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Shape Sensitivity Analysis of
Linear-Elastic Cracked Structures
Under Mode-I Loading
A new method is presented for shape sensitivity analysis of a crack in a homogen
isotropic, and linear-elastic body subject to mode-I loading conditions. The metho
volves the material derivative concept of continuum mechanics, domain integral r
sentation of the J-integral, and direct differentiation. Unlike virtual crack extension te
niques, no mesh perturbation is needed in the proposed method. Since the gov
variational equation is differentiated prior to the process of discretization, the resul
sensitivity equations are independent of any approximate numerical techniques, su
the finite element method, boundary element method, or others. Since the J-integ
represented by domain integration, only the first-order sensitivity of displacement fie
needed. Two numerical examples are presented to illustrate the proposed metho
results show that the maximum difference in calculating the sensitivity of J-integral b
proposed method and reference solutions by analytical or finite-difference methods
than three percent.@DOI: 10.1115/1.1486017#
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Introduction
For structures containing cracks, the stress-intensity fa

~SIF! and energy release rate~ERR! are the well-known fracture
parameters in linear-elastic fracture mechanics~LEFM!. If an
asymptotic crack-tip solution with a free amplitude parameter
ists, the strength of the stress and strain fields near the crac
can be expressed in terms of these parameters. Hence, these
ture parameters provide a mechanistic relationship between
residual strength of a structural component to the size and loca
of a crack—either real or postulated—in that component. Ho
ever, in some applications of fracture mechanics, derivatives
SIF or ERR with respect to crack size are needed for predic
stability and arrest of crack propagation. Another major use of
derivatives of SIF or ERR is in the reliability analysis of crack
structures. For example, the first and second-order reliabi
methods@1#, frequently used in PFM@2–4#, require the gradient
and Hessian of the performance function with respect to the c
length. In LEFM, the performance function builds on SIF or ER
Hence, both first and second-order derivatives of SIF or ERR
needed for probabilistic analysis. Therefore, an important requ
ment of PFM is to evaluate the rates of SIF and ERR accura
and efficiently.

Some methods have already appeared for predicting sens
ties of SIF or ERR. In 1988, Lin and Abel@5# introduced a direct-
integration approach of the virtual crack extension techniq
@6–8# that employs variational formulation and the finite eleme
method~FEM! to calculate the first-order derivative of SIF for
structure containing a single crack. Subsequently, Hwang et al@9#
generalized this method to calculate both first and second-o
derivatives for structures involving multiple crack systems, a
symmetric stress state, and crack-face and thermal loading. A
lient feature of this method is that SIFs and their derivatives
be evaluated in a single analysis. However, this method requ
mesh perturbation—a fundamental requirement of all virtual cr
extension techniques. For second-order derivatives, the numb
elements surrounding the crack tip that are affected by mesh
turbation has a significant effect on the solution accuracy@9#.

Contributed by the Pressure Vessels and Piping Division and presented a
Pressure Vessels and Piping Conference, Seattle, Washington, July 23–27, 20
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by
the PVP Division, May 14, 2001; revised manuscript received April 15, 2002. As
ciate Editor: K. K. Yoon.
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Recently, Feijo´o et al. @10# applied concepts of shape sensitivi
analysis@11# to calculate the first-order derivative of the potent
energy. Since ERR is the first derivative of potential energy, t
approach can be used to calculate the ERR without any m
perturbation. Taroco@12# later extended this approach to formu
late the second-order sensitivity of the potential energy in pred
ing the first-order derivative of the ERR; however, this is a dif
cult task, since the calculation of second-order sensitivities
stress and strain is involved. It is worth mentioning that no n
merical results of the sensitivity of ERR were reported by Taro
@12#.

This paper presents a new method for predicting the first-or
sensitivity of theJ-integral for a crack in a homogeneous, isotr
pic, and linear-elastic structure subject to mode-I loading con
tions. The method involves the material derivative concept of c
tinuum mechanics, domain integral representation of
J-integral, and direct differentiation. Two numerical examples
presented to calculate the first-order derivative of theJ-integral,
using the proposed method. The results from this method are c
pared with results from the analytical or the finite-differen
method.

Shape Sensitivity Analysis

Velocity Field. Consider a general three-dimensional bo
with a specific configuration, referred to as the reference confi
ration, with domainV, boundaryG, and a body material poin
identified by position vectorxPV. Consider the motion of the
body from the configuration with domainV and boundaryG into
another configuration with domainVt and boundaryGt , as
shown in Fig. 1. This process can be expressed as

T:x→xt , xPV (1)

wherex andxt are the position vectors of a material point in th
reference and perturbed configurations, respectively,T is a trans-
formation mapping, andt is a timelike parameter with

xt5T~x,t!, Vt5T~V,t!, (2)

Gt5T~G,t!

A velocity field V can then be defined as

V~xt ,t!5
dxt

dt
5

dT~x,t!

dt
5

]T~x,t!

]t
(3)

t the
00, of

so-
© 2002 by ASME Transactions of the ASME
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In the neighborhood of an initial timet50, assuming a regularity
hypothesis and ignoring high-order terms,T can be approximated
by

T~x,t!5T~x,0!1t
]T~x,0!

]t
1O~t2!>x1tV~x,0! (4)

wherex5T(x,0) andV(x)5V(x,0)

Shape Sensitivity Analysis. The variational governing equa
tion for a structural component with domainV can be formulated
as @11#

aV~z,z̄!5,V~ z̄!, for all z̄PZ (5)

wherez and z̄ are the actual displacement and virtual displa
ment fields of the structure, respectively,Z is the space of kine-
matically admissible virtual displacements, andaV(z,z̄) and
,V( z̄) are energy bilinear and load linear forms, respectively. T
subscriptV in Eq. ~5! is used to indicate the dependency of t
governing equation on the shape of the structural domain.

The pointwise material derivative atxPV is defined as@11#

ż5 lim
t→0

Fzt~x1tV~x!!2z~x!

t G (6)

If zt has a regular extension to a neighborhood ofVt , then

ż~x!5z8~x!1“zTV~x! (7)

where

z85 lim
t→0

Fzt~x!2z~x!

t G (8)

is the partial derivative ofz and“5$]/]x1 ,]/]x2 ,]/]x3%
T is the

vector of gradient operators. One attractive feature of the pa
derivative is that, given the smoothness assumption, it comm
with the derivatives with respect toxi , i 51, 2, and 3, since they
are derivatives with respect to independent variables, i.e.,

S ]z

]xi
D 8

5
]

]xi
~z8!, i 51, 2, and 3 (9)

Let c1 be a domain functional, defined as an integral overVt ,
i.e.,

c15E
Vt

f t~xt!dVt (10)

where f t is a regular function defined onVt . If V is Ck regular,
then the material derivative ofc1 at V is @11#

ċ15E
V

@ f 8~x!1div~ f ~x!V~x!!#dV (11)

For a functional form of

Fig. 1 Variation of domain
Journal of Pressure Vessel Technology
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c25E
Vt

g~zt ,“zt!dVt (12)

the material derivative ofc2 at V using Eqs.~9! and ~11! is

ċ25E
V

@g,zi
żi2g,zi

~zi , jVj !1g,zi , j
żi , j2g,zi , j

~zi , jVj ! , j

1div~gV!#dV (13)

for which a comma is used to denote partial differentiation, e
zi , j5]zi /]xj , żi , j5] żi /]xj , g,zi

5]g/]zi , g,zi , j
5]g/]zi , j andVj

is thejth component ofV. In Eq. ~13!, the material derivativeż is
the solution of the sensitivity equation obtained by taking t
material derivative of Eq.~5!.

If no body force is involved, the variational equation~Eq. ~5!!
can be written as

aV~z,z̄![E
V

s i j ~z!« i j ~ z̄!dV5,V~ z̄![E
G
Tiz̄idG (14)

wheres i j (z) and « i j ( z̄) are the stress and strain tensors of t
displacementz and virtual displacementz̄, respectively,Ti is the
ith component of the surface traction, andz̄i is the ith component
of z̄. Taking the material derivative of both sides of Eq.~14! and
using Eqs.~7!–~9!

aV~ ż,z̄!5,V8 ~ z̄!2aV8 ~z,z̄!, ; z̄PZ (15)

where the subscriptV indicates the dependency of the terms
the velocity field. The terms,V8 ( z̄) and aV8 (z,z̄) can be further
derived as@11#

,V8 ~ z̄!5E
G
$2Ti~zi , jVj !1@~Tiz̄i ! , jnj1kG~Tiz̄i !#~Vini !%dG

(16)

and

aV8 ~z,z̄!52E
V

@s i j ~z!~ z̄i ,kVk, j !1s i j ~ z̄!~zi ,kVk, j !

2s i j ~z!« i j ~ z̄!div V#dV (17)

whereni is the ith component of unit normal vectorn, kG is the
curvature of the boundary,z̄i , j5] z̄i /]xj , andVi , j5]Vi /]xj .

To evaluate the sensitivity expression in Eq.~13!, a numerical
method is needed to solveż in Eq. ~15!. In this study, the standard
FEM was used. If the solutionz of Eq. ~14! is obtained using an
FEM code, the same code can be used to solve Eq.~15! for ż. This
solution of ż can be obtained efficiently since it requires only t
evaluation of the same set of FEM matrix equations with a diff
ent fictitious load, which is the right-hand side of Eq.~15!. In
other words,ż can be solved using the same stiffness matrix fro
the unperturbed FEM mesh. There is no need to calculate
derivative of the stiffness matrix, as required in virtual crack e
tension methods. In this study, the ABAQUS@13# finite element
code ~Version 5.8! was used in all numerical calculations pr
sented in a forthcoming section.

The J-integral
Consider a body with a crack of lengtha, subject to mode-I

loading. Using an arbitrary counterclockwise pathG around the
crack tip, as shown in Fig. 2~a!, a formal definition ofJ under
mode-I condition is@14#

J5
defE

G
~Wn12Tizi ,1!ds (18)

whereW5*s i j d« i j is the strain energy density,Ti5s i j nj , ds is
the differential length along contourG, and zi ,15]zi /]x1 . The
summation convention is adopted here for repeated indices.
NOVEMBER 2002, Vol. 124 Õ 477
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Using the divergence theorem, the contour integral defined
Eq. ~18! can be expanded into an area integral in two dimensio
and volume integral in three dimensions, over a finite dom
surrounding the crack tip or crack front. For two-dimension
problems involving linear- or nonlinear-elastic material und
quasi-static conditions, in the absence of body forces, ther
strains, and crack-face tractions, Eq.~18! reduces to@15#

J5E
A
Fs i j

]zj

]x1
2Wd1i G ]q

]xi
dA, (19)

where d1i is the Kronecker delta,q is an arbitrary but smooth
weighting function equal tounity on G0 andzeroon G1 , andA is
the annular area enclosed by the inner contourG0 and outer con-
tour G1 , as shown in Fig. 2~b!. In this study, the inner contourG0
coincides with the crack tip. Hence,A becomes the area inside th
outer contourG1 . On further expansion

J5E
A
F S s11

]z1

]x1
1s12

]z2

]x1
D ]q

]x1
1S s21

]z1

]x1
1s22

]z2

]x1
D ]q

]x2

2W
]q

]x1
GdA (20)

where

Fig. 2 J -integral fracture parameter— „a… arbitrary contour
around a crack tip; „b… inner and outer contours enclosing A
478 Õ Vol. 124, NOVEMBER 2002
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W5E
0

« i j

s i j d« i j

5

¦

S E

12n2D S «11
2

2
1n«11«22D 1S E

11n D «12
2

1S E

12n2D S «22
2

2
1n«11«22D , for plane stress

S E

~122n!~11n! D S ~12n!«11
2

2
12n«11«221

~12n!«22
2

2 D
1S E

11n D «12
2 , for plane strain

(21)

E is the Young’s modulus,n is the Poisson’s ratio for the materia
of the body, and« i j is the strain field given by

« i j 5
1

2 S ]zi

]xj
1

]zj

]xi
D , i , j 51,2 (22)

Sensitivity of the J-integral
For two-dimensional plane stress or plane strain problems, o

the stress-strain relationship is applied, Eq.~20! can be expressed
as

J5E
A
hdA (23)

where

h5h11h21h31h42h52h6 (24)

The explicit expressions ofhi , i 51, . . . ,6 aregiven in Appendix
A for both plane stress and plane strain conditions. In relation
Eq. ~11!, the material derivative of theJ-integral is

Fig. 3 A flowchart for continuum sensitivity analysis of crack
size
Transactions of the ASME
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J̇5E
A
@h81div~hV!#dA (25)

where

h85h181h281h381h482h582h68 (26)

andV5$V1 ,V2%
T. Assuming the crack lengtha to be the variable

of interest, a change in crack length in thex1 direction ~mode-I!
only, i.e.,V5$V1,0%T, results in the expression of Eq.~25! as

J̇5E
A
~H11H21H31H42H52H6!dA (27)

where

Hi5hi81
]~hiV1!

]x1
, i 51, . . . ,6 (28)

Equations~41!–~46! and ~47!–~52! in Appendix B provide ex-
plicit expressions ofHi , i 51,6, for plane stress and plane stra
conditions, respectively. These expressions ofHi , i 51,6, when
inserted in Eq.~27!, yield the first-order sensitivity ofJ with re-
spect to crack size. Note, when the velocity field is unity at
crack tip, J̇ is equal to]J/]a.

Numerical integration is required in calculating bothJ ~Eq.
~19!! and ]J/]a ~Eq. ~27!!. Since Eq.~19! is already coded in
ABAQUS, J can be obtained readily. However, Eq.~27! is new
and is currently not available in ABAQUS. Hence, new subro
tines were developed to calculate]J/]a. They involve calculating
the H-functions ~Eqs. ~41!–~52!! using the ABAQUS-generated
displacement/strain fields and then performing numerical inte
tion in Eq. ~27!. Note, the integral in Eq.~27! is independent of
the domain sizeA and was calculated numerically using the sta
dard Gaussian quadrature. A 232 or higher integration rule is
recommended to calculateJ̇ or ]J/]a. A flow diagram for calcu-
lating the sensitivity ofJ is shown in Fig. 3.

Numerical Examples

Example 1: M„T… Specimen. Consider a middle-tension
@M~T!# specimen with width 2W520 units, length 2L520 units
and crack length 2a, subjected to a far-field remote tensile stre
s`51 unit. Two crack sizes with normalized crack lengthsa/W
50.025 and 0.05 were considered. The elastic modulusE and
Poisson’s ration were 26 units and 0.3, respectively.
Journal of Pressure Vessel Technology
in

he

u-
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s,

Fig. 4 M „T… specimen under mode-I loading— „a… geometry
and loads; „b… finite element mesh „1Õ4 model …
-

Table 1 Sensitivity of J for M „T… specimen by the proposed and analytical methods
NOVEMBER 2002, Vol. 124 Õ 479
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Figure 4~a! shows the geometry and loads of the M~T! speci-
men. A finite element mesh for 1/4-model was used due to
double-symmetry of this M~T! problem, as shown in Fig. 4~b!.
Both plane stress and plane strain conditions were stud

Fig. 5 SE „T… specimen under mode-I loading— „a… geometry
and loads; „b… finite element mesh „1Õ2 model …
Table 2 Sensitivity of J for SE „T… specimen by th

480 Õ Vol. 124, NOVEMBER 2002
the

ied.

Second-order elements from the ABAQUS~Version 5.8! @13# el-
ement library were employed. For plane stress, the element
was CPS8R—the reduced integration, eight-noded quadrilat
element. The element-type CPE8R was used for plane strain.
model consisted of 270 elements and 843 nodes. Focused
ments with collapsed nodes were employed in the vicinity
crack tip. The domain~contour! of integration is depicted in Fig.
4~b!. A 232 Gaussian integration was used.

Table 1 presents the numerical results forJ and]J/]a for the
M~T! problem. Both plane stress and plane strain conditions w
analyzed. For each stress state, two sets of results are show
]J/]a. The first set presents]J/]a computed using the metho
described herein; the second set was calculated using the an
cal solution for an infinite plate@15#. The results in Table 1 dem
onstrate that the continuum shape sensitivity analysis prov
very accurate results for]J/]a in comparison with the corre-
sponding results from the analytical solution. Unlike the virtu
crack extension technique, no mesh perturbation is required in
proposed method. The difference between the results of the
posed method and the analytical solution is less than 3%. A r
tively larger difference in results fora/W50.05 is due to the use
of analytical solution, which is strictly valid whena/W→0.

Example 2: SE„T… Specimen. Consider a single-edged
tension@SE~T!# specimen with widthW510 units, lengthL510
units, and crack lengtha, subjected to a far-field remote tensi
stresss`51 unit. Two crack sizes with normalized crack lengt
a/W50.25 and 0.5 were considered. The elastic modulusE and
Poisson’s ration were 30 units andn50.25, respectively.

The geometry and loads of the SE~T! specimen are shown in
Fig. 5~a!. Due to single-symmetry of the SE~T! problem, a finite
element mesh for 1/2-model was used, as shown in Fig. 5~b!. The
model consisted of 280 elements and 873 nodes. As before,
plane stress and plane strain conditions were studied.

Table 2 presents the numerical results forJ and]J/]a for the
SE~T! problem. Two sets of results are shown for]J/]a, the first
computed using the proposed method and second calculated
the finite-difference method, since no analytical solution w
available for this problem. A 1% perturbation of crack length w
used in the finite-difference calculations. As in Example 1,
results in Table 2 also demonstrate that continuum shape sen
ity analysis provides accurate estimates of]J/]a as compared
with corresponding results from the finite-difference method. U
like the virtual crack extension technique, no mesh perturbatio
required using the proposed method. The difference between
results of the proposed method and the finite-difference metho
less than 2%.
e proposed and finite-difference methods
Transactions of the ASME
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Conclusions
A new method was developed for shape sensitivity analysis

crack in a homogeneous, isotropic, and linear-elastic body sub
to mode-I loading. The method involves the material derivat
concept of continuum mechanics, domain integral representa
of the J-integral, and direct differentiation. Unlike virtual crac
extension techniques, no mesh perturbation is required in the
posed method. Since the governing variational equation is dif
entiated prior to the process of discretization, the resulting se
tivity equations are independent of any approximate numer
techniques, such as the finite element method, boundary ele
method, or others. Existing methods based on the expressionJ
as a rate of potential energy require second-order sensitivit
potential energy to yield the first-order sensitivity ofJ. Since the
proposed method requires only first-order sensitivity of displa
ment field, it is much simpler and more efficient than existi
methods. Numerical results demonstrate that the maximum di
ence in calculating the sensitivity ofJ using the developed metho
is less than 3%, compared with the analytical solution or fin
difference results.
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Appendix A

The h Functions. For plane stress

h15
E

12n2

«11
2

2

]q

]x1
(29)

h25
E

11n
«12

]z2

]x1

]q

]x1
(30)

h35
E

11n
«12«11

]q

]x2
(31)

h45
E

12n2 ~«221n«11!
]z2

]x1

]q

]x2
(32)

h55
E

11n
«12

2
]q

]x1
(33)

and

h65
E

12n2 S «22
2

2
1n«11«22D ]q

]x1
(34)

For plane strain

h15
E~12n!

~11n!~122n!

«11
2

2

]q

]x1
(35)

h25
E

11n
«12

]z2

]x1

]q

]x1
(36)

h35
E

11n
«12«11

]q

]x2
(37)

h45
E

~11n!~122n!
@~12n!«221n«11#

]z2

]x1

]q

]x2
(38)

h55
E

11n
«12

2
]q

]x1
(39)

and
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h65
E

~11n!~122n!
F«22

2

2
~12n!1n«11«22G ]q

]x1
(40)

Appendix B

The H Functions. For plane stress

H15
E

12n2

]q

]x1
F«11

] ż1

]x1
2«11

2
]V1

]x1
G (41)

H25
E

11n

]q

]x1
F ]z2

]x1
S ] ż2

]x1
1

1

2

] ż1

]x2
2

1

2
«11

]V1

]x2
2

]z2

]x1

]V1

]x1
D

1
1

2

]z1

]x2
S ] ż2

]x1
2

]z2

]x1

]V1

]x1
D G (42)

H35
1

2

E

11n

]q

]x2
F«11S ] ż2

]x1
1

] ż1

]x2
D12«12

] ż1

]x1
2«11

2
]V1

]x2

2«11

]z2

]x1

]V1

]x1
G2«11«12

E

11n

]q

]x1

]V1

]x2
(43)

H45
E

12n2

]q

]x2

]z2

]x1
S ] ż2

]x2
1n

] ż1

]x1
D2

E

12n2

]q

]x2

3F S ]z2

]x1
D 2 ]V1

]x2
1n«11

]z2

]x1

]V1

]x1
G1

E

12n2 ~«221n«11!

3F ]q

]x2

] ż2

]x1
2

]q

]x1

]z2

]x1

]V1

]x2
G (44)

H55
E

11n

]q

]x1
«12F ] ż1

]x2
1

] ż2

]x1
2

]z2

]x1

]V1

]x1
2«11

]V1

]x2
G (45)

and

H65
E

12n2

]q

]x1
F ~«221n«11!S ] ż2

]x2
2

]z2

]x1

]V1

]x2
D

1n«22S ] ż1

]x1
2«11

]V1

]x1
D G (46)

For plane strain

H15
E~12n!

~122n!~11n!

]q

]x1
F«11

] ż1

]x1
2«11

2
]V1

]x1
G (47)

H25
E

11n

]q

]x1
F ]z2

]x1
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]x1
1

1

2
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2

1

2
«11

]V1

]x2
2

]z2

]x1

]V1

]x1
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1
1

2

]z1

]x2
S ] ż2

]x1
2

]z2

]x1

]V1

]x1
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H35
1

2

E

11n

]q

]x2
F«11S ] ż2

]x1
1

] ż1

]x2
D12«12

] ż1

]x1
2«11

2
]V1

]x2

2«11

]z2

]x1

]V1

]x1
G2«11«12

E

11n

]q

]x1

]V1

]x2
(49)

H45
E

~122n!~11n!

]q

]x2

]z2

]x1
FnS ] ż1

]x1
2«11

]V1

]x1
D1~12n!

3S ] ż2

]x2
2

]z2

]x1

]V1
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2
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