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Abstract: This technical note presents explicit formulas for calculating the response moments of stochastic systems by polynomial
dimensional decomposition entailing independent random input with arbitrary probability measures. The numerical results indicate that
the formulas provide accurate, convergent, and computationally efficient estimates of the second-moment properties.
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Introduction

Dimensional decomposition splits a multivariate function into a
finite sum of simpler component functions of input variables with
increasing dimensions. The decomposition, first presented by Ho-
effding �1948� in relation to his seminal work on U-statistics, has
been studied by many other researchers, including Sobol �1969�
for analysis of variance, Efron and Stein �1981� for jackknife
estimate of variance, Rabitz and Alis �1999� for high-dimensional
model representation, and Xu and Rahman �2005� for reliability
analysis. More recently, the writer developed the polynomial di-
mensional decomposition �PDD� method involving Fourier-
polynomial expansions of component functions �Rahman 2008�,
later extended for arbitrary probability measures �Rahman 2009�,
for stochastic computing.

This study further examines the writer’s PDD method for cal-
culating the response moments of a complex stochastic system.
By exploiting the orthogonal structure of the decomposition and
the properties of orthogonal polynomials, explicit formulas for
calculating the response moments in terms of the expansion co-
efficients have been derived. The results of an industrial-scale
leverarm example indicate that the formulas provide accurate,
convergent, and computationally efficient estimates of the first
two moments examined.

Polynomial Dimensional Decomposition

Let �� ,F , P� be a complete probability space, where �
=sample space; F=�-field on �; and P :F→ �0,1�=probability
measure. With BN representing the Borel �-field on RN, consider
an RN-valued independent random vector X= �X1 , . . . ,XN�T :
�� ,F�→ �RN ,BN�, which describes input to a complex stochastic
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system. The joint probability density function of X is fX�x�
=�i=1

i=Nfi�xi�, where f i�xi�=marginal probability density function of
Xi defined on the probability triple ��i ,Fi , Pi�. Let y�X�, a real-
valued, square-integrable, measurable transformation on �� ,F�,
define a relevant response of the stochastic system. The PDD of
y�X�, described by �Rahman 2009�

�1�

can be viewed as a finite, hierarchical expansion of an output
function in terms of its input variables with increasing dimen-
sions, where ��ij�Xi� , j=0,1 , . . .� is a set of complete orthonor-
mal bases in the Hilbert space L2��i ,Fi , Pi�, which is consistent
with the probability measure of Xi, and y0 and Ci1¯isj1¯js

, s
=1,2 , . . . ,N, are the expansion coefficients. In many applications,
the function y in Eq. �1� can be approximated by a sum of at most
S-variate component functions comprising at most m-order or-
thogonal polynomials, where 1�S�N and 1�m�� are both
integers, resulting in the S-variate approximation �Rahman 2009�

�2�
which converges to y�X� in the mean-square sense when S=N and
m→�. By minimizing an error functional associated with a given
y�x� and the joint probability density of �Xi1

, . . . ,Xis
�T, the coef-

ficients can be expressed by the N-dimensional integrals �Rahman
2008�

y0 =�
RN

y�x�fX�x�dx �3�
and
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˜

Ci1¯isj1¯js
=�

RN
y�x��

p=1

s

�ipjp
�xip

�fX�x�dx, s = 1,2, . . . ,S

�4�

Once the embedded coefficients y0 and Ci1¯isj1¯js
, s=1,2 , . . . ,S,

are calculated, as described in the writer’s previous work �Rah-
man 2009�, Eq. �2� furnishes an approximate but explicit map
yS :RN→R that can be viewed as a surrogate of the exact map
y :RN→R, which describes the input-output relation from a com-
plex numerical simulation. Therefore, any probabilistic character-
istic of y�X�, including its statistical moments and rare event
probabilities, can be easily estimated by performing Monte Carlo
simulation of ỹS�X� rather than of y�X�. However, due to the
special properties of orthogonal polynomials, explicit formulas
for moments of ỹS�X� can be derived, and that is the principal
focus of this work. Readers interested in tail distributions of re-
sponse or reliability analysis are referred to prior works on PDD
�Rahman 2008, 2009�.

Orthogonal Polynomials

Let f i�xi� be the probability density function of the random vari-
able Xi under the probability measure dFi�xi�= f i�xi�dxi, which has
finite moments of orders up to 2m, m�N. Let P be the space of
real polynomials and Pm�P the space of polynomials of degree
�m. For any pair ui�xi�, vi�xi� in P, define an inner product

�ui,vi�dFi
ª�

R

ui�xi�vi�xi�dFi�xi� =�
R

ui�xi�vi�xi�f i�xi�dxi �5�

and an associated norm 	ui	dFi
ª
�ui ,ui�dFi

with respect to the
measure dFi�xi�.

Definition: Monic real polynomials �ij�xi�=xi
j + ¯ , j

=0,1 ,2 , . . ., are called monic orthogonal polynomials with re-
spect to the measure dFi�xi� if

��ij1
,�ij2

�dFi
= 0 for j1 � j2, j1, j2 = 0,1,2, . . . and

	�ij	dFi
= 
��ij,�ij�dFi

� 0 for j = 0,1,2, . . . �6�

There are infinitely many orthogonal polynomials if the index set
�j=0,1 ,2 , . . .� is unbounded and finitely many otherwise.

Theorem: Let �ij�xi�, j=0,1 ,2 , . . ., be monic orthogonal poly-
nomials with respect to the measure dFi�xi�. They satisfy the
three-term recurrence relation

�i,j+1�xi� = �xi − aij��ij�xi� − bij�i,j−1�xi�, j = 0,1,2, . . .

�i,−1�xi� = 0, �i0�xi� = 1 �7�

where

aij =
�xi�ij,�ij�dFi

��ij,�ij�dFi

, j = 0,1,2, . . . �8�

and

bij = ���i0,�i0�dFi
if j = 0

��ij,�ij�dFi

��i,j−1,�i,j−1�dFi

if j = 1,2, . . .� �9�

are the recursion coefficients. The index range is infinite �j���

or finite �j�m−1�, depending on whether the inner product is
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positive definite on P or Pm, respectively, but not on Pm�, m�
�m.

Proof. See Gautschi �2004�, pp. 10–13.
The three-term recurrence relation has significant impact on

the construction of orthogonal polynomials. The first m recursion
coefficient pairs are uniquely determined by the first 2m moments
of Xi that must exist. When these moments can be exactly calcu-
lated, they lead to exact recursion coefficients, some of which
belong to classical orthogonal polynomials. For an arbitrary mea-
sure, approximate methods based on the Stieltjes procedure can
be employed to obtain the recursion coefficients. See Rahman
�2009� for further details.

Let �ij�xi�ª�ij�xi� / 	�ij�xi�	dFi
, j=0,1 ,2 , . . ., define orthonor-

mal versions of monic orthogonal polynomials for an arbitrary
measure dFi. If E is the expectation operator, then two important
properties of �ij�xi� are as follows.

Property 1. The orthonormal polynomial basis functions have
a unit mean for j=0 and zero means for all j�1, i.e.

E��ij�Xi�� ª�
R

�ij�xi�f i�xi�dxi = 1 if j = 0

0 if j � 1
� �10�

Property 2. Any two orthonormal polynomial basis functions
�ij1

�Xi� and �ij2
�Xi�, where j1 , j2=0 ,1 ,2 , . . ., are uncorrelated

and each has unit variance, i.e.

E��ij1
�Xi��ij2

�Xi�� ª�
R

�ij1
�xi��ij2

�xi�f i�xi�dxi = 1 if j1 = j2

0 if j1 � j2
�

�11�

The first property stems from the expression E��ij�Xi��
=�R�ij�xi�f i�xi�dxi= ��ij ,�i0�dFi

, which, according to the afore-
mentioned definition and theorem, is one when j=0 and zero
when j�1. The second property follows directly from the defi-
nition and theorem.

Moments

Applying the expectation operator on Eq. �2� and noting Property
1, the mean

E�ỹS�X�� = y0 �12�

of the S-variate approximation matches the exact mean in Eq. �3�,
regardless of S. Applying the expectation operator again, this time
on �ỹS�X�−y0�2, results in the approximate variance
�13�
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which depends on S. The number of summations inside the brace
of the right side of Eq. �13� is 2�s+ t�, where s and t=indices of
the two outer summations. By virtue of Property 2 and indepen-
dent coordinates of X

E��
p=1

s

�ipjp
�Xip

��
p=1

t

�kplp
�Xkp

�� = �
p=1

s

E��ipjp
2 �Xip

�� = 1 �14�

for s= t, ip=kp, jp= lp and zero otherwise, leading to

�15�

as the sum of squares of the expansion coefficients from the
S-variate approximation of y�x�. Clearly, the approximate vari-
ance in Eq. �15� approaches the exact variance

�16�

when S=N and m→�. The mean-square convergence of ỹS is
guaranteed as y and its component functions are all members of
the associated Hilbert spaces. Therefore, Eqs. �12� and �15� pro-
vide useful formulas for calculating the approximate mean and
variance of a general stochastic response. Compared with the past
work �Rahman 2009�, no simulation of ỹS�X� is required to esti-
mate the second-moment statistics of y�X�.

Can the same idea be extended to explore higher-order mo-
ments? For instance, applying the expectation operator on
�ỹS�X�−y0�r, where r	positive integer, yields the rth-order cen-
tral moment

�17�

However, for r�2, expressing the expectation on the right side of
Eq. �17� in terms of the expansion coefficients is hardly simple.
Furthermore, expectations of products containing more than two
orthonormal random polynomials are required. It is vital to em-
phasize that the PDD, like the polynomial chaos expansion �Field
and Grigoriu 2004�, does not guarantee convergence of moments

of orders greater than two.
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For statistically dependent random variables, a direct approach
to PDD requires constructing multivariate orthogonal polynomi-
als for a general, multivariate joint density function. New meth-
ods avoiding nonlinear transformations will need to be developed
for generating measure-consistent multivariate polynomials. Sto-
chastic problems entailing dependent random variables are out-
side the scope of the present work.

Computational Expense

The S-variate approximation in Eq. �2� requires evaluation of the
coefficients y0 and Ci1¯is j1¯js

, s=1, ... ,S. If the coefficients are
estimated by dimension-reduction integration �Rahman 2009� in-
volving at most R-dimensional �S�R
N� integration with an
n-point quadrature rule, as employed here, the following deter-
ministic responses �function evaluations� are required: y�c�,
y�c1 , . . . ,ck1−1 ,xk1

�j1� ,ck1+1 , . . . ,ckR−1 ,xkR

�jR� ,ckR+1 , . . . ,cN� for k1 , . . . ,
T

Two lever
arms

Pin E

Pin F

Pin G

PV

Pin E

Pin F
Pin Gx

y

PH

1.36 m 1.72 m

0.3 m

uy=uyF, uz=0

uy=uyG, uz=0

ux=uxF, uz=0
ux=uxG, uz=0

(a)

(b)

(c)

Fig. 1. Structural analysis of a leverarm: �a� two leverarms in a
wheel loader; �b� geometry, loading, and boundary conditions; and
�c� undeformed mesh �48,312 elements�
kR=1, . . . ,N and j1 , . . . , jR=1, . . . ,n, where c= �c1 , . . . ,cN�
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=E�X� is the mean input and the superscripts on the variables
indicate corresponding integration points. As a result, the total
cost for the S-variate PDD entails a maximum of �k=0

k=R� N
R−k

�nR−k

function evaluations. For instance, the univariate PDD �S=R=1�
and bivariate �S=R=2� PDD will require only nN+1 �linear in N
or n� and N�N−1�n2 /2+nN+1 �quadratic in N or n� function
evaluations, respectively. Therefore, the PDD methods employing
dimension-reduction integration should be more efficient than
crude Monte Carlo simulation for solving problems involving
moderate numbers �say, less than a hundred� of random variables.
For higher-dimensional problems with hundreds or thousands of
random variables, the decomposition in Eq. �1� is still useful, but
more efficient methods are needed to calculate the expansion co-
efficients. Regardless of the problem size, the cost of generating
measure-consistent orthogonal polynomials and associated Gauss
quadrature formulas in PDD are negligible when compared with
the calculation of the expansion coefficients.

Table 1. Statistical Properties of Leverarm Random Input

Random
variable Mean

Standard
deviation

Probability
distribution

PH
a, kN 507.69 76.15 Lognormal

PV
a, kN 1,517.32 227.60 Lognormal

E, GPa 203 10.15 Lognormal

� 0.3 0.015 Lognormal

uxF, mm 5 5 /
3 Uniformb

uyF , mm 5 5 /
3 Uniformc

uxG, mm 5 5 /
3 Uniformc

uyG, mm 5 5 /
3 Uniformb

aTo be distributed equally �halved� on front and back sides of pin E.
bUniformly distributed over �10, 0� mm; to be applied on both sides.
cUniformly distributed over �0, 10� mm; to be applied on both sides.

Table 2. Second-Moment Properties of Leverarm Elastic Responses by

PDD

m

Univariate �S=1�

Mean
Standard
deviation

Number
of FEAa Mea

Maximum von Mi

1 510.51 132.68 17 510.5

2 510.51 132.68 25 510.5

3 510.51 132.68 33 510.5

Maximum largest prin

1 0.253 0.065 17 0.2

2 0.253 0.065 25 0.2

3 0.253 0.065 33 0.2

Maximum distortional e

1 0.593 0.287 17 0.5

2 0.593 0.288 25 0.5

3 0.593 0.288 33 0.5
anN+1, where N=8, n=m+1 �Rahman 2009�.
bN�N−1�n2 /2+nN+1, where N=8, n=m+1 �Rahman 2009�.
c
Sample size=1,000.
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Numerical Example

Consider a leverarm in a wheel loader depicted in Fig. 1�a�, which
is commonly used in the heavy construction industry. The loading
and boundary conditions of a single leverarm are shown in Fig.
1�b�. An undeformed leverarm mesh from ABAQUS �Simulia,
Inc. 2008�, which comprises 48,312 tetrahedral elements, is pre-
sented in Fig. 1�c�. Two random loads PH and PV acting at pin E
can be viewed as input loads due to other mechanical components
of the wheel loader. The essential boundary conditions, sketched
in Fig. 1�b�, define random prescribed displacements uxF and uyF

at pin F and uxG, and uyG at pin G. The leverarm is made of cast
steel with random Young’s modulus E and random Poisson’s ratio
�. The input vector X= �PH , PV ,E ,� ,uxF ,uyF ,uxG ,uyG�T�R8 in-
cludes eight independent random variables with the statistical
properties listed in Table 1. Both univariate �S=1� and bivariate
�S=2� PDD methods with measure-consistent orthogonal polyno-
mials �Rahman 2009� were employed to obtain the second-
moment statistics of three elastic responses generated by linear-
elastic finite-element analysis �FEA� of the leverarm. The
expansion coefficients were estimated by dimension-reduction in-
tegration with R=S, where R=reduced dimension, requiring one-
or at most two-dimensional integrations �Rahman 2009�. The
order m of orthogonal polynomials and number n of integration
points in the dimension-reduction integration are 1�m�3 and
n=m+1, respectively.

Table 2 presents the approximate means and standard devia-
tions of maximum von Mises stress ��e,max�, maximum largest
principal strain ��1,max�, and maximum distortional energy density
�Ud,max� of the entire leverarm by the univariate and bivariate
PDD methods. These elastic responses are commonly used for
examining material yielding or fatigue damage in mechanical sys-
tems. The second-moment statistics by the PDD methods in Table
2, calculated using Eqs. �12� and �15�, quickly converge with
respect to S and/or m. Compared with the past work �Rahman
2009�, no simulation of ỹS�X� was needed or performed to gener-

Methods

Crude Monte CarlocBivariate �S=2�

Standard
deviation

Number
of FEAb Mean

Standard
deviation

ss ��e,max� �MPa�

132.86 129 513.87 134.00

132.88 277

132.92 481

rain ��1,max� �percent�

0.065 129 0.254 0.065

0.065 277

0.065 481

density �Ud,max� �MPa�

0.290 129 0.599 0.294

0.291 277

0.291 481
Various

n

ses stre

1

3

7

cipal st

53

53

53

nergy

93

93

93
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ate these statistics. Since FEA is employed for response evalua-
tions, the computational effort of PDD comes primarily from
numerically determining the expansion coefficients. The expenses
involved in estimating the PDD coefficients vary from 17-33 FEA
for the univariate PDD and 129-481 FEA for the bivariate PDD,
depending on the values of m. Since no exact solution exists,
crude Monte Carlo simulation was performed up to 1,000 realiza-
tions. Compared with the Monte Carlo-generated statistics, also
listed in Table 2, both versions of the PDD method provide ex-
cellent estimates of means and standard deviations of all three
responses at lower computational costs. The univariate solution is
not only accurate, but also highly efficient. This is because of a
realistic example chosen, where the individual effects of input
variables on the second-moment statistics of response are domi-
nant over their cooperative effects. However, for higher-order mo-
ments or tail probabilities, not examined here, the univariate PDD
may not be adequate; bivariate PDD entailing higher-order or-
thogonal polynomials may be required �Rahman 2008�.

Conclusions

The PDD involving Fourier-polynomial expansions of lower-
dimensional component functions was studied. By exploiting the
orthogonal structure of the decomposition and the properties of
orthogonal polynomials, explicit formulas for calculating the re-
sponse moments in terms of the expansion coefficients were de-
rived. The results of an industrial-scale leverarm problem indicate
that the formulas provide accurate and convergent estimates of

the first two moments examined at modest computational effort.
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