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Abstract

This paper presents a new univariate method employing the most probable point as the reference point for predicting
failure probability of structural and mechanical systems subject to random loads, material properties, and geometry.
The method involves novel decomposition at the most probable point that facilitates a univariate approximation of
a general multivariate function, response surface generation of the univariate function, and Monte Carlo simulation.
In addition to the effort of identifying the most probable point, the method requires a small number of exact or numer-
ical evaluations of the performance function at selected input. Results of four numerical examples involving elementary
mathematical functions and structural/solid-mechanics problems indicate that the proposed method provides accurate
and computationally efficient estimates of probability of failure. Finally, the fatigue failure of lever arm in a wheel loa-
der has been evaluated, demonstrating the ability of the new method in solving industrial-scale fatigue reliability
problems.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A fundamental problem in time-invariant component reliability analysis entails calculation of a multi-
fold integral (Madsen et al., 1986; Rackwitz, 2001; Ditlevsen and Madsen, 1996)
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P F � P ½gðXÞ < 0� ¼
Z

gðxÞ<0

fXðxÞdx; ð1Þ
where X ¼ fX 1; . . . ;X NgT 2 RN is a real-valued, N-dimensional random vector defined on a probability
space ðX;F; P Þ comprising the sample space X, the r-field F, and the probability measure P; g(x) is the per-
formance function, such that g(x) < 0 represents the failure domain; PF is the probability of failure; and fX(x)
is the joint probability density function of X, which typically represents loads, material properties, and geom-
etry. For most practical problems, the exact evaluation of this integral, either analytically or numerically, is
not possible because N is large, fX(x) is generally non-Gaussian, and g(x) is highly non-linear function of x.

The most common approach to compute the failure probability in Eq. (1) involves the first- and second-
order reliability methods (FORM/SORM) (Madsen et al., 1986; Rackwitz, 2001; Ditlevsen and Madsen,
1996; Breitung, 1984; Hohenbichler et al., 1987; Cai and Elishakoff, 1994; Tvedt, 1990; Der Kiureghian
and Dakessian, 1998), which are based on linear (FORM) or quadratic approximation (SORM) of the
limit-state surface at a most probable point (MPP). Experience has shown that FORM/SORM are suffi-
ciently accurate for engineering purposes, provided that the limit-state surface at the MPP is close to being
linear or quadratic, and no multiple MPPs exist. For highly non-linear performance functions, which exist
in many structural problems, results based on FORM/SORM must be interpreted with caution. If the
Rosenblatt transformation, frequently used to map non-Gaussian random input into its standard Gaussian
image, yields a highly non-linear limit state, inadequate reliability estimates by FORM/SORM may result
(Bjerager, 1988; Nie and Ellingwood, 2000). Furthermore, the existence of multiple MPPs could give rise to
large errors in standard FORM/SORM approximations (Ditlevsen and Madsen, 1996; Der Kiureghian and
Dakessian, 1998). In that case, multi-point FORM/SORM along with the system reliability concept is
required for improving component reliability analysis (Der Kiureghian and Dakessian, 1998).

Recently, the authors have developed new decomposition methods, which can solve highly non-linear
reliability problems more accurately or more efficiently than FORM/SORM and simulation methods
(Xu and Rahman, accepted for publication). A major advantage of these decomposition methods, so far
based on mean point of random input as a reference point, over FORM/SORM is that higher-order
approximations of performance functions can be achieved without calculating MPP or gradients. However,
for certain class of reliability problems existing methods may require computationally demanding higher-
variate (bivariate, trivariate, etc.) decomposition to adequately represent performance functions. Hence,
developing univariate methods, capable of producing computationally efficient, yet sufficiently adequate
performance functions, is a major motivation of the current work.

This paper presents a new MPP-based univariate method for predicting reliability of mechanical systems
subject to random loads, material properties, and geometry. Section 2 presents a novel decomposition tech-
nique that facilitates a lower-dimensional approximation of a general multivariate function. Section 3 de-
scribes response surface generation of the univariate approximation. Section 4 utilizes the Monte Carlo
simulation using response surface models embedded in the reliability method. Four numerical examples
involving elementary mathematical functions and structural problems illustrate the proposed method in
Section 5. Comparisons have been made with alternative approximate and simulation methods to evaluate
the accuracy and computational efficiency of the new method. Finally, an industrial-scale, fatigue reliability
problem is solved in Section 6 using the proposed univariate method.
2. Multivariate function decomposition at MPP

Consider a continuous, differentiable, real-valued performance function g(x) that depends on x ¼ fx1;
. . . ; xNgT 2 RN . The transformed limit states h(u) = 0 and y(v) = 0 are the maps of the original limit state
g(x) = 0 in the standard Gaussian space (u space) and the rotated Gaussian space (v space), respectively,



MPP (u* or v*)

HL

FORM

SORM

MPP-based 
univariate method 

[y1(v) = 0] v2

u1

v1

u2

Failure set
y(v) < 0

y(v) = 0

β

Fig. 1. Performance function approximations by various methods.
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as shown in Fig. 1 for N = 2. The closest point on the limit-state surface to the origin, denoted by the MPP
(u* or v*) or beta point, has a distance bHL, which is commonly referred to as the Hasofer–Lind reliability
index (Madsen et al., 1986; Rackwitz, 2001; Ditlevsen and Madsen, 1996). The determination of MPP and
bHL involves standard non-linear constrained optimization and is usually performed in the standard Gauss-
ian space. Fig. 1 depicts FORM and SORM approximations of the limit-state surface at MPP.

Suppose that y(v) has a convergent Taylor series expansion at MPP v� ¼ fv�1; . . . ; v�Ng
T and can be ex-

pressed by
yðvÞ ¼ yðv�Þ þ
X1
j¼1

1

j!

XN

i¼1

ojy

ovj
i

ðv�Þðvi � v�i Þ
j þR2 ð2Þ
or
yðvÞ ¼ yðv�Þ þ
X1
j¼1

1

j!

XN

i¼1

ojy

ovj
i

ðv�Þðvi � v�i Þ
j þ

X1
j1;j2>0

1

j1!j2!

X
i1<i2

oj1þj2 y

ovj1
i1 ovj2

i2

ðv�Þðvi1 � v�i1Þ
j1ðvi2 � v�i2Þ

j2 þR3;

ð3Þ

where the remainder R2 denotes all terms with dimension two and higher and the remainder R3 denotes all
terms with dimension three and higher.

2.1. Univariate approximation

Consider a univariate approximation of y(v), denoted by
ŷ1ðvÞ � ŷ1ðv1; . . . ; vN Þ ¼
XN

i¼1

yðv�1; . . . ; v�i�1; vi; v�iþ1; . . . ; v�NÞ � ðN � 1Þyðv�Þ; ð4Þ



S. Rahman, D. Wei / International Journal of Solids and Structures 43 (2006) 2820–2839 2823
where each term in the summation is a function of only one variable and can be subsequently expanded in a
Taylor series at v = v*, yielding
ŷ1ðvÞ ¼ yðv�Þ þ
X1
j¼1

1

j!

XN

i¼1

o
jy

oxj
i

ðv�Þðvi � v�i Þ
j. ð5Þ
Comparison of Eqs. (2) and (5) indicates that the univariate approximation leads to the residual error
yðvÞ � ŷ1ðvÞ ¼ R2, which includes contributions from terms of dimension two and higher. For sufficiently
smooth y(v) with convergent Taylor series, the coefficients associated with higher-dimensional terms are
usually much smaller than that with one-dimensional terms. As such, higher-dimensional terms contribute
less to the function, and therefore, can be neglected. Nevertheless, Eq. (4) includes all higher-order univar-
iate terms, as compared with FORM and SORM, which only retain linear and quadratic terms, respec-
tively. Hence, ŷ1ðvÞ yields more accurate representation of y(v) than FORM/SORM. Furthermore, Eq.
(4) represents exactly the same function as y(v) when yðvÞ ¼

P
yiðviÞ, i.e., when y(v) can be additively

decomposed into functions yi(vi) of single variables.

2.2. Bivariate approximation

In a similar manner, consider a bivariate approximation
ŷ2ðvÞ ¼
X
i1<i2

yðv�1; . . . ; v�i1�1; vi1 ; v
�
i1þ1; . . . ; v�i2�1; vi2 ; v

�
i2þ1; . . . ; v�N Þ � ðN � 2Þ

�
XN

i¼1

yðv�1; . . . ; v�i�1; vi; v�iþ1; . . . ; v�N Þ þ
ðN � 1ÞðN � 2Þ

2
yðv�Þ ð6Þ
of y(v), where each term on the right-hand side is a function of at most two variables and can be expanded
in a Taylor series at v = v*, yielding
ŷ2ðvÞ ¼ yðv�Þ þ
X1
j¼1

1

j!

XN

i¼1

o
jy

ovj
i

ðv�Þðvi � v�i Þ
j þ

X1
j1;j2>0

1

j1!j2!

X
i1<i2

o
j1þj2 y

ovj1
i1 ovj2

i2

ðv�Þðvi1 � v�i1Þ
j1ðvi2 � v�i2Þ

j2 . ð7Þ
Again, the comparison of Eqs. (3) and (7) indicates that the bivariate approximation leads to the residual
error yðvÞ � ŷ2ðvÞ ¼ R3, in which the remainder R3 includes terms of dimension three and higher. The
bivariate approximation includes all terms with no more than two variables, thus yielding higher accuracy
than the univariate approximation. Furthermore, Eq. (6) exactly represents yðvÞ ¼

PP
yijðvi; vjÞ, i.e., when

y(v) can be additively decomposed into functions yij(vi,vj) of at most two variables.

2.3. Generalized S-variate approximation

The procedure for univariate and bivariate approximations described in the preceding can be generalized
to an S-variate approximation for any integer 1 6 S 6 N. The generalized S-variate approximation of y(v)
is
ŷSðvÞ �
XS

i¼0

ð�1Þi
N � S þ i� 1

i

� � X
k1<���<kS�i

yðv�1; . . . ; v�k1�1; vk1
; v�k1þ1; . . . ; v�kS�i�1; vkS�i ; v

�
kS�iþ1; . . . ; v�N Þ.

ð8Þ
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If yR � yðv�1; . . . ; v�k1�1; vk1
; v�k1þ1; . . . ; v�kR�1; vkR ; v

�
kRþ1; . . . ; v�N Þ; 0 6 R 6 S, a multivariate function decompo-

sition theorem, developed by the first author�s group, leads to (Xu and Rahman, 2004)
yR ¼
XR

k¼0

N � k

R� k

� �
tk; 0 6 R 6 S; ð9Þ
where
t0 ¼ yðv�Þ

t1 ¼
X

j1

1

j1!

XN

i1¼1

o
j1 y

ovj1
i1

ðv�Þðvi1 � v�i1Þ
j1

t2 ¼
X
j1;j2

1

j1!j2!

X
i1<i2

oj1þj2 y

ovj1
i1 ovj2

i2

ðv�Þðvi1 � v�i1Þ
j1ðvi2 � v�i2Þ

j2

..

.

tS ¼
X

j1;...;jS

1

j1! � � � jS !

X
i1<���<iS

oj1þ���þjS y

ovj1
i1 � � � ovjS

iS

ðv�Þðvi1 � v�i1Þ
j1 � � � ðviS � v�iS Þ

jS

ð10Þ
Using Eqs. (9) and (10), it can be shown that ŷSðvÞ in Eq. (8) consists of all terms of the Taylor series of y(v)
that have less than or equal to S variables (Xu and Rahman, 2004). The expanded form of Eq. (8), when
compared with the Taylor expansion of y(v), indicates that the residual error in the S-variate approximation
is yðvÞ � ŷSðvÞ ¼ RSþ1, where the remainder RSþ1 includes terms of dimension S + 1 and higher. When
S = 1, Eq. (8) degenerates to the univariate approximation (Eq. (4)). When S = 2, Eq. (8) becomes the
bivariate approximation (Eq. (6)). Similarly, trivariate, quadrivariate, and other higher-variate approxima-
tions can be derived by appropriately selecting the value of S. In the limit, when S = N, Eq. (8) converges to
the exact function y(v). In other words, the decomposition technique generates a convergent sequence of
approximations of y(v).

2.4. Remarks

The decomposition of a general multivariate function y(v) can be viewed as a finite sum
yðvÞ ¼ y0 þ
XN

i¼1
yiðviÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}¼ŷ1ðvÞ

þ
XN

i1;i2¼1
i1<i2

yi1i2ðvi1 ; vi2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}¼ŷ2ðvÞ

þ � � � þ
XN

i1;...;iS¼1
i1<���<iS

yi1���iS ðvi1 ; . . . ; visÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ŷS ðvÞ

þ � � � þ y12���N ðv1; . . . ; vN Þ; ð11Þ
where y0 is a constant, yi(vi) is a univariate component function representing independent contribution to
y(v) by input variable vi acting alone, yi1i2ðvi1 ; vi2Þ is a bivariate component function describing cooperative
influence of two input variables vi1 and vi2 , yi1;...;iS ðvi1 ; . . . ; viS Þ is an S-variate component function quantify-
ing cooperative effects of S input variables vi1 ; . . . ; viS , and so on. By comparing Eqs. (4) and (6) with Eq.
(11), the univariate and bivariate approximations provide two- and three-term approximants, respectively,
of the finite decomposition. In general, the S-variate approximation in Eq. (8) yields the S + 1-term approx-
imant of the decomposition. The fundamental conjecture underlying this work is that component functions
arising in the proposed decomposition will exhibit insignificant higher-dimensional effects cooperatively.
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It is worth noting that the univariate approximation in Eq. (4) should not viewed as first- or second-
order Taylor series expansions nor does it limit the non-linearity of y(v). According to Eq. (5), all high-
er-order univariate terms of y(v) are included in the proposed approximation. In fact, the univariate
component function yi(vi) can be highly non-linear and therefore should provide in general higher-order
representation of a performance function than those by FORM or SORM. Furthermore, the approxima-
tions contain contributions from all input variables.

Finally, the decomposition presented here depends on the selected reference point. It is elementary to
show that an improper or careless selection of the reference point can spoil the approximation. The authors�
past work indicates that the mean point of random input is a good candidate for defining the reference
point (Xu and Rahman, accepted for publication). This present work is motivated by the argument that
using MPP as the reference point may provide an improved function approximation, however, with the
additional expense of identifying the MPP.
3. Response surface generation

Consider the univariate component function yiðviÞ � yðv�1; . . . ; v�i�1; vi; v�iþ1; . . . ; v�N Þ in Eq. (4). If for
vi ¼ vðjÞi , n function values
yiðv
ðjÞ
i Þ ¼ yðv�1; . . . ; v�i�1; v

ðjÞ
i ; v

�
iþ1; . . . ; v�N Þ; j ¼ 1; 2; . . . ; n ð12Þ
are given, the function value for arbitrary vi can be obtained using the Lagrange interpolation as
yiðviÞ ¼
Xn

j¼1

/jðviÞyiðv
ðjÞ
i Þ; ð13Þ
where the shape function /j(vi) is defined as
/jðviÞ ¼
Qn

k¼1;k 6¼jðvi � vðkÞi ÞQn
k¼1;k 6¼jðv

ðjÞ
i � vðkÞi Þ

. ð14Þ
By using Eqs. (13) and (14), arbitrarily many values of yi(vi) can be generated if n values of that component
function are given. The same procedure is repeated for all univariate component functions, i.e., for all yi(vi),
i = 1, . . .,N. Therefore, the total cost for the univariate approximation in Eq. (4), in addition to that re-
quired for locating MPP, entails a maximum of nN + 1 function evaluations.

More accurate bivariate or multivariate approximations (e.g., Eqs. (6) or (8)) can be developed in a sim-
ilar way. However, because of much higher cost of multivariate approximations, only the univariate
approximation will be examined in this paper.
4. Monte Carlo simulation

For component reliability analysis, the Monte Carlo estimate PF,1 of the failure probability employing
the proposed univariate approximation is
P F;1 ¼
1

N S

XNS

i¼1

I½ŷ1ðvðiÞÞ < 0�; ð15Þ
where v(i) is the ith realization of V, NS is the sample size, and I½�� is an indicator function such that I ¼ 1
if v(i) is in the failure set (i.e., when ŷ1ðvðiÞÞ < 0Þ and zero otherwise. Similar failure probability estimates can
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be developed using higher-variate models if required. In addition, similar approximations can be employed
for system reliability analysis (Xu and Rahman, accepted for publication).

The decomposition method involving univariate approximation (Eq. (4)), n-point Lagrange interpola-
tion (Eqs. (13) and (14)), and Monte Carlo simulation (Eq. (15)) is defined as the MPP-based univariate

method in this paper. Since the univariate method leads to explicit response-surface approximation of a per-
formance function, the embedded Monte Carlo simulation can be conducted for any sample size. However,
the accuracy and efficiency of the resultant failure-probability calculation depend on both the univariate
and response surface approximations. They will be evaluated using several numerical examples, as follows.
5. Numerical examples

Four numerical examples involving explicit performance functions from mathematical or solid-mechan-
ics problems (Examples 1 and 2) and implicit performance functions from structural or solid-mechanics
problems (Examples 3 and 4), are presented to illustrate the MPP-based univariate method developed.
Whenever possible, comparisons have been made with existing mean-point-based univariate method,
FORM/SORM, and Monte Carlo simulation methods to evaluate the accuracy and computational
efficiency of the proposed method. For the MPP-based univariate method, n (=3, 5, 7 or 9) uniformly dis-
tributed points v�i � ðn� 1Þ=2; v�i � ðn� 3Þ=2; . . . ; v�i ; . . . ; v�i þ ðn� 3Þ=2; v�i þ ðn� 1Þ=2 were deployed at
the vi-coordinate, leading to (n � 1)N + 1 function evaluations in addition to those required for locating
the MPP.

When comparing computational efforts by various methods, the number of original performance func-
tion evaluations is chosen as the primary metric in this paper. For the direct Monte Carlo simulation, the
number of original function evaluations is the same as the sample size. However, in univariate methods,
they are different, because the Monte Carlo simulation (although with same sample size as in direct Monte
Carlo simulation) embedded in the proposed method is conducted using their response surface approxima-
tions. The difference in CPU times in evaluating an original function and its response surface approxima-
tion is significant when a calculation of the original function involves expensive finite-element analysis, as in
Examples 3 and 4. However, the difference becomes trivial when analyzing explicit performance functions,
as in Examples 1 and 2. Hence, the computational effort expressed in terms of function evaluations alone
should be carefully interpreted for explicit performance functions. Nevertheless, the number of function
evaluations provides an objective measure of the computational effort for reliability analysis of realistic
problems.
5.1. Example 1—elementary mathematical functions

Consider a cubic and a quartic performance functions (Grandhi and Wang, 1999), expressed respectively
by
gðX 1;X 2Þ ¼ 2.2257� 0.025
ffiffiffi
2
p

27
ðX 1 þ X 2 � 20Þ3 þ 33

140
ðX 1 � X 2Þ ð16Þ
and
gðX 1;X 2Þ ¼
5

2
þ 1

216
ðX 1 þ X 2 � 20Þ4 � 33

140
ðX 1 � X 2Þ; ð17Þ
where Xi # N(10, 32), i = 1,2 are independent, Gaussian random variables, each with mean l = 10 and
standard deviation r = 3. From an MPP search, v* = {0,2.2257}T and bHL = kv*k = 2.2257 for the cubic
function and v* = {0, 2.5}T and bHL = kv*k = 2.5 for the quartic function, as shown in Figs. 2(a) and (b),
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Fig. 2. Approximate performance functions by various methods: (a) cubic function; (b) quartic function.
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respectively. In addition, Figs. 2(a) and (b) plots exact limit-state surfaces and their various approximations
by FORM/SORM (Breitung, 1984; Hohenbichler et al., 1987; Cai and Elishakoff, 1994), mean-point-based
univariate method (Xu and Rahman, accepted for publication), and proposed MPP-based univariate meth-
od. For univariate methods, a value of n = 5 was selected, resulting nine function evaluations. According to
Figs. 2(a) and (b), the MPP-based univariate method yields exact limit-state equations, since both perfor-
mance functions considered are univariate functions and at most consist of fourth-order polynomial in the
rotated Gaussian space. For the cubic function, the limit-state equation by the mean-point-based univariate
method matches the exact equation only at MPP. However, for the quartic function, the mean-point-based
limit-state equation is non-negative, leading to a null failure set. FORM and SORM yield grossly inaccu-
rate representation of both limit-state equations, due to zero (inflection point of the cubic function) or very
small (highly non-linearity of the quartic function) curvatures at MPP.

Tables 1 and 2 show the results of the failure probability calculated by FORM, SORM due to Breitung
(1984), Hohenbichler et al. (1987) and Cai and Elishakoff (1994), mean-point-based univariate method (Xu
and Rahman, accepted for publication), proposed MPP-based univariate method, and direct Monte Carlo
simulation using 106 samples. The MPP-based univariate method predicts exact probability of failure. The
Table 1
Failure probability for cubic performance function

Method Failure probability Number of function evaluationsa

MPP-based univariate method 0.01907 29b

Mean-point-based univariate method
(Xu and Rahman, accepted for publication)

0.01558 9c

FORM 0.01302 21
SORM (Breitung, 1984) 0.01302 204
SORM (Hohenbichler et al., 1987) 0.01302 204
SORM (Cai and Elishakoff, 1994) 0.01302 204
Direct Monte Carlo simulation 0.01907 1,000,000

a Total number of times the original performance function is calculated.
b 21 + (n � 1) · N = 21 + (5 � 1) · 2 = 29.
c (n � 1) · N + 1 = (5 � 1) · 2 + 1 = 9.



Table 2
Failure probability for quartic performance function

Method Failure probability Number of function evaluationsa

MPP-based univariate method 0.002886 29b

Mean-point-based univariate method
(Xu and Rahman, accepted for publication)

0.0 –c

FORM 0.006209 21
SORM (Breitung, 1984) 0.006208 212
SORM (Hohenbichler et al., 1987) 0.006208 212
SORM (Cai and Elishakoff, 1994) 0.006206 212
Direct Monte Carlo simulation 0.002886 1,000,000

a Total number of times the original performance function is calculated.
b 21 + (n � 1) · N = 21 + (5 � 1) · 2 = 29.
c Not applicable.
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univariate method using mean point, which yields poor approximations of performance functions [see Figs.
2(a) and (b)], underpredicts failure probability (cubic function) or fails to provide a solution (quartic func-
tion). Other commonly used reliability methods, such as FORM and SORM, underpredict failure proba-
bility by 31% and overpredict failure probability by 117% when compared with the direct Monte Carlo
results. The SORM results are the same as the FORM results, indicating that there is no improvement over
FORM for problems involving inflection points or high nonlinearity.

5.2. Example 2—burst margin of a rotating disk

Consider an annular disk of inner radius Ri, outer radius Ro, and constant thickness t� Ro (plane
stress), as shown in Fig. 3. The disk is subject to an angular velocity x about an axis perpendicular to
its plane at the center. The maximum allowable angular velocity xa when tangential stresses through the
thickness reach the material ultimate strength Su factored by a material utilization factor am is (Boresi
and Schmidt, 2003)
xa ¼
3amSuðRo � RiÞ

qðR3
o � R3

i Þ

� �1=2

; ð18Þ
ω

Fig. 3. Rotating annular disk subject to angular velocity.
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where q is the mass density of the material. According to an SAE G-11 standard, the satisfactory perfor-
mance of the disk is defined when the burst margin Mb, defined as
Table
Statist

Rando

am

Su, ksi
x, rpm
q, lb s2

Ro, in
Ri, in

a Sca
b g =
c Un

Table
Failure

Metho

MPP-b
Mean-

(Xu
Mean-

(Xu
FORM
SORM
Direct

a To
b 131
c (n �
d N ·
Mb �
xa

x
¼ 3amSuðRo � RiÞ

qx2ðR3
o � R3

i Þ

� �1=2

ð19Þ
exceeds a critical threshold of 0.37473 (Penmetsa and Grandhi, 2003). If random variables X1 = am,
X2 = Su, X3 = x, X4 = q, X5 = Ro, and X6 = Ri, and have their statistical properties defined in Table 3,
the performance function becomes
gðXÞ ¼ MbðX 1;X 2;X 3;X 4;X 5;X 6Þ � 0.37473. ð20Þ
Table 4 presents predicted failure probability of the disk and associated computational effort using MPP-
based univariate method, mean-point-based univariate and bivariate methods (Xu and Rahman, accepted
for publication), FORM, Hohenbichler�s SORM (Hohenbichler et al., 1987), and direct Monte Carlo sim-
ulation (106 samples). For univariate and bivariate methods, a value of n = 7 was selected. The results indi-
cate that the proposed MPP-based univariate method and mean-point-based bivariate method produce the
most accurate solution. The mean-point-based univariate method significantly overpredicts the failure
probability, whereas FORM and SORM slightly underpredict the failure probability. The MPP-based uni-
variate method surpasses the efficiency of both SORM and mean-point-based bivariate method in solving
this particular reliability problem.
3
ical properties of random input for rotating disk

m variable Mean Standard deviation Probability distribution

0.9377 0.0459 Weibulla

220 5 Gaussian
24 0.5 Gaussian

/in4 0.29/gb 0.0058/gb Uniformc

24 0.5 Gaussian
8 0.3 Gaussian

le parameter = 25.508; shape parameter = 0.958.
385.82 in/s2.

iformly distributed over (0.28,0.3).

4
probability of rotating disk

d Failure probability Number of function evaluationsa

ased univariate method 0.00101 167b

point-based univariate method
and Rahman, accepted for publication)

0.00159 37c

point-based bivariate method
and Rahman, accepted for publication)

0.00103 577d

0.000894 131
(Hohenbichler et al., 1987) 0.000970 378

Monte Carlo simulation 0.00104 1,000,000

tal number of times the original performance function is calculated.
+ (n � 1) · N = 131 + (7 � 1) · 6 = 167.
1) · N + 1 = (7 � 1) · 6 + 1 = 37.

(N � 1) · (n � 1)2/2 + (n � 1) · N + 1 = 6 · (6 � 1) · (7 � 1)2/2 + (7 � 1) · 6 + 1 = 577.
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5.3. Example 3–10-bar truss structure

A 10-bar, linear-elastic, truss structure, shown in Fig. 4, was studied in this example to examine the accu-
racy and efficiency of the proposed reliability method. The Young�s modulus of the material is 107 psi. Two
concentrated forces of 105 lb are applied at nodes 2 and 3, as shown in Fig. 4. The cross-sectional area Xi,
i = 1, . . ., 10 for each bar follows truncated normal distribution clipped at xi = 0 and has mean l = 2.5 in2

and standard deviation r = 0.5 in2. According to the loading condition, the maximum displacement
[(v3(X1, . . .,X10)] occurs at node 3, where a permissible displacement is limited to 18 in. Hence, the perfor-
mance function is
Table
Failur

Metho

MPP-b
Mean-

(Xu
FORM
SORM
SORM
SORM
Direct

a To
b 127
c (n �
gðX Þ ¼ 18� v3ðX 1; . . . ;X 10Þ. ð21Þ

From the MPP search involving finite-difference gradients, the reliability index is bHL = kv*k = 1.3642.
Table 5 shows the failure probability of the truss, calculated using the proposed MPP-based univariate
method, mean-point based univariate method (Xu and Rahman, accepted for publication), FORM, three
5
e probability of 10-bar truss structure

d Failure probability Number of function evaluationsa

ased univariate method 0.1465 187b

point-based univariate method
and Rahman, accepted for publication)

0.1357 61c

0.0862 127
(Breitung, 1984) 0.1286 506
(Hohenbichler et al., 1987) 0.1524 506
(Cai and Elishakoff, 1994) 0.1467 506

Monte Carlo simulation 0.1394 1,000,000

tal number of times the original performance functions is calculated.
+ (n � 1) · N = 127 + (7 � 1) · 10 = 187.
1) · N + 1 = (7 � 1) · 10 + 1 = 61.

100,000lb 100,000lb

360 in

360 in360 in

321

654

Fig. 4. A 10-bar truss structure.
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variants of SORM due to Breitung (1984), Hohenbichler et al. (1987) and Cai and Elishakoff (1994), and
direct Monte Carlo simulation (106 samples). For univariate methods, a value of n = 7 was selected. As can
be seen from Table 5, both versions of the univariate method predict the failure probability more accurately
than FORM and all three variants of SORM. This is because univariate methods are able to approximate
the performance function more accurately than FORM and SORM. A comparison of the number of func-
tion evaluations, also listed in Table 5, indicates that the mean-point-based univariate method is the most
efficient method. The number of function evaluations by the MPP-based univariate method is slightly larger
than FORM, but much less than SORM.

5.4. Example 4—mixed-mode fracture-mechanics analysis

The final example involves an isotropic, homogeneous, edge-cracked plate, presented to illustrate mixed-
mode probabilistic fracture-mechanics analysis using the proposed univariate method. As shown in
Fig. 5(a), a plate of length L = 16 units, width W = 7 units is fixed at the bottom and subjected to a far-
field and a shear stress s1 applied at the top. The elastic modulus and Poisson�s ratio are 1 unit and
0.25, respectively. A plane strain condition was assumed. The statistical property of the random input
X = {a/W,s1,KIc}

T is defined in Table 6.
Due to the far-field shear stress s1, the plate is subjected to mixed-mode deformation involving fracture

modes I and II (Anderson, 1995). The mixed-mode stress-intensity factors KI(X) and KII(X) were calculated
using an interaction integral method (Yau et al., 1980). The plate was analyzed using the finite element
method (FEM) involving a total of 832 8-noded, regular, quadrilateral elements and 48 6-noded, quar-
ter-point (singular), triangular elements at the crack-tip, as shown in Fig. 5(b).
bW

τ∞

a

L/2

L/2

Crack
2b2

2b1

Integral Domain

a

Fig. 5. An edge-cracked plate subject to mixed-mode deformation: (a) geometry and loads; (b) finite-element discretization.



Table 6
Statistical properties of random input for an edge-cracked plate

Random variable Mean Standard deviation Probability distribution

a/W 0.5 0.2309 Uniforma

s1 Variableb 0.1 Gaussian
KIc 200 0.1 Lognormal

a Uniformly distributed over (0.3,0.7).
b Varies from 2.6 to 3.1.
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The failure criterion is based on a mixed-mode fracture initiation using the maximum tangential stress
theory (Anderson, 1995), which leads to the performance function
gðXÞ ¼ KIc � KIðXÞcos2 HðXÞ
2
� 3

2
KIIðXÞ sin HðXÞ

� �
cos

HðXÞ
2

; ð22Þ
where KIc is statistically distributed fracture toughness, typically measured from small-scale fracture
experiments under mode I and plane strain conditions, and Hc(X) is the direction of crack propagation,
given by
HcðXÞ ¼

2tan�1
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8½KIIðXÞ=KIðXÞ�2

q
4KIIðXÞ=KIðXÞ

0
@

1
A; if KIIðXÞ > 0;

2tan�1
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8½KIIðXÞ=KIðXÞ�2

q
4KIIðXÞ=KIðXÞ

0
@

1
A; if KIIðXÞ < 0.

8>>>>>>><
>>>>>>>:

ð23Þ
Failure probability estimates of PF = P[g(X) < 0], obtained using the proposed MPP-based univariate
method, mean-point-based univariate and bivariate methods, FORM, Hohenbeichler�s SORM, and direct
Monte Carlo simulation, are compared in Fig. 6 and are plotted as a function of E½s1�, where E is the
expectation operator. For each reliability analysis (i.e., each point in the plot), FORM and SORM require
29 and 42 function evaluations (finite-element analysis). Using n = 9, the mean-point-based and MPP-
[    ]E
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Fig. 6. Probability of fracture initiation in an edge-cracked plate.
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based univariate methods require only 25 and 53 (=29 + 24) function evaluations, respectively, whereas
211 and 50,000 finite-element analyses are needed by the mean-point-based bivariate method and Monte
Carlo simulation, respectively. The results clearly show that MPP-based univariate method is more accu-
rate than other methods, particularly when the failure probability is low. The computational effort by
MPP-based univariate method is much lower than that by mean-point-based bivariate or simulation
methods.
Fig. 7. A wheel loader under cyclic loads: (a) two lever arms; (b) loading and boundary conditions of a lever arm; (c) constant-
amplitude cyclic loads at pin E.
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6. Fatigue reliability application

The objective of this section is to illustrate the effectiveness of the proposed univariate method in solving
a large-scale practical engineering problem. The problem involves mechanical fatigue durability and reli-
ability analyses of a lever arm in a wheel loader.
6.1. Problem definition and input

Fig. 7(a) shows a wheel loader commonly used in the heavy construction industry. A major structural
problem entails fatigue life evaluation of lever arms, also depicted in Fig. 7(a). The loading and boundary
conditions of a single lever arm are shown in Fig. 7(b). The load FE at pin E can be viewed as an input load
due to other mechanical components of the wheel loader. The deterministic constant-amplitude load cycles
at pin E vary from �800 to 3200 kN and are shown in Fig. 7(c). The lever arm is made of cast steel with
deterministic elastic properties, as follows: (1) Young�s modulus E = 203 GPa, (2) Poisson�s ratio m = 0.3.
In general, the random input vector X, which comprises casting defect characteristics and material proper-
ties, include defect radius r, ultimate strength Su, fatigue strength coefficient r0f , fatigue strength exponent b,
fatigue ductility coefficient e0f , and fatigue ductility exponent c. Table 7 defines statistical properties of X.
The objective is to predict fatigue durability and reliability of the lever arm. A value of n = 3 was selected
for the proposed univariate method.
6.2. Fatigue reliability analysis

The von Mises strain-life method was employed for fatigue durability analysis (Stephens et al., 2001).
According to this method, the Coffin–Manson–Morrow equation for determining fatigue crack-initiation
life Nf at a point is (Stephens et al., 2001).
Table
Statist

Rando

r0f , MP
b

e0f
c

Su, M
r, mm

a Ra
b Va
De
2
¼ r0f � rm

E
ð2N fÞb þ e0fð2N fÞc; ð24Þ
where De is the equivalent strain range and rm is the equivalent mean stress, both of which depend on strain
and stress fields. Appendix A provides a brief exposition of calculating De and rm, which requires results of
linear-elastic finite-element stress analysis. Appendix B describes how defect size can be estimated from
casting simulation.
7
ical properties of random input for lever arm

m variablea Mean Coefficient of variation Probability distribution

a 1332 0.1 Lognormal
�0.1085 0.1 Lognormal
0.375 0.1 Lognormal
�0.6354 0.1 Lognormal

Pa 847 0.05 Lognormal
Variableb 0.1 Lognormal

ndom variables Su and r are active only when casting defects are considered.
ries as follows: 14.4, 5.5, and 11.5 mm at locations 1, 2, and 3, respectively (see Fig. 10).
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Once De and rm are determined, the fatigue life Nf(X), which depends on random input X, can be cal-
culated by solving Eq. (24). The fatigue failure is defined when Nf(X) is less than a design threshold n0, lead-
ing to a performance function
Fig. 8. Finite element analysis of a lever arm: (a) mesh (77,154 elements; 17,089 nodes); (b) equivalent alternating strain (De/2)
contour; (c) equivalent mean stress (rm) contour.



2836 S. Rahman, D. Wei / International Journal of Solids and Structures 43 (2006) 2820–2839
gðXÞ ¼ N fðXÞ � n0. ð25Þ

A value of n0 = 107 cycles was employed in this study.

6.3. Results

6.3.1. Without defects

Fig. 8(a) shows a three-dimensional finite-element mesh of the lever arm involving 77,154 tetrahedral ele-
ments and 17,089 nodes, which was generated using the ABAQUS commercial software (ABAQUS, 2002).
Using the FEM-based stress analysis and following the procedure described in Appendix A, Fig. 8(b) and
(c) presents contours of equivalent alternating strain (=half of equivalent strain range = De/2) and equiv-
alent mean stress (rm), respectively, of the lever arm.

The MPP-based univariate method was applied to calculate the probability of fatigue failure
PF � P[Nf(X) < n0]. Since no defects are considered initially, only four random variables comprising fatigue
strength coefficient, fatigue strength exponent, fatigue ductility coefficient, and fatigue ductility exponent
are required. Fig. 9 shows the contour plot of the reliability index b � U�1(1 � PF) of the entire lever
arm. Results indicate that the reliability indices are relatively small (i.e., failure probabilities are relatively
large) in Region A where there are large strains [see Fig. 8(a)] or in Region B where there are large mean
stress [see Fig. 8(b)] and are expected. A further comparative analysis indicates that largest failure proba-
bilities in Regions A and B are 0.0127 and 0.00466, respectively. Therefore, if the lever arm is redesigned, a
natural tendency is to modify the shape or size of Region A until the failure probability is lowered to a
target value.

6.3.2. With defects

The probabilistic analysis described in the preceding can also be employed when casting-induced shrink-
age defects are considered. However, any detrimental effect of defect size on De and rm and two additional
random variables, such as defect radius and ultimate strength Su, (see Appendix A) must be accounted for
Fig. 9. Fatigue life-based reliability index contour of lever arm.
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in subsequent reliability analysis. Fig. 10 shows the contour plot of porosity distribution in the lever arm
and was generated using the MAGMASOFT commercial software (MAGMASOFT, 2002). The
MAGMASOFT simulation predicts larger porosity in Region B in this particular lever arm. By following
the procedure of Appendix B, the mean radius (lr) of equivalent spherical defects at three internal (near
surface) locations 1, 2, and 3, sketched in Fig. 10, are estimated to be 14.4 mm, 5.5 mm, and 11.5 mm,
respectively. The 10% coefficient of variation and lognormal distribution of r were defined arbitrarily.

Table 8 presents predicted failure probabilities at locations 1, 2, and 3, calculated with and without con-
sidering casting-induced shrinkage porosity. Results suggest that the presence of defect can alter failure
probability by 3–4 orders of magnitude. It is interesting to note that the largest failure probability of
0.0782, which occurs in Region B due to the presence of defect, has now become larger than the largest
failure probability of 0.0127 in Region A. In other words, larger failure probability may occur at other
seemingly non-critical regions when casting-induced defects are considered. Therefore, mechanical fatigue
Fig. 10. Porosity field of lever arm from casting simulation.

Table 8
Probability of fatigue failure of lever arm at locations 1–3

Location Mean defect radius, mm Probability of fatigue failure

Without defecta With defectb

1 14.4 3.396 · 10�6 2.829 · 10�2

2 5.5 2.294 · 10�5 7.818 · 10�2

3 11.5 3.433 · 10�6 2.779 · 10�2

a Random input vector: X ¼ fr0f ; b; e0f ; cg
T 2 R4.

b Random input vector: X ¼ fr0f ; b; e0f ; c; Su; rgT 2 R6.
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design processes that do not account for casting-induced defects may neither improve design nor provide a
truly reliable solution.
7. Conclusions

A new univariate method employing the most probable point as the reference point was developed for
predicting failure probability of structural and mechanical systems subject to random loads, material prop-
erties, and geometry. The method involves novel decomposition at the most probable point that facilitates a
univariate approximation of a general multivariate function, response surface generation of the univariate
function, and Monte Carlo simulation. In addition to the effort of identifying the most probable point, the
method requires a small number of exact or numerical evaluations of the performance function at selected
input. Four numerical examples involving mathematical functions and structural/solid-mechanics problems
illustrate the proposed method. Comparisons were made with alternative approximate and simulation
methods to evaluate the accuracy and computational efficiency of the univariate method developed. Results
indicate that the proposed method provides accurate and computationally efficient estimates of probability
of failure. Finally, the fatigue failure of lever arm in a wheel loader was evaluated, demonstrating the ability
of the new method in solving industrial-scale fatigue reliability problems.
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Appendix A. Approximate evaluations of rm and De

For a uniaxial stress state, let Smax, DS, emax, and De denote elastically calculated maximum stress, stress
range, maximum strain, and strain range at an arbitrary point, which are typically evaluated using linear-
elastic FEM. Define rmax, Dr, emax, and De as maximum stress, stress range, maximum strain, and strain
range at the same point that are evaluated using appropriate elastic–plastic analysis. Using Neuber�s rule
and linear-elastic calculations, the inelastic maximum stress rmax and inelastic strain range De can be esti-
mated by solving the following two pairs of equations (Stephens et al., 2001).
rmaxemax ¼ K2
f Smaxemax;

emax ¼
rmax

E
þ rmax

K 0
� 	1=n0 ðA:1Þ
and
DrDe ¼ K2
f DS De;

De ¼ Dr
E
þ 2

Dr
2K 0

� �1=n0

;
ðA:2Þ
respectively, where K 0 ¼ r0f=e
0b=c
f and n 0 = b/c are Ramberg–Osgood parameters,
K f ¼
1; without defect;

1þ Kt þ 1

1þ a=r
; with defect

8<
: ðA:3Þ
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is the fatigue notch factor, Kt = 2.05 is the elastic stress concentration factor due to a spherical notch, and
a = 0.0274(2070/Su)1.8 with Su in MPa and a in mm (Stephens et al., 2001). The inelastic mean stress can be
easily estimated from rm = rmax � Dr/2. For a multiaxial stress state, the simplest approach involves fol-
lowing the same procedure using von Mises equivalent stresses and strains. Note that there are other rules,
such as linear rule, Glinka�s strain energy density rule, for estimating inelastic stresses and strains (Stephens
et al., 2001). They were not considered in this study.
Appendix B. Porosity field and defect size

Casting simulation codes, such as MAGMASOFT (2002), are currently available that allow the size and
location of shrinkage discontinuities to be predicted before a mechanical component is actually cast. Con-
sider a three-dimensional mechanical component with physical domain X 	 R3 and a small subdomain
Xx 	 X in the vicinity of a spatial point x 2 X 	 R3. If p(x) represents the porosity field over Xx, the equiv-
alent mean radius lr of a spherical hole (i.e., with porosity = 1) can be obtained from
lr ¼
3
R

Xx
pðxÞdx

4p

" #1=3

. ðB:1Þ
Using Eq. (B.1) and predicted porosity field from casting simulation, the mean size of a casting-induced
defect can be estimated.
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