue of S, which defines the truncation of Eq. �2�. Then all ex-
ansion coefficients of S- or lower-variate approximations of J�x�
ill have nontrivial solutions �9�.

3.4 Computational Effort. The S-variate approximation in
he polynomial decomposition method requires evaluation of the
eterministic coefficients J0 and Ci1¯iSj1¯jS

. If these coefficients
re estimated by at most R-dimensional �R�S�1� numerical
ntegration with an n-point quadrature rule in Eqs. �16� and �17�,
he following deterministic responses �FEA� are required:
�c�, J�c1 , ¯ ,ck1−1 ,xk1

�j1� ,ck1+1 , ¯ ,ckR−1 ,xkR

�jR� ,ckR+1 , ¯ ,cN� for

1 , ¯ ,kR=1, ¯ ,N and j1 , ¯ , jR=1, ¯ ,n, where the super-
cripts on variables indicate the corresponding integration points.
herefore, the total cost for an S-variate polynomial dimensional
ecomposition entails a maximum of 	k=0

k=R� N
R−k

�nR−k J-integral
valuations and is, therefore, polynomic with respect to N or n.

If the integration points include a common point in each coor-
inate xi, as in Sec. 4, the numbers of J-integral evaluations re-
uce to 	k=0

k=R� N
R−k

��n−1�R−k. In the latter case, for example, the
nivariate �S=R=1� and bivariate �S=R=2� approximations re-
uire �n−1�N+1 and N�N−1��n−1�2 /2+ �n−1�N+1 J-integral
valuations, respectively.

Numerical Examples
Two numerical examples involving elastic-plastic fracture me-

(a) (b)

a a

L

L

2W

σ∞

σ∞

crack crack

Fig. 1 A DE„T… specimen: „a… geometry and
length; and „c… singular elements at the cr
hanics analysis of cracked structures are presented to illustrate
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the polyomial dimensional decomposition method. Whenever pos-
sible, comparisons have been made with crude Monte Carlo simu-
lation to evaluate the accuracy and efficiency of the proposed
method. For the non-Gaussian random input, all original random
variables were transformed into standard Gaussian random vari-
ables, employing Hermite orthonormal polynomials as bases and
the Gauss–Hermite quadrature rule for calculating the expansion
coefficients. The expansion coefficients were estimated by
dimension-reduction integration with R=S, so that an S-variate
decomposition method requires at most S-variate numerical inte-
gration. In Example 1, the sample sizes for crude Monte Carlo
simulation and the embedded Monte Carlo simulation of the de-
composition method are 5000 and 106, respectively. The sample
size in the decomposition method varies from 106 to 107 in Ex-
ample 2. The polynomial order m varies, depending on the ex-
ample, but in all cases the number of integration points n=m+1.

4.1 Example 1: A Double-Edged-Notched Tension
Specimen. Consider a double-edged-notched tension �DE�T��
specimen with width 2W=1.016 m �40 in.�, length 2L=5.08 m
�200 in.�, and random crack length a, subject to a random far-field
tensile stress ��, as shown in Fig. 1�a�. The nonlinear-elastic con-
stitutive equation under small-displacement condition is the well-
known Ramberg–Osgood relation �12�

ij =
1 + �

E
sij +

1 − 2�

3E
�kk�ij +

3

2E
�0�e

�0
�m0−1

sij �18�

where �ij and ij are the stress and strain components, respec-
tively, E is the Young’s modulus, � is the Poisson’s ratio, �0 is the
reference stress, �0 is a dimensionless material coefficient, m0 is
the strain hardening exponent, �ij is the Kronecker delta, sij

ª�ij −�kk�ij /3 is the deviatoric stress, and �eª��3 /2�sijsij is the
von Mises equivalent stress. For nonlinear-elastic cracked struc-
tures, the J-integral uniquely defines the asymptotic crack tip
stress and strain fields �12�. The crack length a, material constants
E, �0, and m0, and far-field stress �� were treated as five inde-
pendent random variables with their statistical properties listed in
Table 1. The remaining deterministic parameters are as follows:
�0=154.78 MPa �22.450 psi� and �=0.3. Due to the double-

(c)

crack tip

ads; „b… finite element mesh at mean crack
tip
lo
symmetry in the DE�T� problem, Fig. 1�b� shows a finite element
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esh at mean crack length of the quarter-cylinder model. A total
f 114 elements and 393 nodes were used in the mesh. Both plane
tress and plane strain conditions were studied. Second-order ele-
ents from the ABAQUS �version 6.8� �13� element library were

mployed. Focused singular elements were deployed in the vicin-
ty of the crack tip �Fig. 1�c��. A 2�2 Gaussian integration rule
as employed in the FEA.
Since the J-integral, in general, is nonpolynomial, a conver-

ence study with respect to S and m is required to calculate its
robability characteristics accurately. Figures 2�a� and 2�b�

Table 1 Statistical properties o

Random variable

Crack length a �cm� �in.� 2
Elastic modulus E �GPa� �psi� 206.8
Ramberg–Osgood coefficient �0

Ramberg–Osgood exponent m0

Far-field tensile stress ��, �MPa� �psi� 124.
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present the probability densities of J�X� in a plane stress condition
by the proposed univariate �S=1� and bivariate �S=2� polynomial
decomposition methods, respectively, for m=3, 4, and 5. The de-
composition methods, which entail explicit forms of univariate or
bivariate approximation in Eq. �14�, permit inexpensive calcula-
tion of the J-integral by sidestepping additional FEA. Hence, an
arbitrarily large sample size of the embedded Monte Carlo, such
as 106 in this particular example, was selected to obtain the prob-
ability densities of J by the decomposition methods. Figures 2�a�

ndom input for DE„T… specimen
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nd 2�b� also include corresponding histograms generated by
rude Monte Carlo simulation from 5000 FEA �samples�, provid-
ng benchmark solutions. The probability densities from both de-
omposition methods converge when m reaches four or five, but
he Monte Carlo results are better predicted by the bivariate

ethod than by the univariate method. The errors in the univariate
ethod are primarily due to the absence of cooperative terms in

he univariate approximation. Similar probabilistic analyses under
plane strain condition, leading to the results in Figs. 2�c� and

�d�, reveal the same qualitative trend, except that the J-integral
alues for plane strain are much lower than that in plane stress �5�.

Table 2 compares the numbers of FEA required by the proposed
ecomposition methods for either plane stress or plane strain con-
ition when 3	m	5 and n=m+1. The computational effort by

able 2 Numbers of FEA by decomposition methods for DE„T…
pecimen „N=5…

m n Univariate methoda Bivariate methodb

3 4 16 106
4 5 21 181
5 6 26 276

�n−1�N+1
N�N−1��n−1�2 /2+ �n−1�N+1

(a)

outer

crack
front

middle

inner

through-wall
crack

t

Li

Lo

F/2

Fig. 3 A TWC pipe under four-point bendin

section; and „c… finite element mesh
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the univariate or bivariate method increases linearly or quadrati-
cally with respect to m or n. Clearly, the univariate method is
inexpensive, but it is not as accurate as the bivariate method.
Nonetheless, both versions of the decomposition method are far
less expensive than crude Monte Carlo simulation. Note that the
sample size of 5000 FEA in the Monte Carlo simulation was
deemed adequate for providing rough estimates of the histograms.
A significantly larger sample size will be required for obtaining
their tail characteristics, which is not practical for an FEA-based
probabilistic analysis.

4.2 Example 2: A Through-Walled-Cracked Pipe. The final
example involves a circumferential, through-walled-cracked
�TWC� pipe, which is subjected to a four-point bending, as shown
in Fig. 3�a�. The pipe has a midthickness radius Rm=50.8 mm, a
wall thickness t=5.08 mm, and a symmetrically centered
through-wall crack with the normalized crack angle � /�=1 /8.
The outer span Lo=1.5 m and the inner span Li=0.6 m. The
cross-sectional geometry at the cracked section is shown in Fig.
3�b�. The pipe material is an ASTM Type 304 stainless steel,
which follows the Ramberg–Osgood constitutive law defined by
Eq. �18�. Table 3 lists the means, coefficients of variation, and
probability distributions of the tensile parameters �E ,�0 ,m0�,
four-point bending load �F�, and fracture toughness �JIc�. All ran-
dom variables are statistically independent. Also, �0
=154.78 MPa and �=0.3. A finite element mesh of the quarter-

(b)

(c)

Rm

F/2

Rm

„a… geometry and loads; „b… cracked cross
g:
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ylinder model, consisting of 236 elements and 1805 nodes, is
hown in Fig. 3�c�. Twenty noded isoparametric solid elements
rom the ABAQUS library �13� were used, with focused singular
lements at the crack tip.

The objective of this example is to calculate the probability of
racture initiation of the TWC pipe, defined by Eq. �1�, where
�X� is calculated at the midthickness level. The problem was
olved for 11 distinct values of the mean applied load �F as fol-
ows: 23.2 kN, 25.6 kN, 28 kN, 30.4 kN, 33.6 kN, 36 kN, 38.4
N, 41.6 kN, 45.6 kN, 56 kN, and 64 kN, where the standard
eviation �F=0.1�F in all load cases. The smaller mean values
ere selected to produce low probabilities, posing a significant

hallenge to any computational method. The proposed univariate
S=R=1� and bivariate �S=R=2� decomposition methods, involv-
ng m=4, n=5, and 106–107 samples �depending on PF� of the
mbedded Monte Carlo, were employed to calculate the respec-
ive failure probabilities, which are presented in Fig. 4 as scatter
lots. Since the J-integral depends solely on the first four random
ariables in Table 3, only �5−1�4+1=17 and 4�4−1��5−1�2 /2
�5−1�4+1=113 ABAQUS-aided FEA were required by the
nivariate and bivariate methods, respectively. Due to expensive
EA, crude Monte Carlo simulation was infeasible to verify the

ow probabilities in this example. Instead, a J-estimation based
onte Carlo simulation �14� �solid line� involving 104–107

amples �depending on PF� was performed, the results of which
re displayed in Fig. 4. The proposed decomposition methods,
articularly the bivariate version, provide excellent estimates of
he probability of fracture initiation of the TWC pipe examined. It
s worth noting that any uncertainty or error, if it exists, in the
-estimation scheme and its impact on the failure probability were
ot examined in this study.

The decomposition method is not only accurate, but also com-
utationally efficient. For instance, when �F=23.2 kN, the bivari-
te decomposition method yields a failure probability estimate of

Table 3 Statistical properties of rando

Random variable Mea

Elastic modulus E �GPa� 182.
Ramberg–Osgood coefficient �0 8.07
Ramberg–Osgood exponent m0 3.8
Four-point bending load F �kN� �F

a

Initiation toughness JIc �kJ /m2� 1242

a�F varies as 23.2 kN, 25.6 kN, 28 kN, 30.4 kN, 33.6 kN, 3
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Fig. 4 Probability of fracture initiation of a TWC pipe
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5.2�10−6, requiring only 113 FEA. In contrast, crude Monte
Carlo simulation, if it can be performed, will require 10 /5.2
�10−6�2�106 FEA to calculate this low probability with a 30%
coefficient of variation in the estimator. The computational sav-
ings by the proposed method for calculating low probabilities is
obvious.

In both examples, the expansion coefficients for univariate and
bivariate approximations were obtained by calculating the
J-integrals at selected deterministic input defined by the integra-
tion points. Therefore, the proposed method is nonintrusive, as it
can be easily adapted to solving complex, stochastic fracture prob-
lems requiring external commercial codes. The method developed
is expected to solve practical problems both accurately and eco-
nomically.

5 Conclusions
A polynomial dimensional decomposition method was devel-

oped for calculating the probability distributions of random crack-
driving forces frequently encountered in elastic-plastic fracture
mechanics. The method is based on a hierarchical decomposition
of a multivariate function in terms of variables with increasing
dimensions, a broad range of orthonormal polynomial bases con-
sistent with the probability measure for Fourier-polynomial ex-
pansion of component functions, and an innovative dimension-
reduction integration for calculating the expansion coefficients.
Compared with the previous development, the new decomposition
method does not require sample points around the mean input to
approximate the component functions. Instead, orthogonal poly-
nomial basis functions in the Hilbert space, such as Hermite poly-
nomials, were employed, yielding the Fourier-polynomial expan-
sion of the component functions. Due to nonintrusive evaluation
of the expansion coefficients, the method can be easily adapted to
solving complex, stochastic fracture problems requiring external
deterministic codes.

Two elastic-plastic fracture mechanics problems were examined
to evaluate the probability distributions of the J-integrals, includ-
ing the reliability of a through-walled-cracked pipe. The results
indicate that the polynomial dimensional decomposition method
developed, particularly the bivariate version, provides accurate
and convergent estimates of the distributions of the crack-driving
forces. The computational effort by the univariate method varies
linearly with respect to the number of random variables or the
number of integration points; therefore, the univariate method is
economical. In contrast, the bivariate method, which is generally
superior to the univariate method, demands a quadratic cost scal-
ing, making the former method more expensive than the latter
method. Nonetheless, both versions of the decomposition method
are significantly more economical than crude Monte Carlo simu-
lation.
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a � length of cracks in DE�T� specimen
c � mean of X

f i�xi� � marginal probability density of Xi
fX�x� � joint probability density of X

m � degree of orthonormal polynomial basis
m0 � Ramberg–Osgood material exponent

n � number of Gauss quadrature points
t � pipe thickness

xi, x � realizations of Xi and X
Ci1¯iSj1¯jS � coefficient for S-variate component function of

J
E � Young’s modulus
F � applied load on pipe
J � J-integral

JIc � mode-I fracture toughness at plane strain
J0 � first coefficient of polynomial decomposition

of J
Ji1¯iS � S-variate component function of J

J̃S�X� � S-variate polynomial approximation of J

ĴR�X� � R-variate approximation of J
2L � length of DE�T� specimen

Li, Lo � inner and outer spans of pipe
N � number of random variables

Pi, P � probability measures of Xi and X
R � positive integer ranging from S to N

Rm � mean radius of pipe
RN � N-dimensional real vector space

S � positive integer ranging from 1 to N
2W � width of DE�T� specimen

X � N-dimensional input random vector
Xi � ith input random variable
�0 � Ramberg–Osgood material coefficient
�ij � coefficient for univariate component function

of J

i1i2j1j2 � coefficient for bivariate component function of

J
 � strain component
ij
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�F � mean of pipe load
� � Poisson’s ratio
� � half of crack angle in pipe

�e � von Mises equivalent stress
�F � standard deviation of pipe load
�0 � Ramberg–Osgood reference stress
�ij � stress component
�� � far-field tensile stress on DE�T� specimen

�ij�xi� � jth univariate polynomial basis for ith variable
�i, � � sample spaces of Xi and X
Fi, F � �-fields on �i and �

L2 � Hilbert space
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