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Introduction Recently, Feijo et al.[10] applied concepts of shape sensitivity

For structures containing cracks, the stress-intensity factanalysm[ll] to calculate the first-order derivative of the potential

gr[lergy. Since ERR is the first derivative of potential energy, this
(SIF) and energy release r_a(ERR) are the well-known fracture approach can be used to calculate the ERR without any mesh
parameters in linear-elastic fracture mechanicEFM). If an

. - > ) . erturbation. Taroc$12] later extended this approach to formu-
gsymptotlc crack-tip solution with a free_ a”?p"‘”de parameter egyq he second-order sensitivity of the potential energy in predict-
ists, the strength o_f the stress and strain fields near the crack; gﬁthe first-order derivative of the ERR: however, this is a diffi-
can be expressed in terms of these parameters. Hence, these [(gf-taqk  since the calculation of second-order sensitivities of
ture parameters provide a mechanistic relationship between Hig,qs and strain is involved. It is worth mentioning that no nu-
residual strength of a structural component to the size and locatiQfdrical results of the sensitivity of ERR were reported by Taroco
of a crack—either real or postulated—in that component. Ho 12].
ever, in some applications of fracture mechanics, derivatives OfThis paper presents a new method for predicting the first-order
SIF or ERR with respect to crack size are needed for predictingnsitivity of theJ-integral for a crack in a homogeneous, isotro-
stability and arrest of crack propagation. Another major use of thg: and linear-elastic structure subject to mode-I loading condi-
derivatives of SIF or ERR is in the reliability analysis of crackegions. The method involves the material derivative concept of con-
structures. For example, the first and second-order reliabilitunuum mechanicsy domain integra| representation of the
methods[1], frequently used in PFNI2—4], require the gradient j.integral, and direct differentiation. Two numerical examples are
and Hessian of the performance function with respect to the cragkesented to calculate the first-order derivative of JHstegral,
length. In LEFM, the performance function builds on SIF or ERRysing the proposed method. The results from this method are com-
Hence, both first and second-order derivatives of SIF or ERR gsared with results from the analytical or the finite-difference
needed for probabilistic analysis. Therefore, an important requingethod.
ment of PFM is to evaluate the rates of SIF and ERR accurately
and efficiently. Shape Sensitivity Analysis

Some methods have already appeared for predicting sensitivi- ) ) . ) .
ties of SIF or ERR. In 1988, Lin and AbE5] introduced a direct- _velocity Field. Consider a general three-dimensional body
integration approach of the virtual crack extension techniquéth @ specific configuration, referred to as the reference configu-
[6—8] that employs variational formulation and the finite elemer@tion, with domain(}, boundaryT’, and a body material point
method(FEM) to calculate the first-order derivative of SIF for aldentified by position vectoke (). Consider the motion of the
structure containing a single crack. Subsequently, Hwang fg]al. Pody from the configuration with domai and boundary™ into
generalized this method to calculate both first and second-or@iother configuration with domaifil, and boundaryl';, as
derivatives for structures involving multiple crack systems, axenown in Fig. 1. This process can be expressed as
symmetric stress state, and crack-face and thermal loading. A sa- T:x—X,, XeQ (1)
lient feature of this method is that SIFs and their derivatives can . ) o
be evaluated in a single analysis. However, this method requiié8erex andx, are the position vectors of a material point in the
mesh perturbation—a fundamental requirement of all virtual cragkference and perturbed configurations, respectivielg, a trans-
extension techniques. For second-order derivatives, the numbefQation mapping, and is a timelike parameter with
elements surrounding the crack tip that are affected by mesh per- X, =T(x7), Q.=T(Q,7), 2)
turbation has a significant effect on the solution accurg&ly

I,=T(,7)
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lr,/2: J g(ZTYVZ’T)dQT (12)
Q.

the material derivative ofs, at Q using Eqs.(9) and(11) is
‘-pZ:fﬂ[g,ziii_g,zi(zi,jvj)+g,zi’jlzi,j_g,zivj(zi,jvj),j

+div(gV)]dQ (13)

for which a comma is used to denote partial differentiation, e.g.,
Zi,j:azi /(9)(1 f Zl’]:(?2| /(9XJ , gvzi=r9g/(92i , g'zi j=(9g/r92i,j ande
is thejth component o¥/. In Eq. (13), the material derivative is
the solution of the sensitivity equation obtained by taking the
material derivative of Eq(5).

If no body force is involved, the variational equatitqg. (5))

. S ) . can be written as
In the neighborhood of an initial time=0, assuming a regularity

hypothesis and ignoring high-order terriscan be approximated

Fig. 1 Variation of domain

ag(Z,?)Ej Uij(z)sij(?)dQ:€Q(?)EfTi?idr (14)
Q r

by
dT(x,0) ) where o (z) and &;,(z) are the stress and strain tensors of the
= = ! i i\ . > ¢ ! ’
TxD)=TX0+7———+0(r)=x+7V(x0  (4) displacement and virtual displacemers, respectively[T; is the

ith component of the surface traction, aryds theith component

wherex=T(x,0) andV(x)=V(x,0) of z. Taking the material derivative of both sides of Et@) and

Shape Sensitivity Analysis. The variational governing equa- Using Eas.(7)—(9)
tion for a structural component with domaihcan be formulated an(z2)=t,(2—aj(z2), VzeZ (15)
as[11] ' e

_ _ _ where the subscrip? indicates the dependency of the terms on
aa(z,2)=4€q(2), for all zeZ (®)  the velocity field. The termg!(z) and a(z,z) can be further

wherez andz are the actual displacement and virtual displacdlerived ag11]
ment fields of the structure, respectively,is the space of kine-
matically admissible virtual displacements, amg(z,z) and (2= f {=Ti(z;V) +[(Tiz) jn;+ xkp(Tiz) 1(Vin)}dl
€ (2) are energy bilinear and load linear forms, respectively. The r
subscriptQ) in Eq. (5) is used to indicate the dependency of the (16)
governing equation on the shape of the structural domain. and
The pointwise material derivative ate Q) is defined ag11]

[z (x+ V(X)) —z(x) a\’/(ZE)=—J' [0(2)(zi Vi) + i (2)(Zi Vi )
z=lim - (6) Q
7—0 J—
If z, has a regular extension to a neighborhood)of, then ) ) . )
_ wheren; is theith component of unit normal vector, - is the
2(x)=2"(x)+Vz'V(x) (7)  curvature of the boundary; ;=dz /dx;, andV; j=dV,/dx; .

To evaluate the sensitivity expression in Efj3), a numerical
method is needed to solzen Eq. (15). In this study, the standard
FEM was used. If the solution of Eq. (14) is obtained using an
(8) FEM code, the same code can be used to solvéEyfor z. This
solution ofz can be obtained efficiently since it requires only the
: . N _ T evaluation of the same set of FEM matrix equations with a differ-
is the partial derivative oz andV ={d/dx,,d/ x5,/ dxs}" is the @_g fictitious load, which is the right-hand side of Ed5). In

where

Z,(X)—=2(X)
-

"=lim

7—0

4

vector of gradient operators. One attractive feature of the part - ; . .
derivative is that, given the smoothness assumption, it commu er Wor(zs,zbc?jn é)éljolvedhus_llphg the_ same stlffgetss miatrllx tfrom
with the derivatives with respect &q, i =1, 2, and 3, since they deeri\;JarliF\)/?ar gfr tﬁe stiffne:serie{trix i\rse rzasqﬂi(?egeiﬁ vir?uglaccr:?keex-e
are derivatives with respect to independent variables, i.e., tension methods. In this study, the ABAQUS3] finite element

az\" 49 . code (Version 5.8 was used in all numerical calculations pre-
TX.) =(9—Xi(2'), i=1,2 and 3 (9) sented in a forthcoming section.

Let ¢, be a domain functional, defined as an integral d¥et  The J-integral

ie., . . .
Consider a body with a crack of lengthy subject to mode-I

loading. Using an arbitrary counterclockwise pattaround the
= f.(x,)dQ, (10) crack tip, as shown in Fig.(8), a formal definition ofJ under
Q >

T mode-| condition i 14]

wheref _is a re_gular funqtion defined_ afl,. If Qis CKregular, def
then the material derivative af, at Q) is [11] ‘]:f (Wn,— Tz, )ds (18)

r

U= L[f’(X)+diV(f(X)V(X))]dQ (11) whereW= [ o;de;; is the strain energy densit§;=o;;n;, dsis
the differential length along contodrf, andz ;=dz;/dx;. The
For a functional form of summation convention is adopted here for repeated indices.
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of

E 8%1 E
(1—v2) S vl | 1 ok
E 852
|\ 1=52/| 5 tveusz|,  for plane stress
E ) (l_y)sil—i-Z . (1-v)e3,
(1-2v)(1+v) 2 veugnt T 5
E 2 f | .
Mk e or plane strain
(21)

E is the Young's modulusy is the Poisson’s ratio for the material

the body, and;; is the strain field given by
1/(dz (921‘ .
Sij:E W K s I,]:1,2 (22)
] i

Sensitivity of the J-integral

For two-dimensional plane stress or plane strain problems, once
the stress-strain relationship is applied, E2f)) can be expressed

as
J= f hdA (23)
(b) A
Fig. 2 J-integral fracture parameter— (a) arbitrary contour where
around a crack tip; (b) inner and outer contours enclosing A h=h,+h,+hs+h,—hs—hg (24)
The explicit expressions df;, i=1, ... ,6 aregiven in Appendix

A for both plane stress and plane strain conditions. In relation to
Eq. (11), the material derivative of thé-integral is

Using the divergence theorem, the contour integral defined in
Eq. (18) can be expanded into an area integral in two dimensions,
and volume integral in three dimensions, over a finite doma
surrounding the crack tip or crack front. For two-dimensione
problems involving linear- or nonlinear-elastic material unde
quasi-static conditions, in the absence of body forces, thern
strains, and crack-face tractions, Ef8) reduces td15]

3

where §;; is the Kronecker deltag is an arbitrary but smooth
weighting function equal tainity onI'y andzeroonI';, andA is
the annular area enclosed by the inner confégiand outer con-
tourT";, as shown in Fig. @). In this study, the inner contol,
coincides with the crack tip. HencA,becomes the area inside the
outer contoud’;. On further expansion

Jz;
(T”a_)(l

aq
7 9A

—Wéyi (19)

Y

Solve displacement z

Using FEM, solve:

4 (2.7) =14 @) Kz=F

|

Solve material derivative 2

Using FEM, solve:
Ki=F

Sfictitious

ao(2,2)= 0, (z)-ay (2.2)

\. /

]
Calculate H;,i=1

(Equations 41-46 or 47-52)

Y

Calculate Sensitivity of J
J =f (H,+H,+H,+H,~H,~H,)dA
A

9z, 9z, 99 9z, 9z, 9
J= —— At oy | — | Oy F O | —
f A (Ullaxl Ulzaxl)(?xl T2xg 722550 %,

W %4 dA 20

%, (20)

End

Fig. 3 A flowchart for continuum sensitivity analysis of crack

where
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J=J [h'+div(hV)]dA (25)
A

“+++++§++j++++++++

where
h'=h;+hy+h;+h;—hi—hg (26)

andV={V,,V,}". Assuming the crack lengtto be the variable
of interest, a change in crack length in tkedirection (mode-)
only, i.e.,V:{Vl,O}T, results in the expression of E(5) as 2L

J=J(H1+H2+H3+H47H57H6)dA @27)
A

where

a(hv
Hi:hi/+ M
0Xq

Equations(41)—(46) and (47)—(52) in Appendix B provide ex-

plicit expressions oH;, i=1,6, for plane stress and plane strain
conditions, respectively. These expressiondHof i =1,6, when

inserted in Eq/(27), yield the first-order sensitivity of with re- (@
spect to crack size. Note, when the velocity field is unity at the

crack tip,J is equal todJ/da.

Numerical integration is required in calculating balh(Eq.
(19) and dd/da (Eq. (27)). Since Eq.(19) is already coded in
ABAQUS, J can be obtained readily. However, EQ7) is new
and is currently not available in ABAQUS. Hence, new subrou-
tines were developed to calculatd/ da. They involve calculating
the H-functions (Egs. (41)—(52)) using the ABAQUS-generated
displacement/strain fields and then performing numerical integra-
tion in Eq. (27). Note, the integral in Eq(27) is independent of
the domain sizéA and was calculated numerically using the stan-
dard Gaussian quadrature. A<2 or higher integration rule is

recommended to calculafeor 4J/da. A flow diagram for calcu-
lating the sensitivity of) is shown in Fig. 3. Outer

Contour, I'1 ™

Numerical Examples (half)

Example 1: M(T) Specimen. Consider a middle-tension
[M(T)] specimen with width /=20 units, length 2 =20 units
and crack length &, subjected to a far-field remote tensile stress,

o”=1 unit. Two crack sizes with normalized crack leng&i¥V ()

. i=1,....6 (28) -

RIXRRRRIRA2X2TAR2E,

Crack

R

< o ol
-

\\ Crack Tip

=0.025 and 0.05 were considered. The elastic mod&wnd Fig. 4 M(T) specimen under mode-l loading— (a) geometry
Poisson’s ratior were 26 units and 0.3, respectively. and loads; (b) finite element mesh (/4 model )

Table 1 Sensitivity of J for M (T) specimen by the proposed and analytical methods

Sensitivity of J-integral (d.J/da)

Proposed Analytical Difference®
alW . J-integral Method Method (percent)
(a) plane stress
0.025 3.04x10° 1.22x10™* 1.21x10™ -0.83
0.05 6.01x107 1.19x10™* 1.21x10™ 1.65

(b) plane strain
0.025 2.77x10° 1.12x10™* 1.10x10™* -1.82
0.05 5.48x10° 1.13x10™ 1.10x10™* 2.72

(a) Difference = (3J/da by analytical method - dJ/da by proposed method)x100/0J/0a by analytical method
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Second-order elements from the ABAQW¢ersion 5.8 [13] el-

A * * * * * * * *} + * * + * + * * ement library were employed. For plane stress, the element type

(a)

was CPS8R—the reduced integration, eight-noded quadrilateral
element. The element-type CPE8R was used for plane strain. The
model consisted of 270 elements and 843 nodes. Focused ele-
ments with collapsed nodes were employed in the vicinity of
crack tip. The domairicontouy of integration is depicted in Fig.
4(b). A 2X2 Gaussian integration was used.

Crack Table 1 presents the numerical results Jaand 9J/da for the

<_._.1 M(T) problem. Both plane stress and plane strain conditions were
a

analyzed. For each stress state, two sets of results are shown for
dJdlda. The first set presentdl/da computed using the method
described herein; the second set was calculated using the analyti-
cal solution for an infinite platgl5]. The results in Table 1 dem-
onstrate that the continuum shape sensitivity analysis provides

\j
\

very accurate results fo#J/da in comparison with the corre-
+ + + + * * tj + * + * + * + v sponding results from the analytical solution. Unlike the virtual

>l crack extension technique, no mesh perturbation is required in the
proposed method. The difference between the results of the pro-
posed method and the analytical solution is less than 3%. A rela-
tively larger difference in results fa/W=0.05 is due to the use

of analytical solution, which is strictly valid whes W— 0.

w

Example 2: SHT) Specimen. Consider a single-edged-

/ tension[SET)] specimen with widthV/=10 units, lengthL=10

/ units, and crack lengtl, subjected to a far-field remote tensile

stresso”=1 unit. Two crack sizes with normalized crack lengths

\

/ // a/W=0.25 and 0.5 were considered. The elastic mod&wsnd

// ] Poisson’s ratiov were 30 units and=0.25, respectively.

\

L1 The geometry and loads of the @& specimen are shown in

Fig. 5a). Due to single-symmetry of the $E) problem, a finite

/
/
//// element mesh for 1/2-model was used, as shown in Fm. $he

] model consisted of 280 elements and 873 nodes. As before, both

™~
[~

|1

PN

L T plane stress and plane strain conditions were studied.
Table 2 presents the numerical results Jasnd 9J/9a for the

|t

A
\ AN

1\

Crack Tip
(b)

TN

SHT) problem. Two sets of results are shown &/ da, the first

Outer Contour, Ty computed using the proposed method and second calculated using
(half) the finite-difference method, since no analytical solution was

available for this problem. A 1% perturbation of crack length was

Fig. 5 SE(T) specimen under mode-l loading— (a) geometry  Used in the finite-difference calculations. As in Example 1, the
and loads; (b) finite element mesh (1/2 model) results in Table 2 also demonstrate that continuum shape sensitiv-

ity analysis provides accurate estimatesddfda as compared
with corresponding results from the finite-difference method. Un-

Figure 4a) shows the geometry and loads of thé TV speci- like the virtual crack extension technique, no mesh perturbation is
men. A finite element mesh for 1/4-model was used due to tihequired using the proposed method. The difference between the
double-symmetry of this NT) problem, as shown in Fig.(d). results of the proposed method and the finite-difference method is
Both plane stress and plane strain conditions were studidess than 2%.

Table 2 Sensitivity of J for SE (T) specimen by the proposed and finite-difference methods

Sensitivity of J-integral (dJ/da)

Proposed Finite Difference®
a/W J-integral Method Difference (percent)
(a) plane stress
0.25 5.80x10” 4.63x107 4.59x107 -0.87
0.5 4.70x10° 3.48x107 3.54x107 1.69

(b) plane strain

0.25 5.44x107 4.28x107 4.30%x107 0.65
0.5 4.39%x10° 3.52x107 3.49x107 -0.86

(a) Difference = (0J/da by finite difference method - dJ/da by proposed method)x100/3J/0a by finite difference method
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Conclusions E aq
A new method was developed for shape sensitivity analysis of a he= (1+v)(1— 2v) (l V)t renez e (40)
crack in a homogeneous, isotropic, and linear-elastic body subject
to mode-I loading. The method involves the material derivativAppendix B
concept of continuum mechanics, domain integral representation )
of the J-integral, and direct differentiation. Unlike virtual crack The H Functions. For plane stress
extension techniques, no mesh perturbation is required in the pro- E g 97 N
posed method. Since the governing variational equation is differ- H,= ksl E1— 1 Efl_l (41)
entiated prior to the process of discretization, the resulting sensi- 102 g%, | Maxy 281
tivity equations are independent of any approximate numerical
techniques, such as the finite element method, boundary elementHz: E a_q ﬁ(&Jr 1 ﬁ_ lsllﬁ_vl_ ﬁ (?_Vl)
method, or others. Existing methods based on the expressidn of I+ v axg[dxg\dXy 209X, 2 779Xy Xy 9%
as a rate of potential energy require second-order sensitivity of 102 [ 920 920 IV
potential energy to yield the first-order sensitivity bfSince the +Z _1(_2_ 772 1) (42)
proposed method requires only first-order sensitivity of displace- 2 9Xa\ 90Xy 9%y 9%
ment field, it is much simpler and more efficient than existing 1 E o g g g Py
methods. Numerical results demonstrate that the maximum differ- a== ksl sll(ﬁ + ﬂ) +2812£_82 Z
ence in calculating the sensitivity dfusing the developed method 2 1+v dx, dXy Xy X, Lox,
is less than 3%, compared with the analytical solution or finite-
difference results. —s E‘;_Vl E aq ‘Nl (43)
Woxy oxy| P10 axq oy
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The h Functions. For plane stress __E &_qs ﬂJr 9z _ E‘?_Vl_s N1 (45)
. ) STt woaxg Hoxy, dxp 0xq ax;  ‘oxy
811 99
M=17027 i, (29)  and
E dz, dq H :i 94 (e veqy) (722_&(9_\/1
hz:mslza_xl&_xl (30) 67142 X4 22t Ve Xy IXq IXp
Jz oV
E Jq +ve (—1_8 —1) 46
h3:m812311(9_x2 (31) 2 oxy  Hoxg (46)
For plane strain
E 9z, aq _
h,= 12 (B2t ven) = %, 7% (32) _ EQ-v» g . E—az V, )
E . Y(l-20)(L+w) x| Maxg  Maxg
_ 2 . .
"I T, BBl Lon 1 Ny 020V,
and 2T X, | Xy \axg | 2 9%y 2 M ox,  aXq oXq
E 832 aq + 1 %(%_ % &Vl) (48)
he=7—,2 7+V811822>a_x1 (34) 20X, \ 90X, OXy Xy
For plane strain 1 E 7 . EJF ﬂ og ﬂ_sz vy
E(l—») 2 dq 3721+ waxy| T Moox,  ax, 2%, “Mox,
ST 2 59 _ma] E @ )
E 92, 9 Clx, axq| ML 9x ax,
2
N1 P12y, ax, G B | m avl) »
£ e A E ) % x|\ %, kg ) AT
Ne= 13, gy, 37) 92, 02, IV, E
o | |t o (L= v)egtvey]
E 9z, 4q Xy Xy Xy (1-2v)(1+v)
+ —_— -
e e el G, B9 4 727 09 Vs 0)
_ 2 71 . .
hs=T7 ez, (39) L E oo [ an o oamavi)
and Ty ik, g %y Ty oxg axg| D)
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