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This paper introduces a new, transformation-free, generalized polynomial chaos 
expansion (PCE) comprising multivariate Hermite orthogonal polynomials in 
dependent Gaussian random variables. The second-moment properties of Hermite 
polynomials reveal a weakly orthogonal system when obtained for a general Gaussian 
probability measure. Still, the exponential integrability of norm allows the Hermite 
polynomials to constitute a complete set and hence a basis in a Hilbert space. The 
completeness is vitally important for the convergence of the generalized PCE to the 
correct limit. The optimality of the generalized PCE and the approximation quality 
due to truncation are discussed. New analytical formulae are proposed to calculate 
the mean and variance of a generalized PCE approximation of a general output 
variable in terms of the expansion coefficients and statistical properties of Hermite 
polynomials. However, unlike in the classical PCE, calculating the coefficients of 
the generalized PCE requires solving a coupled system of linear equations. Besides, 
the variance formula of the generalized PCE contains additional terms due to 
statistical dependence among Gaussian variables. The additional terms vanish 
when the Gaussian variables are statistically independent, reverting the generalized 
PCE to the classical PCE. Numerical examples illustrate the generalized PCE 
approximation in estimating the statistical properties of various output variables.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Wiener–Hermite polynomial chaos expansion (PCE), hereafter referred to as the classical PCE, is an 
infinite series expansion of a square-integrable random variable involving Hermite orthogonal polynomials 
in independent Gaussian random variables. Introduced by Wiener [29] in conjunction with the homogeneous 
chaos theory, Cameron and Martin [5] proved convergence of PCE to the correct limit in the L2 sense for 
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an arbitrary random variable with finite variance.2 Later developments include truncation of the classical 
PCE in a Galerkin framework, leading to a spectral stochastic finite-element method [14] and extension 
to a generalized PCE to account for non-Gaussian variables [31]. However, the conditions for generaliza-
tion mandate completeness of measure-consistent orthogonal polynomials, as clarified only recently [11]. 
Approximations stemming from truncated PCE, whether classical or generalized, are commonly used for 
solving uncertainty quantification problems, mostly in the context of solving stochastic partial differential 
equations [17,28], yielding approximate second-moment statistics of a stochastic output variable of interest. 
A majority of these studies, including many not cited here for brevity, address low-dimensional problems, 
that is, when the number of input random variables is not overly large, say, less than ten. In that case, PCE 
approximations can be sufficiently accurate and are known to offer significant computational advantages 
over crude Monte Carlo simulation (MCS), although there are exceptions [4,12]. In high dimensions, how-
ever, PCE requires an astronomically large number of polynomials or coefficients, succumbing to the curse 
of dimensionality [2,21].

The existing PCE is largely founded on the independence assumption of input random variables. The 
assumption exploits product-type probability measures, enabling easy construction of multivariate orthog-
onal polynomials via tensorization of the spaces of univariate orthogonal polynomials. In reality, there may 
exist significant correlation or dependence among input variables, hindering or invalidating most existing 
stochastic methods, including PCE. For a general Gaussian input vector, there are at least two possibilities: 
(1) use a linear transformation to decorrelate the random variables and work with independent Gaussian 
variables; and (2) construct a sequence of weakly or strongly orthogonal multivariate polynomials consis-
tent with the Gaussian measure and work with dependent Gaussian variables. Employing Gram–Schmidt 
orthogonalization [15], Navarro et al. [18] discussed construction of multivariate orthogonal polynomials 
for correlated variables. However, existence of multivariate Hermite orthogonal polynomials, which can be 
used as a basis for dependent Gaussian measures, has not been recognized. Soize and Ghanem [26] pro-
posed orthogonal bases with regard to a general dependent probability measure of random input, but the 
bases are not necessarily polynomials. In consequence, analytical treatment of PCE-based statistics is highly 
non-trivial, if not impossible. In both works, a fundamental concern raised by Ernst et al. [11] about the 
completeness of orthogonal polynomials has not been addressed. Indeed, as demonstrated in this paper, the 
completeness is essential for the convergence of PCE subject to dependent Gaussian variables.

The main objective of this study is to generalize the classical PCE to account for arbitrary but depen-
dent Gaussian probability measures without transformations. The paper is organized as follows. Section 2
defines or discusses mathematical notations and preliminaries. A brief exposition of multivariate orthog-
onal polynomials consistent with a general probability measure, including definitions of weak and strong 
orthogonalities, is given in Section 3. The section also describes relevant polynomial spaces and construction 
of their orthogonal decompositions. Section 4 defines multivariate Hermite polynomials consistent with a 
general dependent Gaussian probability measure. Two propositions proven herein reveal analytical formulae 
for the second-moment properties of these polynomials. The orthogonal basis and completeness of Hermite 
polynomials have also been discussed or proved. Section 5 formally presents a generalized PCE applicable 
for a general dependent Gaussian probability measure. The convergence, exactness, and optimality of the 
generalized PCE are explained. In the same section, the approximation quality of a truncated generalized 
PCE is discussed. The formulae for the mean and variance of the truncated generalized PCE are also derived. 
The application of the generalized PCE for infinitely many random variables is clarified. The section ends 
with a brief explanation on how and when the generalized PCE proposed can be extended for non-Gaussian 

2 More precisely, Cameron and Martin [5] proved convergence of PCE to the expanded random variable for a special probability 
space. In a more general setting, a few measurability conditions are required, as explained by Ernst et al. [11] in Subsection 2.3 of 
their work.
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probability measures. Numerical results from three illuminating examples, including a practical engineering 
problem, are reported in Section 6. Finally, conclusions are drawn in Section 7.

2. Notation and preliminaries

Let N := {1, 2, . . .}, N0 := N ∪ {0}, R := (−∞, +∞), R+
0 := [0, +∞), and R+ := (0, +∞) represent the 

sets of positive integer (natural), non-negative integer, real, non-negative real, and positive real numbers, 
respectively. For N ∈ N, an N -dimensional multi-index is denoted by j := (j1, . . . , jN ) ∈ N

N
0 with degree 

|j| := j1 + · · · + jN and factorial j! := j1! · · · jN !. These standard notations will be used throughout the 
paper.

Let (Ω, F , P) be a complete probability space, where Ω is a sample space representing an abstract set of 
elementary events, F is a σ-field on Ω, and P : F → [0, 1] is a probability measure. With BN representing 
the Borel σ-field on RN , N ∈ N, consider an RN -valued Gaussian random vector X := (X1, . . . , XN )T :
(Ω, F) → (RN , BN ), describing the statistical uncertainties in all system parameters of a stochastic problem. 
The input random variables are also referred to as basic random variables [11]. The non-zero, finite integer 
N represents the number of input random variables and is referred to as the dimension of the stochastic 
problem.

Without loss of generality assume that X has a zero mean, that is, μX := E[X] = 0 ∈ R
N ; a symmetric, 

positive-definite covariance matrix ΣX := E[XXT ] ∈ S
N
+ , where SN+ ⊆ R

N×N is the set of N×N real-valued, 
symmetric, positive-definite matrices; and a joint probability density function φX : RN → R

+, expressed 
by

φX(x;ΣX) := (2π)−
N
2 (detΣX)−

1
2 exp
[
−1

2xTΣ−1
X x
]
. (1)

Here, E is the expectation operator with respect to the probability measure P and detΣX is the determinant 
of ΣX. Given the abstract probability space (Ω, F , P) of X, the image probability space is (RN , BN , φXdx), 
where RN can be viewed as the image of Ω from the mapping X : Ω → R

N , and is also the support of 
φX(x; ΣX). The image probability space is convenient to use for computations. Indeed, relevant statements 
and objects in one space has obvious counterparts in the other space. Given any random variable Y :
(Ω, F) → (R, B), the Doob–Dynkin Lemma assures existence of a function y : RN → R such that Y (ω) =
y(X(ω)). Furthermore, if y is integrable, then the expectation of Y can be defined by E[Y ] :=

∫
Ω Y (ω)dP(ω)

or E[Y ] :=
∫
RN y(x)φX(x; ΣX)dx.

3. General multivariate orthogonal polynomials

For j ∈ N
N
0 and x = (x1, . . . , xN ) ∈ A

N ⊆ R
N , a monomial in the variables x1, . . . , xN is the product 

xj = xj1
1 · · ·xjN

N and has a total degree |j| = j1 + · · ·+ jN . A linear combination of xj, where |j| = l ∈ N0, is 
a homogeneous polynomial of degree l. Denote by

PN
l := span{xj : |j| = l, j ∈ N

N
0 }

the space of homogeneous polynomials of degree l, by

ΠN
m := span{xj : 0 ≤ |j| ≤ m, j ∈ N

N
0 }

the space of polynomials of degree at most m ∈ N0, and by

ΠN = R[x1, . . . , xN ]
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the space of all polynomials in N variables. It is well known that the dimensions of the vector spaces PN
l

and ΠN
m, respectively, are [9]

dimPN
l = #

{
j ∈ N

N
0 : |j| = l

}
=
(
N + l − 1

l

)

and

dim ΠN
m =

m∑
l=0

dimPN
l =

m∑
l=0

(
N + l − 1

l

)
=
(
N + m

m

)
.

3.1. Measure-consistent orthogonal polynomials

Let X := (X1, . . . , XN )T , N ∈ N, be a general input random vector, which (1) has an absolutely 
continuous joint distribution function FX(x) and a continuous joint probability density function fX(x) :=
∂NFX(x)/∂x1 · · · ∂xN with support AN ⊆ R

N ; and (2) possesses absolute finite moments of all orders, that 
is, for all j ∈ N

N
0 ,

μj := E
[
|Xj|
]

:=
∫
AN

|xj|fX(x)dx < ∞.

For any polynomial pair P, Q ∈ ΠN , define an inner product

(P,Q)fXdx :=
∫
AN

P (x)Q(x)fX(x)dx =: E [P (X)Q(X)] (2)

with respect to the probability measure fX(x)dx and the induced norm

‖P‖fXdx :=
√

(P, P )fXdx =

⎛
⎝∫
AN

P 2(x)fX(x)dx

⎞
⎠

1/2

=
√

E [P 2(X)].

The polynomials P ∈ ΠN and Q ∈ ΠN are called orthogonal to each other with respect to fX(x)dx if 
(P,Q)fXdx = 0. This leads to a formal definition of multivariate orthogonal polynomials as follows.

Definition 1 (Dunkl and Xu [9]). A polynomial P ∈ ΠN
l ⊂ ΠN is said to be an orthogonal polynomial of 

degree l ∈ N with respect to the inner product (·, ·)fXdx, or alternatively with respect to the probability 
measure fX(x)dx, if it is orthogonal to all polynomials of lower degrees, that is, if

(P,Q)fXdx = 0 ∀Q ∈ ΠN with degQ < degP.

Under the prescribed assumptions, absolute moments of X of all orders exist, including the zero-order 
moment μ0 :=

∫
AN fX(x)dx = 1 that is always positive. Evidently, ‖P‖fXdx > 0 for all non-zero P ∈ ΠN . 

Then the inner product defined in (2) is positive-definite on ΠN . Therefore, there exists an infinite set of 
multivariate orthogonal polynomials [9], say, {Pj(x) : j ∈ N

N
0 }, P0 = 1, Pj �= 0, which is consistent with the 

probability measure fX(x)dx, satisfying

(Pj, Pk) = 0 whenever |j| �= |k| (3)
fXdx
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for k ∈ N
N
0 . Here, the multi-index j of the multivariate polynomial Pj(x) refers to its total degree |j| =

j1 + · · ·+ jN . Clearly, each Pj ∈ ΠN is an orthogonal polynomial according to Definition 1. This means that 
Pj is orthogonal to all polynomials of different degrees, but it may not be orthogonal to other orthogonal 
polynomials of the same degree.

Let VN
0 := ΠN

0 = span{1} be the space of constant functions. For each 1 ≤ l < ∞, denote by VN
l ⊂ ΠN

l

the space of orthogonal polynomials of degree exactly l that are orthogonal to all polynomials in ΠN
l−1, that 

is,

VN
l := {P ∈ ΠN

l : (P,Q)fXdx = 0 ∀Q ∈ ΠN
l−1}, 1 ≤ l < ∞.

Then VN
l , provided that the support of fX(x) has non-empty interior, is a vector space of dimension [9]

KN,l := dimVN
l = dimPN

l =
(
N + l − 1

l

)
.

Many choices exist for the basis of VN
l ; the bases of VN

l do not have to be mutually orthogonal. With the 
exception of the monic orthogonal polynomials, the bases are not unique in the multivariate case. Here, to 
be formally proved in the next section, select {Pj(x) : |j| = l, j ∈ N

N
0 } ⊂ VN

l to be a basis of VN
l , comprising 

KN,l number of basis functions. Each basis function Pj(x) is a multivariate orthogonal polynomial of degree 
|j| as discussed earlier. Obviously,

VN
l = span{Pj : |j| = l, j ∈ N

N
0 }, 0 ≤ l < ∞.

According to (3), Pj is orthogonal to Pk whenever |j| �= |k|. Therefore, any two polynomial subspaces 
VN
l and VN

r , where 0 ≤ l, r < ∞, are orthogonal whenever l �= r. In consequence, there exist orthogonal 
decompositions of

ΠN
m =

m⊕
l=0

VN
l =

m⊕
l=0

span{Pj : |j| = l, j ∈ N
N
0 } = span{Pj : 0 ≤ |j| ≤ m, j ∈ N

N
0 }

and

ΠN =
⊕
l∈N0

VN
l =
⊕
l∈N0

span{Pj : |j| = l, j ∈ N
N
0 } = span{Pj : j ∈ N

N
0 } (4)

with the symbol ⊕ representing orthogonal sum.

3.2. Weak and strong orthogonalities

A possible lack of orthogonality between two distinct polynomials of the same degree can be used to 
characterize the strength of the orthogonality. Indeed, the multivariate orthogonal polynomials can be 
weakly orthogonal or strongly orthogonal.

Definition 2. let X := (X1, . . . , XN )T , N ∈ N, be a general input random vector, which has a continuous 
joint probability density function fX(x) with support AN ⊆ R

N and possesses absolute finite moments of all 
orders. Then a set of multivariate orthogonal polynomials {Pj(x) : j ∈ N

N
0 } consistent with the probability 

measure fX(x)dx is called a weakly orthogonal system if, for all j, k ∈ N
N
0 ,

(Pj, Pk)fXdx = 0 whenever |j| �= |k|;

and a strongly orthogonal system if, for all j, k ∈ N
N
0 ,
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(Pj, Pk)fXdx = 0 whenever j �= k.

Obviously, if a polynomial system is strongly orthogonal, then it is also weakly orthogonal. However, 
the converse is not true in general, for instance, when the variables are statistically dependent. When X
comprises independent variables, then the multivariate polynomial system, if obtained via usual tensorized 
construction of the univariate polynomial spaces, becomes both strongly and weakly orthogonal. Nonethe-
less, Definition 2 can still be relevant for independent variables if the basis of VN

l is chosen not to be 
orthogonal.

4. Multivariate Hermite orthogonal polynomials

When X has a Gaussian density function with support RN , as defined by (1), the moments ∫
RN |xj|φX(x; ΣX)dx exist and are finite for all j ∈ N

N
0 . Therefore, orthogonal polynomials in x exist 

with respect to the inner product

(P,Q)φXdx :=
∫
RN

P (x)Q(x)φX(x;ΣX)dx =: E [P (X)Q(X)] (5)

or the probability measure φX(x; ΣX)dx. Here, a special basis of VN
l , denoted by {Hj(x; ΣX) : |j| = l, j ∈

N
N
0 } ⊂ VN

l , is presented, which will be proved later to be weakly orthogonal as per Definition 2. The set 
of all such polynomials, that is, {Hj(x; ΣX) : j ∈ N

N
0 } ⊂ ΠN comprises polynomials that are orthogonal 

with respect to the inner product in (5). The polynomials are consistent with the probability measure 
φX(x; ΣX)dx and are often referred to as multivariate Hermite orthogonal polynomials.

4.1. Definition

A popular approach for defining multivariate Hermite polynomials entails derivatives of the multivariate 
Gaussian probability density function. Many researchers have used this definition [10,16,27,30]. Formal 
definitions of both orthogonal and standardized orthogonal polynomials follow.

Definition 3. Let X = (X1, . . . , XN )T , N ∈ N, be an RN -valued Gaussian random vector with zero mean; 
symmetric, positive-definite covariance matrix ΣX ∈ SN

+ ; and multivariate density function φX(x; ΣX). 
Then a multivariate Hermite orthogonal polynomial Hj(x; ΣX), j = (j1, . . . , jN ) ∈ N

N
0 , of degree |j| =

j1 + · · · + jN is defined as

Hj(x;ΣX) := (−1)|j|

φX(x;ΣX)

(
∂

∂x

)j

φX(x;ΣX), (6)

where (∂/∂x)j := ∂j1+···+jN /∂xj1
1 · · · ∂xjN

N .

Definition 4. A standardized multivariate Hermite orthogonal polynomial Ψj(x; ΣX), j = (j1, . . . , jN ) ∈ N
N
0 , 

of degree |j| = j1 + · · · + jN is defined as

Ψj(x;ΣX) := Hj(x;ΣX)
(Hj(x;ΣX), Hj(x;ΣX))φXdx

= Hj(x;ΣX)√
E[H2

j (X;ΣX)]
. (7)

Definition 3 is a generalization of the definition of the jth-degree univariate Hermite orthogonal polyno-
mial
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Hj(x) = (−1)j

φX(x)
dj

dxj
φX(x), j ∈ N0,

known as Rodrigues’s formula [1], where φX(x) = (2π)−1/2 exp(−x2/2) is the probability density function 
of a zero-mean Gaussian random variable with unit variance. Definition 4 facilitates scaling of multivariate 
Hermite polynomials, so that their standardized version reduces to multivariate orthonormal polynomials 
for independent random variables. The standardized multivariate polynomials should not be confused with 
multivariate orthonormal polynomials for dependent random variables.

If the Gaussian random variables are independent, then the covariance matrix becomes diagonal, that is, 
ΣX = diag(σ2

1 , . . . , σ
2
N ) with 0 < σ2

i < ∞, i = 1, . . . , N , representing the variance of the ith variable. If, in 
addition, σ2

i = 1 for all i = 1, . . . , N , then ΣX = I, the N -dimensional identity matrix, and (1) leads to a 
product-type density function φX(x; I) = ΠN

i=1φXi
(xi), comprising marginal probability density functions 

φXi
(xi) = (2π)−1/2 exp(−x2

i /2), i = 1, . . . , N . In consequence, Definition 3 simplifies to the well-known 
tensorized construction: Hj(x; I) = Hj1(x1) · · ·HjN (xN ), that is, a multivariate orthogonal polynomial of 
degree |j| is simply a product of N univariate orthogonal polynomials Hji(xi), i = 1, . . . , N , of degree ji
such that j1 + · · · + jN = |j|.

According to Definition 3, the set of Hermite polynomials {Hj(x; ΣX), j ∈ N
N
0 } for general dependent 

Gaussian variables is weakly orthogonal with respect to (·, ·)φXdx, that is,

(Hj, Hk)φXdx = E [Hj(X;ΣX)Hk(X;ΣX)] = 0, |j| �= |k|,

to be formally proved in the following subsection. This means that Hj is orthogonal to all polynomials of 
different degrees, but it may not be orthogonal to other orthogonal polynomials of the same degree. However, 
if the Gaussian variables are independent, then the resultant multivariate Hermite polynomials are strongly 
orthogonal. This is because of the product structure of such polynomials, where any two univariate Hermite 
polynomials of distinct degrees are orthogonal. Since the focus of this work is dependent Gaussian variables, 
the orthogonality of multivariate Hermite polynomials for the rest of the paper should be interpreted in the 
context of weak orthogonality.

4.2. Second-moment properties

When the input random variables X1, . . . , XN , instead of the variables x1, . . . , xN , are inserted in the 
argument, the Hermite orthogonal polynomials become random functions of Gaussian input vector X =
(X1, . . . , XN )T . Therefore, it is important to derive explicit formulae for their second-moment properties in 
terms of the statistics of X. The formulae, obtained here using a compact form of the generating function 
in Proposition 6, are described by Propositions 7 and 8.

Definition 5. The generating function for the family of multivariate Hermite orthogonal polynomials 
{Hj(x; ΣX), j ∈ N

N
0 } is defined as the convergent expansion

∑
j∈NN

0

tj

j!Hj(x;ΣX), t ∈ R
N , (8)

where j! := j1! . . . jN ! and tj := tj11 . . . tjNN .

Proposition 6. In reference to Definition 5, the generating function for t ∈ R
N is

∑
N

tj

j!Hj(x;ΣX) = exp
(
tTΣ−1

X x − 1
2tTΣ−1

X t
)
, (9)
j∈N0
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where Σ−1
X is the inverse of ΣX and the symbol T denotes matrix transposition.

Proof. Using the definition of Hj(x; ΣX) from (6),

∑
j∈NN

0

tj

j!Hj(x;ΣX) = 1
φX(x;ΣX)

∑
j∈NN

0

tj

j! (−1)|j|
(

∂

∂x

)j

φX(x;ΣX)

= φX(x − t;ΣX)
φX(x;ΣX)

= exp
(
tTΣ−1

X x − 1
2tTΣ−1

X t
)
.

Here, the second line is formed by recognizing the sum in the first equality to be the Taylor series expansion 
of φX(x − t; ΣX) at x, whereas the third line is obtained by applying (1) and reduction. �
Proposition 7. The first-order moments of multivariate Hermite orthogonal polynomials are

E [Hj(X;ΣX)] =
{

1, j = 0,
0, j �= 0.

(10)

Proof. Multiplying the generating function for t ∈ R
N in (8) with φX(x; ΣX) and then integrating over RN

gives

∫
RN

∑
j∈NN

0

tj

j!Hj(x;ΣX)φX(x;ΣX)dx

=
∫
RN

exp
(
tTΣ−1

X x − 1
2tTΣ−1

X t
)

(2π)−
N
2 (detΣX)−

1
2 exp
(
− 1

2xTΣ−1
X x
)
dx

=
∫
RN

(2π)−N
2 (detΣX)−

1
2 exp
{
− 1

2(x − t)TΣ−1
X (x − t)

}
dx

= 1,

(11)

where the second line uses Proposition 6, that is, (9), and (1); the third line is obtained by reduction, 
yielding unity in the last line – the result of integrating a Gaussian probability density function on RN . 
Finally, comparing the coefficients of tj, j ∈ N

N
0 , in (11) produces

∫
RN

Hj(x;ΣX)φX(x;ΣX)dx =
{

1, j = 0,
0, j �= 0,

where the integral on the left is the same as the first-order moment, hence completing the proof. �
Proposition 8. The second-order moments of multivariate Hermite orthogonal polynomials are

E [Hj(X;ΣX)Hk(X;ΣX)] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j!k!
∑

θ∈N
N×N
0

r(θ)=j, c(θ)=k
|j|=|k|

(
Σ−1

X
)θ

θ! , |j| = |k|,

0, |j| �= |k|,

(12)
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where θ ∈ N
N×N
0 is an index matrix, comprising non-negative integers, with the (p, q)th element θpq ∈ N0

for p, q = 1, . . . , N ; r(θ) = (r1, . . . , rN ) is the row-sum vector of θ with the pth element rp =
∑N

q=1 θpq; 
c(θ) = (c1, . . . , cN ) is the column-sum vector of θ with the qth element cq =

∑N
p=1 θpq;

θ! :=
N∏

p,q=1
θpq!;

and

(
Σ−1

X
)θ :=

N∏
p,q=1

(
Σ−1

X,pq

)θpq

with Σ−1
X,pq representing the (p, q)th element of Σ−1

X . The summation in (12) is over all index matrices θ
with the row-sum vector r(θ) = j and the column-sum vector c(θ) = k such that |j| = |k|. Furthermore,

E
[
H2

j (X;ΣX)
]

= (j!)2
∑

θ∈N
N×N
0

r(θ)=c(θ)=j

(
Σ−1

X
)θ

θ! . (13)

Proof. Multiplying the product of two generating functions for t, s ∈ R
N in (8) with φX(x; ΣX) and then 

integrating over RN gives

∫
RN

∑
j∈NN

0

∑
k∈NN

0

tj

j!Hj(x;ΣX)s
k

k!Hk(x;ΣX)φX(x;ΣX)dx

=
∫
RN

exp
(
tTΣ−1

X x − 1
2tTΣ−1

X t
)

exp
(
sTΣ−1

X x − 1
2sTΣ−1

X s
)exp
(
−1

2x
TΣ−1

X x
)

(2π)
N
2 (detΣX)

1
2
dx

= exp
(
tTΣ−1

X s
) ∫
RN

(2π)−N
2 (detΣX)−

1
2 exp
{
− 1

2(x − t − s)TΣ−1
X (x − t − s)

}
dx

= exp
(
tTΣ−1

X s
)
,

(14)

where the last line is obtained by applying again Proposition 6, that is, (9), using (1), and finally recognizing 
the Gaussian integral to be unity.

For Σ−1
X ∈ R

N×N , one has the convergent expansion [24]

exp
(
tTΣ−1

X s
)

=
∑

θ∈N
N×N
0

(
Σ−1

X
)θ

θ! tr(θ)sc(θ). (15)

Let j = r(θ) and k = c(θ) in (15) and note that |j| = |k|. Therefore,

exp
(
tTΣ−1

X s
)

=
∞∑
l=0

∑
j∈N

N
0 ,k∈N

N
0

|j|=|k|=l

∑
θ∈N

N×N
0

r(θ)=j, c(θ)=k
|j|=|k|=l

(
Σ−1

X
)θ

θ! tjsk. (16)

Interchanging the integral and summation operators of (14) and using (16) gives
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∑
j∈NN

0 ,k∈NN
0

∫
RN

tj

j!Hj(x;ΣX)s
k

k!Hk(x;ΣX)φX(x;ΣX)dx =
∞∑
l=0

∑
j∈N

N
0 ,k∈N

N
0

|j|=|k|=l

∑
θ∈N

N×N
0

r(θ)=j, c(θ)=k
|j|=|k|=l

(
Σ−1

X
)θ

θ! tjsk. (17)

Finally, comparing the coefficients of tjsk, j, k ∈ N
N
0 , in (17) yields

∫
RN

Hj(x;ΣX)Hk(x;ΣX)φX(x;ΣX)dx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j!k!
∑

θ∈N
N×N
0

r(θ)=j, c(θ)=k
|j|=|k|

(
Σ−1

X
)θ

θ! , |j| = |k|,

0, |j| �= |k|,

(18)

where the integral on the left is the same as the second-order moment, hence obtaining the desired result 
in (12). Setting j = k in (18) produces (13). �

From (6), the zero-degree Hermite orthogonal polynomial H0(x; ΣX) = 1, regardless of ΣX. For any 
j ∈ N

N
0 and k = 0, (12) reproduces (10), the first-order moment of Hj(X; ΣX). Therefore, Proposition 8

subsumes Proposition 7.

Corollary 9. The first- and second-order moments of standardized multivariate Hermite orthogonal polyno-
mials are

E [Ψj(X;ΣX)] =
{

1, j = 0,
0, j �= 0,

and

E [Ψj(X;ΣX)Ψk(X;ΣX)] =

⎧⎪⎪⎨
⎪⎪⎩

E [Hj(X;ΣX)Hk(X;ΣX)]√
E[H2

j (X;ΣX)]
√
E[H2

k(X;ΣX)]
, |j| = |k|,

0, |j| �= |k|,
(19)

respectively, including

E
[
Ψ2

j (X;ΣX)
]

= 1, j ∈ N
N
0 , (20)

where the expectations, E[Hj(X; ΣX)Hk(X; ΣX)] and E[H2
j (X; ΣX)], are obtained from (12) and (13), re-

spectively.

Corollary 10. If X = (X1, . . . , XN )T comprises independent Gaussian random variables, each with zero 
mean and unit variance, then ΣX = I, the N -dimensional identity matrix, resulting in multivariate Hermite 
orthonormal polynomials [Ψj(X; I)], j ∈ N

N
0 , with their first- and second-order moments

E [Ψj(X; I)] =
{

1, j = 0,
0, j �= 0,

and

E [Ψj(X; I)Ψk(X; I)] =
{

1, j = k,
0, j �= k,
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respectively, including

E
[
Ψ2

j (X; I)
]

= 1, j ∈ N
N
0 .

From Corollaries 9 and 10, the first-order moments of standardized Hermite orthogonal polynomials for 
dependent variables and Hermite orthonormal polynomials for independent variables are the same. However, 
the second-order moments of Hermite orthonormal polynomials for independent variables simplify signifi-
cantly due to strong orthogonality. This explains why the development of the classical PCE for independent 
variables is not unduly difficult.

4.3. Orthogonal basis and completeness

An important question regarding Hermite orthogonal polynomials is whether they constitute a basis in 
a function space of interest, such as a Hilbert space. Let L2(RN , BN , φXdx) represent a Hilbert space of 
square-integrable functions with respect to the Gaussian probability measure φX(x; ΣX)dx supported on 
R

N . The following two propositions show that, indeed, Hermite orthogonal polynomials span various spaces 
of interest.

Proposition 11. Let X := (X1, . . . , XN )T : (Ω, F) → (RN , BN ), N ∈ N, be an RN -valued Gaussian random 
vector with zero mean; symmetric, positive-definite covariance matrix ΣX; and multivariate probability den-
sity function φX(x; ΣX). Then, {Hj(x; ΣX) : |j| = l, j ∈ N

N
0 }, the set of multivariate Hermite orthogonal 

polynomials of degree l consistent with the Gaussian probability measure φXdx, is a basis of VN
l .

Proof. According to Takemura and Takeuchi [27], the multivariate Hermite polynomials from Definition 3
are orthogonal to their dual polynomials [27,30]

H̃j(x;ΣX) := (−1)|j|

φX(x;ΣX)

(
∂

∂z

)j

φX(ΣXz;ΣX), z = Σ−1
X x,

in the sense that

E
[
H̃j(X;ΣX)Hk(X;ΣX)

]
:=
∫
RN

H̃j(x;ΣX)Hk(x;ΣX)φX(x;ΣX)dx =
{

j!, j = k,
0, j �= k.

(21)

Denote by Hl(x; ΣX) = (Hl,1(x; ΣX), . . . , Hl,KN,l
(x; ΣX))T and H̃l(x; ΣX) = (H̃l,1(x; ΣX), . . . ,

H̃l,KN,l
(x; ΣX))T the column vectors of the elements of {Hj(x; ΣX) : |j| = l, j ∈ N

N
0 } and {H̃j(x; ΣX) :

|j| = l, j ∈ N
N
0 }, respectively, both arranged according to some monomial order of choice. Let aT

l =
(al,1, . . . , al,KN,l

) be a row vector comprising some constants al,i ∈ R, i = 1, . . . , KN,l. Set aT
l Hl(x; ΣX) = 0. 

Multiply both sides of the equality from the right by H̃T
l (x; ΣX), integrate with respect to the measure 

φX(x; ΣX)dx over RN , and apply transposition to obtain

Glal = 0, (22)

where Gl = E[H̃l(X; ΣX)HT
l (X; ΣX)] is a KN,l ×KN,l matrix with its (p, q)th element

Gl,pq := E
[
H̃l,p(X;ΣX)Hl,q(X;ΣX)

]
:=
∫
RN

H̃l,p(x;ΣX)Hl,q(x;ΣX)φX(x;ΣX)dx.

From the orthogonality condition (21), Gl is a diagonal and positive-definite matrix, and hence invertible. 
Therefore, (22) yields al = 0, proving linear independence of the elements of Hl(x; ΣX) or {Hj(x; ΣX) :
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|j| = l, j ∈ N
N
0 }. Furthermore, the invertibility of Gl assures that {Hj(x; ΣX) : |j| = l, j ∈ N

N
0 } is a spanning 

set of VN
l and, therefore, forms a basis of VN

l . �
Corollary 12. Let Ψl(x; ΣX) := (Ψl,1(x; ΣX), . . . , Ψl,KN,l

(x; ΣX))T ∈ R
KN,l be a column vector constructed 

from the elements of {Ψj(x; ΣX) : |j| = l, j ∈ N
N
0 }. Then, Al = E[Ψl(x; ΣX)ΨT

l (x; ΣX)], a KN,l × KN,l

matrix with its (p, q)th element

Al,pq := E [Ψl,p(X;ΣX)Ψl,q(X;ΣX)] :=
∫
RN

Ψl,p(x;ΣX)Ψl,q(x;ΣX)φX(x;ΣX)dx,

is symmetric and positive-definite.

Proof. By definition, Al = AT
l . From Proposition 11, the elements of Ψl(x; ΣX), a scaled version of 

Hl(x; ΣX), are also linearly independent. Therefore, for any 0 �= αl ∈ R
KN,l , αT

l Ψl(x; ΣX) ∈ ΠN is a 
non-zero polynomial, satisfying

αT
l Alαl = E

[(
αT

l Ψl(X;ΣX)
)2] = ‖αT

l Ψl(x;ΣX)‖2
φXdx > 0,

as the inner product defined in (5) is positive-definite on ΠN . Therefore, Al is a symmetric, positive-definite 
matrix. �
Proposition 13. Let X := (X1, . . . , XN )T : (Ω, F) → (RN , BN ), N ∈ N, be an RN -valued Gaussian random 
vector with zero mean; symmetric, positive-definite covariance matrix ΣX; and multivariate probability den-
sity function φX(x; ΣX). Consistent with the Gaussian measure φX(x)dx, let {Hj(x; ΣX) : |j| = l, j ∈ N

N
0 }, 

the set of multivariate Hermite orthogonal polynomials of degree l, be a basis of VN
l . Then the set of poly-

nomials from the orthogonal sum

⊕
l∈N0

span{Hj(x;ΣX) : |j| = l, j ∈ N
N
0 }

is dense in L2(RN , BN , φXdx). Moreover,

L2(RN ,BN , φXdx) =
⊕
l∈N0

VN
l (23)

where the overline denotes set closure.

Proof. Define an arbitrary norm ‖ · ‖ : RN → R
+
0 . According to Skorokhod [23], there exists a real number 

α > 0 such that
∫
RN

exp (α‖x‖)φX(x;ΣX)dx < ∞. (24)

In other words, any norm of x on RN is exponentially integrable with respect to the Gaussian probability 
measure. Now, use Theorem 3.2.18 of Dunkl and Xu [9], which says that if the exponential integrability 
condition is satisfied, then the space of polynomials ΠN is dense in the space L2(RN , BN , φXdx). There-
fore, the set of polynomial from the orthogonal sum, which is equal to ΠN as per (4), is also dense in 
L2(RN , BN , φXdx). Including the limit points of the orthogonal sum yields (23). �
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A related subject brought up by Ernst et al. [11] is whether a probability measure is determinate or 
indeterminate in the Hamburger sense. The multivariate Gaussian probability measure, as it satisfies the 
exponential integrability condition in (24), is also determinate [9]. In one variable, it is well known that if 
a measure is determinate, then the space of polynomials is dense in L2(R, B, φXdx). However, this is not 
universally true for multiple variables. Berg and Thill [3] have shown some rotation-invariant determinate 
measures for which the spaces of polynomials are not dense. While this matter is not relevant for the 
Gaussian measure, it can be for non-Gaussian measures.

5. Generalized Wiener–Hermite expansion

Let y(X) := y(X1, . . . , XN ) be a real-valued, square-integrable output random variable defined on the 
same probability space (Ω, F , P). The vector space L2(Ω, F , P) is a Hilbert space such that

E
[
y2(X)

]
:=
∫
Ω

y2(X(ω))dP(ω) =
∫
RN

y2(x)φX(x;ΣX)dx < ∞

with inner product

(y(X), z(X))L2(Ω,F,P) :=
∫
Ω

y(X(ω))z(X(ω))dP(ω) =
∫
RN

y(x)z(x)φX(x;ΣX)dx =: (y(x), z(x))φXdx

and norm

‖y(X)‖L2(Ω,F,P) :=
√

(y(X), y(X))L2(Ω,F,P) =
√

E [y2(X)] =
√

(y(x), y(x))φXdx =: ‖y(x)‖φXdx.

It is elementary to show that y(X) ∈ L2(Ω, F , P) if and only if y(x) ∈ L2(RN , BN , φXdx).

5.1. Generalized PCE

A generalized PCE of a square-integrable random variable y(X) is simply the expansion of y(X) with 
respect to an orthogonal polynomial basis of L2(Ω, F , P), formally presented as follows.

Theorem 14. Let X := (X1, . . . , XN )T , N ∈ N, be an RN -valued Gaussian random vector with zero mean, 
positive-definite covariance matrix ΣX, and multivariate probability density function φX(x; ΣX) defined 
by (1). Then

(1) any random variable y(X) ∈ L2(Ω, F , P) can be expanded as a Fourier-like infinite series of standardized 
multivariate Hermite orthogonal polynomials {Ψj(X; ΣX) : j ∈ N

N
0 }, referred to as the generalized PCE 

of

y(X) ∼
∑
j∈NN

0

CjΨj(X;ΣX), (25)

where the expansion coefficients Cj ∈ R, j ∈ N
N
0 , satisfy the infinite system

∑
k∈N

N
0

|k|=|j|

CkE [Ψj(X;ΣX)Ψk(X;ΣX)] = E [y(X)Ψj(X;ΣX)] , j ∈ N
N
0 , (26)

of uncoupled finite-dimensional linear systems; and
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(2) the generalized PCE of y(X) ∈ L2(Ω, F , P) converges to y(X) in mean-square; furthermore, the gener-
alized PCE converges in probability and in distribution.

Proof. If y(x) ∈ L2(RN , BN , φXdx), then by Proposition 13, the expansion

y(x) ∼
∑
l∈N0

projly(x), (27)

with projly(x) : L2(RN , BN , φXdx) → VN
l denoting the projection operator, can be formed. Since standard-

ization is merely scaling, with Proposition 11 in mind, VN
l is also spanned by {Ψj(x; ΣX) : |j| = l, j ∈ N

N
0 }. 

Consequently,

projly(x) =
∑
j∈N

N
0

|j|=l

CjΨj(x;Σx). (28)

By definition of the random vector X, the sequence {Ψj(X; Σx}j∈NN
0

is a basis of L2(Ω, F , P), inheriting the 
properties of the basis {Ψj(x; Σx}j∈NN

0
of L2(RN , BN , φXdx). Therefore, (27) and (28) lead to the expansion 

in (25).
In reference to Proposition 13, recognize that the set of polynomials from the orthogonal sum

⊕
l∈N0

span{Ψj(x;ΣX) : |j| = l, j ∈ N
N
0 } = ΠN (29)

is also dense in L2(RN , BN , φXdx). Therefore, one has the Bessel’s inequality [6]

E

[∑
j∈NN

0

CjΨj(X;ΣX)
]2

≤ E
[
y2(X)

]
,

proving that the generalized PCE converges in mean-square or L2. To determine the limit of conver-
gence, invoke again Proposition 13, which implies that the set {Ψj(x; ΣX) : j ∈ N

N
0 } is complete in 

L2(RN , BN , φXdx). Therefore, Bessel’s inequality becomes an equality

E

[∑
j∈NN

0

CjΨj(X;ΣX)
]2

= E
[
y2(X)

]
,

known as the Parseval identity [6] for a multivariate orthogonal system, for every random variable y(X) ∈
L2(Ω, F , P). Furthermore, as the PCE converges in mean-square, it does so in probability. Moreover, as the 
expansion converges in probability, it also converges in distribution.

Finally, to find the expansion coefficients, define a second moment

ePCE := E

[
y(X) −

∑
k∈NN

0

CkΨk(X;ΣX)
]2

(30)

of the difference between y(X) and its full PCE. Differentiate both sides of (30) with respect to Cj, j ∈ N
N
0 , 

to write
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∂ePCE

∂Cj
= ∂

∂Cj
E

[
y(X) −

∑
k∈NN

0

CkΨk(X;ΣX)
]2

= E

[
∂

∂Cj

{
y(X) −

∑
k∈NN

0

CkΨk(X;ΣX)
}2]

= 2E
[{ ∑

k∈NN
0

CkΨk(X;ΣX) − y(X)
}

Ψj(X;ΣX)
]

= 2
{ ∑

k∈NN
0

CkE [Ψj(X;ΣX)Ψk(X;ΣX)] − E [y(X)Ψj(X;ΣX)]
}

= 2
{ ∑

k∈N
N
0

|k|=|j|

CkE [Ψj(X;ΣX)Ψk(X;ΣX)] − E [y(X)Ψj(X;ΣX)]
}
.

(31)

Here, the second, third, fourth, and last lines are obtained by interchanging the differential and expectation 
operators, performing the differentiation, swapping the expectation and summation operators, and applying 
Corollary 9, respectively. The interchanges are permissible as the infinite sum is convergent as demonstrated 
in the preceding paragraph. Setting ∂ePCE/∂Cj = 0 in (31) yields (26), completing the proof. �

The linear system (26) can also be derived by simply replacing y(X) in (26) with the full PCE and then 
using Corollary 9. In contrast, the proof given here demonstrates that the PCE coefficients are determined 
optimally.

The generalized PCE presented here should not be confused with that of Xiu and Karniadakis [31]. The 
generalization in this work extends the applicability of the classical Wiener–Hermite PCE for arbitrary but 
dependent Gaussian probability distributions of random input. In contrast, the existing generalized PCE 
[31] still requires independence of random input, but can account for non-Gaussian variables, provided that 
the marginal probability measures are determinate.

Corollary 15. If X = (X1, . . . , XN )T comprises independent Gaussian random variables, each with zero 
mean and unit variance, then ΣX = I and Ψj(x; ΣX) = ΠN

i=1Ψji(xi) with Ψji(xi) representing the jith-degree 
univariate Hermite orthonormal polynomial in xi. In which case, the generalized PCE reduces to the classical 
PCE, yielding

y(X) ∼
∑
j∈NN

0

Cj

N∏
i=1

Ψji(Xi)

with the expansion coefficients

Cj = E

[
y(X)

N∏
i=1

Ψji(Xi)
]
. (32)

Note that the linear system (26) of the generalized PCE is coupled with respect to the coefficients of 
the same degree. This is due to weak orthogonality of Hermite polynomials for dependent variables. The 
Hermite polynomials for independent variables, by contrast, are strongly orthogonal. In consequence, there 
are no such interactions among respective coefficients, as presented in (32), for the classical PCE.

It should be emphasized that the function y must be square-integrable for the mean-square and other 
convergences to hold. However, the rate of convergence depends on the smoothness of the function. The 
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smoother the function, the faster the convergence. If the function is a polynomial, then its generalized PCE 
exactly reproduces the function. These well-known results from the literature of classical PCE extend to 
the generalized PCE and can be proved using classical approximation theory.

Note that the infinite series in (25) does not necessarily converge almost surely to y(X), that is, for 
m ∈ N0, 

∑
j∈NN

0 ,|j|≤m CjΨj(X(ω); ΣX) may not approach y(X(ω)) as m → ∞. Furthermore, it is not 
guaranteed that the moments of PCE of order larger than two will converge. These known fundamental 
limitations of classical PCE persist in the generalized PCE.

5.2. Truncation

The generalized PCE contains an infinite number of orthogonal polynomials or coefficients. In practice, 
the number must be finite, meaning that the PCE must be truncated. But there are multiple ways to perform 
the truncation. A popular approach, adopted in this work, entails retaining all polynomials with the total 
degree |j| less than or equal to m ∈ N. The result is an mth-order generalized PCE approximation3

ym(X) =
∑
j∈N

N
0

0≤|j|≤m

CjΨj(X;ΣX) =
m∑
l=0

∑
j∈N

N
0

|j|=l

CjΨj(X;ΣX) (33)

of y(X), which contains

LN,m =
(
N + m

m

)
= (N + m)!

N !m!

number of expansion coefficients, satisfying the finite-dimensional linear system

∑
k∈N

N
0

|k|=|j|

CkE [Ψj(X;ΣX)Ψk(X;ΣX)] = E [y(X)Ψj(X;ΣX)] , 0 ≤ |j| ≤ m. (34)

It is natural to ask about the approximation quality of (33). Since the set {Ψj(x; ΣX) : j ∈ N
N
0 } or 

{Ψj(X; ΣX) : j ∈ N
N
0 } is complete in L2(RN , BN , φXdx) or L2(Ω, F , P), the truncation error y(X) − ym(X)

is orthogonal to any element of the space from which ym(X) is chosen, as demonstrated below.

Corollary 16. The truncation error y(X) − ym(X) is orthogonal to the span of {Ψj(X; ΣX), 0 ≤ |j| ≤ m}. 
Moreover, E[y(X) − ym(X)]2 → 0 as m → ∞.

Proof. Let

ȳm(X) :=
∑

k∈N
N
0

0≤|k|≤m

C̄kΨk(X;ΣX),

with arbitrary expansion coefficients C̄k, 0 ≤ |k| ≤ m, be any element of the subspace of L2(Ω, F , P)
spanned by {Ψk(X; ΣX) : 0 ≤ |k| ≤ m}. Then

3 The nouns degree and order associated with PCE or Hermite polynomials are used synonymously in the paper.
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E [{y(X) − ym(X)}ȳm(X)]

= E

[{ ∑
j∈N

N
0

m+1≤|j|<∞

CjΨj(X;ΣX)
}{ ∑

k∈N
N
0

0≤|k|≤m

C̄kΨk(X;ΣX)
}]

=
∑

j,k∈N
N
0

m+1≤|j|<∞
0≤|k|≤m

CjC̄kE [Ψj(X;ΣX)Ψk(X;ΣX)]

= 0,

where the last line follows from Corollary 9, proving the first part of the proposition. For the latter part, 
the Pythagoras theorem yields

E[{y(X) − ym(X)}2] + E[y2
m(X)] = E[y(X)2].

From Theorem 14, E[y2
m(X)] → E[y2(X)] as m → ∞. Therefore, E[{y(X) − ym(X)}2] → 0 as m → ∞. �

The second part of Corollary 16 entails L2 convergence, which is the same as the mean-square convergence 
described in Theorem 14. However, an alternative route is chosen for the proof of Corollary 16.

5.2.1. Second-moment statistics
The mth-order generalized PCE approximation ym(X) can be viewed as a surrogate of y(X). There-

fore, relevant probabilistic characteristics of y(X), including its first two moments and probability density 
function, if it exists, can be estimated from the statistical properties of ym(X).

Applying the expectation operator on ym(X) and y(X) in (25) and (33) and imposing Corollary 9, their 
means

E [ym(X)] = E [y(X)] = C0 (35)

are the same as the zero-degree expansion coefficient and are independent of m. Therefore, the generalized 
PCE truncated for any value of m yields the exact mean. The formulae for the means in the classical and 
generalized PCE are the same, although the respective expansion coefficients involved are not. Nonetheless, 
E[ym(X)] will be referred to as the mth-order generalized PCE approximation of the mean of y(X).

Applying the expectation operator again, this time on [ym(X) − C0]2 and [y(X) − C0]2, and employing 
Corollary 9 results in the variances

var [ym(X)] =
∑
j∈N

N
0

1≤|j|≤m

C2
j +

∑
j,k∈N

N
0

1≤|j|,|k|≤m
|j|=|k|, j�=k

CjCkE [Ψj(X;ΣX)Ψk(X;ΣX)] (36)

and

var [y(X)] =
∑
j∈N

N
0

1≤|j|<∞

C2
j +

∑
j,k∈N

N
0

1≤|j|,|k|<∞
|j|=|k|, j�=k

CjCkE [Ψj(X;ΣX)Ψk(X;ΣX)]

of ym(X) and y(X), respectively. The condition 1 ≤ |j|, |k| ≤ m in the summation means 1 ≤ |j| ≤ m and 
1 ≤ |k| ≤ m. In (36), the lower limit of |j| exceeds the upper limit when m = 0, yielding var[y0(X)] = 0. This 
is consistent with y0(X) = C0, a constant function producing no variance. Clearly, var[ym(X)], referred to 
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as the mth-order generalized PCE approximation of the variance of y(X), approaches var[y(X)], the exact 
variance of y(X), as m → ∞. Compared with the classical PCE, the formulae for the variances in the 
generalized PCE include a second sum, which represents the contribution from the correlation properties 
of input variables X. The second sum vanishes in the formulae for the variances in the classical PCE as X
comprises only independent variables.

Being convergent in probability and distribution, the probability density function of y(X), if it exists, can 
also be estimated by that of ym(X). However, no analytical formula exists for the density function. In that 
case, the density can be estimated by MCS of ym(X). Such simulation should not be confused with crude 
MCS of y(X), commonly used for producing benchmark results whenever possible. The crude MCS can be 
expensive or even prohibitive, particularly when the sample size needs to be very large for estimating tail 
probabilistic characteristics. In contrast, the MCS embedded in the generalized PCE approximation requires 
evaluations of simple polynomial functions that describe ym. Therefore, a relatively large sample size can 
be accommodated in the PCE approximation even when y is expensive to evaluate.

5.2.2. Expansion coefficients
According to (34), determining the expansion coefficients of the mth-order generalized PCE approxi-

mation requires solving an (LN,m × LN,m) system of linear equations. However, the coefficients interact 
with each other only for a specific degree. Therefore, the coefficients for each degree can be determined 
independently, described as follows.

Let 0 ≤ l ≤ m be a degree of orthogonal polynomials for which there are

KN,l =
(
N + l − 1

l

)
= (N + l − 1)!

l!(N − 1)!

lth-degree expansion coefficients Cj, |j| = l. To determine all lth-degree coefficients, only a (KN,l ×KN,l)
linear system,

∑
k∈N

N
0

|k|=|j|

CkE [Ψj(X;ΣX)Ψk(X;ΣX)] = E [y(X)Ψj(X;ΣX)] , |j| = l, (37)

has to be solved. Appendix A gives further details on how to build the matrix form of the linear system. 
When (37) is solved for l = 0, . . . , m, then all LN,m expansion coefficients for degree at most m have been 
determined. Obviously, LN,m =

∑m
l=0 KN,l.

The linear system (37) requires calculating the expectations E[y(X)Ψj(X; ΣX)] for |j| = l. These expecta-
tions are various N -dimensional integrals on RN , which cannot be determined analytically or exactly if y is a 
general function. Furthermore, for large N , a full numerical integration employing an N -dimensional tensor 
product of a univariate quadrature formula is computationally expensive and likely prohibitive. Therefore, 
alternative means of estimating these expectations or integrals must be pursued. One approach entails ex-
ploiting smart combinations of low-dimensional numerical integrations, such as sparse-grid quadrature [13]
and dimension-reduction integration [32], to approximate a high-dimensional integral. The other approach 
consists of efficient sampling methods, such as quasi Monte Carlo simulation (QMCS) [19], importance sam-
pling with Monte Carlo [22], and Markov chain Monte Carlo [8], to name a few. In the latter approach, one 
hopes to attain sufficiently accurate estimates of the expansion coefficients for a relatively low sample size. 
However, if the sample size required is too high, then the statistics of y(X) can be estimated directly, raising 
a question about the need for a PCE approximation in the first place. The topic merits further study.

5.2.3. Numerical implementation
Algorithm 1 describes a procedure for developing an mth-order generalized PCE approximation ym(X)

of a general square-integrable function y(X). It includes calculation of the mean and variance of ym(X).
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Algorithm 1: Generalized PCE approximation and second-moment statistics.
Input: The total number N of Gaussian input variables X = (X1, . . . , XN )T , a positive-definite covariance matrix ΣX of X, 

a square-integrable function y(X), and the largest order m of orthogonal polynomials
Output: The mth-order PCE approximation ym(X) of y(X), mean and variance of ym(X)

1 for l ← 0 to m do
2 Generate Hermite polynomials Hj(x; ΣX) and Ψj(x; ΣX), |j| = l

/* from (6) and (7) */
3 Calculate E[Hj(X; ΣX)Hk(X; ΣX)] and E[H2

j (X; ΣX)], |j| = |k| = l

/* from (12) and (13) */
4 Calculate E[Ψj(X; ΣX)Ψk(X; ΣX)], |j| = |k| = l

/* from (19) */
5 Calculate or estimate E[y(X)Ψj(X; ΣX)], |j| = l

/* from reduced integration or sampling methods */
6 Construct the system matrix Al and vector bl

/* from Appendix A */
7 Solve the linear system Alcl = bl for lth-order PCE coefficients

/* from Appendix A */

8 Compile a set {Cj, 0 ≤ |j| ≤ m} of at most mth-order PCE coefficients and hence construct the mth-order PCE 
approximation ym(X)

/* from (33) */
9 Calculate the mean E[ym(X)] and variance var[ym(X)]

/* from (35) and (36) */

When the covariance matrix is positive-definite, as assumed here, the Cholesky factorization of the covari-
ance matrix leads to a linear map between dependent and independent Gaussian variables. Therefore, the 
classical PCE can also be used for tackling dependent Gaussian variables. In contrast, the generalized PCE 
proposed provides an alternative means of solving stochastic problems with dependent Gaussian variables 
directly, that is, without the transformation. More importantly, if the input variables are both dependent 
and non-Gaussian, then the Cholesky factorization is inadequate, if not useless, and the map becomes non-
linear in general, rendering the classical PCE inefficient. In which case, the use of multivariate orthogonal 
polynomials and generalized PCE, if they exist, is more relevant and perhaps necessary. The extension to 
non-Gaussian variables is discussed in the last subsection.

5.3. Infinitely many input variables

In uncertainty quantification, information theory, and stochastic process, functions depending on a count-
able sequence {Xi}i∈N of input random variables need to be considered. Does the generalized PCE proposed 
still apply as in the case of finitely many random variables? The following proposition provides the answer.

Proposition 17. Let {Xi}i∈N be a countable sequence of Gaussian random variables defined on the probability 
space (Ω, F∞, P), where F∞ := σ({Xi}i∈N) is the associated σ-algebra generated. Then the generalized PCE 
of y({Xi}i∈N) ∈ L2(Ω, F∞, P), where y : RN → R, converges to y({Xi}i∈N) in mean-square. Moreover, the 
generalized PCE converges in probability and in distribution.

Proof. According to Proposition 13, ΠN is dense in L2(RN , BN , φXdx) and hence in L2(Ω, FN , P) for every 
N ∈ N, where FN := σ({Xi}Ni=1) is the associated σ-algebra generated by {Xi}Ni=1.4 Now, apply Theorem 
3.8 of Ernst et al. [11], which says that if ΠN is dense in L2(Ω, FN , P) for every N ∈ N, then

Π∞ :=
∞⋃

N=1
ΠN ,

a subspace of L2(Ω, F∞, P), is also dense in L2(Ω, F∞, P). But, using (29),

4 With a certain abuse of notation, ΠN is used here as a set of polynomial functions of both real variables (x) and random 
variables (X).
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Π∞ =
∞⋃

N=1

⊕
l∈N0

span{Ψj : |j| = l, j ∈ N
N
0 } =

∞⋃
N=1

span{Ψj : j ∈ N
N
0 },

demonstrating that the set of polynomials from the union is dense in L2(Ω, F∞, P). Therefore, the gener-
alized PCE of y({Xi}i∈N) ∈ L2(Ω, F∞, P) converges to y({Xi}i∈N) in mean-square. Since the mean-square 
convergence is stronger than the convergence in probability or in distribution, the latter modes of conver-
gence follow readily. �
5.4. Extension for non-Gaussian measures

Although the paper focuses on PCE for Gaussian measures, a further generalization is possible for 
non-Gaussian measures. However, a few important conditions must be fulfilled before proceeding with the 
generalization. First and foremost, the non-Gaussian measures must be determinate. More importantly, 
the set of orthogonal polynomials consistent with a non-Gaussian measure, if they exist, must be dense or 
complete in L2(Ω, F , P). Otherwise, the resultant PCE may not converge to the correct limit. It is important 
to note that the denseness condition is easily satisfied for a probability density function with a compact 
support. For an unbounded support, the exponential integrability of a norm, as done here for the Gaussian 
density function, or other alternatives will have to be established.

Second, numerical methods must be used in general to generate measure-consistent orthogonal poly-
nomials. In this case, the Gram–Schmidt orthogonalization [15], commonly used for building univariate 
polynomials, is useful for constructing multivariate polynomials as well. However, an important difference 
between univariate polynomials and multivariate polynomials is the lack of an obvious natural order in the 
latter. The natural order for monomials of univariate polynomials is the degree order; that is, one orders 
monomials according to their degree. For multivariate polynomials, there are many options, such as lexi-
cographic order, graded lexicographic order, and reversed graded lexicographic order, to name just three. 
There is no natural choice, and different orders will give different sequences of orthogonal polynomials from 
the Gram–Schmidt orthogonalization.

Last but not least, deriving an analytical formula for the second-moment properties of orthogonal poly-
nomials for arbitrary non-Gaussian measures is nearly impossible. Having said so, these properties, which 
represent high-dimensional integrals comprising products of orthogonal polynomials, can be estimated by 
numerical integration with an arbitrary precision even when N is large. This is because no generally expen-
sive output function evaluations are involved. Given that these issues are properly accounted for, the rest 
of the PCE proposed should work for non-Gaussian measures.

6. Numerical examples

Three examples, involving an explicit polynomial function, an implicit non-polynomial function satisfying 
a stochastic ordinary differential equation, and an implicit function derived from finite-element random 
eigenvalue analysis, are presented to illustrate the generalized PCE.

6.1. Example 1

As introduced in the author’s earlier work [20], consider a symmetric, quadratic, polynomial function

y(X) = 12 + 4X1 + 4X2 + 4X3 + X1X2 + X1X3 + X2X3

of a trivariate Gaussian random vector X = (X1, X2, X3)T , which has mean μX = E[X] = 0 ∈ R
3, 

positive-definite covariance matrix
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ΣX = E
[
XXT
]

=

⎡
⎢⎣ σ2

1 ρ12σ1σ2 ρ13σ1σ3
σ2

2 ρ23σ2σ3
(sym.) σ2

3

⎤
⎥⎦ ∈ S

3
+,

comprising variances σ2
i = 1 of Xi for i = 1, 2, 3 and correlation coefficients ρij between Xi and Xj , 

i, j = 1, 2, 3, i �= j, and a joint probability density function described by (1) for N = 3. Four cases of 
correlation coefficients with varied strengths and types of statistical dependence among random variables 
were examined: (1) ρ12 = ρ13 = ρ23 = 0 (no correlation); (2) ρ12 = ρ13 = ρ23 = 1/5 (equal correlation); (3) 
ρ12 = 1/5, ρ13 = 2/5, ρ23 = 4/5 (positive correlation); and (4) ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5 (mixed 
correlation). The objective of this example is to explain the construction of the generalized PCE and the 
calculation of the second-moment statistics for all four cases of correlation coefficients.

Since y(X) is a quadratic polynomial, its second-order generalized PCE approximation

y2(X) =
∑
j∈N

3
0

0≤|j|≤2

CjΨj(X;ΣX) =
2∑

l=0

∑
j∈N

3
0

|j|=l

CjΨj(X;ΣX)

was built following Algorithm 1 to reproduce the former. Given N = 3 and m = 2, the number of multivariate 
Hermite polynomials or PCE coefficients is L3,2 = (3 +2)!/(3!2!) = 10. Table 1 presents all ten standardized 
Hermite orthogonal polynomials, obtained using (6) and (7), for four distinct cases of correlation coefficients. 
The corresponding expansion coefficients were calculated by forming the system matrix Al and vector bl, 
as explained in Appendix A, and then solving the linear system for the vector cl of coefficients for each 
degree l = 0, 1, 2 separately. While the expectations involved in Al were determined from the proposed 
analytical formulae described by (19) and (20), the expectations contained in bl were obtained by analytical 
integrations, which is possible for the function y chosen. Therefore, all coefficients of the generalized PCE, 
listed in Table 2, were determined exactly.

From Tables 1 and 2, clearly, the orthogonal polynomials and expansion coefficients vary with the corre-
lation structure, but when added together they reconstruct the same function y whether or not the random 
variables are independent. When there is no correlation between any two random variables (Case 1), the 
standardized multivariate orthogonal polynomials are products of univariate orthonormal polynomials, and 
the expansion coefficients are merely the coefficients of the function y, as expected in the classical PCE. In 
other words, the generalized PCE reduces to the classical PCE for independent random variables. For the 
remaining three cases (Cases 2 through 4), the zeroth-order orthogonal polynomials are equal to one, the 
same constant as in Case 1, but the corresponding expansion coefficients vary with the correlation prop-
erties. Moreover, the first- and second-order orthogonal polynomials contain additional terms of the same 
degree that are not present in the original function to begin with. It is easy to verify from Corollaries 9
and 10 that all first- and second-order orthogonal polynomials have zero means and are either strongly 
orthogonal for Case 1 or weakly orthogonal for Cases 2 through 4.

Finally, the means and variances of y2(X) for all four cases, calculated using (35) and (36), are displayed in 
Table 3. They match the corresponding statistics of y(X) due to the polynomial exactness of the generalized 
PCE.

6.2. Example 2

Consider a stochastic ordinary differential equation (ODE) [18]

dy(t;X) = −(1 + X1) [y(t;X1, X2) − (1 + X2)] , 0 ≤ t ≤ 1,

dt
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Table 1
Zeroth-, first-, and second-order standardized Hermite orthogonal polynomials in Example 1.

Case 1: ρ12 = ρ13 = ρ23 = 0 Case 2: ρ12 = ρ13 = ρ23 = 1/5

Ψ(0,0,0) = 1 Ψ(0,0,0) = 1

Ψ(1,0,0) = x1 Ψ(1,0,0) = 1
2

√
5
42 (6x1 − x2 − x3)

Ψ(0,1,0) = x2 Ψ(0,1,0) = − 1
2

√
5
42 (x1 − 6x2 + x3)

Ψ(0,0,1) = x3 Ψ(0,0,1) = − 1
2

√
5
42 (x1 + x2 − 6x3)

Ψ(2,0,0) = 1√
2 (x2

1 − 1) Ψ(2,0,0) =
[180x2

1 − 60x1(x2 + x3) + 5x2
2

5x3
2 + 10x2x3 − 168]/168

√
2

Ψ(1,1,0) = x1x2 Ψ(1,1,0) =
−[30x2

1 − 5x1(37x2 − 5x3) + 30x2
2

−5x2
3 + 25x2x3 − 28]/28

√
37

Ψ(1,0,1) = x1x3 Ψ(1,0,1) =
−[30x2

1 + 5x1(5x2 − 37x3) − 5x2
2

+30x2
3 + 25x2x3 − 28]/28

√
37

Ψ(0,2,0) = 1√
2 (x2

2 − 1) Ψ(0,2,0) =
[5x2

1 + 10(x3 − 6x2)x1 + 180x2
2

+5x2
3 − 60x2x3 − 168]/168

√
2

Ψ(0,1,1) = x2x3 Ψ(0,1,1) =
[5x2

1 − 25x1(x2 + x3) − 30x2
2

−30x2
3 + 185x2x3 + 28]/28

√
37

Ψ(0,0,2) = 1√
2 (x2

3 − 1) Ψ(0,0,2) =
[5x2

1 + 10x1(x2 − 6x3) + 5x2
2

+180x2
3 − 60x2x3 − 168]/168

√
2

Case 3: ρ12 = 1/5, ρ13 = 2/5, ρ23 = 4/5 Case 4: ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5

Ψ(0,0,0) = 1 Ψ(0,0,0) = 1

Ψ(1,0,0) =
√

5
6 (3x1 + x2 − 2x3) Ψ(1,0,0) =

√
5

6 (3x1 − x2 − 2x3)

Ψ(0,1,0) = 1
2

√
5
21 (x1 + 7x2 − 6x3) Ψ(0,1,0) = − 1

2

√
5
21 (x1 − 7x2 − 6x3)

Ψ(0,0,1) = − 1
2

√
5
6 (x1 + 3x2 − 4x3) Ψ(0,0,1) = − 1

2

√
5
6 (x1 − 3x2 − 4x3)

Ψ(2,0,0) =
[45x2

1 + 30x1(x2 − 2x3) + 5x2
2

+20x2
3 − 20x2x3 − 36]/36

√
2

Ψ(2,0,0) =
[45x2

1 − 30x1(x2 + 2x3) + 5x2
2

+20x2
3 + 20x2x3 − 36]/36

√
2

Ψ(1,1,0) =
[15x2

1 + 10x1(11x2 − 10x3) + 35x2
2

+60x2
3 − 100x2x3 − 12]/12

√
22

Ψ(1,1,0) =
−[15x2

1 − 10x1(11x2 + 10x3) + 35x2
2

+60x2
3 + 100x2x3 − 12]/12

√
22

Ψ(1,0,1) =
−[15x2

1 + 10x1(5x2 − 7x3) + 15x2
2

+40x2
3 − 50x2x3 − 12]/12

√
7

Ψ(1,0,1) =
−[15x2

1 − 10x1(5x2 + 7x3) + 15x2
2

+40x2
3 + 50x2x3 − 12]/12

√
7

Ψ(0,2,0) =
[5x2

1 + 10x1(7x2 − 6x3) + 245x2
2

+180x2
3 − 420x2x3 − 84]/84

√
2

Ψ(0,2,0) =
[5x2

1 − 10x1(7x2 + 6x3) + 245x2
2

+180x2
3 + 420x2x3 − 84]/84

√
2

Ψ(0,1,1) =
−[5x2

1 + 50x1(x2 − x3) + 105x2
2

+120x2
3 − 230x2x3 − 36]/12

√
23

Ψ(0,1,1) =
[5x2

1 − 50x1(x2 + x3) + 105x2
2

+120x2
3 + 230x2x3 − 36]/12

√
23

Ψ(0,0,2) =
[5x2

1 + 10x1(3x2 − 4x3) + 45x2
2

+80x2
3 − 120x2x3 − 24]/24

√
2

Ψ(0,0,2) =
[5x2

1 − 10x1(3x2 + 4x3) + 45x2
2

+80x2
3 + 120x2x3 − 24]/24

√
2

with a deterministic initial condition y(0; X) = 0, where t is an independent variable and X = (X1, X2)T is a 
bivariate Gaussian input random vector. The random input has mean μX = E[X] = 0 ∈ R

2, positive-definite 
covariance matrix
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Table 2
Zeroth-, first-, and second-order generalized PCE co-
efficients in Example 1.

C(j1,j2,j3) Case 1 Case 2 Case 3 Case 4

C(0,0,0) 12 63
5

67
5

57
5

C(1,0,0) 4 2
√

42
5

16√
5

12√
5

C(0,1,0) 4 2
√

42
5 4

√
35
3 0

C(0,0,1) 4 2
√

42
5 44

√
2
15 4

√
6
5

C(2,0,0) 0 33
35

√
2

17
10

√
2

3
10

√
2

C(1,1,0) 1 19
√

37
70

31
15

√
11
2

3
5

√
11
2

C(1,0,1) 1 19
√

37
70

32
√

7
15 −

√
7

5

C(0,2,0) 0 33
35

√
2

203
30

√
2 − 49

10
√

2

C(0,1,1) 1 19
√

37
70

34
√

23
15

7
√

23
5

C(0,0,2) 0 33
35

√
2

76
√

2
15 − 12

√
2

5

Case 1: ρ12 = ρ13 = ρ23 = 0,
Case 2: ρ12 = ρ13 = ρ23 = 1/5,
Case 3: ρ12 = 1/5, ρ13 = 2/5, ρ23 = 4/5,
Case 4: ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5.

Table 3
Second-moment properties of y2(X) in Example 1.

Case Mean Variance

Case 1 12 51

Case 2 63
5

1794
25

Case 3 67
5

2514
25

Case 4 57
5

774
25

Case 1: ρ12 = ρ13 = ρ23 = 0,
Case 2: ρ12 = ρ13 = ρ23 = 1/5,
Case 3: ρ12 = 1/5, ρ13 = 2/5, ρ23 = 4/5,
Case 4: ρ12 = −1/5, ρ13 = 2/5, ρ23 = −4/5.

ΣX = E
[
XXT
]

=
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
∈ S

2
+,

comprising variances σ2
1 = σ2

2 = 1/4 of X1 and X2 and correlation coefficient −1 < ρ < 1 between X1 and 
X2, and a joint density function described by (1) for N = 2. The objective of this example is to assess the 
approximation quality of the truncated generalized PCE in terms of the second-moment statistics of the 
solution of the ODE.

A direct integration of the stochastic ODE leads to the exact solution: y(t; X) = (1 +X2)[1 − exp{−(1 +
X1)t}]. As a result, the first two raw moments E[y(t; X)] and E[y2(t; X)], described in Appendix B, can 
be obtained exactly. Using (B.1) and (B.2), Fig. 1 illustrates the plots of the mean E[y(t; X)] and variance 
E[y2(t; X)] − (E[y(t; X)])2 of y(t; X) as a function of t for five values of the correlation coefficient: ρ =
−9/10, −1/2, 0, 1/2, 9/10. Both statistics grow with t regardless of the correlation coefficient as expected. 
When the correlation coefficient increases, there is a slight uptick in the mean, but the variance rises sharply. 
Therefore, the second-moment statistics strongly depend on the correlation properties of random input.

Fig. 2 depicts nine plots of three second-order standardized multivariate Hermite orthogonal polynomials 
Ψ(2,0)(x1, x2), Ψ(1,1)(x1, x2), and Ψ(0,2)(x1, x2) for three distinct values of the correlation coefficient: ρ =
−1/2, 0, 1/2. The polynomials obtained for dependent (ρ = −1/2, 1/2) variables are very different than 
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Fig. 1. Second-moment statistics of y(t;X) in Example 2; (a) mean; (b) variance.

those derived for independent (ρ = 0) variables. Similar plots can be generated for other orders, but they 
are excluded for brevity.

Since y(t; X) is a non-polynomial function, a convergence analysis with respect to m – the order of 
the generalized PCE approximation – is essential. Employing m = 1, 2, 3, 4, 5, 6 in Algorithm 1, six PCE 
approximations of y(t; X) and their second-moment statistics were constructed or calculated. Define at t = 1
an L1 error

em := |var[y(1;X)] − var[ym(1;X)]|
var[y(1;X)] (38)

in the variance, committed by an mth-order generalized PCE approximation ym(1; X) of y(1; X), where 
var[y(1; X)] and var[ym(1; X)] are exact and approximate variances, respectively. The exact variance was 
obtained from (B.1) and (B.2), whereas the approximate variance, given m, was calculated following Al-
gorithm 1. All expectations involved in Al and bl, 0 ≤ l ≤ m, were obtained exactly either by analytical 
formulae or analytical integrations as in Example 1. Therefore, the variances from the PCE approximations 
and resultant errors, listed specifically for ρ = 1/2 in Appendix B, were determined exactly.

Fig. 3 presents five plots describing how the error em, calculated for each of the five correlation coefficients, 
decays with respect to m. The attenuation rates for all five correlation coefficients are very similar, although 
the errors for negative correlations are larger than those for non-negative correlations. Nonetheless, nearly 
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Fig. 2. A family of bivariate (N = 2), second-order (m = 2) standardized Hermite orthogonal polynomials in Example 2 for ρ = −1/2
(left), ρ = 0 (middle), and ρ = 1/2 (right).

Fig. 3. Decay of L1 error in the variance of ym(1;X) in Example 2 with respect to m.
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Table 4
Second-moment properties of first four eigenvalues of the cantilever plate in Example 3.

Eigenvalue 1st-order gen. PCE
(LQMCS = 3000)

2nd-order gen. PCE
(LQMCS = 3000)

Crude MCS
(LMCS = 10, 000)

Mean St. dev. Mean St. dev. Mean St. dev.

Λ1, (rad/ms)2 0.275088 0.0869715 0.275088 0.0896882 0.274852 0.0888108
Λ2, (rad/ms)2 5.10714 1.18771 5.10714 1.21458 5.10376 1.20242
Λ3, (rad/ms)2 10.6004 2.0924 10.6004 2.14212 10.5987 2.14294
Λ4, (rad/ms)2 54.5265 9.85134 54.5265 10.1103 54.5506 10.0225

exponential convergence is achieved by the generalized PCE approximations, preserving the exponential 
convergence of the classical PCE approximations.

6.3. Example 3

The final example entails random eigenvalue analysis of an undamped cantilever plate, shown in Fig. 4(a), 
often performed in structural dynamics. The plate has the following deterministic geometric and material 
properties: length L = 2 in (50.8 mm), width W = 1 in (25.4 mm), Young’s modulus E = 30 ×106 psi (206.8 
GPa), Poisson’s ratio ν = 0.3, and mass density ρ = 7.324 ×10−4 lb-s2/in4 (7827 kg/mm3). The randomness 
in eigenvalues arises due to random thickness t(ξ), which is spatially varying in the longitudinal direction ξ
only. The thickness is represented by a homogeneous, lognormal random field t(ξ) = c exp[α(ξ)] with mean 
μt = 0.01 in (0.254 mm), variance σ2

t = v2
t μ

2
t , and coefficient of variation vt = 0.2, where c = μt/

√
1 + v2

t

and α(ξ) is a zero-mean, homogeneous, Gaussian random field with variance σ2
α = ln(1 +v2

t ) and covariance 
function Γα(τ) = E[α(ξ)α(ξ + τ) = σ2

α exp[−|τ |/(0.2L)]. Two numerical grids were employed: (1) a 10 × 20
finite-element grid of the plate, consisting of 200 eight-noded, second-order shell elements and 661 nodes, 
as shown in Fig. 4(b); and (2) an 11-point random-field grid of the plate, parameterizing the random 
field α(ξ) into a zero-mean, 11-dimensional, dependent Gaussian random vector X = (α1, . . . , α11)T with 
covariance matrix ΣX = [Γα(ξi−ξj)], i, j = 1, . . . , 11, where ξi is the coordinate of the column of nodes after 
traversing 2(i − 1) columns of finite elements from the left, as shown in Fig. 4(c). The thickness is linearly 
interpolated between two consecutive nodes of the random-field grid. The finite-element grid was used for 
domain discretization, generating the random mass matrix M(X) and random stiffness matrix K(X) of 
the cantilever plate. The random eigenvalue problem calls for solving the matrix characteristic equation: 
det[K(X) −Λ(X)M(X)] = 0, where Λ(X) is a random eigenvalue of interest with its square-root representing 
the corresponding natural frequency. A Lanczos algorithm [7] was used to calculate the eigenvalue.

Using Algorithm 1, the first- and second-order generalized PCE approximations were employed to esti-
mate various probabilistic characteristics of the first four eigenvalues of the plate. The expectations involved 
in Al, l = 0, 1, 2, were exactly determined from the analytical formulae described by (19) and (20) as 
before. However, unlike the two former examples, the expectations contained in bl, l = 0, 1, 2, which re-
quire 11-dimensional integrations, cannot be determined exactly. Instead, a QMCS was used to estimate 
the integrals by three steps: (1) select a QMCS sample size LQMCS ∈ N and generate a low-discrepancy 
point set PLQMCS

:= {u(k) ∈ [0, 1]11, k = 1, . . . , LQMCS}; (2) map each sample from PLQMCS
to the 

sample x(k) ∈ R
11, following the Gaussian probability measure of X; and (3) approximate the expecta-

tion E[y(X)Ψj(X; ΣX)] by 
∑LQMCS

k=1 y(x(k))Ψj(x(k); ΣX)/LQMCS . The computational cost is proportional 
to LQMCS , as all sample calculations require the same effort. The Sobol sequence [25] was used for the 
low-discrepancy point set with three distinct values of LQMCS = 1000, 2000, 3000.

Table 4 presents the means and standard deviations of the first four eigenvalues, Λi, i = 1, . . . , 4, of the 
plate by three different methods: the two generalized PCE approximations and crude MCS. The expansion 
coefficients of the PCE are based on the QMCS sample size LQMCS = 3000. In all three methods, the 
solution of the matrix characteristic equation for a given input is equivalent to performing a finite-element 
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Fig. 4. A cantilever plate; (a) geometry; (b) finite-element grid; (c) random-field grid.

analysis. Therefore, computational efficiency, even for this simple plate, is a practical requirement in solving 
random eigenvalue problems. Due to the expense of finite-element analysis, crude MCS was conducted 
for a sample size LMCS = 10, 000, which should be adequate for providing benchmark solutions of the 
second-moment characteristics. The agreement between the means and standard deviations by both PCE 
approximations and crude MCS in Table 4 is good. However, the second-order approximation is relatively 
more accurate than the first-order approximation in estimating standard deviations, as expected.

Figs. 5 and 6 illustrate the marginal probability density functions of the four eigenvalues by the two 
generalized PCE approximations and crude MCS. Due to the computational expense inherent to finite-
element analysis, the same 10,000 samples generated for verifying the statistics in Table 4 were utilized to 
develop the histograms of crude MCS in Figs. 5 and 6. However, since the PCE approximations yield explicit 
eigenvalue approximations in terms of multivariate polynomials, a relatively large sample size, 100,000 in 
this particular example, was selected to sample (33) for estimating the respective densities by histograms 
as well. Moreover, for each eigenvalue and order, three PCE-based densities, obtained when estimating the 
expansion coefficients with LQMCS = 1000, 2000, and 3000, were generated to monitor convergence. The 
respective densities estimated by the second-order PCE approximations and crude MCS match well over the 
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Fig. 5. Marginal probability density functions (PDFs) of random eigenvalues of the cantilever plate in Example 3 by generalized 
PCE approximations and crude MCS; (a) first eigenvalue; (2) second eigenvalue.

entire support for all four eigenvalues, especially when the QMCS sample size is relatively large. In contrast, 
the first-order PCE approximations produce satisfactory density estimates only around the means; there are 
discrepancies in the tail regions of the densities even when LQMCS = 3000. This suggests that a satisfactory 
second-moment analysis by the first-order PCE approximation may not translate to accurate calculation 
of the probability density function. This known problem for the classical PCE persists for the generalized 
PCE.

7. Conclusion

A new, transformation-free, generalized PCE of a square-integrable random variable, comprising multi-
variate Hermite polynomials in dependent Gaussian random variables, is presented. Derived analytically, 
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Fig. 6. Marginal probability density functions (PDFs) of random eigenvalues of the cantilever plate in Example 3 by generalized 
PCE approximations and crude MCS; (a) third eigenvalue; (2) fourth eigenvalue.

the second-moment properties of multivariate Hermite polynomials reveal a weakly orthogonal system with 
respect to an inner product comprising a general Gaussian probability measure. When the Gaussian vari-
ables are statistically independent, the multivariate Hermite polynomials elevate to a strongly orthogonal 
system, leading to the classical PCE. Nonetheless, when the Gaussian variables are statistically dependent, 
the exponential integrability of norm still allows the Hermite polynomials to constitute a complete set and 
hence a basis in a Hilbert space. The completeness is vitally important for the convergence of the general-
ized PCE to the correct limit. The optimality of the generalized PCE and the approximation quality due to 
truncation have been discussed. New analytical formulae are proposed to calculate the mean and variance 
of a generalized PCE approximation of a general output variable in terms of the expansion coefficients and 
statistical properties of Hermite polynomials. However, unlike in the classical PCE, calculating the coeffi-
cients of the generalized PCE requires solving a coupled system of linear equations. Moreover, the variance 
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Table 5
Graded lexicographic order of multi-index j for N = 3 and l = 0, 1, 2.
|j| = l K3,l Multi-index j Single index p

0 1 (0,0,0) 1
1 3 (1,0,0) 1

(0,1,0) 2
(0,0,1) 3

2 6 (2,0,0) 1
(1,1,0) 2
(1,0,1) 3
(0,2,0) 4
(0,1,1) 5
(0,0,2) 6

formula of the generalized PCE contains additional terms – a consequence of statistical dependence among 
Gaussian input variables – that are not present in that of the classical PCE. The additional terms vanish 
as they should when the Gaussian variables are statistically independent, regressing the generalized PCE 
to the classical PCE. A possible extension of the generalized PCE for non-Gaussian variables has been 
discussed. Numerical examples developed from an elementary function, a stochastic ODE, and a random 
eigenvalue analysis illustrate the construction and use of a generalized PCE approximation in estimating 
the statistical properties of output variables.
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Appendix A. Matrix form for calculating expansion coefficients

The linear system (37) for |j| = l involves KN,l number of orthonormal polynomials and expansion 
coefficients, which must be ordered with a single index, say, p. For multivariate polynomials, there are many 
options. One option employed in this work is the graded lexicographic order.

Definition 18. A general monomial order is denoted by the symbol �. For j, k ∈ N
N
0 , the graded lexicographic 

order, denoted by �grlex, is such that j �grlex k if and only if |j| ≥ |k| and the leftmost non-zero entry of 
j − k is positive.

Using the graded lexicographic order from Definition 18, the multi-indices j, |j| = l, can now be arranged 
in an ascending order following a single index p, which runs from 1 to KN,l. Table 5 illustrates the graded 
lexicographic order for a three-dimensional case (N = 3) and three subcases: l = 0, l = 1, and l = 2.

The matrix form of (37) requires construction of the following: (1) a KN,l × KN,l matrix Al ∈ S
KN,l

+ , 
comprising the expectations E[Ψj(X; ΣX)Ψk(X; ΣX)], |j| = |k| = l; (2) a KN,l-dimensional vector bl ∈
R

KN,l , consisting of the expectations E[y(X)Ψj(X; ΣX)], |j| = l; and (3) a KN,l-dimensional vector cl ∈
R

KN,l , collecting the expansion coefficients Cj, |j| = l. The elements of the system matrix and vectors are 
arranged according to the graded lexicographic order described earlier. For example, when N = 3 and l = 2, 
the size of the linear system is K3,2 = (4!)/(2!2!) = 6, yielding
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A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E[Ψ2
(2,0,0)]

E[Ψ(2,0,0)
Ψ(1,1,0)]

E[Ψ(2,0,0)
Ψ(1,0,1)]

E[Ψ(2,0,0)
Ψ(0,2,0)]

E[Ψ(2,0,0)
Ψ(0,1,1)]

E[Ψ(2,0,0)
Ψ(0,0,2)]

E[Ψ2
(1,1,0)]

E[Ψ(1,1,0)
Ψ(1,0,1)]

E[Ψ(1,1,0)
Ψ(0,2,0)]

E[Ψ(1,1,0)
Ψ(0,1,1)]

E[Ψ(1,1,0)
Ψ(0,0,2)]

E[Ψ2
(1,0,1)]

E[Ψ(1,0,1)
Ψ(0,2,0)]

E[Ψ(1,0,1)
Ψ(0,1,1)]

E[Ψ(1,0,1)
Ψ(0,0,2)]

E[Ψ2
(0,2,0)]

E[Ψ(0,2,0)
Ψ(0,1,1)]

E[Ψ(0,2,0)
Ψ(0,0,2)]

E[Ψ2
(0,1,1)]

E[Ψ(0,1,1)
Ψ(0,0,2)]

(sym.) E[Ψ2
(0,0,2)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b2 =

⎛
⎜⎜⎜⎜⎜⎝

E[yΨ(2,0,0)]
E[yΨ(1,1,0)]
E[yΨ(1,0,1)]
E[yΨ(0,2,0)]
E[yΨ(0,1,1)]
E[yΨ(0,0,2)]

⎞
⎟⎟⎟⎟⎟⎠ , c2 =

⎛
⎜⎜⎜⎜⎜⎝

C(2,0,0)
C(1,1,0)
C(1,0,1)
C(0,2,0)
C(0,1,1)
C(0,0,2)

⎞
⎟⎟⎟⎟⎟⎠ .

From Corollary 12, Al ∈ R
KN,l×KN,l is a symmetric, positive-definite matrix, and hence invertible. The 

solution of Alcl = bl produces the expansion coefficients.

Appendix B. Exact second-moment properties of y(t; X) and approximation errors in variance

Applying the expectation operators on the solution of the stochastic ODE from Example 2 and its square, 
the first two raw moments of y(t; X), valid for t ∈ [0, 1] and ρ ∈ (−1, 1), respectively, are

E [y(t;X)] = 1 +
(
ρt

16 − 1
)

exp
(
t2

32 − t

)
(B.1)

and

E
[
y2(t;X)

]
= 1

128 exp(−2t)
[
136 exp(2t) − exp

(
t + t2

32

)
{272 + ρt(ρt− 32)}

+2 exp
(
t2

8

)
{68 + ρt(ρt− 16)}

]
.

(B.2)

From (38), six PCE committed L1 approximation errors in variance for ρ = 1/2 are

e1 = 15424 16
√
e− 16369

16
(
−961 + 964 16

√
e− 66e31/32 + 64e31/16

) ≈ 9.26928 × 10−3,

e2 = 493568 16
√
e− 525345

512
(
−961 + 964 16

√
e− 66e31/32 + 64e31/16

) ≈ 3.22487 × 10−4,

e3 = 23691264 16
√
e− 25219153

24576
(
−961 + 964 16

√
e− 66e31/32 + 64e31/16

) ≈ 8.03445 × 10−6,

e4 = 1516240896 16
√
e− 1614029953(

16
√ 31/32 31/16

) ≈ 1.50027 × 10−7,

1572864 −961 + 964 e− 66e + 64e
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e5 = 40433090560 16
√
e− 43040800827

41943040
(
−961 + 964 16

√
e− 66e31/32 + 64e31/16

) ≈ 2.20588 × 10−9,

e6 = 11644730081280 16
√
e− 12395750647009

12079595520
(
−961 + 964 16

√
e− 66e31/32 + 64e31/16

) ≈ 2.65667 × 10−11.

Similar results, also generated for other values of ρ, are not reported here for brevity.
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