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Abstract

This paper presents a probabilistic methodology for fracture-mechanics analysis of off-center cracks in pipes subject to pure bending
moment. It is based on: (1) a new analytical approximation ofMtegral; (2) statistical models of uncertainties in loads, material
properties, and crack geometry; and (3) standard computational methods of structural reliability theory. The proposed analytical equations
were applied to a probabilistic fracture-mechanics analysis of off-center cracks in pipes. The second-order reliability method was used to
determine the probabilistic characteristics of thintegral and failure probability based on the initiation of crack growth. Numerical
examples are presented to illustrate the proposed methodology. The results show that the failure probability strongly depends on the off-
center crack angle and is generally lower than that of a pipe with a symmetrically centered crack. Hence, simplifying an off-center crack by a
symmetrically centered crack can produce significant conservatism in predicting failure probabilities. In addition, uncertainty in the off-
center crack angle, if it exists, can increase the failure probability of pip@800 Elsevier Science Ltd. All rights reserved.

Keywords J-integral; Probabilistic fracture mechanics; Off-center crack; Pipe; Through-wall crack; Leak-beforebestikpation method

1. Introduction uncertainty in the seismic ground motion [4—6]. Hence,
analysis of off-center cracks is an exciting research area
Probabilistic elastic—plastic analysis of circumferential for pipe fracture and LBB applications.
cracks in pipes is an important task for leak-before-break Previously, Rahman and Firmature [7] performed a deter-
(LBB) [1,2] and pipe flaw evaluations [3]. To predict the ministic study in which they developed new elastic and
probability of fracture under external loads (e.g. bending or elastic-plastic finite element solutions &integral for off-
combined bending and tension loads), the crack-driving centered through-wall cracks in pipes under pure bending.
force, such as thel-integral, is typically evaluated by The analyses were performed for a wide variety of crack
assuming that these cracks are symmetrically placed withsizes, off-center crack angles, and material hardening expo-
respect to the bending plane of the pipe. This is usually nents. Based on the results of this study, the crack-driving
justified by reasoning that the tensile stress due to bendingforce and hence, the structural integrity of off-centered
is largest at the center of this symmetric crack. However, in cracked pipes can be estimated. However, this was a strictly
reality, fabrication imperfections occur randomly around deterministic study. Due to inherent statistical variabilities
the pipe circumference. Additionally, during the normal inloads, material properties, and crack geometry, ultimately
operating condition of a power plant, the stress componenta probabilistic methodology is needed to evaluate the
due to pressure is far more significant than that due to stochastic characteristics of fracture response and reliability
bending. As such, the postulated flaw in LBB analysis of cracked pipes. Hence, the development of a probabilistic
may be off-centered [see Fig. 1] and can thus be located methodology for off-center cracks in pipes is both timely
anywhere around the pipe circumference. The likelihood and exciting.
of a crack being off-centered can be further emphasized in This paper presents a probabilistic methodology for
light of the argument that a symmetric bending plane under fracture-mechanics analysis of off-center cracks in pipes
normal operating stress may become very different under subject to pure bending moment. It is based on: (1) analy-
normal plus safe-shutdown earthquake stress, due to theical approximations ofl-integrals calculated by elastic—
plastic finite element method (FEM); (2) statistical models
of uncertainties in loads, material properties, and crack

* Corresponding author. Tel+1-319-335-5679; fax:1-319-335-5669. geometry; al_’1d (3) standard computational mEthO_dS_ of
E-mail addressrahman@icaen.uiowa.edu (S. Rahman). structural reliability theory. The results from past finite
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Fig. 1. A simple through-wall crack in a pipe under pure bending (a) off-center crack; (b) four-point loads simulating pure bending.

element analysis (FEA), performed for a wide variety of growth. A numerical example is presented to illustrate the
crack sizes, off-center angles, and material hardening paraproposed methodology.

meter, were used to develop elastic and plastic correction

factors for predictingJ-integral. Following the response

surface approximations of these correction factors, new 2. A TWC pipe with an off-center crack

closed-form analytical equations were developed for the

J-integral. These analytical equations were then subse- Consider a TWC pipe with mean radiug,, wall thick-
quently applied for probabilistic fracture-mechanics analysis. nesst, and a through-wall-crack angle§ 2The crack is off-
Both fast probability integrators, such as first- and second- centered by an angle. The pipe is subjected to a pure
order reliability methods and simulation methods, such as bending momentM, without any internal pressure [Fig.
Monte Carlo simulation and Importance Sampling, were 1(b)]. The geometric parameters of this off-center crack in
used to determine the probabilistic characteristics of the the cracked section are defined in Fig. 1(a).

J-integral. The same methods were used later to predict In order to perform an elastic—plastic analysis, the
the failure probability based on the initiation of crack material model needs to be defined. In this study, it was
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Table 1
Matrix of finite element analyses for off-center cracks (five runs per model)

FEM model no. 0/w ¥ ()2 n°

1 1/16 0 1,3,5,7,and 10
2 1/16 15 1,3,5,7,and 10
3 1/16 30 1,3,5,7,and 10
4 1/16 45 1,3,5,7,and 10
5 1/16 60 1,3,5,7,and 10
6 1/16 75 1,3,5,7,and 10
7 1/16 90 1,3,5,7,and 10
8 1/8 0 1,3,5,7,and 10
9 1/8 15 1,3,5,7,and 10
10 1/8 30 1,3,5,7,and 10
11 1/8 45 1,3,5,7,and 10
12 1/8 60 1,3,5,7,and 10
13 1/8 75 1,3,5,7,and 10
14 1/8 90 1,3,5,7,and 10
15 1/4 0 1,3,5,7,and 10
16 1/4 15 1,3,5,7,and 10
17 1/4 30 1,3,5,7,and 10
18 1/4 45 1,3,5,7,and 10
19 1/4 60 1,3,5,7,and 10
20 1/4 75 1,3,5,7,and 10
21 1/4 20 1,3,5,7,and 10

2 = 0 implies symmetrically centered crack.
bh=1 implies linear-elastic analysi{s: = 0).

assumed that the constitutive law characterizing the
material’s stress—strainr{-€) response can be represented
by the well-known Ramberg—Osgood model, which is

€ o (o-)”
— = — ta«a R

€ (Y] 0o

D

whereo is the reference stress which can be arbitrary, but
is usually assumed to be the yield strdsg the modulus of
elasticity, ; = o/E is the associated reference strain, and

5

the ones given in Table 1, provide complete characterization
of the pipe material properties according to Eq. (1). All
analyses were performed using the commercial finite
element codaBaqus [8].

Fig. 2(a)—(d) show the results dfvs. M plots from an
elastic—plastic analysis witm =5 obtained for small
(0/w = 1/16) and large(6/w = 1/4) cracks, respectively, at
crack fronts AB and CD [see Fig. 1(a)]. The analyses
involved various off-center crack angles with= 0, 15,

30, 45, 60, 75, and 90 The results indicate that the
J-integral values at the two crack fronts of an off-center
crack are unequal due to the loss of symmetry with respect
to the bending plane of the pipe. In addition, thimtegral is
larger, and hence, critical at the crack front which is farther
away from the bending axis of the pipe. This is because, at
that crack front, the tensile stress is larger and the com-
ponent of the applied bending moment about the crack
centerline has a further crack-opening effect. Also at this
crack front, thel values can be lower or slightly higher than
those of a symmetrically centered crack, depending on the
crack size and off-centered angle. For the crack front that is
closer to the bending axis, thkvalues are always lower
than those of a symmetrically centered crack. This implies
that the load-carrying capacity of a pipe is usually larger for
an off-center crack than that for a symmetrically centered
crack. See Rahman and Firmature [7] for further details on
these finite element calculations.

The finite element results described above should be
useful in developing analytical expressions bintegral
for fracture analysis of pipes containing off-center cracks.
These analytical expressions will allow both deterministic
and probabilistic pipe fracture evaluations without the need
to perform a full-scale nonlinear finite element analysis.
They are described in the next section.

«a andn are the model parameters usually chosen from a best

fit of actual laboratory data. Although this representation of

4. A new J-estimation method

the stress—strain curve is not necessary for the finite element

analysis, it is needed for modtestimation methods, which
are formulated based on power-law idealization.

3. Past finite element analyses

In the past, Rahman and Firmature performed 105 finite
element analyses for calculating théntegral for off-center
cracks in a pipe withR, =508 mm (2in.) andt=
5.08 mm (0.2 in.) [7]. A matrix of such analyses is defined
in Table 1 for various combinations of the crack size, crack
orientation, and strain hardening exponett, i, andn. It
involves 21 different finite element meshes withm =
1/16, 1/8, and 1/4 and) = 0, 15, 30, 45, 60, 75, and 90

For each mesh, five analyses were performed due to five

different hardening exponents:=1, 3, 5, 7, and 10. For
other material properties, the following values were used:
E =207 GPav = 0.3, gy = 3448 MPg and a = 0 when
n=1 anda = 1 whenn > 1. These values, in addition to

Under elastic—plastic conditions and applying the defor-
mation theory of plasticity when the stress—strain curve is
modeled by Eq. (1), the total crack driving forck,for an
off-centered crack of anglé can be obtained by adding the
elastic component],,, and the plastic componerd,,, i.e.

2

Closed-form equations already exist for the elastic and
plastic components of a symmetrically centered crack
[9-11]. It is proposed to use these equations along with
simple off-center-angle correction factors for the calculation
of Jo, andJ,,. Hence, Eq. (2) can be re-written as

J = ‘]e,lﬁ + ‘]p,ll/

J = Je’oKe’w + Jp’oKp’d/ (3)
where
0 (0 R\ M
=—Fl—,— | —=—= 4
Jeo ™ (w’ t ) ERgnt2 @
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Fig. 2.J-integral for off-center cracks in pipe from past finite element analyses [7] (a) small @ack= 1/16), crack front AB; (b) small cracké/w = 1/16), crack front CD; (c) large cractd/m = 1/14), crack
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and necessary when using tabulated data, it was decided to fit
0o 0 6 R.\/M\ML the correction factors listed in Table 2 with an analytical

Joo = 70Rm9(1 — f)hl(f’ n, 7)(7) (5) equation. The data in Table 2 show almost linear variation

E ™ ™ t Mo with respect to the crack length, but their variation with

are the well-known GE/EPRI equatidn9,10] for elastic ~ 'espect to the offset angle is slightly more complex. Accord-

and plastic components df respectively, for a symmetri-  ingly, a response surface equation given by

cally centered crack, i.e., wheti= 0, F(6/w, R,/t) and 0

h;(6/m,n,Ry/t) are elastic and plastic influence functions K, , =1+ [ao(n) + al(n)<>]¢

for symmetrically centered crackdyl, is a reference ™

moment [9,10], anK,, andK,, are constant elastic and

plastic correction factors for off-center cracks, respectively. [az(n) + a3(n)(£)]¢2 + [ ay(n) + a5(n)(£) ]dﬁ

The evaluations ofF(6/m, Ry/t) and hy(6/m,n, R,/t) are ™ W

described in Appendix A.

By comparing Egs. (2) and (3), it is easy to show that + [as(n) + a7(n)(£)](/;4 8)
J ™
Kew =35 (6)
€,

is proposed, wher, , is eitherK,, or K, (i.e. the elastic
J or plastic correction factor for an off-centered crack), and
Koy = JL"’ @) a(n),i=0,1,...,7, are surface fit coefficients that depend
PO on the material hardening parametar,for a pipe with
With this new proposed method, i.e. Eq. (3), thintegral a given Ry/t. The coefficients,a(n), can be further
for off-center cracks can be easily calculated when these twoapproximated by a fourth-order polynomial equation
correction factors are prescribed for a given off-center represented by
angle, . 4
(N = n
4.1. Calculation of correction factors & JZOD”n ’ ®
From Egs. (6) and (7), it can be seen that the proposedin which D; i=01,..7 andj=0,1,..,4) are the
correction factors are simply a ratio of tlevalues for the polynomial coefficients that solely depend on tRg/t
off-centered crack to those of the symmetrically centered ratio of the pipe. Following least-squares curve-fit of
crack. Based on Egs. (6) and (7) and past finite elementdata in Table 2,D; were estimated and are given in
results [7], Table 2 shows the results Kf, andK,, at Appendix B for a pipe withR,/t =10. Using these
cracks fronts AB and CD for a pipe witR,/t = 10 and values of D, Fig. 3(a) and (b) show the plots d,
various combinations ob/w, ¢, andn. For an off-center  (n= 1) and K,, (n=5), respectively, as a function of
angle ofzerq the correction factors should have a value of ¢/7 and ¢ for a pipe withR,/t = 10. From these plots,
one, as is shown in Table 2. For the intermediater = it appears that Egs. (8) and (9) can accurately represent
1/8) and large 6/m = 1/4) cracks, itis shown that atthe 15  the data in Table 2. In fact, the square of correlation
offset, the correction factor values are sometimes greatercoefficient R statistic) between the surface fit equa-
than unity for crack front ABThis agrees with the trend tions and the data was at least 99% for all cases consid-
discussed in Rahman and Firmature [7], in whiclalues at ered in this study.
crack front AB with small offset angle are larger than the  Note, the analytical approximation Kf ,, represented by
values obtained with a symmetrically centered crack. For all Egs. (8) and (9), allows closed-form evaluationJeftegral
other cases the correction factors are less than 1.0, reflectingor off-center cracks. This would significantly reduce
the fact that most of the time the centered crack is more computational effort in performing probabilistic analysis
critical than the off-centered crack. Correction factors close that are described in the following section and also for
to zero were also found for offset angles that move the crack any future crack growth study.
front CD below the bending axis and, therefore, may cause it

to be closed. 4.3. Limitations of response surface approximation

4.2. Response surface approximation of correction factors  Even with the very good agreement between the
| der to eliminate the int lation that i I calculated correction factors and their surface fits, two
n order to eliminate the nterpoiation that 1S usually very important limitations still exist. First, as mentioned
T Note. the wellk GE/EPRI method. which ftutes Eqs. (4) and in Rahman and Firmature [7], because the finite element
ote, the well-known methoa, wnich constitutes Egs. an . o s
(5), is one of many-estimation methods currently available for analyzing meshes were only deSIQned for *1&crements, it is

pipes with symmetrically-centered cracks. See Rahman et al. [4] and Brust UNKnown _hOW well the surface fits actually describe
et al. [11] for otherJ-estimation methods. the behavior of crack front AB for offset angles lower
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Table 2
Elastic and plastic correction factors fgy,/t = 10 [y = 0 implies symmetrically centered craagk= 1 implies linear-elastic analysig = 0)]

n =0 =15 =30 =45 =60 Yy=75 =90
(/12 rad) (/6 rad) (/4 rad) (/3 rad) (5m/12 rad) (/2 rad)

Crack front AB [9/7 = 1/16]

1 1 0.974 0.807 0.552 0.287 0.087 0.004

3 1 0.979 0.862 0.668 0.430 0.196 0.021

5 1 0.980 0.870 0.685 0.455 0.222 0.027

7 1 0.980 0.872 0.688 0.458 0.229 0.03

10 1 0.980 0.867 0.677 0.447 0.224 0.03

Crack front AB [f/7 = 1/8]

1 1 1.016 0.882 0.640 0.364 0.125 0.020

3 1 1.002 0.898 0.708 0.472 0.203 0.047

5 1 0.993 0.882 0.689 0.458 0.198 0.048

7 1 0.984 0.858 0.654 0.424 0.179 0.042

10 1 0.973 0.821 0.596 0.366 0.145 0.032

Crack front AB [/ = 1/4]

1 1 1.079 0.998 0.784 0.418 0.190 0.068

3 1 1.033 0.930 0.729 0.374 0.173 0.070

5 1 1.014 0.872 0.639 0.291 0.124 0.048

7 1 0.994 0.805 0.537 0.206 0.080 0.029

10 1 0.970 0.724 0.431 0.138 0.048 0.016

Crack front CD p/w = 1/16]

1 1 0.875 0.641 0.370 0.141 0.015 d -

3 1 0.920 0.752 0.525 0.278 0.071 a -

5 1 0.929 0.775 0.557 0.312 0.094 d -

7 1 0.934 0.783 0.568 0.323 0.108 a -

10 1 0.936 0.783 0.564 0.322 0.117 a -

Crack front CD p/m = 1/8]

1 1 0.837 0.581 0.309 0.099 a_ -2

3 1 0.892 0.695 0.449 0.207 a— -2

5 1 0.896 0.703 0.460 0.222 a_ -2

7 1 0.892 0.691 0.445 0.215 a_ -2

10 1 0.880 0.661 0.407 0.197 a— -2

Crack front CD p/w = 1/4]

1 1 0.787 0.505 0.236 a =2 -2

3 1 0.833 0.582 0.322 . -2 -2

5 1 0.825 0.559 0.298 S =2 -2

7 1 0.812 0.520 0.258 a =2 =2

10 1 0.791 0.474 0.216 ""— =2 -2

& Crack front closed.

than 15. It was found that a threshold offset angle front CD is not closed and hence, a discontinuity may occur
would exist below 1% for each of the three crack at this point. Hence, the smaller cracks are expected to
lengths in this research; however, these threshold behave similarly in the same configuration. Due to this
values were not determined in this study. It is fact, the surface fit equations for crack front CD give reason-
expected that a small error will exist in this region able approximations up to crack closure since they show the
due to a lack of data. For these reasons it is recom- correct trend of a discontinuity at crack closure. However,
mended that the surface fit equations for crack front AB since there are no data for the two smaller cracks at the point
only be used for offset angles ranging from 15 t¢ @6d of crack closure, a region of extrapolation is needed between
only for crack lengths between 1/16 and 1/4 of the pipe the final non-zero data points and the closure line [12]. The
circumference. crack closure line is simply a straight line defining one edge
The second limitation is also related to the irficrement of the extrapolation region in thé@{m)—s plane. The crack
of the offset angle. Due to the set increment values and theis closed whenj + 6 > 90°. If crack front CD is closed,
varying crack lengths, the final data point for the two then avalue of zero should be used for the correction factor.
smaller cracks correspond to offset angles well before Otherwise, correction factor data in this area should be used
closure of crack front CD. Because of this, the behavior of with caution since it is in an area of extrapolation. It is also
crack front CD is unknown from the last data point until recommended that the surface fit equations for crack front
closure for the two smaller cracks. However, tbrr = 1/4 CD be used only for crack lengths between 1/16 and 1/4 of
the final data point may fall at the largest offset for which the circumference.
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5. Probabilistic fracture analysis

5.1. Random parameters and fracture response

Consider a cracked structure with uncertain mechanical
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mance functiong(x) defined by Eq. (12). For brevity,
only the results of FORM/SORM will be presented in
this paper. A brief description of FORM/SORM is given
in the following subsection.

First- and Second-Order Reliability MethodBirst- and

and geometric characteristics that is subject to random second-order reliability methods are based on linear (first-

loads. Denote byX an N-dimensional random vector with

order) and quadratic (second-order) approximations of the

components characterizing all uncertainties in the system|imit state surfacey(x) = 0 tangent to the closest point of
and load parameters. For example, when an off-centeredthe surface to the origin of the space. The determination of
TWC pipe is considered, the possible random componentsthis point involves nonlinear constrained optimization and is

are: crack geometric parametefsr andys, material tensile
parametersg, v, a, n, fracture toughness at crack initiation,
J, and applied far-field momenk]. All or some of these

performed in the standard Gaussian image of the original
space. The FORM/SORM algorithms involve several steps.
First, the spacg of original random vectoX is transformed

variables can be modeled as random variables. Hence, anynto a newN-dimensional space consisting of independent

relevant fracture response, such as thmtegral, J(X),
should be evaluated by the probability
. def .
Falio PII00 <jol = | f0 o 10
JIX)<o

or the probability density function (PDF)f;(jg) =
dF;(jo)/djg, Where Fy(jo) is the cumulative distribution
function of J and fx(x) is the known joint PDF of input
random vectoiX.

The fracture parametdrcan also be applied to calculate
structural integrity and hence, failure probabilityy, of

standard Gaussian vector The original limit statey(x) =

0 then becomes mapped into the new limit sgjéu) = 0

in theu space. Second, the point on the limit stgtéu) = 0
having the shortest distance to the origin of thepace is
determined by using an appropriate nonlinear optimization
algorithm. This point is referred to as the design point or
most probable point, and has a distafe (known as the
reliability index) to the origin of thel space. Third, the limit
stateg,(u) = 0 is approximated by a surface tangent to it at
the design point. Let such limit states e(u) =0 and
go(u) = 0, which correspond to approximating surfaces as

cracked structures. This failure probability depends on the hyperplane (linear or first-order) and hyperparaboloid

failure criterion. For example, if the initiation of crack
growth in the TWC pipe constitutes a failure conditidt,
can be written as

Pr=Prlg(X) < 0] = J fy (X) dx (@D
g(x)<0

where

gX) = Jic — IX). (12

Note, if jo represents the material fracture toughness at

crack initiation (), Pr is simply the complement d¥( jo),
i.e.,Pr =1— F;(jg). The failure probabilityPr in Eq. (11)
corresponds to the probability of initiation of crack growth,
which provides a conservative estimate of structural perfor-
mance. A more realistic evaluation of structural reliability
requires calculating the probability of fracture instability
following crack initiation. See Ref. [13] for further details.

5.2. Structural reliability analysis

The generic expression for the probabilities in Egs. (10)
and (11) involves multi-dimensional probability integration
for its evaluation. Standard reliability methods, such as first-
and second-order reliability methods (FORM/SORM)
[14-18], Monte Carlo simulation (MCS) [19], and Monte
Carlo with Importance Sampling (MCIS) [20-22], can
be used to compute these probabilities. In this study,
FORM/SORM, MCS, and MCIS were used to calculate
the probability of failure,Pr in Eg. (11) assuming a
genericN-dimensional random vectoX and the perfor-

(quadratic or second-order), respectively. The probability
of failure Pg [EqQ. (11)] is thus approximated by [gr (u) <

0] in FORM and Pjgo(u) < 0] in SORM. These first-order
and second-order estimaté%; and Pg, are given by
[14-18,22]

Pe1 = D(—BuL)
N1 —12
&(—PBuL)

Pr, = &(— 1— i 2PH) 13
F2 (—Bh) Il:! ( K ¢(_BHL)> 13
where

I Y S
d(u) = Nz exp( 2u) 19
an

R _1,.
0= |" e -5¢)a 15

are the probability density and cumulative distribution func-
tions, respectively, of a standard Gaussian random variable,
andk;'s are the principal curvatures of the limit state surface
at the design point. FORM/SORM are analytical probability
computation methods. Each input random variable and the
performance functiog(x) must be continuous. Depending
on the solver for nonlinear programming, an additional
requirement regarding smoothness, i.e. the differentiability
of g(x) may be required. In this study, a sequential quadratic
programming method with an appropriate tolerance
criterion for the convergence was used to solve the
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Table 3
Statistical properties of random input
Random variable Mean cov Probability distribution Reference
Elastic modulusE) 182.7 GPa 0.05 Gaussian [23]
Ramberg—0Osgood coefficient 8.073 0.439 Lognormal [23]
Ramberg—Osgood exponem ( 3.8 0.146 Lognormal [23]
Initiation fracture toughness)() 1,242.6 kJ/m 0.47 Lognormal [23]
Normalized crack anglef({w) 1/8 0.1 Lognormal X
Bending momentN1) Variable’ 0.1 Gaussian b
2 Coefficient of variation (COV)= standard deviation/mean.
P Arbitrarily assumed.
¢ Arbitrarily varied.
3500
Crack Front AB: p=0°
3000 [© R =355.6mm,t=35.56 mm
0/m=1/8,a=8.073,n=3.8
v 2% [ E=1827GPav=03
5 2000 M, = 2197.8 kN-m
= - v =30°
£ B0 Mines= FEM b
- 1000 Points = Proposed Method A
/6
500 W = 60°
K Il 1 |
0 500 1000 1500 2000 2500 3000 3500
M, kKN-m
(a)
3500
Crack Front CD: p=0°
3000 I~ R =355.6 mm, t = 35.56 mm
0/ =1/8,a=8.073,n=3.8
v P [ E-1827GPa,v=03
5 2000 - Mo~ 2197.8 kN-m A
oy - /
£ 100 I e - FEM / »
Oy B N . Y= o
- 1000 Points = Proposed Method
o
500 -
&
- P = 60°
0 ¢ Il 1 I
0 500 1000 1500 2000 2500 3000 3500
M, kN-m
(b)

Fig. 4. Comparisons of predictetdby FEM and proposed estimation method (a) crack front AB; (b) crack front CD.
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Fig. 5. Probability densities af for various off-center cracks in pipes.

optimization problem. Further details of FORM/SORM
equations are available in Refs. [14-18].

6. Numerical example

Consider a pipe with a circumferential through-wall crack
subjected to remote bending momelt, The crack is off-
centered by an anglej with respect to the bending plane.
The pipe has a mean radil®,, = 3556 mm (14 in), a wall
thickness,t = 3556 mm (1.4 in), and a normalized crack
angle,f/w. The pipe is made of TP304 stainless steel with
an operating temperature of 283 (550F). The pipe
geometry is shown in Fig. 1(a) and (b).

crack angle §/m), and bending momenM). The off-center
angle /) was treated as both a deterministic and a random
variable. The statistics in Table 3 came from statistical
characterization of actual material property data [23].
These random variables were assumed to be statistically
independent. In addition, the following deterministic values
were usedop = 15478 MPa (22,450 psi) and = 0.3.

6.1. Deterministic results

Fig. 4(a) and (b) show the deterministic comparisons of
predictedd for s = 0, 30 and 60 by the proposed method
[Eq. (3)] and elastic—plastic finite element results at crack
fronts AB and CD, respectively. The mean values of random

Table 3 shows the means, coefficients of variation, and input given in Table 3 and other deterministic parameters

probability distributions of tensile parameters, (@, n),
fracture toughness at crack initiatiord,.J, normalized

described above were used to conduct these analyses. In Fig.
4(a) and (b), the solid points indicate tAealues from the

10° ——
3 -
101 L — - —~
9 E P -
A0tk e
T-G 1073 g
- £
T 10* E
EN- b0
=10k = 30°
- —-— veds
£ 10°F — ——— p=60°
F —_———yp=75°
L A - ¥ =90°
108 i 1 // / 1 L/ | 1 1 1 1 1 | 1
500 1000 1500 2000 2500 3000 3500 4000
E[M], kKN-m

Fig. 6. Probability of failure for various off-center cracks in pipes.
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Fig. 7. Probability densities af for uncertain off-center cracks in pipes.

proposed estimation method and the lines represeng the the mean operator. They were obtained by repeated SORM
solutions from finite element analysis using thBaqQus analysis for various thresholds df i.e. by calculating the
code. The predicted values df from Eq. (3) compare  probability in Eg. (10) as a function ¢f and then taking
very well with the generally more accurate finite element numerical derivative of this probability with respecfj§oAs
results. This also verifies the adequacy of proposed expected, the probability mass shifts from right to left when
analytical equations for elastic—plastic analysis of off-center s increases. This is consistent with deterministic
cracks in pipes. observations in Figs. 2 and 4.

Fig. 6 shows the plots d®: vs. E[M] for ¢y = 0, 30, 45,
60, 75 and 90 obtained by SORM. They all consistently
indicate that Pr increases askE[M] increases, and it

The second-order reliability method was applied to approaches unity whe&[M] becomes very large. For a

6.2. Probabilistic results

determine the probabilistic characteristics dffor off- given applied moment, the failure probability decreases
centered cracked pipes subject to pure bending. Slrate ~ when ¢ increases. This is consistent with the fact that the
crack front AB is always larger thahat crack front CD, all J-integral for an off-center crack is generally lower than that

following analysis and results are basedJoat crack front for a symmetrically centered crack. In the past, the
AB. Fig. 5 shows the computed probability densities of probabilistic analysis of an off-center crack in pipes
J[ fi(jo)] for off-center anglesys = 0, 30, 45, 60, 75, and  involved simplifying the crack to be symmetrically centered
90° when E[M] = 1000 kN m (8851 kip in), wher&[ ] is with respect to the bending plane of the pipe [24]. This study

10° g
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. E :
Q—L 102 E
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= 3 L
~L§ 10 ;
T 10¢ E
> £
= E
'8 i -/
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107 i / //

0 E / 60-Aw2  60°  60vAw2 T ¢
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10~8 / 1 ! 1 | L
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Fig. 8. Probability of failure for uncertain off-center cracks in pipes.
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Fig. 9. Ratio of failure probabilities vs. applied moment.

provides a quantitative framework for analyzing off-center- [0,360]—as a function of the mean applied moment. This
cracked pipes without having to make such unnecessaryratio quantifies the factor by which the failure probability
assumption or to perform expensive elastic-plastic finite estimate assuming a worst-case condition (i.e. when0)
element analyses. This is obviously due to the proposedoverestimates the failure probability whenis random
method that is capable of predicting for off-centered and equally likely to take on an angle between 0 and
cracks in pipes by simple analytical equations. Note, the 36C°. The results in Fig. 9 indicate that the ratio or the
SORM probabilities presented here were also validated factor varies from 2 to 7 depending on the bending
against the results of MCS and MCIS methods. For brevity, moment applied. All probabilities defined above were calcu-
they were not presented here. See previous work of authordated by SORM.

on the validation of FORM/SORM results of symmetrically
centered cracks by the simulation methods [13,23].

The results presented so far [see Figs. 5 and 6] are vali
for only deterministic values of the off-center angle. In
reality, this off-center angle is highly likely to be a random
variable. As an example, assume that this off-center angle,
Y, is uniformly distributed ovef60® — Ay/2, 60° + Ay/2],
where Ay represents the spread of its uniform probability
density function. With this uniform distribution of and
other input properties described earlier, Figs. 7 and 8 show
the plots of SORM-generated probability densitied ahd
failure probability, respectively, whem\¢y=0 (¢ is
deterministic), 30 (¢ is uniform over [45,757]), and 60
(¢ is uniform over [30,90°]). These results show that the
uncertainty in can have a significant effect on the
probabilistic characteristics o and failure probability,
particularly whenAysr is large. WhenAys is 30 (small
uncertainty), the failure probability curve is close to the
results ofyy = 60°, which is the mean value af. However,
whenAys is 60 (large uncertainty), the failure probabilities
can be much higher than those f¢ér= 60° and hence, its

d7' Summary and conclusions

A probabilistic methodology was developed for fracture-
mechanics analysis of off-center cracks in pipes subject to
pure bending moment. It is based on: (1) analytical approxi-
mation of J-integral; (2) statistical models of uncertainties
in loads, material properties, and crack geometry; and (3)
standard computational methods of structural reliability
theory. The results from 105 deterministic finite element
analysis, performed for a wide variety of crack sizes, offset
crack angles, and material hardening parameter, were used
to develop elastic and plastic correction factors for
predicting J-integral. Following response surface approxi-
mations of these correction factors, new closed-form
analytical equations were developed to calculator a
given pipe geometry, crack size, off-center angle, and
material properties.

The analytical equations were subsequently applied for
probabilistic fracture-mechanics analysis. The second-order
uncertainty should be accounted for probabilistic pipe reliability _m_ethod was used to determine the probabilistic
fracture evaluations. While these trends are somewhatCharaCte”St'.CS of thé?lntegraI.Th_e_ same method V\{a_s_usfed
expected, the above analyses provide a quantitative measurtleater to predict the failure prc_)bablhty based.on the initiation
of these failure probabilities. pf crack growth. A numerical example is presented to

Finally, Fig. 9 shows a plot of the ratio of two failure illustrate the proposed methodology. The results show that:

probabilities—one calculated whefi= 0, and the other e The probabilistic characteristics off and failure
calculated when ¢ is uniformly distributed over probability are strongly dependent on the off-center



S. Rahman et al. / International Journal of Pressure Vessels and Piping 77 (2000) 3-16 15

crack angle. For a given applied moment, the failure by [13]:

probability of a pipe with an off-center crack is generally

lower than that of a pipe with symmetrically centered A = {0.006215 0013304 —0_01838}T (A2)
crack. Hence, simplifying an off-center crack to be

symmetrically centered crack can produce significant T
conservatism in predicting failure probabilities. B ={175577 9169105 —553806 015116} (A3)

¢ Alarge uncertainty in the off-center crack angle, if exists,

can have a significant effect on the failure probability of influence function that depends on pipe geometry, crack

pipes. For example, when the off-center crack angle is eometry, and material hardening exponent. According to
uniformly distributed over 30 and 90the failure prob- gRahmanyfls] g &b ' g

ability can be a order of magnitude larger than that calcu-
lated when the off-center angle is assigned its mean h,(6/m, n, Rm/t)z{l O/m)  (Olm)? (g/ﬂ)3}
value.

In Eq. (5), hy(6/m,n, Ry/t) is a dimensionless plastic

e The ratio of failure probabilities based on worst-case Cowo Cio Coo Cso1(1
condition (symmetrically centered crack) to those
obtained from random off-center crack angle that is x Cao Cu Ca Ca n (Ad)
uniformly distributed over [0 and 38Dvaries between Cos Cip Cp Cyp 2
2 and 7, depending on the bending moment applied. 3

) ] Coz Ciz Gy GCgs n
The proposed analytical equations &ffor off-center o - )
cracks in pipes can also be potentially used for crack-growth Where Cj (i,j = 0 — 3) are coefficients which depend on
studies. From crack-growth analysis, one can predict R/t and can also be calculated from best fit of finite element
fracture instability and corresponding probability with results [13]. LetC = [C;], i,j=0— 3, be a real matrix
little effort. These are subjects of current research by the With the coefficientsC; as its components. According to

authors. Rahman [13]C is given by:
ForR,/t =5,
3.74009 143304 —-0.10216 00023
Acknowledgements —0.19759 —1019727 —045312 004989

The authors would like to acknowledge the support by the 3642507 1703413 336981 —0.21056

US National Science Foundation (Grant No. CMS- —704846 —14.69269 —290231 015165
9833058). ForR/t = 10,

3.39797 131474 —0.07898 00028
Appendix A. Influence functions for symmetric cracks —3.07265 434242 —2.48397 011476

. . . . 1317381 —79.02833 1618829 —0.66912
In Eq. (4),F(0/m, R,/t) is a dimensionless elastic influ-

ence function that depends on pipe and crack geometry. —2346221 1170509 —2030173 079506
According to Rahman [13]: (AB)
(6/7) L5 For R/t = 20,
F(O/mR/) =1+{A Ay Al (orm)>® 407828  —1.55095 067206 —0.0442
(9/,@35 c_ —1821195 6992277 —1841884 111308
1 3574929 —4531582 1080204 —6.56651
—6027576 6179074 —1449435 89022
(R/t) (A7)
x{B; B, B; By} ) (A1)
(R/t) .
13 See Rahman [13] for further explanations on how these
(Rm/) coefficients were calculated.
where A (i=1-3) and B;(i=1-4) are constant
coefficients. Let A={A; A, As }T and B= Appendix B. CoefficientsD;
{B, B, By B}’ be two real vectors with the
coefficients,A; and B; as their components, respectively. LetD =[D;l,i=0,1,...,7, andj =0,1,....4, be a real

Using best fit of finite element resultd, and B are given matrix with the coefficientd);, as its components. Following
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least-squares curve fi) for R/t = 10 is given by:
At crack front AB,

- 0.3528 —0.2522 00631 —-0.0074 000037
27962 —1.0617 02940 -0.0266 00008
—2.9981 16897 —0.4233 00496 —0.0021
3.7670 —2.0229 03196 —-0.0762 00047
= 2.0620 —1.4627 03823 —0.0467 00020
—7.1406 25393 —0.5405 01119 -0.0064
—-0.3596 03150 —0.0885 00115 —0.0005
23539 —-05121 01318 —0.0327 00019
(A8)
At crack front CD,

- 0.1444 -0.2620 00651 —0.0064 000027
—3.1782 25246 —0.6779 00734 —0.0029
—3.3451 23779 —-0.5637 00583 —0.0022
42744 —8.1376 19887 —0.2243 00094
b= 29435 —2.6898 06399 —-0.0670 00026
—0.6972 62504 —1.4695 01750 -0.0077
—-0.7191 08152 —-0.1955 00207 —0.0008
| —0.4701 -—1.3246 03025 -0.0393 00019
(A9)
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