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Abstract

This paper presents a probabilistic methodology for fracture-mechanics analysis of off-center cracks in pipes subject to pure bending
moment. It is based on: (1) a new analytical approximation of theJ-integral; (2) statistical models of uncertainties in loads, material
properties, and crack geometry; and (3) standard computational methods of structural reliability theory. The proposed analytical equations
were applied to a probabilistic fracture-mechanics analysis of off-center cracks in pipes. The second-order reliability method was used to
determine the probabilistic characteristics of theJ-integral and failure probability based on the initiation of crack growth. Numerical
examples are presented to illustrate the proposed methodology. The results show that the failure probability strongly depends on the off-
center crack angle and is generally lower than that of a pipe with a symmetrically centered crack. Hence, simplifying an off-center crack by a
symmetrically centered crack can produce significant conservatism in predicting failure probabilities. In addition, uncertainty in the off-
center crack angle, if it exists, can increase the failure probability of pipes.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Probabilistic elastic–plastic analysis of circumferential
cracks in pipes is an important task for leak-before-break
(LBB) [1,2] and pipe flaw evaluations [3]. To predict the
probability of fracture under external loads (e.g. bending or
combined bending and tension loads), the crack-driving
force, such as theJ-integral, is typically evaluated by
assuming that these cracks are symmetrically placed with
respect to the bending plane of the pipe. This is usually
justified by reasoning that the tensile stress due to bending
is largest at the center of this symmetric crack. However, in
reality, fabrication imperfections occur randomly around
the pipe circumference. Additionally, during the normal
operating condition of a power plant, the stress component
due to pressure is far more significant than that due to
bending. As such, the postulated flaw in LBB analysis
may be off-centered [see Fig. 1] and can thus be located
anywhere around the pipe circumference. The likelihood
of a crack being off-centered can be further emphasized in
light of the argument that a symmetric bending plane under
normal operating stress may become very different under
normal plus safe-shutdown earthquake stress, due to the

uncertainty in the seismic ground motion [4–6]. Hence,
analysis of off-center cracks is an exciting research area
for pipe fracture and LBB applications.

Previously, Rahman and Firmature [7] performed a deter-
ministic study in which they developed new elastic and
elastic-plastic finite element solutions ofJ-integral for off-
centered through-wall cracks in pipes under pure bending.
The analyses were performed for a wide variety of crack
sizes, off-center crack angles, and material hardening expo-
nents. Based on the results of this study, the crack-driving
force and hence, the structural integrity of off-centered
cracked pipes can be estimated. However, this was a strictly
deterministic study. Due to inherent statistical variabilities
in loads, material properties, and crack geometry, ultimately
a probabilistic methodology is needed to evaluate the
stochastic characteristics of fracture response and reliability
of cracked pipes. Hence, the development of a probabilistic
methodology for off-center cracks in pipes is both timely
and exciting.

This paper presents a probabilistic methodology for
fracture-mechanics analysis of off-center cracks in pipes
subject to pure bending moment. It is based on: (1) analy-
tical approximations ofJ-integrals calculated by elastic–
plastic finite element method (FEM); (2) statistical models
of uncertainties in loads, material properties, and crack
geometry; and (3) standard computational methods of
structural reliability theory. The results from past finite
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element analysis (FEA), performed for a wide variety of
crack sizes, off-center angles, and material hardening para-
meter, were used to develop elastic and plastic correction
factors for predictingJ-integral. Following the response
surface approximations of these correction factors, new
closed-form analytical equations were developed for the
J-integral. These analytical equations were then subse-
quently applied for probabilistic fracture-mechanics analysis.
Both fast probability integrators, such as first- and second-
order reliability methods and simulation methods, such as
Monte Carlo simulation and Importance Sampling, were
used to determine the probabilistic characteristics of the
J-integral. The same methods were used later to predict
the failure probability based on the initiation of crack

growth. A numerical example is presented to illustrate the
proposed methodology.

2. A TWC pipe with an off-center crack

Consider a TWC pipe with mean radius,Rm, wall thick-
ness,t, and a through-wall-crack angle, 2u . The crack is off-
centered by an angle,c . The pipe is subjected to a pure
bending moment,M, without any internal pressure [Fig.
1(b)]. The geometric parameters of this off-center crack in
the cracked section are defined in Fig. 1(a).

In order to perform an elastic–plastic analysis, the
material model needs to be defined. In this study, it was

S. Rahman et al. / International Journal of Pressure Vessels and Piping 77 (2000) 3–164

Fig. 1. A simple through-wall crack in a pipe under pure bending (a) off-center crack; (b) four-point loads simulating pure bending.



assumed that the constitutive law characterizing the
material’s stress–strain (s–e ) response can be represented
by the well-known Ramberg–Osgood model, which is
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wheres0 is the reference stress which can be arbitrary, but
is usually assumed to be the yield stress,E is the modulus of
elasticity,e0 � s0=E is the associated reference strain, and
a andn are the model parameters usually chosen from a best
fit of actual laboratory data. Although this representation of
the stress–strain curve is not necessary for the finite element
analysis, it is needed for mostJ-estimation methods, which
are formulated based on power-law idealization.

3. Past finite element analyses

In the past, Rahman and Firmature performed 105 finite
element analyses for calculating theJ-integral for off-center
cracks in a pipe withRm � 50:8 mm (2 in.) and t �
5:08 mm (0.2 in.) [7]. A matrix of such analyses is defined
in Table 1 for various combinations of the crack size, crack
orientation, and strain hardening exponent:u /p, c , andn. It
involves 21 different finite element meshes withu=p �
1=16; 1/8, and 1/4 andc � 0; 15, 30, 45, 60, 75, and 908.
For each mesh, five analyses were performed due to five
different hardening exponents:n� 1; 3, 5, 7, and 10. For
other material properties, the following values were used:
E � 207 GPa; n � 0:3; s0 � 344:8 MPa; anda � 0 when
n� 1 anda � 1 whenn . 1: These values, in addition to

the ones given in Table 1, provide complete characterization
of the pipe material properties according to Eq. (1). All
analyses were performed using the commercial finite
element codeabaqus [8].

Fig. 2(a)–(d) show the results ofJ vs. M plots from an
elastic–plastic analysis withn� 5 obtained for small
�u=p � 1=16� and large�u=p � 1=4� cracks, respectively, at
crack fronts AB and CD [see Fig. 1(a)]. The analyses
involved various off-center crack angles withc � 0; 15,
30, 45, 60, 75, and 908. The results indicate that the
J-integral values at the two crack fronts of an off-center
crack are unequal due to the loss of symmetry with respect
to the bending plane of the pipe. In addition, theJ-integral is
larger, and hence, critical at the crack front which is farther
away from the bending axis of the pipe. This is because, at
that crack front, the tensile stress is larger and the com-
ponent of the applied bending moment about the crack
centerline has a further crack-opening effect. Also at this
crack front, theJ values can be lower or slightly higher than
those of a symmetrically centered crack, depending on the
crack size and off-centered angle. For the crack front that is
closer to the bending axis, theJ values are always lower
than those of a symmetrically centered crack. This implies
that the load-carrying capacity of a pipe is usually larger for
an off-center crack than that for a symmetrically centered
crack. See Rahman and Firmature [7] for further details on
these finite element calculations.

The finite element results described above should be
useful in developing analytical expressions ofJ-integral
for fracture analysis of pipes containing off-center cracks.
These analytical expressions will allow both deterministic
and probabilistic pipe fracture evaluations without the need
to perform a full-scale nonlinear finite element analysis.
They are described in the next section.

4. A new J-estimation method

Under elastic–plastic conditions and applying the defor-
mation theory of plasticity when the stress–strain curve is
modeled by Eq. (1), the total crack driving force,J, for an
off-centered crack of anglec can be obtained by adding the
elastic component,Je,c , and the plastic component,Jp,c , i.e.

J � Je;c 1 Jp;c: �2�
Closed-form equations already exist for the elastic and

plastic components of a symmetrically centered crack
[9–11]. It is proposed to use these equations along with
simple off-center-angle correction factors for the calculation
of Je,c andJp,c . Hence, Eq. (2) can be re-written as

J � Je;0Ke;c 1 Jp;0Kp;c �3�
where

Je;0 � u

p
F

 
u

p
;

Rm

t

!2
M2

ER3
mt2

�4�

S. Rahman et al. / International Journal of Pressure Vessels and Piping 77 (2000) 3–16 5

Table 1
Matrix of finite element analyses for off-center cracks (five runs per model)

FEM model no. u /p c (8)a nb

1 1/16 0 1, 3, 5, 7, and 10
2 1/16 15 1, 3, 5, 7, and 10
3 1/16 30 1, 3, 5, 7, and 10
4 1/16 45 1, 3, 5, 7, and 10
5 1/16 60 1, 3, 5, 7, and 10
6 1/16 75 1, 3, 5, 7, and 10
7 1/16 90 1, 3, 5, 7, and 10
8 1/8 0 1, 3, 5, 7, and 10
9 1/8 15 1, 3, 5, 7, and 10
10 1/8 30 1, 3, 5, 7, and 10
11 1/8 45 1, 3, 5, 7, and 10
12 1/8 60 1, 3, 5, 7, and 10
13 1/8 75 1, 3, 5, 7, and 10
14 1/8 90 1, 3, 5, 7, and 10
15 1/4 0 1, 3, 5, 7, and 10
16 1/4 15 1, 3, 5, 7, and 10
17 1/4 30 1, 3, 5, 7, and 10
18 1/4 45 1, 3, 5, 7, and 10
19 1/4 60 1, 3, 5, 7, and 10
20 1/4 75 1, 3, 5, 7, and 10
21 1/4 90 1, 3, 5, 7, and 10

a c � 0 implies symmetrically centered crack.
b n� 1 implies linear-elastic analysis�a � 0�:
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Fig. 2.J-integral for off-center cracks in pipe from past finite element analyses [7] (a) small crack�u=p � 1=16�; crack front AB; (b) small crack�u=p � 1=16�; crack front CD; (c) large crack�u=p � 1=14�; crack
front AB; (d) large crack�u=p � 1=14�; crack front CD.



and
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0
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are the well-known GE/EPRI equations1 [9,10] for elastic
and plastic components ofJ, respectively, for a symmetri-
cally centered crack, i.e., whenc � 0; F�u=p;Rm=t� and
h1�u=p;n;Rm=t� are elastic and plastic influence functions
for symmetrically centered cracks,M0 is a reference
moment [9,10], andKe,c and Kp,c are constant elastic and
plastic correction factors for off-center cracks, respectively.
The evaluations ofF�u=p;Rm=t� and h1�u=p; n;Rm=t� are
described in Appendix A.

By comparing Eqs. (2) and (3), it is easy to show that

Ke;c �
Je;c

Je;0
�6�

Kp;c �
Jp;c

Jp;0
: �7�

With this new proposed method, i.e. Eq. (3), theJ-integral
for off-center cracks can be easily calculated when these two
correction factors are prescribed for a given off-center
angle,c .

4.1. Calculation of correction factors

From Eqs. (6) and (7), it can be seen that the proposed
correction factors are simply a ratio of theJ values for the
off-centered crack to those of the symmetrically centered
crack. Based on Eqs. (6) and (7) and past finite element
results [7], Table 2 shows the results ofKe,c and Kp,c at
cracks fronts AB and CD for a pipe withRm=t � 10 and
various combinations ofu /p, c , and n. For an off-center
angle ofzero, the correction factors should have a value of
one, as is shown in Table 2. For the intermediate�u=p �
1=8� and large�u=p � 1=4� cracks, it is shown that at the 158
offset, the correction factor values are sometimes greater
than unity for crack front AB. This agrees with the trend
discussed in Rahman and Firmature [7], in whichJ values at
crack front AB with small offset angle are larger than the
values obtained with a symmetrically centered crack. For all
other cases the correction factors are less than 1.0, reflecting
the fact that most of the time the centered crack is more
critical than the off-centered crack. Correction factors close
to zero were also found for offset angles that move the crack
front CD below the bending axis and, therefore, may cause it
to be closed.

4.2. Response surface approximation of correction factors

In order to eliminate the interpolation that is usually

necessary when using tabulated data, it was decided to fit
the correction factors listed in Table 2 with an analytical
equation. The data in Table 2 show almost linear variation
with respect to the crack length, but their variation with
respect to the offset angle is slightly more complex. Accord-
ingly, a response surface equation given by

KI ;c � 1 1

"
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is proposed, whereKI,c is eitherKe,c or Kp,c (i.e. the elastic
or plastic correction factor for an off-centered crack), and
ai(n), i � 0;1;…; 7; are surface fit coefficients that depend
on the material hardening parameter,n, for a pipe with
a given Rm/t. The coefficients,ai(n), can be further
approximated by a fourth-order polynomial equation
represented by

ai�n� �
X4
j�0

Dij n
j
; �9�

in which Dij (i � 0;1;…; 7; and j � 0; 1;…;4) are the
polynomial coefficients that solely depend on theRm/t
ratio of the pipe. Following least-squares curve-fit of
data in Table 2,Dij were estimated and are given in
Appendix B for a pipe with Rm=t � 10: Using these
values of Dij, Fig. 3(a) and (b) show the plots ofKe,c

�n� 1� and Kp,c �n� 5�, respectively, as a function of
u /p and c for a pipe withRm=t � 10: From these plots,
it appears that Eqs. (8) and (9) can accurately represent
the data in Table 2. In fact, the square of correlation
coefficient (R2 statistic) between the surface fit equa-
tions and the data was at least 99% for all cases consid-
ered in this study.

Note, the analytical approximation ofKI,c , represented by
Eqs. (8) and (9), allows closed-form evaluation ofJ-integral
for off-center cracks. This would significantly reduce
computational effort in performing probabilistic analysis
that are described in the following section and also for
any future crack growth study.

4.3. Limitations of response surface approximation

Even with the very good agreement between the
calculated correction factors and their surface fits, two
very important limitations still exist. First, as mentioned
in Rahman and Firmature [7], because the finite element
meshes were only designed for 158 increments, it is
unknown how well the surface fits actually describe
the behavior of crack front AB for offset angles lower
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1 Note, the well-known GE/EPRI method, which constitutes Eqs. (4) and
(5), is one of manyJ-estimation methods currently available for analyzing
pipes with symmetrically-centered cracks. See Rahman et al. [4] and Brust
et al. [11] for otherJ-estimation methods.
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Fig. 3. Elastic and plastic correction factors forRm=t � 10 (a) elastic correction factors for crack fronts AB and CD�n� 1�; (b) plastic correction factors for crack fronts AB and CD�n� 5�:



than 158. It was found that a threshold offset angle
would exist below 158 for each of the three crack
lengths in this research; however, these threshold
values were not determined in this study. It is
expected that a small error will exist in this region
due to a lack of data. For these reasons it is recom-
mended that the surface fit equations for crack front AB
only be used for offset angles ranging from 15 to 908 and
only for crack lengths between 1/16 and 1/4 of the pipe
circumference.

The second limitation is also related to the 158 increment
of the offset angle. Due to the set increment values and the
varying crack lengths, the final data point for the two
smaller cracks correspond to offset angles well before
closure of crack front CD. Because of this, the behavior of
crack front CD is unknown from the last data point until
closure for the two smaller cracks. However, foru=p � 1=4
the final data point may fall at the largest offset for which

front CD is not closed and hence, a discontinuity may occur
at this point. Hence, the smaller cracks are expected to
behave similarly in the same configuration. Due to this
fact, the surface fit equations for crack front CD give reason-
able approximations up to crack closure since they show the
correct trend of a discontinuity at crack closure. However,
since there are no data for the two smaller cracks at the point
of crack closure, a region of extrapolation is needed between
the final non-zero data points and the closure line [12]. The
crack closure line is simply a straight line defining one edge
of the extrapolation region in the (u /p)–c plane. The crack
is closed whenc 1 u . 908. If crack front CD is closed,
then a value of zero should be used for the correction factor.
Otherwise, correction factor data in this area should be used
with caution since it is in an area of extrapolation. It is also
recommended that the surface fit equations for crack front
CD be used only for crack lengths between 1/16 and 1/4 of
the circumference.
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Table 2
Elastic and plastic correction factors forRm=t � 10 [c � 0 implies symmetrically centered crack;n� 1 implies linear-elastic analysis�a � 0�]

n c � 08 c � 158

(p/12 rad)
c � 308

(p/6 rad)
c � 458

(p/4 rad)
c � 608

(p/3 rad)
c � 758

(5p/12 rad)
c � 908

(p/2 rad)

Crack front AB [u /p� 1/16]
1 1 0.974 0.807 0.552 0.287 0.087 0.004
3 1 0.979 0.862 0.668 0.430 0.196 0.021
5 1 0.980 0.870 0.685 0.455 0.222 0.027
7 1 0.980 0.872 0.688 0.458 0.229 0.03
10 1 0.980 0.867 0.677 0.447 0.224 0.03
Crack front AB [u /p� 1/8]
1 1 1.016 0.882 0.640 0.364 0.125 0.020
3 1 1.002 0.898 0.708 0.472 0.203 0.047
5 1 0.993 0.882 0.689 0.458 0.198 0.048
7 1 0.984 0.858 0.654 0.424 0.179 0.042
10 1 0.973 0.821 0.596 0.366 0.145 0.032
Crack front AB [u /p� 1/4]
1 1 1.079 0.998 0.784 0.418 0.190 0.068
3 1 1.033 0.930 0.729 0.374 0.173 0.070
5 1 1.014 0.872 0.639 0.291 0.124 0.048
7 1 0.994 0.805 0.537 0.206 0.080 0.029
10 1 0.970 0.724 0.431 0.138 0.048 0.016
Crack front CD [u /p� 1/16]
1 1 0.875 0.641 0.370 0.141 0.015 –a

3 1 0.920 0.752 0.525 0.278 0.071 –a

5 1 0.929 0.775 0.557 0.312 0.094 –a

7 1 0.934 0.783 0.568 0.323 0.108 –a

10 1 0.936 0.783 0.564 0.322 0.117 –a

Crack front CD [u /p� 1/8]
1 1 0.837 0.581 0.309 0.099 –a –a

3 1 0.892 0.695 0.449 0.207 –a –a

5 1 0.896 0.703 0.460 0.222 –a –a

7 1 0.892 0.691 0.445 0.215 –a –a

10 1 0.880 0.661 0.407 0.197 –a –a

Crack front CD [u /p� 1/4]
1 1 0.787 0.505 0.236 –a –a –a

3 1 0.833 0.582 0.322 –a –a –a

5 1 0.825 0.559 0.298 –a –a –a

7 1 0.812 0.520 0.258 –a –a –a

10 1 0.791 0.474 0.216 –a –a –a

a Crack front closed.



5. Probabilistic fracture analysis

5.1. Random parameters and fracture response

Consider a cracked structure with uncertain mechanical
and geometric characteristics that is subject to random
loads. Denote byX an N-dimensional random vector with
components characterizing all uncertainties in the system
and load parameters. For example, when an off-centered
TWC pipe is considered, the possible random components
are: crack geometric parameters,u /p andc , material tensile
parameters,E, n , a , n, fracture toughness at crack initiation,
JIc, and applied far-field moment,M. All or some of these
variables can be modeled as random variables. Hence, any
relevant fracture response, such as theJ-integral, J(X),
should be evaluated by the probability

FJ� j0� �def
Pr�J�X� , j0� �

Z
J�X�,j0

fX�x� dx �10�

or the probability density function (PDF),fJ� j0� �
dFJ� j0�=dj0; where FJ( j0) is the cumulative distribution
function of J and fX(x) is the known joint PDF of input
random vectorX.

The fracture parameterJ can also be applied to calculate
structural integrity and hence, failure probability,PF, of
cracked structures. This failure probability depends on the
failure criterion. For example, if the initiation of crack
growth in the TWC pipe constitutes a failure condition,PF

can be written as

PF � Pr�g�X� , 0� �
Z

g�x�,0
fX�x� dx �11�

where

g�X� � JIc 2 J�X�: �12�
Note, if j0 represents the material fracture toughness at

crack initiation (JIc), PF is simply the complement ofFJ( j0),
i.e.,PF � 1 2 FJ� j0�: The failure probability,PF in Eq. (11)
corresponds to the probability of initiation of crack growth,
which provides a conservative estimate of structural perfor-
mance. A more realistic evaluation of structural reliability
requires calculating the probability of fracture instability
following crack initiation. See Ref. [13] for further details.

5.2. Structural reliability analysis

The generic expression for the probabilities in Eqs. (10)
and (11) involves multi-dimensional probability integration
for its evaluation. Standard reliability methods, such as first-
and second-order reliability methods (FORM/SORM)
[14–18], Monte Carlo simulation (MCS) [19], and Monte
Carlo with Importance Sampling (MCIS) [20–22], can
be used to compute these probabilities. In this study,
FORM/SORM, MCS, and MCIS were used to calculate
the probability of failure,PF in Eq. (11) assuming a
genericN-dimensional random vectorX and the perfor-

mance functiong(x) defined by Eq. (12). For brevity,
only the results of FORM/SORM will be presented in
this paper. A brief description of FORM/SORM is given
in the following subsection.

First- and Second-Order Reliability Methods:First- and
second-order reliability methods are based on linear (first-
order) and quadratic (second-order) approximations of the
limit state surfaceg�x� � 0 tangent to the closest point of
the surface to the origin of the space. The determination of
this point involves nonlinear constrained optimization and is
performed in the standard Gaussian image of the original
space. The FORM/SORM algorithms involve several steps.
First, the spacex of original random vectorX is transformed
into a newN-dimensional spaceu consisting of independent
standard Gaussian vectorU. The original limit stateg�x� �
0 then becomes mapped into the new limit stategU�u� � 0
in theu space. Second, the point on the limit stategU�u� � 0
having the shortest distance to the origin of theu space is
determined by using an appropriate nonlinear optimization
algorithm. This point is referred to as the design point or
most probable point, and has a distancebHL (known as the
reliability index) to the origin of theu space. Third, the limit
stategU�u� � 0 is approximated by a surface tangent to it at
the design point. Let such limit states begL�u� � 0 and
gQ�u� � 0; which correspond to approximating surfaces as
hyperplane (linear or first-order) and hyperparaboloid
(quadratic or second-order), respectively. The probability
of failure PF [Eq. (11)] is thus approximated by Pr�gL�u� ,
0� in FORM and Pr�gQ�u� , 0� in SORM. These first-order
and second-order estimatesPF,1 and PF,2 are given by
[14–18,22]

PF;1 � F 2bHL

ÿ �
PF;2 ù F 2bHL

ÿ � YN 2 1

i�1

1 2 ki
f�2bHL�
F�2bHL�

� �21=2

�13�

where

f�u� � 1����
2p
p exp 2

1
2

u2
� �

�14�

and

F�u� � 1����
2p
p

Zu

2 ∞
exp 2

1
2
j 2

� �
dj �15�

are the probability density and cumulative distribution func-
tions, respectively, of a standard Gaussian random variable,
andk i’s are the principal curvatures of the limit state surface
at the design point. FORM/SORM are analytical probability
computation methods. Each input random variable and the
performance functiong(x) must be continuous. Depending
on the solver for nonlinear programming, an additional
requirement regarding smoothness, i.e. the differentiability
of g(x) may be required. In this study, a sequential quadratic
programming method with an appropriate tolerance
criterion for the convergence was used to solve the
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Table 3
Statistical properties of random input

Random variable Mean COVa Probability distribution Reference

Elastic modulus (E) 182.7 GPa 0.05 Gaussian [23]
Ramberg–Osgood coefficient (a) 8.073 0.439 Lognormal [23]
Ramberg–Osgood exponent (n) 3.8 0.146 Lognormal [23]
Initiation fracture toughness (JIc) 1,242.6 kJ/m2 0.47 Lognormal [23]
Normalized crack angle (u /p) 1/8 0.1 Lognormal –b

Bending moment (M) Variablec 0.1 Gaussian –b

a Coefficient of variation (COV)� standard deviation/mean.
b Arbitrarily assumed.
c Arbitrarily varied.

Fig. 4. Comparisons of predictedJ by FEM and proposed estimation method (a) crack front AB; (b) crack front CD.



optimization problem. Further details of FORM/SORM
equations are available in Refs. [14–18].

6. Numerical example

Consider a pipe with a circumferential through-wall crack
subjected to remote bending moment,M. The crack is off-
centered by an angle,c with respect to the bending plane.
The pipe has a mean radius,Rm � 355:6 mm (14 in), a wall
thickness,t � 35:56 mm (1.4 in), and a normalized crack
angle,u /p. The pipe is made of TP304 stainless steel with
an operating temperature of 2888C (5508F). The pipe
geometry is shown in Fig. 1(a) and (b).

Table 3 shows the means, coefficients of variation, and
probability distributions of tensile parameters (E, a , n),
fracture toughness at crack initiation (JIc), normalized

crack angle (u /p), and bending moment (M). The off-center
angle (c) was treated as both a deterministic and a random
variable. The statistics in Table 3 came from statistical
characterization of actual material property data [23].
These random variables were assumed to be statistically
independent. In addition, the following deterministic values
were used:s0 � 154:78 MPa (22,450 psi) andn � 0:3:

6.1. Deterministic results

Fig. 4(a) and (b) show the deterministic comparisons of
predictedJ for c � 0; 30 and 608 by the proposed method
[Eq. (3)] and elastic–plastic finite element results at crack
fronts AB and CD, respectively. The mean values of random
input given in Table 3 and other deterministic parameters
described above were used to conduct these analyses. In Fig.
4(a) and (b), the solid points indicate theJ values from the
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Fig. 5. Probability densities ofJ for various off-center cracks in pipes.

Fig. 6. Probability of failure for various off-center cracks in pipes.



proposed estimation method and the lines represent theJ
solutions from finite element analysis using theabaqus
code. The predicted values ofJ from Eq. (3) compare
very well with the generally more accurate finite element
results. This also verifies the adequacy of proposed
analytical equations for elastic–plastic analysis of off-center
cracks in pipes.

6.2. Probabilistic results

The second-order reliability method was applied to
determine the probabilistic characteristics ofJ for off-
centered cracked pipes subject to pure bending. SinceJ at
crack front AB is always larger thanJ at crack front CD, all
following analysis and results are based onJ at crack front
AB. Fig. 5 shows the computed probability densities of
J[ fJ( j0)] for off-center angles,c � 0; 30, 45, 60, 75, and
908 when E�M� � 1000 kN m (8851 kip in), whereE[·] is

the mean operator. They were obtained by repeated SORM
analysis for various thresholds ofJ, i.e. by calculating the
probability in Eq. (10) as a function ofj0 and then taking
numerical derivative of this probability with respect toj0. As
expected, the probability mass shifts from right to left when
c increases. This is consistent with deterministic
observations in Figs. 2 and 4.

Fig. 6 shows the plots ofPF vs. E[M] for c � 0; 30, 45,
60, 75 and 908 obtained by SORM. They all consistently
indicate that PF increases asE[M] increases, and it
approaches unity whenE[M] becomes very large. For a
given applied moment, the failure probability decreases
whenc increases. This is consistent with the fact that the
J-integral for an off-center crack is generally lower than that
for a symmetrically centered crack. In the past, the
probabilistic analysis of an off-center crack in pipes
involved simplifying the crack to be symmetrically centered
with respect to the bending plane of the pipe [24]. This study
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provides a quantitative framework for analyzing off-center-
cracked pipes without having to make such unnecessary
assumption or to perform expensive elastic-plastic finite
element analyses. This is obviously due to the proposed
method that is capable of predictingJ for off-centered
cracks in pipes by simple analytical equations. Note, the
SORM probabilities presented here were also validated
against the results of MCS and MCIS methods. For brevity,
they were not presented here. See previous work of authors
on the validation of FORM/SORM results of symmetrically
centered cracks by the simulation methods [13,23].

The results presented so far [see Figs. 5 and 6] are valid
for only deterministic values of the off-center angle. In
reality, this off-center angle is highly likely to be a random
variable. As an example, assume that this off-center angle,
c , is uniformly distributed over�608 2 Dc=2; 608 1 Dc=2�;
whereDc represents the spread of its uniform probability
density function. With this uniform distribution ofc and
other input properties described earlier, Figs. 7 and 8 show
the plots of SORM-generated probability densities ofJ and
failure probability, respectively, whenDc � 0 (c is
deterministic), 308 (c is uniform over [458,758]), and 608
(c is uniform over [308,908]). These results show that the
uncertainty in c can have a significant effect on the
probabilistic characteristics ofJ and failure probability,
particularly whenDc is large. WhenDc is 308 (small
uncertainty), the failure probability curve is close to the
results ofc � 608, which is the mean value ofc . However,
whenDc is 608 (large uncertainty), the failure probabilities
can be much higher than those forc � 608 and hence, its
uncertainty should be accounted for probabilistic pipe
fracture evaluations. While these trends are somewhat
expected, the above analyses provide a quantitative measure
of these failure probabilities.

Finally, Fig. 9 shows a plot of the ratio of two failure
probabilities—one calculated whenc � 0; and the other
calculated when c is uniformly distributed over

[0,3608]—as a function of the mean applied moment. This
ratio quantifies the factor by which the failure probability
estimate assuming a worst-case condition (i.e. whenc � 0)
overestimates the failure probability whenc is random
and equally likely to take on an angle between 0 and
3608. The results in Fig. 9 indicate that the ratio or the
factor varies from 2 to 7 depending on the bending
moment applied. All probabilities defined above were calcu-
lated by SORM.

7. Summary and conclusions

A probabilistic methodology was developed for fracture-
mechanics analysis of off-center cracks in pipes subject to
pure bending moment. It is based on: (1) analytical approxi-
mation ofJ-integral; (2) statistical models of uncertainties
in loads, material properties, and crack geometry; and (3)
standard computational methods of structural reliability
theory. The results from 105 deterministic finite element
analysis, performed for a wide variety of crack sizes, offset
crack angles, and material hardening parameter, were used
to develop elastic and plastic correction factors for
predictingJ-integral. Following response surface approxi-
mations of these correction factors, new closed-form
analytical equations were developed to calculateJ for a
given pipe geometry, crack size, off-center angle, and
material properties.

The analytical equations were subsequently applied for
probabilistic fracture-mechanics analysis. The second-order
reliability method was used to determine the probabilistic
characteristics of theJ-integral. The same method was used
later to predict the failure probability based on the initiation
of crack growth. A numerical example is presented to
illustrate the proposed methodology. The results show that:

• The probabilistic characteristics ofJ and failure
probability are strongly dependent on the off-center
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crack angle. For a given applied moment, the failure
probability of a pipe with an off-center crack is generally
lower than that of a pipe with symmetrically centered
crack. Hence, simplifying an off-center crack to be
symmetrically centered crack can produce significant
conservatism in predicting failure probabilities.

• A large uncertainty in the off-center crack angle, if exists,
can have a significant effect on the failure probability of
pipes. For example, when the off-center crack angle is
uniformly distributed over 30 and 908, the failure prob-
ability can be a order of magnitude larger than that calcu-
lated when the off-center angle is assigned its mean
value.

• The ratio of failure probabilities based on worst-case
condition (symmetrically centered crack) to those
obtained from random off-center crack angle that is
uniformly distributed over [0 and 3608] varies between
2 and 7, depending on the bending moment applied.

The proposed analytical equations ofJ for off-center
cracks in pipes can also be potentially used for crack-growth
studies. From crack-growth analysis, one can predict
fracture instability and corresponding probability with
little effort. These are subjects of current research by the
authors.
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Appendix A. Influence functions for symmetric cracks

In Eq. (4),F�u=p;Rm=t� is a dimensionless elastic influ-
ence function that depends on pipe and crack geometry.
According to Rahman [13]:

F�u=p;Rm=t� � 1 1 A1 A2 A3

� 	 �u=p� 1:5�u=p�2:5

�u=p�3:5

8>><>>:
9>>=>>;

� B1 B2 B3 B4

� 	
1

�Rm=t�
�Rm=t�2

�Rm=t�3

8>>>>><>>>>>:

9>>>>>=>>>>>;
�A1�

where Ai �i � 1–3� and Bi �i � 1–4� are constant
coefficients. Let A � �

A1 A2 A3

	T and B ��
B1 B2 B3 B4

	T be two real vectors with the
coefficients,Ai and Bi as their components, respectively.
Using best fit of finite element results,A and B are given

by [13]:

A � 0:006215 0:013304 20:01838
� 	T �A2�

B � 175:577 91:69105 25:53806 0:15116
� 	T �A3�

In Eq. (5), h1�u=p;n;Rm=t� is a dimensionless plastic
influence function that depends on pipe geometry, crack
geometry, and material hardening exponent. According to
Rahman [13],

h1�u=p; n;Rm=t� � 1 �u=p� �u=p�2 �u=p�3
n o

�

C00 C10 C20 C30

C01 C11 C21 C31

C02 C12 C22 C32

C03 C13 C23 C33

26666664

37777775
1

n

n2

n3

8>>>>><>>>>>:

9>>>>>=>>>>>;
�A4�

where Cij �i; j � 0 2 3� are coefficients which depend on
Rm/t and can also be calculated from best fit of finite element
results [13]. LetC � �Cij �; i; j � 0 2 3; be a real matrix
with the coefficients,Cij as its components. According to
Rahman [13],C is given by:

For Rm=t � 5;

C �

3:74009 1:43304 20:10216 0:0023

20:19759 210:19727 20:45312 0:04989

36:42507 17:03413 3:36981 20:21056

270:4846 214:69269 22:90231 0:15165

26666664

37777775 �A5�

For Rm=t � 10;

C �

3:39797 1:31474 20:07898 0:00287

23:07265 4:34242 22:48397 0:11476

131:7381 279:02833 16:18829 20:66912

2234:6221 117:0509 220:30173 0:79506

26666664

37777775
�A6�

For Rm=t � 20;

C �

4:07828 21:55095 0:67206 20:0442

218:21195 69:92277 218:41884 1:11308

357:4929 2453:1582 108:0204 26:56651

2602:7576 617:9074 2144:9435 8:9022

26666664

37777775
�A7�

See Rahman [13] for further explanations on how these
coefficients were calculated.

Appendix B. CoefficientsDij

Let D � �Dij �; i � 0;1;…; 7; and j � 0; 1;…;4; be a real
matrix with the coefficients,Dij, as its components. Following
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least-squares curve fit,D for Rm=t � 10 is given by:
At crack front AB,

D �

0:3528 20:2522 0:0631 20:0074 0:0003

2:7962 21:0617 0:2940 20:0266 0:0008

22:9981 1:6897 20:4233 0:0496 20:0021

3:7670 22:0229 0:3196 20:0762 0:0047

2:0620 21:4627 0:3823 20:0467 0:0020

27:1406 2:5393 20:5405 0:1119 20:0064

20:3596 0:3150 20:0885 0:0115 20:0005

2:3539 20:5121 0:1318 20:0327 0:0019

266666666666666666664

377777777777777777775
�A8�

At crack front CD,

D �

0:1444 20:2620 0:0651 20:0064 0:0002

23:1782 2:5246 20:6779 0:0734 20:0029

23:3451 2:3779 20:5637 0:0583 20:0022

4:2744 28:1376 1:9887 20:2243 0:0094

2:9435 22:6898 0:6399 20:0670 0:0026

20:6972 6:2504 21:4695 0:1750 20:0077

20:7191 0:8152 20:1955 0:0207 20:0008

20:4701 21:3246 0:3025 20:0393 0:0019

266666666666666666664

377777777777777777775
�A9�
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