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Abstract

A probabilistic methodology has been developed for fracture-mechanics analysis of nonlinear cracked structures. The methodology
involves nonlinear finite element analysis using well-known commercial codes; statistical models for uncertainty in material constitutive
law, fracture toughness, and loads; and standard reliability methods for evaluating probabilistic characteristics of elastic—plastic fracture
parameter. Numerical examples are presented to illustrate the proposed methodology for two- and three-dimensional cracked structures. The
results from these examples show that the methodology is capable of predicting accurate deterministic and probabilistic characteristics of the
J-integral for use in elastic—plastic fracture mechanics (EPFM). © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Probabilistic fracture mechanics (PFM) is a rapidly
developing field, with numerous applications in science
and engineering. The fundamental theory of fracture
mechanics establishes a mechanistic relationship between
the maximum permissible loads acting on a structural
component to the size and location of a crack — either
real or postulated — in the component. Fracture analysis
can be based on linear-elastic or more complex elastic—
plastic (nonlinear) models. It is well established that
nonlinear fracture-mechanics methods, compared with the
elastic methods [1,2], provide more realistic measures of
fracture behavior of cracked structures with high toughness
and low strength materials. Cracked components composed
of these materials, when used in nuclear power plants,
chemical and fossil plants, automobiles, and aerospace
and aircraft propulsion systems, pose a serious threat to
structural integrity. In much or all of the working tempera-
ture regime of these components, the material is typically
stressed above the brittle-to-ductile transition temperature
where the fracture response is essentially ductile, and the
material is capable of considerable inelastic deformation
[1,2]. As such, elastic—plastic theories should be employed
in fracture analyses of these structural components. While
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development is still ongoing, significant progress has been
made in deterministic modeling of linear-elastic fracture
mechanics (LEFM) and elastic—plastic fracture mechanics
(EPFM). Probabilistic models have also been developed to
estimate various response statistics and reliability [3].
Currently, there are many methods and applications for
PFM in the oil and gas, nuclear, automotive, naval, aero-
space, and other industries, nearly all of which have been
developed based on LEFM models. In contrast, probabilistic
analyses based on EPFM models are not widespread and are
only currently gaining notice, particularly for applications
in pressure boundary components.

In EPFM, the crack-driving force is frequently described
in terms of the J-integral. The J-integral is an appropriate
fracture parameter to adequately describe crack-tip stress
and strain fields when there are no constraint effects. Similar
to any deterministic EPFM problem, the evaluation of the J-
integral for probabilistic analysis can be performed by either
a numerical method and or an engineering estimation
method. Traditionally, the numerical study is based on the
elastic—plastic finite element method (FEM). Using FEM,
one can calculate J for any crack geometry and load condi-
tions. However, it is also useful to employ simplified esti-
mation methods for routine engineering calculations.
Accordingly, probabilistic EPFM analyses based on both
methods have been reported. For example, in the U.S.
Nuclear Regulatory Commission’s Short Cracks in Piping
and Piping Welds Program [4], a probabilistic model was
developed by the first author for elastic—plastic analysis of
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circumferential through-wall cracks in pipes for leak-
before-break applications [5]. This model involves a J-esti-
mation method, statistical representation of uncertainties in
loads, crack size, and material properties, and first- and
second-order reliability methods (FORM/SORM). Shortly
thereafter, similar probabilistic models based on other J-
estimation formulas were reported [6—9]. In these models,
estimation formulas typically consist of a closed-form
response surface approximation of J as a function of load,
crack size, and material properties of the structure and
hence, do not require costly finite element calculations.
Essentially, this presents a primary rationale for successful
development of FORM/SORM algorithms for probabilistic
analysis of elastic—plastic structures [5—9]. However, the
usefulness of J-estimation based methods is limited, since
they cannot be applied to general fracture-mechanics analy-
sis. Because of the complexity in crack geometry, external
loads, and material behavior, more advanced computational
tools, such as FEM or other numerical methods, must be
employed to provide the necessary computational frame-
work for analysis of general cracked structures. Further-
more, due to various approximations in the J-estimation
method, one needs to evaluate its accuracy by comparing
with generally more accurate FEM-based probabilistic
analysis [10]. To date, not many PFM analyses involving
nonlinear FEM have been conducted or reported.

This paper presents a computational methodology for
stochastic prediction of elastic—plastic fracture parameters
and probabilistic characterization of fracture initiation in
nonlinear cracked structures. The methodology is based
on (1) nonlinear finite element method for deterministic
stress analysis, (2) statistical models for loads and material
properties, including stress—strain and fracture toughness
curves, and (3) standard computational methods of struc-
tural reliability theory for probabilistic analysis. The
computer code PRObabilistic FRActure Code (PROFRAC)
was developed by implementing all the numerical methods
employed in this study. Two examples are presented to
illustrate the proposed methodology for two- and three-
dimensional cracked structures. The results from these
examples show that the methodology is capable of predict-
ing accurate deterministic and probabilistic characteristics
of the J-integral for use in EPFM.

2. Elastic—plastic fracture mechanics

In order to perform elastic—plastic analysis, the material
model must be defined. This study assumed that the consti-
tutive law characterizing the material’s stress—strain (o—€)
response could be represented by the well-known
Ramberg—Osgood model, expressed as

=2y a<i>n, (1)

€o o) ()

where o is the reference stress (typically assumed to be the

yield stress), E the modulus of elasticity, €, = oy/E the
associated reference strain, and « and n are model para-
meters usually selected from a best fit of actual laboratory
data. Although this representation of the stress—strain curve
is not necessary for finite element analysis, it is required for
most, if not all, J-estimation methods.
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Fig. 1. J-integral as an elastic—plastic fracture parameter: (a) arbitrary
contour around a crack tip; (b) inner and outer contours enclosing A™;
(c) inner and outer surfaces enclosing V",
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The J-integral parameter proposed by Rice [11] has been
extensively used in assessing the fracture integrity of
cracked engineering structures, which undergo large plastic
deformation at the crack tip. For elastic—plastic problems,
the Hutchinson [12] and Rice and Rosengren [13] interpre-
tation of the J-integral parameter as the strength of the
asymptotic crack-tip fields represents the crux of the basis
for J-controlled crack growth behavior. For a cracked body
with an arbitrary counter-clockwise path I" around the crack
tip (see Fig. 1(a)), a formal definition of J under the mode-I
condition is

= JF(’/)nl = Tiu;,) ds, (2)
where, . = [ 0 de; is the strain energy density with o
and €; representing of components of stress and strain
tensors, respectively, u; and T; = o;n; are the ith compo-
nents of displacement and traction vectors, n; is the jth
component of the unit outward normal to the integration
path, ds is the differential length along contour I', and u; ; =
d u;/d x; is the differentiation of displacement with respect
to x;. The summation convention is adopted here for
repeated indices.

The J-integral is theoretically valid for nonlinear elasti-
city or deformation theory of plasticity where little or no
unloading occurs. The J-integral is frequently used to char-
acterize initiation of crack growth and a small amount of
crack propagation. Numerous comparisons between predic-
tions based on J-integral and experimental data have shown
that fairly accurate results of fracture response can be
obtained for monotonic loading to failure, even though the
theoretical conditions for a valid J-based fracture theory are
violated [14—17]. In this study, the elastic—plastic analysis
of cracks will focus only on the J-integral fracture
parameter.

2.1. Finite element implementation of J-integral

The energy domain integral methodology [18,19] was
used in the finite element analysis to numerically calculate
J. Using the divergence theorem, the contour integral
defined in Eq. (1) can be expanded into an area integral in
two dimensions and a volume integral in three dimensions
over a finite domain surrounding the crack tip or crack front.
For two- dimensional quasi-static problems involving linear
or nonlinear elastic materials and no body forces, thermal
strains, and crack-face tractions, Eq. (1) reduces to

_ 614 dq
T R o

where 6 is Kronecker delta, g an arbitrary, but smooth,
weighting function equal to unity on I'y and zero on I,
and A" is the annular area enclosed by the inner contour
I'y and outer contour I} as shown in Fig. 1(b). For three-
dimensional problems, a similar expression of J that
involves the volume integral can be developed and is

given by

Ju; 0q
= —L —wé |— dV, 4
JV* [UU 9x v 11] ax; @

where V" is the volume enclosed by the inner surface S, and
outer surface S, as shown in Fig. 1(c). The discrete form of
these domain integrals is [20]

} )

= 3 )i

where m is the number of Gauss points per element, &, the
parametric coordinate, and w; is the weighting factor.
Further details on finite element implementation of J can
be found in Anderson [20].
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&

2.2. J-based failure criteria

Given that J is a valid fracture parameter, there are
several definitions of failure criteria. Two definitions,
commonly used in EPFM, are (1) initiation of crack growth
and (2) unstable crack growth [14—-17], described by

Crack initiation : J = Jy, (6)
J = JR

Crack instability : 1 97 dJ, - (7
da  da

The initiation of crack growth in a structure containing flaws
can be characterized by the crack-driving force (J) exceed-
ing the material fracture toughness (J;.), as represented in
Eq. (6). This constitutes a good definition of failure, when
the uncracked ligament is small (e.g. part-through surface
cracks in pipes or through-wall cracks in small-diameter
pipes) or the amount of subsequent stable crack growth is
limited (e.g. cracks in brittle materials). The initiation-based
failure criterion is commonly used in piping and pressure
vessel analysis [14—-17].

In elastic—plastic fracture-mechanics theory, stable crack
growth, when occurring in a structure, can also be charac-
terized by the J-integral parameter with some limitations. In
this regard, the J-tearing theory is a prominent concept to
quantify stable crack growth. The J-tearing theory is based
on the observation that fracture instability can occur sub-
sequent to some amount of stable crack growth in tough and
ductile materials with an attendant higher applied load level
at fracture. The onset of fracture instability is defined when J
and dJ/da exceed Ji and dJx/da simultaneously, as also
expressed in Eq. (7). The corresponding crack-instability
load is either equal to or higher than the crack-initiation
load. The difference between these two failure loads can
be significant if the structural geometry and material permit
an appreciable amount of stable crack growth. Otherwise,
the fracture criterion based on the initiation of crack growth
provides a conservative estimate of structural integrity. This
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initiation-based criterion was used in the probabilistic frac-
ture analysis to be presented in forthcoming sections.

3. Random parameters and fracture response

Consider a cracked structure with uncertain mechanical
and geometric characteristics that is subject to random
loads. Denote by X an N-dimensional random vector with
components X, X,,...,Xy characterizing all uncertainty in
the system and load parameters. Let J be a relevant crack-
driving force that can be calculated using elastic—plastic
finite element analysis. If J is a valid fracture parameter, it
can be applied to determine the failure probability of the
cracked structure. Suppose the structure fails when J > J.
This requirement cannot be satisfied with certainty, because
J depends on input vector X which is random and Jy, itself is
a random variable. Hence, the performance of the cracked
structure should be evaluated by the reliability Pg or its
complement, the probability of failure Pg(P, =1 — Pg),
defined as

Pr & Prigx) < 0¥ J " OfX(X) dx, ®)
g(x)<

where fx(x) is the joint probability density function of X,
and g(X) is the performance function given by

8X) = Ji(X) = J(X). &)

Note that Pr in Eq. (8) represents the probability of the
initiation of crack growth, which provides a conservative
estimate of structural performance. A less conservative
evaluation requires calculation of the failure probability
based on crack-instability criterion. The latter probability
is more difficult to compute since it must be obtained by
incorporating crack-growth simulation in a nonlinear finite
element analysis. However, if suitable approximations of J
can be developed analytically, the crack-instability failure
probability can be easily calculated, as demonstrated by
previous research in probabilistic pipe fracture evaluations
[5.,6].

4. Structural reliability analysis

The generic expression for the failure probability in Eq.
(8) involves a multidimensional probability integration for
its evaluation. In this study, standard reliability methods,
such as FORM/SORM [21], and Monte Carlo with impor-
tance sampling (MCIS) [22]were used to compute these
probabilities. These standard reliability methods are briefly
described here to compute the probability of failure Pr in
Eq. (8) assuming a generic N-dimensional random vector X
and the performance function g(X) from Eq. (9).

4.1. First- and second-order reliability methods

The FORM/SORM are based on linear (first-order) and

quadratic (second-order) approximations, respectively, of
the limit state surface g(x) = 0 tangent to the closest point
of the surface to the origin of the space. The determination
of this point involves nonlinear constrained optimization
typically performed in the standard Gaussian image of the
original space. The FORM/SORM  algorithms involve
several steps. First, the space of uncertain parameters X is
transformed into a new N-dimensional space u consisting of
independent standard Gaussian variables. The original limit
state g(x) =0 is then mapped into the new limit state
gu(w) =0 in the u space. Second, the point on the limit
state gy(u) = 0 having the shortest distance to the origin
of the u space is determined using an appropriate nonlinear
optimization algorithm. This point is referred to as the
design point or beta point, and has a distance By, known
as reliability index, to the origin of the u space. Third, the
limit state gy(u) = 0 is approximated by a surface, tangent
to the limit state at the design point. Let such limit states be
gu(w) =0 and go(u) = 0, which correspond to approximat-
ing surfaces as hyperplane (linear or first-order) and hyper-
paraboloid (quadratic or second-order), respectively. The
probability of failure Pr (Eq. (10)) is thus approximated
by Pr[g;(w) <O0] in FORM and Pr[gy(u) <0] in SORM.
These first-order (Pg;) and second-order (Pg,) estimates
are given by [21,22]

Py = O(—Bu),

_ ~12
&(—Bur) ) , (10)

N-1
Pr, = P(— l = ki
F2 = P(—BuL) ll:! ( Ki D= Br)

where ®(-) is the cumulative distribution function of a
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Fig. 2. A DENT specimen under far-field uniform tension.
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Table 1
Statistical properties of random input for DENT specimen

Random variable Mean cov? Probability distribution References
Elastic modulus (F) 206.8 GPa 0.05 Gaussian -
Ramberg—Osgood coefficient («) 8.073 0.439 Lognormal 5
Ramberg—Osgood exponent (1) 3.8 0.146 Lognormal 5
Initiation fracture toughness (J;.) 1,242.6 kJ/m* 0.47 Lognormal 5

Far-field tensile stress (o) Variable® 0.1 Gaussian -

* COV = standard deviation/mean.
° Arbitrarily assumed.
¢ Varies from 48.3 to 103.4 MPa (7000—15,000 psi).

standard Gaussian random variable and k;’s are the princi-
pal curvatures of the limit state surface at the design point.

4.2. Monte Carlo with importance sampling

In MCIS, the random variables are sampled from a differ-
ent probability density referred to as the sampling density.
The objective of the importance sampling is to generate
more outcomes from the region of interest, e.g. the failure

set 7 = {x : g(x) < 0}. Good sampling densities can be
constructed using information from FORM/SORM

analyses. According to Hohenbichler [22], the failure prob-
ability estimate Ppjs using importance sampling based on
SORM improvement is given by

N-1 1
Pris = &(—Bur) ll:! [1- Ki?’(—,BHL)]”ZN—IS

Plhgwpl [
<3 g

where

;mmZm%}an
k=1

A(—Brr)
D(—Bu)’

with ¢ (-) and @(-) representing the probability density and
cumulative distribution functions, respectively, of a stan-
dard normal variable, w; = {wy ;, wy; ..., WN_U}T is the jth
realization of an N — 1 dimensional independent Gaussian
random vector W with the mean and variance of its ith
component being zero and 1/[1 — ¥ (— By )], respectively,
ho(wj) is the quadratic approximant in the form of rotational
hyperparaboloid, and Nig is the sample size for importance
sampling. Further details are available elsewhere [22].

V(= BuL) = 12)

5. Development of PROFRAC code

The PROFRAC computer code was developed to calcu-
late the probability of failure as defined by Eq. (8).
PROFRAC provides a general framework for performing
PFM analysis based on J-integral evaluations of two- and
three-dimensional cracked structures subject to quasi-static
loads. The PROFRAC code is based on (1) state-of-the-art

methods of EPFM theory and nonlinear finite element
analysis, (2) statistical models of uncertainty for random
loads and material properties, and (3) standard computa-
tional methods of structural reliability theory. PROFRAC
has been enhanced to interface with several commercial
codes, including the ABAQUS finite element code [23]
and STRUREL probabilistic analysis code [24]. The meth-
ods coded in PROFRAC for calculating J and performing
subsequent reliability analysis has been described
previously herein. Using PROFRAC, the relevant para-
meters in the input deck of ABAQUS can be modeled as
random variables. Both LEFM- and EPFM-based fracture
theories are supported. A number of finite element types can
be chosen for probabilistic finite element analysis. The
probabilistic analysis is completely automated.

A major limitation of the current version of PROFRAC is
that it can only calculate probability of failure based on
initiation of crack growth. The calculation of failure

\
I~

Fig. 3. Finite element mesh of DENT specimen (1/4 model).
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Fig. 4. Comparisons of predicted J for DENT specimen with existing solutions.

probability based on the instability of crack growth is more
complicated and is beyond the current capability. In
addition, the random crack size can only be modeled for
two-dimensional problems. Work is currently ongoing to
incorporate fracture instability in the performance criteria
and extend the statistical models to include random crack
geometry for three-dimensional structures.

6. Numerical examples
6.1. Example 1: A double-edged-notched tension specimen

Consider a two-dimensional double-edged-notched
tension (DENT) specimen subjected to quasi-static far-
field tension stress o ™. The geometry of the DENT speci-
men, shown in Fig. 2, has width 2W = 1.016 m (40 in.),
length 2L =5.08 m (200in.), and crack length a=

g

0.254 m (10 in.). The specimen material is TP304 stainless
steel and the operating temperature is 288°C (550 F). Both
load and material properties were assumed to be random.
Table 1 shows the means, coefficients of variation (COV),
and probability distributions of these random parameters,
obtained from recently performed statistical characteriza-
tion of actual material property data [5]. The random vari-
ables were also assumed to be statistically independent. The
deterministic material parameters involved are reference
stress o = 154.78 MPa (22,450 psi) and Poisson’s ratio,
v = 0.3. Note that the Ramberg—Osgood equation (Eq. (1))
has only two independent parameters. In this study, « and n
were assumed to vary randomly, while o, was held
deterministic [5].

Due to symmetry, a finite element mesh was constructed
for only 1/4 model, as shown in Fig. 3. A total of 114
elements and 393 nodes were used in the mesh. Second-
order elements from the ABAQUS element library were
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Fig. 5. Probability of failure for DENT specimen by various methods.
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Fig. 6. A TWC pipe subjected to pure bending moment.

used. Both plane stress and plane strain conditions were
studied. The reduced integration, eight-noded quadrilaterial
element type CPS8R was employed for plane stress. For
plane strain, the element type CPESRH was employed, a
mixed formulation element typically used to address the
incompressibility constraint for plane strain. Focused
elements were used in the vicinity of the crack tip. The
material model employed was the deformation theory,
Ramberg—Osgood model defined in Eq. (1).

Fig. 4 shows the deterministic results of J from
PROFRAC (ABAQUS) as a function of o for plane stress
and plane strain conditions. The mean values of the material
properties, defined in Table 1, were used to generate the
plots in Fig. 4. Fig. 4 also presents the corresponding solu-
tions obtained using the method of Kumar et al. [25]. The
predicted finite element results from this study match very
well with the J-integral solutions of Kumar et al. for the load
intensities and material constants considered. The crack

Table 2
Statistical properties of random input for TWC pipe specimen

driving force (J) is higher for plane stress that for plane
strain as expected. Similar results were also obtained by
Kumar et al. [25].

Following deterministic validation of J, several probabil-
istic analyses were performed using PROFRAC to calculate
failure probability as a function of mean far-field tensile
stress. Fig. 5 shows the results in the form of Pg vs E[c™]
plots for both plane stress and plane strain conditions. The
failure probabilities increase with the intensity of the mean
stress, as expected. Due to the higher demand of J (see
Fig. 4), the failure probability in plane stress is generally
larger than in plane strain, regardless of the load intensity.
The fracture toughness was assumed to be the same for both
the plane stress and plane strain conditions in these calcula-
tions. Typically, however, the toughness for plane stress is
higher than for plane strain. Due to a lack of data, this issue
was not investigated in this study.

Fig. 5 presents the results of several reliability methods,
including FORM, SORM, and MCIS, used to obtain these
probabilities. There are no meaningful differences in the
solutions from these three methods. In addition, the results
show that accurate estimates of failure probability can be
obtained using FORM and SORM, as compared with the
results obtained using MCIS.

6.2. Example 2: A through-wall-cracked cylinder specimen

Consider a three-dimensional circumferential through-
wall-cracked (TWC) pipe subjected to a remote bending
moment M. The pipe has mean radius R, = 355.6 mm
(14 in.), wall thickness t = 25.4 mm (1 in.), and normalized
crack angle 0/ = 0.125. The pipe is composed of TP304
stainless steel with an operating temperature of 288°C
(550 F). The pipe geometry is shown in Fig. 6.

Table 2 lists the means, COV, and probability distribu-
tions of tensile parameters (E, «, n), fracture toughness
parameter (J;), and bending moment (M). As mentioned
previously, the statistics of the material properties were
obtained from actual TP304 stainless steel data at 288°C
(550 F) [5]. However, the probabilistic characteristics of
M were chosen arbitrarily. For this example, oy =
154.78 MPa (22,450 psi) and v = 0.3.

A finite element mesh for the TWC pipe specimen is

Random variable Mean cov? Probability distribution References
Elastic modulus (F) 182.7 GPa 0.05 Gaussian b
Ramberg—Osgood coefficient («) 8.073 0.439 Lognormal [5]
Ramberg—Osgood exponent (1) 3.8 0.146 Lognormal [5]
Initiation fracture toughness (J;.) 1242.6 kJ/m? 0.47 Lognormal [5]
Bending moment (M) Variable® 0.1 Gaussian b

* COV = standard deviation/mean.
® Arbitrarily assumed.
¢ Varies from 1130 to 2260 kN m (10 X 10°~20 x 10® Ib in.).
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Fig. 7. Finite element mesh of TWC pipe specimen (1/4 model).

shown in Fig. 7. A quarter model was used to take advantage
of the symmetry. Twenty-noded isoparametric solid
elements (C3D20R) from the ABAQUS library were used,
with focused elements at the crack tip. A total of 150
elements and 1098 nodes were used. The stress—strain
curve was modeled using the Ramberg—Osgood equation
(Eq. (1)) in this example as well.

Fig. 8 shows the deterministic comparisons of the
predicted J with the results of the GE/EPRI method [26]
using the mean values of random input for the TWC pipe.
The continuous lines in Fig. 8 represent the values of J
obtained from the GE/EPRI equations using the influence
functions derived by Rahman [6], Kumar et al. [26], and

S. Rahman, J.S. Kim / International Journal of Pressure Vessels and Piping 78 (2001) 261-269

Brust et al. [1]. The solid points in Fig. 8 indicate the J
solutions from this study involving ABAQUS elastic—
plastic analysis. The calculated values of J compare very
well with existing solutions found in the literature. The J
values from this study are comparatively closer to the
Rahman [6] and Brust et al. [1] solutions, which were also
based on three-dimensional solid elements as opposed to the
shell elements used by Kumar et al. [26].

Fig. 9 plots Pg vs E[M], as obtained using FORM, SORM,
and MCIS. No significant differences are found in the prob-
ability estimates from these methods. Comparison of the
MCIS results with the FORM or SORM results indicates
that accurate failure probability estimates can be obtained
using the latter two methods. All probabilistic analyses were
performed using PROFRAC.

The numerical results presented in this paper are derived
solely on EPFM-based failure criterion (i.e. initiation of
crack-growth). The likelihood of plastic collapse is not
addressed in the present analysis. The calculation of the
probability of plastic collapse is much simpler than the
analysis presented in this paper and is thoroughly described
in the current literature [3,5-9].

7. Summary and conclusions

A probabilistic methodology has been developed for elas-
tic—plastic fracture-mechanics analysis of general cracked
structures. The methodology involves nonlinear finite
element analysis using the well-established commercial
codes; statistical models for uncertainty in material consti-
tutive law, fracture toughness, and loads; and computational
reliability methods for evaluating probabilistic characteris-
tics of the J-integral and J-based fracture. The PROFRAC
computer code was developed by implementing all the
numerical methods presented in this study. Two numerical
examples have been presented to illustrate the proposed

M, 1b-in (x10%)
0 5 10 15 20 25 30
7500 ——— : S ——
4 40
7
6250 | Rahman /m
————— Kumar et al. /’ 4 32
5000 |- —-—-— Brustetal. A &
(3] —
£ L . ABAQUS (Ver. 5.5) p/ 4 24 :’.L
2 3750 ] k=
— g
416 2
2500 -
1250 78
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Fig. 8. Comparisons of predicted J for TWC pipe specimen with existing solutions.
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Fig. 9. Probability of failure for TWC pipe specimen by various methods.

methodology for two- and three-dimensional cracked struc-
tures. The results from these examples indicate that the
methodology is capable of determining accurate determinis-
tic and probabilistic characteristics of the J-integral for use
in EPFM.
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