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This paper introduces isogeometric Galerkin and collocation methods for solving the Fredholm integral eigenvalue
problem on arbitrary multipatch domains, delivering the Karhunen-Loève expansion for random field discretization.
In both methods, the unknown eigenfunctions are projected onto concomitant finite-dimensional approximation spaces,
where nonuniform rational B-splines and analysis-suitable T-splines reside. In the context of isogeometric analysis, the
geometry is modeled precisely, and identical basis functions with significant approximating power are employed for
modeling the geometry and constructing the approximation spaces. Numerical analyses of two- and three-dimensional
engineering problems indicate that the Galerkin- and collocation-derived eigensolutions are both convergent and ac-
curate. However, the collocation method, by eliminating one d-dimensional domain integration in forming the system
matrices, produces eigensolutions markedly more economically than the Galerkin method. Highly effective in large-
scale applications, the isogeometric collocation method imparts a tremendous boost to computational expediency. As a
result, subsequent uncertainty quantification analysis of complex engineering structures requiring multipatch geom-
etry representation can now be performed using the proposed methods for random field discretization.

KEY WORDS: uncertainty quantification, Karhunen-Loève expansion, isogeometric analysis, NURBS,
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1. INTRODUCTION

Random input parameters with spatial variability are prevalent in engineering and applied sciences. Geometrical
characteristics, thermal conductivity, mechanical strength, and applied loads are examples of such randomness. In
these cases, the uncertainty emerges not only from sample to sample, but also from point to point within a domain
of interest. Since there are infinitely many points in the domain, the continuous-parameter random field is infinite-
dimensional. Hence, for the computational methods to be empirically applicable, representing the random field in
terms of a finite number of random variables is crucial. The question here is not only about the quality of the approx-
imation, but also about the computational effort in the subsequent uncertainty quantification (UQ) analysis.

Numerous methods have been developed to provide surrogates for continuous-parameter random fields. One
prominent choice is the Karhunen-Loève (K-L) expansion [1,2], which entails spectral decomposition of the covari-
ance function into an infinite series, comprising deterministic functions of spatial arguments and uncorrelated random
variables [3]. The K-L expansion is generally favorable because it is optimal in the global mean-square error with
respect to the number of random variables in the expansion [4]. However, the expansion must be truncated judiciously
at a decent trade-off between accuracy and a minimal number of random variables for computational expediency in
the ensuing UQ analysis [5]. Moreover, to write the expansion, one must solve the Fredholm eigenvalue problem [6]
for the eigensolutions, which can be challenging, especially in the case of complex domains and/or inseparable covari-
ance functions [7]. As a result, numerical methods with fitting eigenvalue solvers are fashionable for approximating
the eigensolutions [8,9].
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Isogeometric analysis (IGA) [10,11] has bypassed the need for converting computer-aided design (CAD) models
to traditional finite element analysis (FEA) discretization. In addition, many canonical shapes are exactly modeled
with smooth B-splines and nonuniform rational B-splines (NURBS). Regarding multipatch domains, however, there
have been studies on watertight modeling of complex shapes [12,13]. The watertight trimmed NURBS [14] have
been introduced accordingly, and T-splines [12] have been employed in the framework of IGA [15]. T-splines were
originally developed as a generalization of NURBS and enabled the influential feature of local refinement [16,17],
which saved valuable time in mesh generation and analysis. The linear independence of T-splines [18,19] is crucial
to form analysis-suitable basis functions [20]. Furthermore, the Bézier extraction of T-splines as a finite element data
structure [21] and a means to evaluate properties, such as the partition of unity [22], has been established. Moreover,
hierarchical T-splines [23,24] and truncated T-splines [25] have been proposed to model complex geometries more
conveniently. However, the recently developed technologies have not yet been commercialized in a software package
to enable analysis of any arbitrary geometry with a user-friendly graphical interface.

Several numerical methods for solving the Fredholm eigenvalue problem have been reviewed in the work by Betz
et al. [4], such as the Nyström formulation, the collocation approach, and the Galerkin finite element method (FEM)
[26], to name just three. The classical FEM utilizes an approximation space of polynomials with C0-continuity at
the element boundaries. On the other hand, the mesh-free approach [27,28] generally results in smoother eigensolu-
tions than those obtained by classical FEM. For fast computation of the K-L expansion coefficients, an embedding
technique [29] has been developed to avoid mesh generation, and a method has been proposed based on the do-
main independence property of the K-L expansion with the Nyström formulation of the problem [30]. For solving
the Fredholm integral problem with IGA methods, investigations employing both Galerkin [31] and collocation [32]
projections have been reported. Both methods so far are limited to tensor-product single-patch geometries, where
the former involved sixfold integral computations for three-dimensional problems, thereby typically demanding ex-
tensive resources and time, which was addressed by the latter. To efficiently compute high-dimensional integrals
in the context of IGA, low-rank tensor approximation methods [33] and sparse grid methods [34] have been pro-
posed. In UQ applications, however, since the former approximates the integrand, it may not be as accurate when
the function is complex or inseparable, while the latter is generally effective when the dimension of integration is
very large. The descretized random field has been used in UQ analysis, for example, stochastic isogeometric analysis
[35,36]. T-splines are mostly used to solve conventional boundary value problems (BVPs). With the latest progress
with T-splines, however, the previous research on K-L expansion [31,32] must be improved on to handle arbitrary
multipatch domains. In this sense, the prefix “iso” refers to utilizing identical basis functions in geometrical mod-
eling and solving an eigenvalue problem, rather than the heavily studied BVPs in engineering and applied math-
ematics. The motivation here is to accurately discretize general random fields on arbitrary multipatch domains by
harnessing the approximating power of NURBS and T-splines, while the geometry is modeled exactly to the extent
possible.

This paper presents novel isogeometric Galerkin and collocation methods for random field discretization on
multipatch domains. The multipatch NURBS and T-spline methods are used to project the solution of the Fredholm
integral problem to the approximation spaces, where NURBS and T-splines reside. The paper is organized as follows.
Section 2 provides a formal definition for a general random field along with a concise description of K-L approxi-
mation. The paraphernalia of IGA, namely, NURBS, T-splines, and Bézier extraction of T-splines, are introduced in
Section 3 for the paper to be self-contained. Section 4 entails the formulation of the Fredholm integral problem on
multipatch domains via Galerkin and collocation projections and discusses how the system matrices are constructed.
Furthermore, the eigenvalue solvers are briefly explained. Two numerical examples are provided in Section 5 to in-
vestigate the accuracy and computational effort of the proposed methods. A brief discussion is presented in Section 6,
before the conclusions are drawn in Section 7. Furthermore, Appendix A concisely introduces B-splines.

2. RANDOM FIELD DISCRETIZATION

LetN := {1, 2, . . .}, N0 := N ∪ {0}, andR := (−∞, +∞) represent the sets of natural, non-negative integers, and
real numbers, respectively. Denote byd the dimension of the physical domainD of a geometrical object, which can
be a line (d = 1), surface (d = 2), or solid (d = 3). In theory,d = 1, 2, 3, but multidimensional problems (d = 2, 3)
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are emphasized in this work. Also, it is assumed thatD ⊂ Rd is a closed bounded domain. These standard notations
will be used throughout the paper.

Let a complete probability space be defined by(Ω,F ,P), whereΩ, F , andP : F → [0, 1] are the sample space,
σ-field, and a probability measure, respectively. The random variables in the Hilbert spaceL2(Ω,F ,P) have finite
second-moment properties, as do the random fields defined on the closed bounded domainD in the Hilbert space
L2(D × Ω).

2.1 Random Field

A real-valued random field on the domainD ⊂ Rd, whered = 1, 2, or 3, is defined as a mappingα : D × Ω → R,
such that at a physical pointz ∈ D, α(z, ·) is a random variable corresponding to the probability space(Ω,F ,P). For
this random field, denote by

µ(z) := E[α(z, ·)],
and

Γ(z, z′) := E[(α(z, ·)− µ(z))(α(z′, ·)− µ(z′))],

the mean and continuous covariance function ofα(z, ·), respectively, whereE is the expectation operator associated
with the probability measureP andΓ : D ×D → R is a Hilbert-Schmidt kernel, satisfying

∫

D

∫

D
|Γ2(z, z′)|dzdz′ < ∞. (1)

Equation (1) implies that the covariance function must be square-integrable. There is no fundamental restriction on
the way the distance betweenz andz′ is defined in the covariance functionΓ(z, z′). In other words, different types of
distance between any given pair points in the domain can be defined, as long as the covariance function satisfies (1).
For instance, for circular or spherical domains, the great-circle distance may be a relatively more convenient choice
than the Euclidean distance. This study considers homogeneous random fields only.

For the equations to be simpler, without loss of generality, assume that the random fields are zero-mean; i.e.,
µ(z) = 0 in the remainder of the paper.

2.2 Fredholm Integral Problem of Second Kind

For a random field, as described in Section 2.1, define by

(GΓφ)(z) :=
∫

D
Γ(z, z′)φ(z′)dz′ ∀φ(z) ∈ L2(D), (2)

a Hilbert-Schmidt integral operatorGΓ : L2(D) → L2(D) [37] with L2(D) representing a Hilbert space of real-
valued square-integrable functions onD ⊂ Rd. The integral operator defined in Eq. (2) is linear, compact, positive-
semidefinite, and self-adjoint. The Fredholm integral equation of the second kind is thus formulated by dint of the
Hilbert-Schmidt operator as

(GΓφ)(z) = λφ(z) or
∫

D
Γ(z, z′)φ(z′)dz′ = λφ(z), (3)

for which there is an infinite sequence of eigensolutions{λi,φi(z)}i∈N. Having the eigenfunctions normalized as
‖φi(z)‖2

L2(D) :=
∫
D φ2

i(z)dz = 1, the eigensolutions have several useful properties as follows:

1. The eigenvaluesλi, i ∈ N are real and non-negative.

2. The eigenvalues have zero as the only point of accumulation.

3. The eigenfunctionsφi(z), i ∈ N are members of the Hilbert spaceL2(D) and are mutually orthonormal.

4. The eigenfunctions form an orthornormal basis ofL2(D). In other words,L2(D) = span{φi(z)}i∈N.

The first two of the aforementioned properties will be revisited throughout the paper.
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2.3 K-L Expansion

Let {Xi}i∈N be an infinite sequence ofzero-mean, standardized, uncorellated random variables. In mathematical
form,

E[Xi] =
∫

Ω

Xi(ω)dP(ω) = 0, i ∈ N,

E[XiXj ] =
∫

Ω

Xi(ω)Xj(ω)dP(ω) = δij , i, j ∈ N.

A random variableXi, for λi 6= 0, is defined as

Xi :=
1√
λi

∫

D
α(z, ·)φi(z)dz.

By solving the Fredholm integral problem in Eq. (3), the K-L expansion for a random field can be written as the
infinite series [1,2]

α(z, ·) ∼
∞∑

i=1

√
λiφi(z)Xi, (4)

which includes deterministic functionsφi(z) with spatial argumentsz = (z1, . . . , zd) and uncorrelated random
variablesXi. This expansion is convergent in mean-square to the correct limit and is widely used in various fields
of engineering and applied sciences [36,38]. When truncated, it represents a continuous-parameter random field in
terms of a tractable number of random variables. The next section encompasses the approximation of the K-L expan-
sion.

2.4 K-L Approximation

In practice, the K-L expansion must be truncated, which admits an approximation for the random field discretization.
Although there are many ways to truncate the expansion, one simple approach would be to arrange the eigenvalues in
a descending order, followed by retaining the terms associated with the topN ∈ N eigenvalues. This approach takes
advantage of the fact that the eigenvalues have zero as their only point of accumulation, as stated in Section 2.2. Thus,
the truncated expansion is

αN (z, ·) =
N∑

i=1

√
λiφi(z)Xi, (5)

where the statistical variation of the original random fieldα(z, ·) is swapped with that estimated byN uncorrelated
random variables,X1, X2, . . . , XN , and their associated eigenpairs{λi,φi(z)}i=1,...,N . The truncated expansion in
Eq. (5) has an error-minimizing property [39].

The quality of the approximation in Eq. (5) is judged based onN . For a givenN , the effectiveness of an approx-
imation hinges on how fast the eigenvalues decay. The rate of decay in the eigenvalues depends on the covariance
functionΓ(z, z′) of the random field in Eq. (3). The larger theN , the more accurate the random field discretization
becomes. On the other hand, a largeN typically mandates encountering more complex subsequent UQ analyses, as
solving such problems generally demands significant computational resources. Despite the intensive research on de-
veloping techniques for efficiently solving high-dimensional stochastic problems [40,41], the topic is still a burning
issue. Thus, avoiding such complexity, if possible, is deemed wiser. Consequently,N must be selected judiciously, if
not optimally.

Note that many details of the K-L expansion have been suppressed from this paper to avoid redundancy. The
readers are advised to consult the existing literature for proofs, error analysis, and other theoretical aspects of the
expansion [1–5].
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3. ISOGEOMETRIC ANALYSIS

IGA was originally introduced to bridge the gap between CAD and FEA by using identical basis functions, such
as B-splines, NURBS, and T-splines, in geometrical modeling and computational analysis. In many engineering
applications, the geometrical domains of interest have complex shapes, thus limiting the effectiveness of a single-
patch IGA. Indeed, for representing such geometrically complex shapes, a multipatch description by partitioning the
given geometry into several pieces, referred to as “patches,” is necessary. The multipatch modeling is also motivated
by the requirements of local mesh refinement and complex topology, e.g., multiply connected domains, among others.
Unfortunately, the formulation of a multipatch IGA is relatively more complicated, depending on how the patches are
arranged and subsequently coupled. The arrangement may range from unstructured, arbitrarily shaped patches on one
end to highly structured conforming patches on the other end. Due to the regularity, the latter extreme of conforming
patches, if they are simply connected and topologically equivalent to rectangles, is most beneficial in applications.
This is chiefly because the multivariate basis functions for each patch can be derived from tensor products of univariate
basis functions, for instance, when using B-splines. However, this type of partition is also complicated because of the
strict restrictions involved. Hence, research is ongoing on this very topic [13,42].

While IGA is heavily studied for solving BVPs, such as those encountered in computational-mechanics problems,
here, the prefix “iso” refers to employing identical basis functions in geometrical modeling and solving the Fredholm
integral eigenvalue problem, where the latter is mandated by the K-L expansion of a random field. So far, the IGA
formulation for solving the aforementioned eigenvalue problem is available for only tensor-product, single-patch
domains [31,32]. To the best knowledge of the authors, no IGA formulations exist for random field discretization on
arbitrary multipatch domains. An IGA that accounts for multiple patches is not just a mere extension of an analysis
that handles a single patch. Indeed, allowing multiple patches brings new technical questions, prominently the ones
related to the treatment of the interfaces between adjacent patches and local mesh refinement. For the remainder of
this section, NURBS and T-splines are discussed as tools for solving the Fredholm integral eigenvalue problem on
multipatch domains. For additional details on NURBS and T-splines, readers are encouraged to start with the works
of Cottrell et al. [11] and Bazilevs et al. [15], respectively.

3.1 Multiple Patches

In most practical applications, an IGA for a physical object with a complex geometry requires decomposition into
multiple patches. Given a closed bounded domainD ⊂ Rd of the physical object, letnp ∈ N be the total number of
patches with open bounded domainsDq ⊆ D, q = 1, . . . , np, such that

D̄ = D =
np⋃

q=1

D̄q,

where the overline symbolizes set closure. If two distinct patchesq andq′, q 6= q′ with respective domainsDq and
Dq′ are adjacent, then they may overlap only at their interfaceΓqq′ (say); that is,

D̄q ∩ D̄q′ = Γqq′ 6= ∅.
Figure 1(a) shows a schematic decomposition of a two-dimensional four-hole bracket, which consists of eight

distinct patches with domainsD1 throughD8 and eight interfacesΓ12, Γ13, Γ24, Γ35, Γ46, Γ57, Γ68, andΓ78. The
interfaces are illustrated by cyan lines. The geometry and solution of interest for each of these patches can be described
by NURBS or T-splines alone, as commonly done for a single-patch domain. Here, a patch is simply an image,
obtained through a NURBS/T-splines mapping, of the two-dimensional rectangle presented in Fig. 1(b). In other
words, a patch in the physical space is topologically equivalent to a rectangle, so that the geometry of a patch can
be produced by enforcing a certain deformation to the rectangle in the parametric space. Consequently, a complex
domain with holes or discontinuities is easily reconstructed by the union of such multiple patches. In general, multiple
patches are often required for a domain endowed with a topology fundamentally different from a rectangle (d = 2)
or a cube (d = 3).
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FIG. 1: A multipatch decomposition of a four-hole bracket: (a) an eight-patch domain; (b) parametric domain for an arbitrary
patch

Note that in this work, a multipatch domain is specifically a region that is partitioned into a finite number of single
patches. The parametric domain[0, 1]d is mapped to each of these patches, which are linked together by respecting C0-
continuity between them. All patches are conforming in the sense that the individual solutions from any two adjacent
patches match at their interface. As a result, the C0-continuity on global solutions is guaranteed across all interfaces
for the entire domain. This can be accomplished by at least two approaches: (1) a Lagrange multiplier approach where
equations representing appropriate equality constraints are supplemented; or (2) an elimination approach where the
global degrees of freedom are reduced by enforcing identical spline parametrization of an interface between any two
adjacent patches. The second approach, in conjunction with NURBS and T-splines, was adopted in this work.

3.2 Analysis with NURBS

A brief introduction to B-splines for a parametric domain̂D = [0, 1]d and coordinateξ = (ξ1, . . . , ξd) ∈ D̂, is
provided in Appendix A. This section focuses on NURBS basis functions for an arbitrary patch of a general multipatch
domain and describes how the adjacent patches are linked in a C0-continuous manner at the patch interfaces.

3.2.1 NURBS for an Arbitrary Single Patch

For IGA to be able to model a wider range of complex shapes, the NURBS functions have been proposed as gener-
alization of B-splines. Associated with an arbitrary patchq with domainD̄q ⊆ D ⊂ Rd and coordinate directionk,
wherek = 1, . . . , d, let nq

k ∈ N be the total number of univariate basis functions,pq
k ∈ N0 the polynomial degree,

andξ
q
k the knot vector. Define two multi-indicesiq := (iq1, . . . , i

q
d) ∈ Nd andpq := (pq

1, . . . , p
q
d) ∈ N0

d, as well as
the collectionΞq := (ξq

1, . . . , ξ
q
d) of all d knot vectors inD̂. For the first multi-index, denote by

Iq := {iq = (iq1, . . . , i
q
d) : 1≤ iqk ≤ nq

k, k = 1, . . . , d} ⊂ Nd,

a multi-index set, which has cardinality|Iq|. Denote bynq
c the total number of multivariate basis functions or the total

number of control points associated with patchq. Then, from the tensor-product construction of multivariate NURBS
functions,nq

c = |Iq|.
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In reference to Appendix A, denote by{Biq,pq,Ξq
(ξ)}iq∈Iq

the set ofnq
c number of multivariate B-spline func-

tions for patchq. With an arbitrary order of choice, arrange its elements by
{
Biq,pq,Ξq

(ξ)
}
iq∈Iq

=
{

Bq
1(ξ), . . . , Bq

nq
c
(ξ)

}
,

such thatBq
i (ξ), i = 1, . . . , nq

c represents theith multivariate B-spline basis function of the aforementioned set. In
this way, the same B-spline basis functions in the set can be indexed with a single integeri. Obviously,Bq

i (ξ) also
depends onpq andΞq, but the two latter symbols are suppressed for brevity.

Associated with eachi = 1, . . . , nq
c , denote bywq

i ∈ R+ a constant positive weight. As a result, the weight
functionwq : D̂ → R is defined as

wq(ξ) :=
nq

c∑

i=1

wq
i B

q
i (ξ).

Thereafter, the multivariate NURBS functionRq
i : D̂ → R for theqth patch is defined as [43,44]

Rq
i (ξ) :=

wq
i B

q
i (ξ)

wq(ξ)
=

wq
i B

q
i (ξ)

nq
c∑

j=1

wq
jB

q
j(ξ)

,

yielding the NURBS function space
Rq

h := span{Rq
i (ξ)}i=1,...,nq

c
,

over the domainD̄q of patchq, q = 1, . . . , np. Similar to the B-spline functions, the NURBS functionRq
i (ξ) also

depends onpq andΞq, but, again, their symbols are excluded for conciseness. The NURBS functions inherit all of
the important properties of B-splines [11]: (1) they constitute a partition of unity; (2) they have the same continuity
and support; (3) they possess the property of affine transformations; (4) setting all weights to be equal, a NURBS
function reduces to a scaled B-spline function; and (5) the NURBS surfaces and solids are projective transformations
of tensor-product, piecewise polynomial entities.

For i = 1, . . . , nq
c , letcq

i ∈ Rd be a control point corresponding to the physical domainD̄q. Thus, using NURBS,
the physical domain̄Dq ⊂ Rd is readily available through a geometrical mappingHq : D̂q → D̄q ⊂ Rd, defined as

Hq(ξ) :=
nq

c∑

i=1

Rq
i (ξ)cq

i , (6)

which may refer to a line (d = 1), surface (d = 2), or volume (d = 3). A similar mapping can be applied to the
solution of interest. It is assumed that (6), which represents a linear projection, is invertible almost everywhere inD̄q,
leading to the NURBS function

R̄q
i (z) := Rq

i (ξ) ◦H−1
q ,

in the physical subdomain̄Dq. Define the space of such NURBS functions as the push-forward of the NURBS space
Rq

h in Eq. (4) by
Vq

h := span
{
Rq

i ◦H−1
q

}
i=1,...,nq

c
= span

{
R̄q

i

}
i=1,...,nq

c
.

In addition, using Eq. (6), the physical meshKq
h (say) of theqth patch can be viewed as the image of the parametric

meshQq
h (say), that is,

Kq
h := {K = Hq(Q) : Q ∈ Qq

h}, q = 1, . . . , np,

where the elementK of the physical mesh is the image of the elementQ of the parametric mesh.
For more details on IGA and methods of mesh refinement, readers are directed to the work by Hughes et al. [10].

This work employs simple knot insertion as the mesh refinement method. Note that the proposed formulation is based
on the tensor product structure of the domain corresponding to an arbitrary patchq. A patch-conforming NURBS
method will be discussed next to connect multipatch domains.

Volume 11, Issue 3, 2021



34 Jahanbin & Rahman

3.2.2 NURBS for Multiple Patches

When dealing with multipatch decomposition, there is a need to model accurately and conveniently each subdomain
D̄q, q = 1, . . . , np. One approach for doing so is to divide the entire domain into a number of tensor-product
subdomains (patches), as described in the prior section. The remainder of this section is devoted to a description of
coupling between two adjacent patches, enabling computational analysis for the entire domain.

In the C0-patch-conforming NURBS analysis, which is one of the selected methods in this paper due its simplic-
ity, the compatibility of NURBS patches is ensured by implementing identical NURBS representations at the patch
interfaces. The interfaces can be lines or surfaces for two-dimensional or three-dimensional models, respectively. As
an example, Fig. 2 depicts a schematic of two adjacent patches in the physical domainD. The knot lines are depicted
in black. The interface, which is illustrated by a cyan line, must have identical NURBS representation on both sides.
Recall that NURBS objects are represented by polynomial orders, knot vectors, control points, and weights. In Fig. 2,
the control points distinct to Patch 1 and Patch 2 are shown by magenta closed squares and yellow closed circles,
respectively. In this work, the control points on the patch interfaces belonging to any two adjacent patches, shown in
green triangles, are shared and identical to make sure that the models are completely watertight. Mathematically, this
requirement implies

Hq |Γq,q′
= Hq′ |Γq,q′

, q, q′ = 1, . . . , np, q 6= q′, (7)

for all adjacent patches, whereHq is defined in Eq. (6). The imposed conditions at the patch interfaces, whether they
are lines or surfaces, ensure C0-continuity of any response in those particular regions. For computational purposes,
the arrays corresponding to each patch are assembled into a global array before the problem is solved.

A NURBS space defined for the whole multipatch domainD can be imagined by collecting the basis functions
R̄q

i (z) from all np patches. However, as these basis functions are previously defined only on individual subdomains,
extended basis functions that cover the whole domainD are required. Henceforth, define

R̃q
i (z) =

{
R̄q

i (z) z ∈ D̄q

0 otherwise
, i = 1, . . . , nq

c , (8)

as the extended functions, obtained for patchq, q = 1, . . . , np.
Collect allnq

c functions from Eq. (8) for allnp patches, yielding the set

{
R̃q

i (z)
}

q=1,...,np; i=1,...,nq
c

,

FIG. 2: Two adjacent two-dimensional NURBS patches in the physical domain
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of
∑np

q=1 nq
c functions. But not all of these functions are linearly independent as the C0-continuity condition in Eq. (7)

has been enforced. Consequently, some of these functions have to be filtered out to obtain a reduced set,
{

R̃k1(z), . . . , R̃knt
(z)

}
⊆

{
R̃q

i (z)
}

q=1,...,np; i=1,...,nq
c

, 1 = k1 < . . . < knt
= nt,

of extended basis functions, where

nt ≤
np∑

q=1

nq
c ,

is the dimension of the NURBS spaceVh (say) forD. Here,nt depends on the number and arrangement of the patch
interfaces and, hence, cannot be expressed explicitly for an arbitrary domainD. Then, the NURBS space

Vh := span
{

R̃k1(z), . . . , R̃knt
(z)

}
, 1 = k1 < . . . < knt

= nt,

is spanned by the extended basis functions. Furthermore, the extended basis functions can be collected into annt-
dimensional column vector as

R(z) =





R1(z)
...

Rnt(z)





:=





R̃k1(z)
...

R̃knt
(z)





, (9)

whereRi(z) := R̃ki(z), i = 1, . . . , nt. The vectorR(z) will be used for obtaining approximate solutions of the
Fredholm integral eigenvalue problem, to be discussed in Section 4.

Finally, using Eq. (6), the physical meshKh (say) for the entire domain can be obtained as

Kh =
np⋃

q=1

Kq
h =

np⋃

q=1

{K = Hq(Q) : Q ∈ Qq
h}.

The described patch-conforming technique can be simply generalized for modeling multipatch three-dimensional
geometries. However, two major restrictions of C0-patch-conforming NURBS are that (1) each patch has a tensor-
product structure, somewhat restricting the topology of the patch geometry, and (2) the refinement is propagated from
patch to patch [10], thereby unnecessarily escalating the number of elements in the computational model. The latter
issue reveals the need for local refinement in the mesh, and is a major motivation behind employing T-splines in IGA,
to be discussed next.

3.3 Analysis with T-Splines

The NURBS functions, albeit being convenient in free-form surface modeling, have difficulties with modeling multi-
patch geometries, specifically, the ones concerning gaps and overlaps on the patch interfaces. Consequently, T-splines
were introduced as a generalization of NURBS, thereby improving the meshing process through local refinement
capabilities. The name “T-splines” refers to the fact that T-junctions are allowed in the so-called “T-mesh.” Sederberg
et al. [12] were the first to elaborate on T-splines.

The description of T-splines in this section pertains to a general physical domain. In reference to Fig. 1, the
domain can be a domainDq of an arbitrary single patchq or the entire domainD of the physical object, if the latter
is simple enough to be modeled by T-splines. Therefore, there is no reference to the patch geometry in most of this
section, although the coupling between two patches will be addressed at the very end.

3.3.1 T-Mesh and T-Splines

For simplicity without loss of generality, the paraphernalia of T-splines is discussed for two-dimensional domains. For
given polynomial degreesp1 andp2 and number of control pointsnc in the physical domain, let there be some anchors
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ĉi, i = 1, . . . , nc in the parametric domain̂D. The anchorŝci are associated with the control pointsci, i = 1, . . . , nc,
which control the representation of the physical domain, in a one-to-one correspondence. The appearance of T-meshes
is different for odd and evenpk, k = 1, 2. Figure 3 demonstrates a T-mesh tiling inR2 in the physical and parametric
spaces, respectively. The elements in Fig. 3(a) are illustrated by a shaded area in Fig. 3(b). Denote byne the total
number of elements in the domain. For numerical calculations, each elemente, e = 1, . . . , ne of the T-mesh can
be mapped to the parent space on[−1, 1]2 for numerical integration. As observed, local refinement is conducted by
introducing T-junctions. The anchors are also depicted with black closed circles. For even or oddpk, the anchors are
either centered in the tiles, or placed on the tiles’ vertices, respectively.

Attached to each anchor in Fig. 3(b), there exists a single T-spline function. To define such T-spline for each and
every anchor, two local knot vectors in theξ1 andξ2 coordinate directions must be defined. The initiative behind
local knot vectors originates from point-based splines [12] and is the foundation for local refinement. The local knot
vector in, say, theξ1 direction is constructed by taking an anchori and then marching horizontally in both the left and
right directions until either(p1/2+ 1) edges (for evenp1) or (p1 + 1)/2 edges (for oddp1) are crossed. Eventually, a
local knot vector of length(p1 + 2) is formed. The same procedure is carried out in theξ2 direction to construct the
corresponding local knot vector. Thus, for an anchori, the local knot vector in thekth coordinate direction is defined
as

ξi
k = {ξi

k,1, ξ
i
k,2, . . . , ξ

i
k,pk+2}, k = 1, 2, and i = 1, . . . , nc,

whereξi
k,1 ≤ ξi

k,2 ≤ . . . ≤ ξi
k,pk+2. If there are no more edges to march towards, the most recently placed knot is

repeated. As an example, take anchor A situated at(0.75, 0.6) in Fig. 3(b) and letp1 = p2 = 2. The local knot vectors
in theξ1 andξ2 directions areξA

1 = {0.2, 0.5, 1, 1} andξA
2 = {0, 0.2, 1, 1}, respectively. This simply implies that the

subdomain covered by anchor A, shown with a green rectangle in Fig. 3(b), is[0.2, 1]×[0, 1]. As another example, the
two local knot vectors for anchor B areξB

1 = {0, 0, 0.2, 0.5} andξB
2 = {0, 0, 1, 1}, and the corresponding T-spline

basis function for anchor B is nonzero on the domain[0, 0.5]× [0, 1].
The continuity reduction lines, shown in red in Fig. 3(b), are obtained by drawing all the knot lines in the local

knot vectors. If a knot line is not already an existing edge, a continuity reduction line is formed. As a result, the
elements are refined by these lines, as consistently indicated in Fig. 3. For more details of continuity reduction lines,
refer to the work by May et al. [22].

For a general T-mesh comprisingnc anchors ind dimensions,nc groups of local knot vectors in theξ1 throughξd

directions are formed. Thus, in directionk, k = 1, . . . , d, a T-spline corresponding to anchori is defined, predictably,
in a recursive manner. Thezero-order T-spline is defined by

0 0 0.2 0.5 0.8 1 1
0

0

0.2

0.4

0.7

1

1

FIG. 3: A T-mesh tiling in two dimensions: (a) physical domain; (b) parametric domain
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U i,k
ik,0,ξk

(ξk) =

{
1, ξi

k,ik
≤ ξk < ξi

k,ik+1

0, otherwise
, ik = 1, . . . , pk + 1. (10)

Thus, forpk ≥ 1, the higher-order T-splines are constructed by the Cox-de Boor formula [45] as

U i,k
ik,pk,ξk

(ξk) =
ξk − ξi

k,ik

ξi
k,ik+pk

− ξi
k,ik

U i,k
ik,pk−1,ξk

(ξk) +
ξi

k,ik+pk+1 − ξk

ξi
k,ik+pk+1 − ξi

k,ik+1

U i,k
ik+1,pk−1,ξk

(ξk). (11)

The recursive computation of T-splines for anchori, i = 1, . . . , nc, and coordinate directionk, k = 1, . . . , d, by
Eq. (11) yields a single T-spline of degreepk, denoted byU i,k

1,pk,ξk
(ξk).

The multivariate T-spline functions with the vector argumentξ = (ξ1, . . . , ξd) are obtained for each anchori,
i = 1, . . . , nc by the tensor product of its corresponding univariate T-splines, introduced in Eqs. (10) and (11). Given
p := (p1, . . . , pd) ∈ N0

d andΞi := (ξi
1, . . . , ξ

i
d) for anchori, the multivariate T-spline functionUi

p,Ξi : D̂ → R is
defined as

Ui
p,Ξi(ξ) :=

d∏

k=1

U i,k
1,pk,ξk

(ξk). (12)

It is important to recognize that the tensor-product construction of multivariate T-splines is performed individually
for each anchor, whereas a multivariate NURBS is obtained from tensor-product development collectively over all
elements. As a result, T-splines afford a greater flexibility in local mesh refinement with fewer elements than NURBS.

To provide the T-splines with the capability of modeling even more complex geometries, such as circles, ellipses,
cylinders, spheres, ellipsoids, and tori, the multivariate T-splines in Eq. (12) are rationalized in a similar way as carried
out for B-splines in Section 3.2.1. Therefore, with appropriately defining the weightswi ∈ R+, i = 1, . . . , nc,
multivariate rational T-splinesTi

p,Ξi : D̂ → R are defined as

Ti
p,Ξi(ξ) :=

wiUi
p,Ξi(ξ)

nc∑

j=1

wjU
j
p,Ξj (ξ)

, (13)

which also satisfy the partition of unity property, among others. Note that rational T-splines are also simply referred
to as T-splines [15]. Assign a control pointci to each T-spline and represent a line (d = 1), surface (d = 2), or volume
(d = 3) by the linear projectioñH(ξ), defined as

H̃(ξ) :=
nc∑

i=1

Ti
p,Ξi(ξ)ci. (14)

Hence,
T̄i

p,Ξi(z) := Ti
p,Ξi(ξ) ◦ H̃−1, (15)

becomes the rational T-spline for anchori, i = 1, . . . , nc in the physical domain.
Note that not every set of T-splines is suitable for analysis, as they may be linearly dependent [18]. For the analysis

to be stable, judicious tiling of the T-mesh is crucial so that the underlying T-splines are linearly independent. There
are mathematical and topological ways to determine whether a T-mesh is analysis-suitable or not [19,22]. This will
be addressed further in Section 3.3.3.

3.3.2 Bézier Extraction Operator

The B́ezier extraction operator is a means for storing IGA data in a structured framework [21]. Moreover, local
refinement may be conveniently carried out using the Bézier extraction operator. Consider a T-mesh similar to the
one depicted in Fig. 3(b). Each anchori, i = 1, . . . , nc, has a T-spline function attached to it that is nonzero on a
region in the domain. The idea behind Bézier extraction is to express the T-splines on those particular regions in terms
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of Bernstein polynomials. Givenpk, k = 1, . . . , d, define(pk + 1) univariate Bernstein basis polynomials with the
argumentηk ∈ [−1, 1] by

Ṽ j
k (ηk) =

1
2pk

(
pk

j − 1

)
(1− ηk)pk−(j−1)(1 + ηk)j−1, j = 1, . . . , pk + 1. (16)

With the linear mappingξk : [−1, 1] → [0, 1], k = 1, . . . , d, denote byV j,e
k (ξk) the Bernstein polynomial of degree

(j − 1) in coordinate directionk on elemente, e = 1, . . . , ne. There is a total of

nf =
d∏

k=1

(pk + 1),

d-variate Bernstein polynomials that are nonzero on elemente. Collect such multivariate functions in annf -dimen-
sional set as

{Ve
j(ξ)}j=1,...,nf

:=

{
d∏

k=1

V jk,e
k (ξk)

}

jk=1,...,pk+1, k=1,...,d

, (17)

wherejk = 1, . . . , pk +1, k = 1, . . . , d. With an arbitrary order of choice, arrange the elements of the set in Eq. (17)
in annf -dimensional column vectorVe(ξ) as

Ve(ξ) =





Ve
1(ξ)
...

Ve
nf

(ξ)





.

Recall thatUi
p,Ξi(ξ) is ad-variate T-spline function corresponding to anchori in D̂. A chunk of this function

over elemente, denoted byUi,e
p,Ξi(ξ), can be obtained from

Ui,e
p,Ξi(ξ) = Ci,eᵀ

Ve(ξ), i = 1 = 1, . . . , nc, e = 1, . . . , ne, (18)

whereCi,e is annf -dimensional column vector of appropriate coefficients. In other words, thed-variate T-splines
on every element are expressed by linear combinations of the Bernstein polynomials. This argument is valid, since
the Bernstein polynomials proposed in Eq. (16) form a basis over[−1, 1]. The process in Eq. (18) is referred to as
elementwise B́ezier extraction.

Assemble the B́ezier extraction contributions of every element into thenf × ne matrices,

Ci =
[
Ci,1, . . . ,Ci,ne

]
and V(ξ) =

[
V1(ξ), . . . ,Vne(ξ)

]
,

and denote by
Ui(ξ) = CiVᵀ(ξ),

thenf × nf matrix of T-splines corresponding to anchori. The B́ezier extraction operatorC as annf × ncne matrix
can thus be formed by collecting the contributions of all anchors as

C =
[
C1, . . . ,Cnc

]
,

which admits the linear transformation
U(ξ) = CVᵀ

t (ξ), (19)

where
U(ξ) =

[
Ui(ξ), . . . ,Unc(ξ)

]
andVt(ξ) =

[
V(ξ), . . . ,V(ξ)︸ ︷︷ ︸

nc times

]
,

arenf × ncnf andnf × ncne matrices, respectively. MatrixC in Eq. (19) is referred to as the Bèzier extraction
operator and is a key matrix in conveniently representing the T-splines corresponding to a T-mesh. This matrix is
helpful for assessing the linear independence of the T-splines as well as local mesh refinement [22]. This work uses
the B̀ezier extraction operator for the refinement of analysis-suitable T-meshes.

International Journal for Uncertainty Quantification
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3.3.3 Analysis-Suitable T-Splines

The T-splines introduced in Eq. (13) form a basis for analysis, if they are linearly independent. Buffa et al. [18] were
the first to present particular bicubic T-meshes for which the T-splines were not linearly independent. Consequently,
analysis-suitable T-splines were officially defined [19].

One topological approach to assess the analysis-suitability of a T-mesh, and consequently the linear independence
of its corresponding T-splines, is based on T-node extensions. A T-node is a T-junction inside the parametric domain.
There generally are many T-nodes in a T-mesh. See Fig. 4 as an example. From every T-node marked with a closed
green circles in Fig. 4, two extension lines are emitted, namely, face extension and edge extension [17], where the
former is emitted in the direction where there is no edge, and the latter is drawn in the opposite direction. The two types
of extension lines are illustrated by blue and magenta lines, respectively. A T-mesh is called analysis-suitable when
no T-node extensions intersect. Examples of non-analysis-suitable and analysis-suitable T-meshes are presented in
Figs. 4(a) and 4(b), respectively. The intersections are marked with red crosses. Analysis-suitable T-splines are those
in correspondence with analysis-suitable T-meshes.

In order to make a T-mesh analysis-suitable, one must add or remove edges accordingly and check for the topo-
logical constraints to be satisfied. Research is ongoing on mesh refinement algorithms, where the T-mesh is efficiently
maintained analysis-suitable. One approach is to use different discretization layers, which is referred to as hierarchi-
cal T-mesh [23]. While there is no knowledge on where the elements need to be refineda priori, adaptive refinement
methods have also been proposed [24]. For detailed topological descriptions on analysis-suitable T-splines and com-
plete mathematical proof, refer to the existing literature [17,19].

3.3.4 T-Mesh Refinement with Bèzier Extraction Operator

T-splines of arbitrary degree can be refined by using the Bézier extraction operator. Imagine a T-meshTR as a re-
finement of a coarser T-meshT0. In mathematical form,T0 ⊆ TR. Denote byU0(ξ) andUR(ξ) the T-splines for
T0 andTR, respectively, as defined in Eq. (19). Furthermore, denote bync,0 andnc,R the numbers of control points
associated withT0 andTR, respectively. Note that the representation of the surface or the volume in the physical space
should not change by refining the initial T-mesh. Therefore, write

U0(ξ) = TUR(ξ), (20)

to express the T-splines of the coarse meshT0 in terms of those in the refined meshTR via the transformation matrix
T, which is of dimensionnc,0×nc,R and is referred to as the refinement matrix. By substituting Eq. (19) in Eq. (20),
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FIG. 4: Two T-meshes: (a) non-analysis-suitable T-mesh; (b) analysis-suitable T-mesh
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C0 = TCR,

whereC0 andCR are the B̀ezier extraction operators associated with the meshesT0 andTR, respectively. For each
anchori, i = 1, . . . , nc,0, algebraic matrix manipulations yield

Ci
0 = Cᵀ

RTi, (21)

with Ti representing theith contribution toT. On assembly, the matrix

T = [T1, . . . ,Tnc,0]ᵀ,

is formed to be implemented in Eq. (20).
As the refinement matrixT is used for local mesh refinement, the weighted control pointscw

R :=
[
c1

R,w, . . . , cnc,R

R,w

]T

for TR can be obtained from the weighted control pointscw
0 :=

[
c1

0,w, . . . , cnc,0

0,w

]ᵀ
by the projection [22]

cw
R = Tᵀcw

0 , (22)

where
ci

0,w := {wic
i
1, . . . , wic

i
d}, i = 1, . . . , nc,0.

Note thatci
d is thedth coordinate of theith control point, andwi is its associated weight.

One requirement for refinement by the Bèzier extraction operator is that the T-splines corresponding to the coarse
mesh must be writable in terms of those related to the fine mesh. In other words, the two sets of basis functions must
be nested. Otherwise, there is no unique solution forTi in Eq. (21).

3.3.5 Coupling between T-Mesh Patches

As stated previously, the parametric domain modeled with a T-mesh discussed so far can be mapped to individual
patches separately or to the entire domain of the physical object. If the domain is relatively simple, there is no need
for multiple patches, as one single T-mesh can model the entire geometry. However, for a relatively complex domain,
multiple patches may be required even for a T-mesh. In this case, one must be able to couple two adjacent T-meshes.
This is accomplished as follows.

In Figs. 5(a) and 5(b), two analysis-suitable T-meshes are proposed for the two patches introduced in Sec-
tion 3.2.2. These two T-meshes are coupled in Fig. 5(c) in such a way as to yield C0-continuity at the patch interface.
In the coupling region illustrated by a cyan rectangle, there must be common edges in the two adjacent T-meshes to
enforce C0-continuity conditions. The implementation of T-splines and conditions to retain analysis-suitability ensure
that the refinement does not necessarily propagate from one patch to another, in contrast to what occurred in Fig. 2 for
NURBS patches, thereby controlling the number of elements in the computational analysis more freely. Figure 5(d)
demonstrates the analysis-suitable IGA model with T-splines for the two-patch domain, where the interface is marked
with a cyan line. Refer to the work by Bazilevs et al. [15] for more details.

Based on the descriptions so far, one concludes that T-splines exhibit more flexibility than NURBS in modeling
complex geometries, generally by dividing them into a finite number of simple patches. Although the C0-continuity at
the patch interfaces may be adequate for many practical applications, a higher-order continuity between two adjacent
patches is generally more straightforward to enforce by T-splines than by NURBS. Having said this, no higher-order
continuity was implemented in this work.

4. PROJECTION METHODS

As physical domains become more complex, numerical computations are increasingly required. This section entails
Galerkin and collocation projection methods to solve the Fredholm integral eigenvalue problem defined by Eq. (3) on
arbitrary multipatch domains. By obtaining the eigensolutions, the K-L expansion in Eq. (5) is at hand. To solve the
problem numerically, NURBS and rational T-splines are employed. To avoid redundancy, generic basis functions will
be used in the formulations, which shall be substituted by NURBS or T-splines as needed. To the best knowledge of
the authors, the K-L expansion using IGA for multipatch domains is being reported here for the first time.
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FIG. 5: An analysis-suitable T-mesh for a two-patch domain: (a) T-mesh for Patch 1 in parameter space; (b) T-mesh for Patch 2 in
parameter space; (c) C0-continuous patch coupling; (d) finite element model in physical domain

4.1 Galerkin Projection Method

The Fredholm integral eigenvalue problem, when transformed to its weak form by the Galerkin approach, can be
discretized, resulting in the linear matrix eigenvalue problem as [31]

Afh = λhBfh, (23)
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whereλh andfh are the approximate eigenvalues and eigenvectors. Here, the system matricesA andB have their
components

Aij :=
∫

D

∫

D
Γ(z, z′)Gi(z)Gj(z′)dzdz′, i, j = 1, . . . , nb, (24)

and

Bij :=
∫

D
Gi(z)Gj(z)dz, i, j = 1, . . . , nb, (25)

whereGi(z), i = 1, . . . , nb arenb ∈ N generic basis functions, spanning the finite-dimensional approximation space
of eigenfunctions onD. A specific choice of these basis functions depends on whether NURBS or rational T-splines
are used for IGA. Therefore, there are two cases as follows.

1. If NURBS functions are used as the basis, thennb = nt, with nt representing the total number of control
points for the entire domain, as described in Section 3.2. In this case,

Gi(z) = Ri(z), i = 1, . . . , nt,

whereRi(z) is theith NURBS function in the physical domain, as defined in Eq. (9). As a result,A andB
are bothnt × nt square matrices.

2. If T-spline functions are used as the basis, thennb = nc, with nc representing the total number of anchors for
the entire domain, whether obtained for a single patch or multiple patches, as described in Section 3.2. In this
case,

Gi(z) = T̄p,Ξi(z), i = 1, . . . , nc,

whereT̄p,Ξi(z) is theith T-spline function in the physical domain, as defined in Eq. (15). Consequently,A
andB are bothnc × nc square matrices.

By forming the system matrices, (23) is ready to be solved by a standard eigensolver to obtain the eigenvalues
λh and eigenvectorsfh. For both cases, the approximate eigenfunctions are interpolated by using the basis functions
as

φh(z) =
nb∑

i=1

fh,iGi(z), (26)

wherefh,i is theith component offh.
Recall that the true eigensolutions to Eq. (3) are real-valued, as stated in Section 2.2. It can be proven that in

Eq. (23), the matrixA is symmetric and positive-semidefinite and the matrixB is symmetric and positive-definite.
This ensures that the approximate eigenvaluesλh and eigenfunctionsφh(z) are real-valued. The proof, which is
suppressed from this paper along with more details on how to construct the system matrices, is similar to the one
provided by Rahman [31] for single-patch domains.

Note that the computation ofAij andBij in Eqs. (24) and (25) involves two domain integrals and one domain in-
tegral, respectively. The evaluation of the former integral is burdensome, especially for large-scale three-dimensional
problems. For instance, the construction of matrixA in a three-dimensional problem involves sixfold integration.
Therefore, the Galerkin approach, albeit favorable because of its accuracy, is generally computationally intensive.
Thus, the goal is to improve the efficiency by implementing the collocation projection.

4.2 Collocation Projection Method

The Fredholm integral eigenvalue problem can also be solved in its strong form by setting the residual function

rh :=
∫

D
Γ(z, z′)φh(z′)dz′ − λhφh(z),
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equal to zero at some select pointszi ∈ D, i = 1, . . . , nb ∈ N. For multipatch domains, a similar linear matrix
eigenvalue problem can be formed as [32]

Âf̂h = λ̂hB̂f̂h. (27)

Here, the elements of the system matricesÂ andB̂ are computed from

Âij :=
∫

D
Γ(zi, z′)Gj(z′)dz′, i, j = 1, . . . , nb (28)

and
B̂ij := Gj(zi), i, j = 1, . . . , nb, (29)

also involvingnb generic basis functionsGi(z), i = 1, . . . , nb. These basis functions, obtained from either NURBS-
or T-splines-based parametrization, are the same as those defined in Section 4.1. Here, only the collocation points
need to be defined. Again, there are two cases as follows.

1. If NURBS functions are used as the basis, thennb = nt, with nt representing the total number of control points
for the entire domain, as described in Section 3.2. Moreover, given the knot vectorsΞq = {ξq

1, . . . , ξ
q
d} for

patchq, q = 1, . . . , np, use the Greville abscissa to obtain the collocation points in the parametric domainD̂
as

ξ̄
q
k,ik

:=
1
pq

k

pq
k∑

l=1

ξ
q
k,ik+l, ik = 1, . . . , nq

k, k = 1, . . . , d, andq = 1, . . . , np,

wherepq
k andξ

q
k,ik+q are the degree in the coordinate directionk of patchq and the(ik + l)th knot inξ

q
k,

respectively. The number of collocation points is equal to the number of control points in every patch. Thus,
the collocation points are generated in the physical space by

zi = Hq(ξ̄i), ξ̄i = (ξ̄q
1,i1

, . . . , ξ̄q
d,id

) ∈ D̂, ik = 1, . . . , nk, k = 1, . . . , d, q = 1, . . . , np. (30)

Recall that according to Section 3.2.2, some of the control points at the patch interfaces and their corre-
sponding NURBS functions have been dropped in order to attain linearly independent basis functions that are
C0-continuous at the patch interfaces while spanning the whole domain. By using Eq. (30), coincident collo-
cation points are also generated on the patch interfaces. As the collocation points are actually in one-to-one
correspondence with the control points, the redundant collocation points at the patch interfaces must also be
removed accordingly. This guarantees having full-rank system matricesÂ andB̂. Eventually, there arent

collocation points on the domain. Furthermore,Â andB̂ arent × nt square matrices.

2. If T-spline functions are used as basis functions,nb = nc, with nc representing the total number of anchors for
the entire domain, as described in Section 3.3.1. In this case, project the anchorsĉi, i = 1, . . . , nc from D̂ to
the physical domain by Eq. (14). For instance, plug in the coordinates of anchor A in Fig. 3, which is located
at(0.75, 0.6), in Eq. (14). Thus, the collocation pointszi, i = 1, . . . , nc are nothing but the projection of such
anchors in the physical space. This guarantees having the same number of collocation points as control points.
Therefore,Â andB̂ arenc × nc square matrices.

Similar to Eq. (26), the eigenfunctions for both cases are computed from the interpolation

φh(z) =
nb∑

i=1

f̂h,iGi(z), (31)

wheref̂h,i is theith component of̂fh.
By comparing Eq. (28) with Eq. (24), and Eq. (29) with Eq. (25), it is obvious that by adopting the collocation

approach, one domain integral has been dropped from the calculations. More importantly, the dimension of one
domain integral has been reduced by half from2d to d. This is expected to tremendously boost the computational
expediency, as previously observed for the case of single-patch domains [32]. However, as the matricesÂ andB̂ in
Eq. (27) are not generally positive-definite, real-valued eigensolutions cannot be guaranteed. This will be revisited in
the numerical examples section.
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4.3 Eigenvalue Solvers

The quality of random field discretization by the K-L expansion depends not only on the truncation parameterN
in Eq. (5), but also on the accuracy to which the eigensolutionsλi and φi(z), i = 1, . . . , N are approximated
by the Galerkin and collocation projection methods. The eigensolutions obtained from the Galerkin formulation
are guaranteed to be real-valued, since the system matrices are symmetric and positive-(semi)definite. On the other
hand, the collocation projection, albeit efficiently providing convergent results, may not necessarily yield real-valued
eigensolutions, if the discretization is not adequately fine. This is deemed a price to be paid, if efficiency is the goal
in the numerical analyses. The results obtained by both methods converge to the correct limit, as the mesh is refined
[31,32].

For a meticulous subsequent UQ analysis not addressed in this work, the eigensolutions have to be computed
accurately, which relies greatly on the eigenvalue solver opted. The choice of the eigenvalue solver for analysis
strongly depends on the structure of the system matricesA andB in the isogeometric Galerkin method or̂A and
B̂ in the collocation method. For the Galerkin projection, the system matrices formulated in Eqs. (24) and (25)
are symmetric. Hence, a number of iterative methods, such as the fast Fourier technique [46] and Krylov subspace
methods [47], have been proposed, where the former is applicable only to rectangular domains and homogeneous
random fields, and the latter is expensive for large matrices. Therefore, hierarchical matrix techniques [9] and fast
multipole methods [48] have been studied as remedies. In particular, hierarchical matrices have proven to demand
significantly less storage while dealing with large-scale problems. For nonsymmetric system matrices, such as those
introduced by the collocation projection in Eqs. (28) and (29), other iterative algorithms, such as the QZ [49] and
Lanczos [50] methods, are the most popular. Note that in the methods proposed in this study,B andB̂ are banded,
sparse matrices, whileA andÂ are both generally dense. That being noted, MATLAB (Version 2019a) [51] has
built-in functions with balancing and preconditioning options to solve various types of eigenvalue problems.

5. NUMERICAL EXAMPLES

Two numerical examples in two and three dimensions are presented to study the accuracy and efficiency of the
proposed isogeometric Galerkin and collocation methods for solving the Fredholm integral eigenvalue problem on
multipatch domains. Identical quadratic (pk = 2) NURBS and T-spline basis functions were used for geometri-
cal modeling and computational analysis in both numerical examples. Moreover, the T-meshes employed in this
work were all analysis-suitable and were refined by using the Bézier extraction operator. All patch couplings were
C0-continuous. Furthermore, the integrals were calculated numerically by Gauss-Legendre quadrature, and the nu-
merical eigensolutions reported in this section were obtained using appropriate eigensolvers available in MATLAB
(Version 2019a) [51]. All numerical results reported in this paper were generated from a standard desktop personal
computer.

5.1 A Two-Dimensional Connecting Rod

The first numerical example involves random field discretization on a two-dimensional connecting rod by the for-
mulations proposed in Sections 4.1 and 4.2 for the isogeometric Galerkin and collocation methods, respectively. The
goal is to study the numerical convergence of the eigensolutions while also investigating the efficiency delivered by
the methods.

Define byα(z, ·) a two-dimensional homogeneous random field with the covariance function

Γ(z, z′) = σ2 exp
(
−‖z− z′‖

bL

)
, z, z′ ∈ D ⊂ R2,

whereb = 0.5, L = 0.295, andσ = 0.1. Recall that the rate of decay in the eigenvalues depends on the correlation
length parameterb andL, which have been chosen arbitrarily. The random field is defined on the domain illustrated
in Fig. 6(a) with the dimensions in consistent units. Moreover, Fig. 6(b) demonstrates the 14 tensor-product patches
coupled in a C0-continuous manner for representation of the domain. The patch interfaces are indicated by cyan lines.

International Journal for Uncertainty Quantification
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FIG. 6: A two-dimensional connecting rod in Example 1: (a) the geometry with dimensions in consistent units; (b) a fourteen-patch
representation of the domain

5.1.1 IGA Discretization

The following settings were considered for both isogeometric Galerkin and collocation formulations. For the mul-
tipatch NURBS approach, the problem was solved for three refinements with NURBS, namely, NURBS-Mesh-1,
NURBS-Mesh-2, and NURBS-Mesh-3, which are depicted in Fig. 7. For solving the problem with multipatch T-
splines, on the other hand, two meshes were considered: Tmesh-1 and Tmesh-2, as shown in Fig. 8. For NURBS
methods, the refinement was conducted by simple knot insertion. Moreover, for T-splines methods, the control points
associated with the refined T-meshes were calculated by Eq. (22) using the refinement matrix obtained by using the
Bézier extraction operator.

There are 14, 56, and 224 control points in NURBS-Mesh-1, NURBS-Mesh-2, and NURBS-Mesh-3, respec-
tively. Moreover, the total numbers of control points for Tmesh-1 and Tmesh-2 are 92 and 256, respectively. Note the
refinement propagation from one patch to another in Fig. 7, when the NURBS basis functions are kept C0-continuous
at the patch interfaces. On the other hand, the T-junctions in Fig. 8 have allowed the desired local refinement, espe-
cially around the interior holes. In all cases, the geometry of the connecting rod, which comprises straight and circular
lines, is modeled exactly, regardless of the mesh refinement and basis functions chosen. Here, the control points and
collocation points are demonstrated by closed green circles and closed magenta squares, respectively. Obviously, the
collocation points are not used where the isogeometric Galerkin method is concerned.

5.1.2 Eigensolutions

Tables 1 and 2 list the six largest eigenvalues estimated by the various isogeometric Galerkin and collocation methods,
respectively. The results are convergent, as the mesh is refined. Furthermore, the results obtained from the NURBS
and T-spline basis functions are comparable in terms of accuracy. The same conclusion is valid for the eigenvalues
estimated by the isogeometric Galerkin and collocation methods, although those delivered by the former are generally
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FIG. 7: Three IGA refinements for multipatch NURBS on the two-dimensional connecting rod in Example 1: (a) NURBS-Mesh-1;
(b) NURBS-Mesh-2; (c) NURBS-Mesh-3

FIG. 8: Two IGA discretizations for multipatch T-splines on the two-dimensional connecting rod in Example 1: (a) Tmesh-1; (b)
Tmesh-2

International Journal for Uncertainty Quantification
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TABLE 1: Six largest eigenvalues estimated by the isogeometric Galerkin methods in Example 1

Mode
Multipatch NURBS T-splines

NURBS-Mesh-1 NURBS-Mesh-2 NURBS-Mesh-3 Tmesh-1 Tmesh-2
1 7.857105× 10−5 7.854283× 10−5 7.853939× 10−5 7.854792× 10−5 7.854051× 10−5

2 2.386010× 10−5 2.384465× 10−5 2.384236× 10−5 2.384732× 10−5 2.384203× 10−5

3 8.029485× 10−6 8.006341× 10−6 8.003674× 10−6 8.007837× 10−6 8.002647× 10−6

4 4.292074× 10−6 4.274465× 10−6 4.271268× 10−6 4.271714× 10−6 4.268858× 10−6

5 3.940816× 10−6 3.922996× 10−6 3.920187× 10−6 3.915438× 10−6 3.911817× 10−6

6 2.151460× 10−6 2.152474× 10−6 2.151662× 10−6 2.134051× 10−6 2.135975× 10−6

TABLE 2: Six largest eigenvalues estimated by the isogeometric collocation methods in Example 1

Mode
Multipatch NURBS T-splines

NURBS-Mesh-1 NURBS-Mesh-2 NURBS-Mesh-3 Tmesh-1 Tmesh-2
1 7.850899× 10−5 7.853767× 10−5 7.853849× 10−5 7.852758× 10−5 7.853235× 10−5

2 2.377607× 10−5 2.383488× 10−5 2.384157× 10−5 2.379473× 10−5 2.380977× 10−5

3 7.950480× 10−6 7.995213× 10−6 8.002188× 10−6 7.978778× 10−6 7.990312× 10−6

4 4.138326× 10−6 4.265461× 10−6 4.269689× 10−6 4.158671× 10−6 4.205105× 10−6

5 3.832094× 10−6 3.898096× 10−6 3.917790× 10−6 3.866458× 10−6 3.882279× 10−6

6 2.022631× 10−6 2.130468× 10−6 2.148870× 10−6 2.067065× 10−6 2.099071× 10−6

expected to be more accurate than those of the latter. Note that unlike the Galerkin method, the collocation formulation
may not necessarily yield all real-valued eigenvalues, as mentioned in Section 4.2. However, the top six eigensolutions
in this example are all real-valued in both cases of basis functions.

Figures 9 and 10 illustrate the sixth eigenfunction obtained by the isogeometric Galerkin and collocation meth-
ods via (26) and (31), respectively. By comparing the two figures, the collocation projection methods have accurately
estimated the eigenfunctions, especially as the mesh is well-refined. Moreover, the results by either method are con-
vergent, regardless of the basis functions chosen. The eigenfunctions of relatively higher modes are generally more
challenging to estimate by numerical methods. This was the reason for choosing the sixth eigenfunction for visual
investigations.

5.1.3 Computational Effort

As the isogeometric collocation methods have proved to be of satisfactory accuracy, their computational cost in com-
parison with their Galerkin counterparts is of interest. Table 3 indicates the computational efforts of the isogeometric
collocation and Galerkin methods, where for various meshes with NURBS and T-splines, the size of the computa-
tional problem is stated in terms of the numbers of elements and control points. The CPU times for constructing the
system matrices and for solving the problem by the collocation isogeometric methods are listed in seconds under
the headings “Time-1” and “Time-2,” respectively. The next two columns, namely, “Ratio-1” and “Ratio-2,” state the
ratio of the CPU time taken by the isogeometric Galerkin methods over the CPU time needed for the isogeometric
collocation methods. For instance, for Tmesh-2, 170.06 and 311.79 sec are required to construct the system matrices
Â andB̂ and to solve the problem, respectively. In this case, it takes 10.26 and 6.02 times more time, respectively,
for the Galerkin method to carry out the aforementioned tasks.

The relatively low computational efficiency of the isogeometric Galerkin methods is strongly prohibitive for
large-scale problems. According to Table 3, while most of the CPU time is allocated to the construction of system
matrices, the isogeometric collocation methods are tremendously more efficient than those based on the Galerkin
approach. The reason is that the isogeometric Galerkin formulation entails 2d-dimensional integration to compute
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FIG. 9: Sixth eigenfunction obtained by the isogeometric Galerkin methods with multipatch NURBS and T-splines in Example 1:
(a) NURBS-Mesh-1; (b) NURBS-Mesh-2; (c) NURBS-Mesh-3; (d) Tmesh-1; (e) Tmesh-2

each component in lieu ofd-dimensional integration in collocation. This argument becomes even stronger as the
mesh is refined. For instance, Ratio-1 increases from 1.63 for NURBS-Mesh-1 to 6.27 for NURBS-Mesh-3. This was
evident for single-patch domains in a previous study by Jahanbin and Rahman [32]. Moreover, the computational
efforts corresponding to the isogeometric methods based on NURBS and T-splines are comparable, considering the
mesh sizes.

The first numerical example confirmed the accuracy of the proposed isogeometric collocation- and Galerkin-
based methods with NURBS and T-spline basis functions for solving the Fredholm eigenvalue problem on a multi-
patch two-dimensional domain. It was also shown that the collocation methods were far more computationally effi-
cient than their Galerkin counterparts. This efficiency is expected to become more prominent for three-dimensional
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FIG. 10: Sixth eigenfunction obtained by the isogeometric collocation methods with multipatch NURBS and T-splines in Exam-
ple 1: (a) NURBS-Mesh-1; (b) NURBS-Mesh-2; (c) NURBS-Mesh-3; (d) Tmesh-1; (e) Tmesh-2

domains, where for large systems of equations, the isogeometric Galerkin method may even be computationally
prohibitive. The next numerical example will address this issue.

5.2 A Three-Dimensional Disk Brake

The second example entails random field discretization on a three-dimensional disk brake. An actual brake system in
a passenger vehicle, illustrated in Fig. 11(a) [52], slows the motion of a wheel by pushing the brake pads against a
rotor with a set of calipers.
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TABLE 3: Computational efficiency of the isogeometric collocation methods in comparison with their Galerkin
counterparts in Example 1

Mesh
Mesh Specifications CPU Time

No. of Elements No. of Control Pts. Time-1a Time-2b Ratio-1c Ratio-2d

NURBS-Mesh-1 14 120 2.76 4.62 2.01 1.63
NURBS-Mesh-2 56 216 24.08 26.81 5.54 5.08
NURBS-Mesh-3 224 492 266.70 270.05 6.33 6.27

Tmesh-1 92 205 30.47 75.64 7.07 3.42
Tmesh-2 256 392 170.06 311.79 10.26 6.02

aTime-1 = Elapsed CPU time for constructing the system matrices by the collocation method in seconds.
b Time-2 = Elapsed CPU time for obtaining the eigensolutions by the collocation method in seconds.
c Ratio-1 = Galerkin method CPU time/Collocation method CPU time for constructing the system matrices.
d Ratio-2 = Galerkin method total CPU time/Collocation method total CPU time for obtaining the eigensolutions.

Define a three-dimensional homogeneous random field with the covariance function

Γ(z, z′) = σ2 exp
(
−‖z− z′‖

bL

)
, z, z′ ∈ D ⊂ R3, (32)

whereb = 0.5, L = 0.288, andσ = 0.1. Figures 11(b) and 11(c) demonstrate two views of the three-dimensional
model for the disk brake. The disk of outer diameter0.288 in consistent units is defined, as depicted in Fig. 11(d).
Figure 11(e) depicts a quarter of the disk with four patches that are coupled in a C0-continuous manner, where the
patch interfaces are marked with cyan lines. As a result, there are 16 patches in the entire domain.

Since solving this three-dimensional problem with isogeometric Galerkin formulation is computationally inten-
sive and multipatch NURBS lack flexibility in conveniently modeling such domain, only the isogeometric collocation
method with T-splines is implemented. Figure 12 illustrates the top view and three-dimensional view of the three
IGA T-meshes used, namely, Tmesh-1, Tmesh-2, and Tmesh-3. The T-meshes are all analysis-suitable. Similar to
Example 1, the disk geometry is modeled precisely in all cases. The control points and collocation points are indi-
cated by closed green circles and closed magenta squares, respectively. Some T-junctions are observable in the top
views.

Table 4 lists the six largest eigenvalues estimated by the isogeometric collocation method with T-splines. Based
on the results, the eigenvalues are convergent as the mesh is refined. However, recall that the collocation formulation
does not guarantee real-valued eigensolutions. Here, there are a few cases of complex-valued numbers in the top
six eigensolutions. However, the imaginary parts are relatively small and negligible and are hence dropped. The
aforementioned numbers are marked with asterisks in Table 4.

Figure 13 illustrates six eigenfunctions for Tmesh-3, which correspond to the six largest eigenvalues listed in
Table 4. As observed, the eigenfunctions are elegantly approximated by smooth T-splines. Moreover, the eigensolu-
tions mostly appear in pairs, since ignoring the four interior small holes, the geometry is axisymmetric. Evidently, the
second and third eigenfunctions are paired, as are the fourth and fifth eigenfunctions. This can be inferred from their
associated eigenvalues listed in Table 4 as well.

Akin to Table 3, the numbers of elements and control points, along with the computational costs in seconds
to construct the system matrices and to solve the problem by isogeometric collocation methods with T-splines, are
listed in Table 5. Note that the system matrix̂B in Eq. (27) is a typically a banded matrix, whereas theÂ ma-
trix is not sparse. Hence, thêB−1Â matrix, the eigensolutions of which being desirable, is typically not sparse.
With this clarification, solving the problem for the finest mesh (Tmesh-3) took more than 14 hours on a standard
desktop personal computer. Based on prior experience [32], it would have taken more than 6 days for its Galerkin
counterpart. This, once again, underscores the computational expediency of the proposed isogeometric collocation
method.
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Patch 4

Patch 3

Patch 1
Patch 2

(a)

(b) (c)

(d) (e)

FIG. 11: A three-dimensional disk brake in Example 2; (a) Actual brake system in a passenger vehicle [52]; (b) three-dimensional
view of the simplified model from the top; (c) three-dimensional view of the simplified model from the bottom; (d) geometry with
consistent units; (e) C0-continuous patch coupling over a quarter of the disk

6. DISCUSSION

In this work, the prefix “iso” refers to using identical basis functions for geometrical modeling and approximating
the eigensolutions of a well-known integral problem in UQ, rather than the heavily researched BVPs. Isogeometric
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FIG. 12: Three-dimensional view and top view of the analysis-suitable T-meshes in Example 2: (a) Tmesh-1; (b) Tmesh-2; (c)
Tmesh-3

TABLE 4: Six largest eigenvalues estimated by the isogeometric collocation method with T-splines in Example 2

Mode Tmesh-1 Tmesh-2 Tmesh-3
1 5.279380× 10−6 5.481527× 10−6 5.536382× 10−6

2 1.456313× 10−6∗ 1.536563× 10−6∗ 1.551816× 10−6∗

3 1.456313× 10−6∗ 1.536563× 10−6∗ 1.551816× 10−6∗

4 4.801366× 10−7 5.136870× 10−7 5.198493× 10−7

5 4.785992× 10−7 5.119457× 10−7 5.178820× 10−7

6 2.147980× 10−7 2.369918× 10−7 2.382781× 10−7

*A negligible imaginary part is dropped.

Galerkin and collocation methods were proposed to solve the Fredholm integral problem on any arbitrary or complex-
shaped geometry by dint of multipatch NURBS or analysis-suitable T-splines. The impact of different types of co-
variance function with a wide range of function regularities and correlation lengths had been studied [31,32], where
in-depth error analyses were conducted. In contrast, this work focused on the practical aspects of the methods, espe-
cially on multipatch geometries. However, to analyze the problems with more complex geometries in a convenient
manner, user-friendly commercial packages that possess T-spline features need to be developed.

That being noted, volumetric mesh generation for T-splines on a user-friendly graphical interface is not a trivial
task. Currently, the “T-splines for Rhino” package [53] is able to model complex surfaces before generating analysis-
suitable surface T-meshes. Scott et al. [54] have used Rhino for solving BVPs by boundary-element methods and
collocation projection. One motivation behind the boundary-element formulation in the aforementioned work might
have been the ability of Rhino to provide surface, and not volumetric, T-meshes. Nevertheless, research is ongoing for
three-dimensional T-spline mesh generation on complex geometries with commercial packages that possess friendly
graphical user interfaces. The authors envision the integration of the proposed isogeometric collocation and Galerkin
methods with commercial packages as an influential step forward in the random field discretization process, when the
K-L expansion is implemented to UQ analysis.

International Journal for Uncertainty Quantification
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FIG. 13: Six eigenfunctions corresponding to the six largest eigenvalues for random field discretization by the isogeometric
collocation method with T-splines for Tmesh-3 in Example 2

TABLE 5: Mesh details and computational effort in Example 2

Mesh No. of Elements No. of Control Points Time for System Matrices (s) Total Time (s)
Tmesh-1 56 1068 71.85 85.95
Tmesh-2 504 2764 4122.34 4220.28
Tmesh-3 2016 6096 50867.75 51351.77
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7. CONCLUSION AND OUTLOOK

Two new isogeometric methods, one rooted in the Galerkin projection and the other stemming from the collocation
projection, were developed for solving the Fredholm integral eigenvalue problem on arbitrary multipatch domains,
enabling random field discretization by means of the well-known K-L expansion. Compared with similar existing
works on IGA, the methods proposed can now handle markedly more complex geometries, including multiply
connected bodies, that cannot be represented by tensor-product, single-patch domains alone. In both methods, the
unknown eigensolutions are projected onto concomitant finite-dimensional approximation spaces, where NURBS
and analysis-suitable rational T-splines are exploited as basis functions. Using these approximation spaces, finite-
dimensional matrix eigenvalue problems are formulated, where the system matrices are constructed by NURBS or
rational T-splines as basis and subsequent domain integration. Finally, the eigensolutions are obtained using stan-
dard methods of linear algebra. Similar to the existing methods but applicable to single-patch domains only, the
isogeometric Galerkin and collocation methods developed here preserve an exact geometrical representation of com-
plex engineering structures and exploit the regularity of isogeometric basis functions to the extent possible, furnishing
patchwise smooth but globally continuous eigensolutions. Numerical results of eigensolutions obtained from two- and
three-dimensional engineering problems indicate that the collocation method, when compared with the isogeomet-
ric Galerkin method, is not only accurate and convergent, but also substantially more economical. The isogeometric
collocation method achieves this desirable feat by sidestepping oned-dimensional domain integration in forming the
system matrices, whereas a 2d-dimensional domain integration is mandated in the isogeometric Galerkin method. As
a result, the collocation method in the context of IGA offers a tremendous boost to computational expediency when
generating the K-L expansion.

Although the methods were developed to handle any arbitrary multipatch domain, there is a need to develop com-
mercial packages capable of conveniently generating three-dimensional volumetric meshes equipped with NURBS
or rational T-splines. Therefore, the integration of the proposed methods with commercial packages will be fruitful
for random field discretization on more complex geometries in practical applications.
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Comput. Methods Appl. Mech. Eng., 285:125–145, 2015.

31. Rahman, S., A Galerkin Isogeometric Method for Karhunen-Loève Approximation of Random Fields,Comput. Methods Appl.
Mech. Eng., 338:533–561, 2018.

32. Jahanbin, R. and Rahman, S., An Isogeometric Collocation Method for Efficient Random Field Discretization,Int. J. Numer.
Methods Eng., 117(3):344–369, 2019.

33. Mantzaflaris, A., J̈utler, B., Khoromskij, B.N., and Langer, U., Low Rank Tensor Methods in Galerkin-Based Isogeometric
Analysis,Comput. Methods Appl. Mech. Eng., 316:1062–1085, 2017.

34. Beck, J., Sangalli, G., and Tamellini, L., A Sparse-Grid Isogeometric Solver,Comput. Methods Appl. Mech. Eng., 335:128–
151, 2018.

35. Li, K., Gao, W., Wu, D., Song, C., and Chen, T., Spectral Stochastic Isogeometric Analysis of Linear Elasticity,Comput.
Methods Appl. Mech. Eng., 332:157–190, 2018.

36. Jahanbin, R. and Rahman, S., Stochastic Isogeometric Analysis in Linear Elasticity,Comput. Methods Appl. Mech. Eng.,
364:112928, 2020.

Volume 11, Issue 3, 2021



56 Jahanbin & Rahman

37. Dunford, N. and Schwartz, J.T.,Linear Operators, Spectral Theory, Self Adjoint Operators in Hilbert Space, Part 2, Hoboken,
NJ: Wiley-Interscience, 1988.

38. Matthies, H.G. and Keese, A., Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations,
Comput. Methods Appl. Mech. Eng., 194:1295–1331, 2005.
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APPENDIX A. B-SPLINES

This Appendix briefly introduces B-splines for the paper to be self-contained. Ford = 1, 2, or 3, consider ad-
dimensional Cartesian coordinate system in the parametric domainD̂ = [0, 1]d, where an arbitrary point has coordi-
nateξ = (ξ1, . . . , ξd). For the coordinate directionk, wherek = 1, . . . , d, define a positive integernk ∈ N and a
non-negative integerpk ∈ N0, representing the total number of basis functions and polynomial degree, respectively.
Givennk andpk, introduce on the parametric interval[0, 1] ⊂ R, an ordered knot vector

ξk := (0 = ξk,1, ξk,2, . . . , ξk,nk+pk+1 = 1), ξk,1 ≤ ξk,2 ≤ . . . ≤ ξk,nk+pk+1, (A.1)

whereξk,ik
is theikth knot withik = 1, 2, . . . , nk + pk + 1 representing the knot index for the coordinate direction

k. A knot vector is called open if its first and last knots appear(pk + 1) times. Open knot vectors are standard in the
CAD literature [43].

The B-spline functions for a given degree are defined in a recursive manner using the knot vector. Denote by
Bk

ik,pk,ξk
(ξk) theikth univariate B-spline function with degreepk and knot vectorξk for the coordinate directionk.

Given thezero-degree basis functions,

Bk
ik,0,ξk

(ξk) =

{
1, ξk,ik

≤ ξk < ξk,ik+1,

0, otherwise,
(A.2)
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for k = 1, . . . , d, all higher-order B-spline functions are efficiently generated by the recursive Cox-de Boor formula
[45],

Bk
ik,pk,ξk

(ξk) =
ξk − ξk,ik

ξk,ik+pk
− ξk,ik

Bk
ik,pk−1,ξk

(ξk) +
ξk,ik+pk+1 − ξk

ξk,ik+pk+1 − ξk,ik+1
Bk

ik+1,pk−1,ξk
(ξk), (A.3)

where1≤ k ≤ d, 1≤ ik ≤ nk, 1≤ pk < ∞, and0/0 is considered aszero.
The B-spline functions for anyk = 1, . . . , d andpk ∈ N0 satisfy the following desirable properties [10,43,45]: (1)

they are non-negative, (2) they are locally supported, (3) they are linearly independent, and (4) they form a partition of
unity. As a result, the B-spline functions in Eqs. (A.2) and (A.3) form a basis on [0,1], which is crucial for developing
computational methods.

The multivariate B-splines ind variablesξ1, . . . , ξd are constructed from the tensor product of the univariate
B-splines stemming from the chosen knot vectorsξ1, . . . , ξd. Define two multi-indicesi := (i1, . . . , id) andp :=
(p1, . . . , pd), and a collectionΞ := (ξ1, . . . , ξd) of knot vectors. For the first multi-index, denote by

I := {i = (i1, . . . , id) : 1≤ ik ≤ nk, 1≤ k ≤ d}, (A.4)

a multi-index set. Then, fori ∈ I, p ∈ Nd
0, andΞ, the multivariate B-spline functionBi,p,Ξ : D̂ → R is defined as

Bi,p,Ξ(ξ) :=
d∏

k=1

Bk
ik,pk,ξk

(ξk), (A.5)

with the corresponding tensor-product B-spline space,

Bh :=
d⊗

k=1

span{Bk
ik,pk,ξk

(ξk)}ik=1,...,nk
= span{Bi,p,Ξ(ξ)}i∈I . (A.6)

Note that the functions inBh are piecewise polynomials of degreepk along each coordinate directionk = 1, . . . , d.
Due to the tensor-product structure, multivariate B-spline functions inherit most of the aforementioned properties
of their univariate counterparts, namely, non-negativity, local support, linear independence, partition of unity, and
regularity.
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