
lable at ScienceDirect

International Journal of Pressure Vessels and Piping 87 (2010) 220e229
Contents lists avai
International Journal of Pressure Vessels and Piping

journal homepage: www.elsevier .com/locate/ i jpvp
A multi-point univariate decomposition method for structural reliability analysis

D. Wei a, S. Rahman b,*

aCaterpillar Technical Center, Mossville, IL 61552, USA
bDepartment of Mechanical & Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA
a r t i c l e i n f o

Article history:
Received 13 December 2008
Received in revised form
12 March 2010
Accepted 24 March 2010

Keywords:
Multiple most probable points
Design point
Beta point
Reliability
Probability of failure
Decomposition method
Univariate method
FORM/SORM
Monte Carlo simulation
* Corresponding author. Tel.: þ1 319 335 5679; fax
E-mail address: rahman@engineering.uiowa.edu (

0308-0161/$ e see front matter Published by Elsevie
doi:10.1016/j.ijpvp.2010.03.021
a b s t r a c t

A new multi-point univariate decomposition method is presented for structural reliability analysis
involving multiple most probable points (MPPs). The method involves a novel function decomposition at
all MPPs that facilitates local univariate approximations of a performance function in the rotated
Gaussian space, Lagrange interpolation for univariate component functions and return mapping to the
standard Gaussian space, and Monte Carlo simulation. In addition to the effort in identifying all MPPs, the
computational effort in the multi-point univariate method can be viewed as performing deterministic
response analysis at user-selected input defined by sample points. Compared with the existing multi-
point FORM/SORM, the multi-point univariate method developed provides a higher-order approximation
of the boundary of the failure domain. Both the point-fitted SORM and the univariate method entail
linearly varying cost with respect to the number of variables. However, the univariate method with less
than nine sample points requires fewer calculations of the performance function than the point-fitted
SORM. Numerical results indicate that the proposed method consistently generates an accurate and
computationally efficient estimate of the probability of failure.

Published by Elsevier Ltd.
1. Introduction

Structural reliability analysis frequently involves calculation of
a component probability of failure

PFhP½gðXÞ < 0� ¼
Z

gðxÞ<0

fXðxÞdx; (1)

where X ¼ fX1;.;XNgT˛RN is a real N-dimensional randomvector
defined on a probability space (U;F ; P) comprising the sample space
U, the s-field F , and the probability measure P; g : RN/R is
a performance function, such that UFhfx : gðxÞ < 0g represents the
failure domain; and fX : RN/R is the joint probability density
function of X, which typically represents loads, material properties,
and geometry. The most common approach to compute the failure
probability in Equation (1) involves the first- and second-order
reliability methods (FORM/SORM) [1e3], which are respectively
based on linear (FORM) and quadratic (SORM) approximations of the
limit-state surface at a most probable point (MPP) in the standard
Gaussian space. When the distance b between the origin and MPP
(a point on the limit-state surface that is closest to the origin), known
as the Hasofer-Lind reliability index, approaches infinity, FORM/
: þ1 319 335 5669.
S. Rahman).
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SORM provide strictly asymptotic solutions. For non-asymptotic
(finite b) applications involving a highly nonlinear performance
function, its linear or quadratic approximation may not be adequate
and, therefore, resultant FORM/SORM predictions should be inter-
preted with caution [4,5]. In latter cases, an importance sampling
method developed by Hohenbichler and Rackwitz [6] can make
FORM/SORM result arbitrarily exact, but it may become expensive if
a large number of costly numerical analysis, such as large-scale finite
element analysis embedded in the performance function, are
involved. In addition, if multiple MPPs exist in either asymptotic or
non-asymptotic applications, or if there are contributions from other
regions around local minima besides the region around a singleMPP,
classical FORM/SORM may yield erroneous estimates of the failure
probability [7e10]. Therefore, methods that can account for both
sources of errors due to high nonlinearity and multiple MPPs are
required for structural reliability analysis.

For reliability problems entailing multiple MPPs, the failure
probability can be estimated by the multi-point FORM/SORM, which
leads to a probability of the union of approximate events [3]. Der
Kiureghian and Dakessian [7] proposed a so-called “barrier”method
to successively find multiple MPPs. Subsequently, FORM/SORM
approximations at each MPP followed by a series system reliability
analysis were employed to estimate the failure probability.While the
multi-point FORM/SORM account for all MPPs, the resultant effects
are limited to first- or second-order approximations of the
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performance function. More recently, Au et al. [8] presented
asymptotic approximations and importance sampling methods for
solving reliability problems withmultiple MPPs. Mahadevan and Shi
[9] proposed amultiple linearizationmethod inwhich the limit-state
surface is approximated usingmultiple linear hyperplanes. However,
for a general reliability analysis involving a large number of random
variables, it is difficult to determine the number of linearization
points and locate them systematically. Gupta and Manohar [10]
proposed a global response surface method, which constructs
a response surface of the limit state by using the global information,
rather than the local information around a single MPP. This method
requires defining a new set of coordinates and a number of shifting
origins in advance. If the performance function is implicit and/or the
number of random variables is very large, it is difficult to apply this
strategy. Recently, the authors have developed a new class of reli-
ability methods, called the mean- [5] and MPP-based [11,12]
dimensional decomposition methods, which are based on a finite
hierarchical expansion of the performance function in terms of input
variables with increasing dimension. Although these decomposition
methods provide higher-order approximations of a performance
function, they cannot account for multiple MPPs [11,12]. Hence,
developing a multi-point decomposition method in the spirit of the
multi-point FORM/SORM that accounts for high nonlinearity and
multiple MPPs is the principal motivation of this work.

This paper presents a newmulti-point univariate decomposition
method for predicting component reliability of mechanical systems
subject to random loads, material properties, and geometry. Section
2 gives a brief exposition of novel function decomposition at anMPP
that facilitates a lower-dimensional approximation of a general
multivariate function. Section 3 describes the proposed univariate
method that involves local univariate approximations of the
performance function with multiple MPPs, Lagrange interpolation
h(u) = 0

u2

β1

mth
(u

1st MPP
(u1

*)1,1(u) = 0

ΩF = {u: h(u) < 0}

FORM

SORMUnivariate

Fig. 1. A performance function with
of univariate component functions, return mapping, and Monte
Carlo simulation. The section also explains the computational effort
and flowchart of the proposed method. Three numerical examples
involving elementary mathematical functions and a structural
dynamics problem illustrate the method developed in Section 4.
Finally, Section 5 provides conclusions from this work.

2. Performance function decomposition at the mth MPP

Consider a continuous, differentiable, real-valued performance
function g(x) that depends on x ¼ fx1;.; xNgT˛RN . The trans-
formed limit state hðuÞ ¼ 0 is the map of gðxÞ ¼ 0 in the standard
Gaussian space (u space), as shown in Fig. 1 for N= 2. Let the
performance function contain M number of MPPs u*

1;.;u*
M with

corresponding distances b1;.; bM (Fig. 1).
For the mth MPP, define an associated local coordinate system

vm ¼ fvm;1;.; vm;Ng, where vm;N is the coordinate in the direction of
theMPP, as depicted in Fig.1. In the vm space, denote themthMPP by
v*m ¼ f0;.;0; bmg and the limit state surface by ymðvmÞ ¼ 0,
which is also a map of the original limit state surface gðxÞ ¼ 0. The
decomposition of a general multivariate function ymðvmÞ, described
by [11e17]

ymðvmÞ ¼ ym;0 þ
XN
i¼1

ym;i
�
vm;i
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼bym;1ðvmÞ

þ
XN

i1;i2 ¼1
i1<i2

ym;i1i2

�
vm;i1 ; vm;i2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼bym;2ðvmÞ

þ.þ ym;12.N
�
vm;1;.; vm;N

�
; (2)
u1

vm,2

vm,1

βm

βM

 MPP
m

*)

Mth MPP
(uM

*)

m,1(u) = 0

M,1(u) = 0

multiple most probable points.
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can be viewed as a finite hierarchical expansion of an output
function in terms of its input variables with increasing dimension,
where ym,0 is a constant, ym;iðvm;iÞ : R1R is a univariate component
function representing individual contribution to ymðvmÞ by input
variable vm;i acting alone, ym;i1i2 ðvm;i1 ; vm;i2 Þ : R21R is a bivariate
component function describing cooperative influence of two input
variables vm;i1 and vm;i2 , and so on. If

bym;SðvmÞ ¼ ym;0 þ
XN
i¼1

ym;i
�
vm;i
�þ XN

i1;i2 ¼1
i1<i2

ym;i1i2

�
vm;i1 ; vm;i2

�

þ.þ
XN

i1;.;iS ¼1
i1<.<iS

ym;i1.iS

�
vm;i1 ;.; vm;is

� ð3Þ

represents a general S-variate approximation of ymðvmÞ, the
univariate (S= 1) approximation bym;1ðvmÞ provides a two-term
approximant of the finite decomposition in Equation (2). Similarly,
bivariate, trivariate, and other higher-variate approximations can be
derived by appropriately selecting the value of S. The fundamental
conjecture underlying this work is that component functions arising
in the function decomposition will exhibit insignificant S-variate
effects cooperatively when S/N, leading to useful lower-variate
approximations of ymðvmÞ [11e17]. In the limit, when S=N, bym;NðvmÞ
converges to the exact function ymðvmÞ. In other words, Equation (3)
generates a hierarchical and convergent sequence of approximations
of ymðvmÞ.

The decompositionpresented in Equation (2) iswell known in the
statistics literature as Analysis of Variance (ANOVA) [13]. This
decomposition, later referred to as high-dimensional model repre-
sentation (HDMR) by Rabitz’s group, was subject to further refine-
ment leading to notable contributions in function approximations,
including the ANOVA-HDMR [14], Cut-HDMR [15], and random
sampling (RS)-HDMR [16]. Readers interested in the fundamental
details of the decomposition method are referred to authors’ past
work [17].

3. Multi-point univariate decomposition method

3.1. Univariate decomposition of performance function

At the mth MPP, consider a univariate (S= 1) approximation of
ymðvmÞ, denoted by

bym;1ðvmÞhbym;1
�
vm;1;.;vm;N

�
¼
XN
i¼1

ym
�
0;.;0;vm;i;0;.;bm

��ðN�1Þymðv*mÞ

¼
XN
i¼1

ym
�
0;.;0;vm;i;0;.;bm

�
;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ym;iðvm;iÞ;
(4)

where ymðv*mÞhymð0;.;0;bmÞ ¼ 0 and ym;iðvm;iÞhymð0;.;0;vm;i;

0;.;bmÞ. Using a multivariate function theorem [17], it can be
shown that the univariate approximation bym;1ðvmÞ leads to the
residual error ymðvmÞ�bym;1ðvmÞ, which includes contributions
from terms of dimension two and higher. For a sufficiently smooth
ymðvmÞ with a convergent Taylor series, the coefficients associated
with higher-dimensional terms are usually much smaller than that
with one-dimensional terms. As such, higher-dimensional terms
contribute less to the function, and therefore, can be neglected.
Nevertheless, Equation (4) includes all higher-order univariate
terms. In contrast, FORM entails a univariate approximation
retaining only linear terms. Hence, Equation (4) should provide in
general a higher-order approximation of the performance function
than FORM. The curvature-fitted SORM [18] has cross-terms, but is
limited to a quadratic approximation. The errors in neglecting the
cross terms, already quantified by Der Kiureghian et al. [19] for
various selections of the rotation matrix, are not alarming, and led
to the development of the point-fitted SORM. If, indeed, the
second-order cross-terms are negligibly small, then the univariate
decomposition may also provide a better approximation than
SORM. Otherwise, a bivariate or higher-variate decomposition may
be required, but they are computationally demanding [5].
3.2. Lagrange interpolation and return mapping

Consider the univariate component function ym;iðvm;iÞhym
ð0;.;0; vm;i;0;.; bmÞ in Equation (4). If for sample points

vm;i ¼ v
ðjÞ
m;i; j ¼ 1;.;n, n function values Ami;jhymð0;.;0;

v
ðjÞ
m;i;0;.; bmÞ; j ¼ 1;.;n; are given, then the function value for an

arbitrary vm;i can be obtained by the Lagrange interpolation

ym;i
�
vm;i
� ¼

Xn
j¼1

fj
�
vm;i
�
ym
�
0;.;0; vðjÞm;i;0;.; bm

�
¼
Xn
j¼1

Ami;jfj
�
vm;i
�
; (5)

where

fj
�
vm;i
� ¼

Yn
k¼1;ksj

�
vm;i � v

ðkÞ
m;i

�
Yn

k¼1;ksj

�
v
ðjÞ
m;i � v

ðkÞ
m;i

� (6)

is the shape function. By using Equations (5) and (6), arbitrarily
many values of yiðvm;iÞ can be generated if n values of that
component function are given. The same procedure is repeated for
all univariate component functions, i.e., for all ym;iðvm;iÞ; i ¼ 1;.;N,
leading to an explicit univariate approximation

bym;1ðVmÞy
XN
i¼1

Xn
j¼1

Ami;jfj
�
Vm;i

�
: (7)

By developing similar decompositions at all MPPs (i.e., for all
m ¼ 1;.;M), univariate approximations by1;1ðV1Þ;.;byM;1ðVMÞ
associated with M number of MPPs can be generated.

The functions by1;1ðV1Þ;.;byM;1ðVMÞ represent M local approxi-
mations in vicinities of MPPs v*1;.; v*M of v1;.;vM spaces,
respectively. To describe these approximations in a common space,
such as the u space, consider a return mapping u ¼ Rmvm, where
Rm ¼ ½Rm;ik ; i; k ¼ 1;.;N;� is an N � N orthogonal rotation matrix
associated with the mth MPP. The matrix Rm˛RN�N has its Nth
column a*

mhu*
m=bm, i.e., Rm ¼ ½Rm;1ja*

m�, where Rm;1˛RN�N�1,
which satisfies a*T

m Rm;1 ¼ 0˛R1�N�1, can be obtained from the
Gram-Schmidt orthogonalization. Consequently, M local approxi-
mations of the performance function in the u space result in

bhm;1ðUÞ ¼
XN
i¼1

Xn
j¼1

Ami;jfj

 XN
k¼1

Rm;kiUk

!
; m ¼ 1;.;M; (8)

as schematically depicted in Fig. 1. Therefore, the actual failure
domain, defined as

UFhfx : gðxÞ < 0g ¼ fu : hðuÞ < 0g; (9)



Fig. 2. Flowchart of the multi-point univariate decomposition method.
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and represented by the shaded area in Fig. 1 can be approximated
by a union of M failure sub-domains bh1;1ðuÞ < 0;.; bhM;1ðuÞ < 0,
thereby yielding the univariate approximation

bUF ¼
n
u : W

M

m¼1
bhm;1ðuÞ < 0

o
: (10)

Note that the boundary of the failure domain bUF can be highly
nonlinear, which depends on how bym;1ðvmÞ or bhm;1ðuÞ are con-
structed. In contrast, FORM/SORM produce only multi-linear or
multi-quadratic boundaries, also plotted in Fig. 1. Therefore, the
failure domain defined by Equation (10) with a Lagrange interpola-
tion with n � 3 should provide a higher-order approximation than
that by the multi-point FORM/SORM.

It is well known that the number and location of sample points
can significantly alter a response surface approximation in a high-
dimensional space. But, in the decompositionproposed, the Lagrange
interpolations (Equations (5)e(7)) are constructed in one-dimen-
sional space; therefore, the resulting response surface approximation
should not be as sensitive as in the N-dimensional space. Neverthe-
less, the number and location of sample points should be selected in
such a way that the resulting univariate approximation is insensitive
to further refinement. The authors’ experience suggests that
a uniform spacingwith three to five sample pointsworks well unless
the input uncertainty or the nonlinearity of the component function
is overly large, inwhich case a larger number of sample pointsmaybe
required.

3.3. Monte Carlo simulation

Once the Lagrange shape functions fjðvm;iÞ and deterministic
coefficients Ami;j; j ¼ 1;.;n; are generated for all i ¼ 1;.;N and
m ¼ 1;.;M, Equation (8) provides an explicit local approximation
of the performance function in terms of the random input U.
Therefore, any probabilistic characteristics of a response, including
its moments and probability density function, can be easily evalu-
ated by performing Monte Carlo simulation on Equation (8). For
a component reliability analysis, the Monte Carlo estimate of the
failure probability employing the proposed univariate approxima-
tion is

PFyP
�
U˛bUF

�
y

1
NS

XNS

l¼1

�jj�
h [M
m¼1

bhm;1

�
uðlÞ
�
<0
i
; (11)

where uðlÞ is the lth realization of U, NS is the sample size, and�jj�½,� is
an indicator function such that �jj� ¼ 1 if uðlÞ is in the failure set (i.e.,
when uðlÞ˛bUF ) and zero otherwise. Since Equations (8) and (10) are
explicit and do not require additional numerical evaluations of
response (e.g., solving governing equations by expensive finite
element analysis), the embedded Monte Carlo simulation can be
efficiently conducted for any sample size.

The proposed method involving multi-point univariate approx-
imation, n-point Lagrange interpolation, and Monte Carlo simula-
tion is defined as themulti-point univariate decomposition method in
this paper. Fig. 2 shows the computational flowchart of the method
developed.

3.4. Computational effort

The multi-point univariate decomposition method requires
evaluation of coefficients Ami;j ¼ ymð0;.;0; vðjÞm;i;0;.; bmÞ; for
j ¼ 1;.;n; i ¼ 1;.;N and m ¼ 1;.;M. Hence, the computa-
tional effort required by the proposed method can be viewed as
numerically evaluating the original performance function at several
deterministic input defined by user-selected sample points. For each
MPP, there are nN numerical evaluations of ymðvmÞ involved in
Equation (5) for all component functions. Therefore, the total cost
entails amaximum ofM½nN� function evaluations in addition to those
required for locating all MPPs. If the sample points include
a common point (e.g., MPP) in each coordinate (see the forthcoming
section), the total number of function evaluations reduces to
M½ðn� 1ÞN�, i.e., n is replaced with n� 1.

An important advantage of the univariate decompositionmethod
over SORM is that it requires less computation of the performance
function when the number of random variables is large. For a reli-
ability problemwith N variables, consider the computational efforts
required by the curvature-fitted SORM [18], the point-fitted SORM
[19], and the univariate decompositionmethod in approximating the
performance function at a specific MPP. The curvature-fitted SORM
for obtaining the Hessian matrix requires 2ðN � 1Þ2 and NðN þ 1Þ=2
calculations using the central- and forward-difference schemes,
respectively. In addition, with the curvature-fitted SORM, an eigen-
value problem needs to be solved. The quadratic cost scaling in the
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curvature-fitted SORM can be significantly reduced by employing
the point-fitted SORM, which, assuming four calculations of the
performance function per fitting point, requires a total of 8ðN � 1Þ
function evaluations, yielding an alternative second-order approxi-
mation without the second-order cross terms [19]. Finally, the
number of computations involved in the univariate decomposition
method is Nðn� 1Þ, which also depends on the number of sample
points (n). A comparison of computational efforts by these methods,
illustrated in Fig. 3, suggests that both the point-fitted SORM and
univariate decomposition method entail linearly varying cost, and
are therefore significantly more efficient than the curvature-fitted
SORM, particularly when N is large. By setting Nðn� 1Þ ¼ 8ðN � 1Þ,
n ¼ 9� 8=N, which approaches 9 when N/N. Therefore, for high-
dimensional reliability problems, the univariate decomposition
method with less than nine sample points requires fewer calcula-
tions of the performance function than the point-fitted SORM.
Typically three to five sample points are adequate, in which case the
computational saving from the univariate decomposition is obvious.
For example, when n ¼ 5, the univariate decomposition method is
less expensive than the point-fitted SORM by a factor of two, as
N/N. When n ¼ 3, the cost saving is even larger and nearly four-
fold. Furthermore, a selection of n ¼ 3 leads to a low-order
approximation of the performance function. Therefore, reliability
problems with lowly nonlinear performance functions, where
quadratic approximations suffice, can be handled by the univariate
decomposition method with much less computational effort.
Numerical examples (see Examples 2 and 3) presented in the
forthcoming section confirm this theoretical observation.

For larger values of n, such as n� 9, the univariate decomposition
method (N/N) requires the same or larger number of computa-
tions than the point-fitted SORM. However, a large value of n in the
univariate decomposition is justified only when the performance
function is highly nonlinear e a situation where reliability estimates
from second-order approximations may not be adequate.

3.5. Remarks

The multi-point univariate decomposition method is predicated
on finding all MPPs that require solving a constrained optimization
problem. Existing methods for solving optimization problems for
locating all existent MPPs, including the global MPP, are usually
heuristic and highly dependent on the nature of the problem being
solved. A common approach is to repeat an MPP search with
distinct initial points, hoping that all MPPs will be found. Unfor-
tunately, this hardly works, as all trials, depending on the selection
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Fig. 3. Computational efforts by SORM and univariate decomposition method.
of the initial points, may lead to the same MPP, even when other
MPPs are present. In this work, a heuristic and robust method,
known as the barrier method and developed by Der Kiureghian and
Dakessian [7], was employed to find multiple MPPs in the example
section. The main idea of the method is to enforce barriers around
known MPPs by modifying the performance function and then
forcing a standard optimization algorithm e for instance, the
Hasofer-Lind-Rackwitz-Fiessler algorithm [20] algorithm e to seek
new MPPs. Although the barrier method has worked well for the
examples studied, it is important to emphasize that no theoretical
proof exists that the method will absolutely find all MPPs for
a general reliability problem.

4. Numerical examples

Three numerical examples involving explicit performance func-
tions from mathematical problems (Examples 1 and 2) and an
implicit performance function from a structural dynamics problem
(Example 3) are presented to illustrate the multi-point univariate
decomposition method. Comparisons have been made with existing
multi-point FORM/SORM and direct Monte Carlo simulation to
evaluate the accuracy and efficiency of the new method. For the
multi-point univariate decompositionmethod, n (=3 or 5) uniformly
distributed points v*m;i � ðn� 1Þ=2; v*m;i � ðn� 3Þ=2;.; v*m;i;.; v*m;i þ
ðn� 3Þ=2; v*m;i þ ðn� 1Þ=2 were deployed at the vm,i-coordinate of
themthMPP, leading toM½ðn� 1ÞN� function evaluations in addition
to those required for locating all MPPs. The multi-point FORM/SORM
also involved Monte Carlo estimates of the failure probability using
their respective approximate failure domains. When comparing
computational efforts by various methods, the number of original
performance function evaluations is selected as the primarymetric in
this paper.

4.1. Example 1 e mathematical functions with Gaussian random
variables

Consider the performance function

gðXÞ ¼ Aþ BðX1 þ DÞp�CðX1 þ DÞ2�X2; (12)

where X ¼ fX1;X2gT˛R2 is a bivariate standard Gaussian random
vector with the mean vector mXhE½X ¼ 0˛R2

i
and the covariance

matrix SXhE½ðX� mXÞðX� mXÞT ¼ I˛R2�2
i

, where I is the two-
dimensional identity matrix; A, B, C, D are real-valued deterministic
parameters; and p is an integer-valued deterministic parameter. By
appropriately selecting these deterministic parameters, component
reliability problems involving a single MPP or multiple MPPs can be
constructed. Three cases involving quadratic, cubic, and quartic
functions, each containing two MPPs, were studied, as follows.

Case I: A= 5, B= 0.5, C= 1,D=�0.1, p= 2 (Quadratic): For Case I,
the quadratic limit-state surface has twoMPPs:u*

1 ¼ ð2:916;1:036Þ
with the Hasofer-Lind reliability index b1 ¼ 3:094, and
u*
2 ¼ ð�2:741;0:966Þwith the index b2 ¼ 2:906, as shown in Fig. 4.

The failure probability was estimated by the proposed univariate
method (n= 3), FORM, curvature- andpoint-fitted SORM, anddirect
Monte Carlo simulation (106 samples). The results considering
either one MPP (single-point) or two MPPs (multi-point) and
associated computational efforts are listed in Table 1. Compared
with the benchmark result of theMonte Carlo simulation, all single-
point methods generate a large amount of error regardless of
whether univariate, FORM, and SORMare employed. This is because
both MPPs have significant contributions to the failure probability.
Therefore, when two MPPs are accounted for, the proposed multi-
point univariate method (PF y 0.00308) and both variants of the
multi-point SORM (PFy 0.00291 and 0.00304) yield highly accurate
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results. The multi-point FORM (PF y 0.00276), which slightly
underpredicts the failure probability, is also fairly accurate. This is
because, errors in approximating failure domains by various
methods occur far away from the origin. Since the performance
function is parabolic, no meaningful difference was observed
between the results of the multi-point univariate method and the
Table 1
Failure probability for quadratic function in Example 1 (Case I).

MPP Reliability Method Failure
probability

Number of function
evaluationsa

1st MPP (u1
*) Single-point univariate

method
0.00202 45

Single-point FORM 0.00183 41
Single-point SORM
(curvature-fitted)

0.00195 186

Single-point SORM
(point-fitted)

0.00197 49

2nd MPP (u2
*) Single-point univariate

method
0.00113 50

Single-point FORM 0.000987 46
Single-point SORM
(curvature-fitted)

0.00106 191

Single-point SORM
(point-fitted)

0.00107 54

Both MPPs
(u1

* and u2
*)

Multi-point univariate
method

0.00308 95

Multi-point FORM 0.00276 87
Multi-point SORM
(curvature-fitted)

0.00291 377

Multi-point SORM
(point-fitted)

0.00304 103

Direct Monte
Carlo simulation

0.00304 1,000,000

a Total number of times the original performance function is calculated.
multi-point SORM. However, a comparison of computational efforts
shows slightly or significantly better efficiency of the proposed
univariate method when compared with the point-fitted or the
curvature-fitted SORM, respectively.

Case II: A= 5, B= 0.5, C= 1.5, D= 2, p= 3 (Cubic): As shown in
Fig. 5, the limit-state surface for Case II also has two MPPs:
u*
1 ¼ ð0;3Þ with b1 ¼ 3, and u*

2 ¼ ð�3:431;0:466Þ with
b2 ¼ 3:462. Table 2 presents similar comparisons of results and
computational efforts by various methods stated earlier. For the
univariate method, a value of n= 5 was selected to capture higher-
order terms of the performance function. The results obtained from
single-point and multi-point methods show a similar trend as in
Case I. However, since the performance function in this case takes on
a cubic form, the multi-point SORM no longer predicts highly
accurate results as in Case I. Compared with the Monte Carlo
simulation (106 samples), the multi-point FORM overestimates the
failure probability by 132 percent and the multi-point SORM
underestimates the failure probability by 9 percent. Since the
performance function is a univariate function (u space) and the first
MPP lies on the u2 axis (i.e, no rotation), the single-point univariate
approximation at that MPP and the multi-point univariate approx-
imation yield the exact failure domain. Hence, both single-point
(first MPP) and multi-point univariate methods predict the same
failure probability estimated by the direct Monte Carlo simulation.
The multi-point univariate method is more accurate than either
variant of the multi-point SORM and requires only a little more
computational effort than the multi-point FORM.

Case III: A= 3, B= 2, C= 1, D= -0.1, p= 4 (Quartic): The final case
involves a quartic limit-state function that also has two MPPs, as
shown in Fig. 6. TheMPPs are: u*

1 ¼ ð0:544;2:881Þwith b1 ¼ 2:932,
and u*

2 ¼ ð�0:364;2:877Þ with b2 ¼ 2:9. The failure probability
estimates by various methods and their computational efforts are
listed in Table 3. For the univariate method, a value of n= 5 was
selected. Due to higher nonlinearity of the performance function in
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Table 2
Failure probability for cubic function in Example 1 (Case II).

MPP Reliability method Failure
probability

Number of function
evaluationsa

1st MPP (u1
*) Single-point univariate

method
0.000721 29

Single-point FORM 0.00135 21
Single-point SORM
(curvature-fitted)

0.00041 159

Single-point SORM
(point-fitted)

0.00041 29

2nd MPP (u2
*) Single-point univariate

method
0.000276 69

Single-point FORM 0.000268 61
Single-point SORM
(curvature-fitted)

0.000277 437

Single-point SORM
(point-fitted)

0.000279 69

Both MPPs
(u1

* and u2
*)

Multi-point univariate
method

0.000721 98

Multi-point FORM 0.00167 82
Multi-point SORM
(curvature-fitted)

0.000646 596

Multi-point SORM
(point-fitted)

0.000651 98

Direct Monte
Carlo simulation

0.000721 1,000,000

a Total number of times the original performance function is calculated.

Table 3
Failure probability for quartic function in Example 1 (Case III).

MPP Reliability Method Failure
probability

Number of function
evaluationsa

1st MPP (u1
*) Single-point univariate

method
0.000954 154

Single-point FORM 0.00169 146
Single-point SORM
(curvature-fitted)

0.000552 439

Single-point SORM
(point-fitted)

0.000519 154

2nd MPP (u2
*) Single-point univariate

method
0.000938 134

Single-point FORM 0.000186 126
Single-point SORM
(curvature-fitted)

0.000564 259

Single-point SORM
(point-fitted)

0.000527 134

Both MPPs
(u1

* and u2
*)

Multi-point univariate
method

0.00101 288

Multi-point FORM 0.00246 272
Multi-point SORM
(curvature-fitted)

0.00081 698

Multi-point SORM
(point-fitted)

0.000764 288

Direct Monte
Carlo simulation

0.00103 1,000,000

a Total number of times the original performance function is calculated.
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Case III than that in Cases I and II, themulti-point FORM/SORM fail to
provide an accurate solution. Compared with the benchmark result
of theMonte Carlo simulation (106 samples), the errors in calculating
the failure probability by the multi-point FORM and the multi-point
SORM are 139 and 23-26 percent, respectively. The multi-point
univariate method is more accurate (error y 2 percent) than the
multi-point FORM/SORMwith a computational effort slightly higher
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Fig. 6. Quartic limit-state surface in Case III (Example 1).
than that required by the multi-point FORM. The higher accuracy of
the univariate method is attributed to a higher-order approximation
of the failure boundary that permits an accurate representation of
theflat region between twoMPPs (see Fig. 6). The underprediction of
the multi-point SORM is due to its second-order approximation,
which cannot capture the flatness of the failure boundary in that
region. Although the multi-point FORM approximates that flat
region well, it fails to capture the nonlinearity of the performance
function on other sides of the MPPs, leading to a significant over-
prediction of the failure probability. Additional cases entailing
higher-order nonlinearity of the performance function can be
created in a similar manner to show a progressive loss of accuracy by
the multi-point FORM/SORM.

The results of Cases I-III demonstrate that the multi-point
univariate method can consistently handle higher-order reliability
problems with multiple MPPs. For all three cases, the boundaries of
failure domains plotted in Figs. 4e6 indicate that the univariate
method yields a better approximation than FORM/SORM, especially
when the performance function is highly nonlinear. The point-fitted
multi-point SORM exhibits a similar computational efficiency of the
multi-point univariate method, because the analysis performed is
only two-dimensional. For higher-dimensional reliability problems,
the computational effort by the point-fitted SORM should grow
larger than that by the univariate method (see Section 3.4). Never-
theless, the results of the multi-point SORM (curvature- or point-
fitted), which captures at most a second-order approximation,
should be carefully interpreted when a reliability problem is highly
nonlinear.

4.2. Example 2 e mathematical function with Non-Gaussian
random variables

A well-known performance function, originally introduced by
Hohenbichler and Rackwitz [21] and subsequently discussed by
others [1,3,7], is

gðXÞ ¼ 18� 3X1 � 2X2; (13)
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Table 4
Failure probability for Example 2 (Transformation T1).

MPP Reliability Method Failure
probability

Number of function
evaluationsa

1st MPP (u1
*) Single-point univariate

method
0.00285 45

Single-point FORM 0.00269 41
Single-point SORM 0.0028 182

2nd MPP (u2
*) Single-point univariate

method
0.000157 105

Single-point FORM 0.000232 101
Single-point SORM 0.000145 244

Both MPPs
(u1

* and u2
*)

Multi-point univariate
method

0.00301 150

Multi-point FORM 0.0029 142
Multi-point SORM 0.00292 426

Direct Monte
Carlo simulation

0.00296 1,000,000

a Total number of times the original performance function is calculated.
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where X ¼ fX1;X2gT˛R2 is a bivariate random vector with the
joint cumulative probability distribution function

FX1X2
ðx1;x2Þ

¼
8<:

1�expð�x1Þ�expð�x2Þþexp½�ðx1þx2þx1x2Þ�;
x1;x2�0;

0; otherwise:
ð14Þ

Due to the symmetry in Equation 14 between x1 and x2, there are
two distinct Rosenblatt transformations [22] depending on the
ordering of variables fx1;x2g and fx2;x1g, which lead to mappings

T1hðx1;x2Þ/ðu1;u2Þ :
(
u1 ¼F�1f1�expð�x1Þg
u2 ¼F�1f1�ð1þx2Þexp½�x2ð1þx1Þ�g

(15)

and

T2hðx2;x1Þ/ðu1;u2Þ :
(
u1 ¼F�1f1�expð�x2Þg
u2 ¼F�1f1�ð1þx1Þexp½�x1ð1þx2Þ�g

;

(16)

respectively, where FðuÞ ¼ R u�Nð1=
ffiffiffiffiffiffi
2p

p
Þexpð�x2=2Þdx is the cumu-

lative distribution function of a standard Gaussian random variable.
Due to the nonlinearity of transformations, the linear limit-state
surface in the x space becomes nonlinear functions in the u space, as
depicted in Fig. 7(a) and (b) for transformations T1 and T2,
respectively.

Regardless of the transformation, each limit-state surface
possesses two distinct MPPs which are: u*

1 ¼ ð2:782;0:0865Þwith
b1 ¼ 2:784, and u*

2 ¼ ð�1:296;3:253Þ with b2 ¼ 3:501 for trans-
formation T1; and u*

1 ¼ ð�1:124;2:399Þwith b1 ¼ 2:649, and u*
2 ¼

ð3:630;0:142Þwith b2 ¼ 3:633 for transformationT2. The univariate
decomposition method and FORM/SORM entailing single and
multiple MPPs were applied to obtain estimates of the failure
probability, which are presented in Tables 4 and 5 for trans-
formations T1 and T2, respectively. Also listed is the reference solu-
tion obtained by the direct Monte Carlo simulation involving 106

samples. For the univariate method, a value of n= 3 was selected.
The tabulated results indicate that the failure probability estimates
based on a single MPP strongly depend on the selected trans-
formation and the particular MPP that is found. If an optimization
algorithm can find only one (e.g., the second MPP) of these two
MPPs, results based on that MPP may contain significant errors
regardless of the reliability method employed. The multi-point
FORM using the transformation T1 yields an excellent result, but also
produces an erroneous result when the transformation T2 is chosen.
In contrast, the multi-point univariate method and the multi-point
curvature-fitted SORM yield excellent estimates of the failure
probability regardless of the transformation invoked. The maximum
errors by the multi-point univariate method, multi-point FORM, and
multi-point SORM are 1.7, 41.2, and 2.7 percent, respectively.
Although the univariate method and SORM have comparable accu-
racies, the multi-point univariate method is more computationally
efficient than the multi-point SORM.

4.3. Example 3 e seismic dynamics of a ten-story building-TMD
system

In this example, consider a 10-story shear building subjected to
seismic groundmotionwith a tunedmass damper (TMD) placed on
the roof, as shown in Fig. 8. This problem, adopted from Der Kiur-
eghian and Dakessian [7], has a slightly different input response
spectrum than the one used in the original reference. The building



Table 5
Failure probability for Example 2 (Transformation T2).

MPP Reliability Method Failure
probability

Number of function
evaluationsa

1st MPP (u1
*) Single-point univariate

method
0.00281 85

Single-point FORM 0.00404 81
Single-point SORM 0.00273 224

2nd MPP (u2
*) Single-point univariate

method
0.00018 55

Single-point FORM 0.00014 51
Single-point SORM 0.00015 196

Both MPPs
(u1

* and u2
*)

Multi-point univariate
method

0.00299 140

Multi-point FORM 0.00417 132
Multi-point SORM 0.00288 420

Direct Monte
Carlo simulation

0.00296 1,000,000

a Total number of times the original performance function is calculated.
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Fig. 9. Normalized pseudo-acceleration response spectrum.
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has random floor masses Mi; i ¼ 1;.;10; and random story stiff-
ness Ki; i ¼ 1;.;10. The TMD has a random mass M0 and random
stiffness K0. The combined system has random modal damping
ratios zi; i ¼ 0;.;10. The input motion is defined by a pseudo-
acceleration response spectrum AðT ; zÞ ¼ SHðzÞaðTÞ, where T is the
period, S = 0.61 is a scale factor, HðzÞ is a dampingedependent
correction factor defined by the Applied Technology Council [23], and
aðTÞ is the pseudo-acceleration response spectrum shape for a 5
percent damping, as shown in Fig. 9. The TMD is effective in
reducing the dynamic response of the building over a narrow band
of frequencies, providing best results when its natural frequency
u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0=m0

p
is perfectly tuned to the fundamental frequency of

the building. In reality, due to uncertainties in mass, stiffness, and
damping properties, perfect tuning between the TMD and the
building may not occur. As a result, the TMD can be over-tuned or
under-tuned, leading to two distinct MPPs when conducting reli-
ability analysis of a combined building-TMD system.

For the present reliability analysis, consider the limit-state
function

gðXÞ ¼ V0 � VbaseðXÞ; (17)

where X ¼ fM0;M1;.;M10;K0;K1;.;K10; z0; z1;.; z10gT˛R33 is
a random vector consisting of 33 independent random variables,
TMD: M0, K0, ζ0

Building:

Floor mass: Mi,

Story stiffness: Ki

Modal damping ratio: ζi

Fig. 8. A ten-story building-TMD system (Example 3).
VbaseðXÞ is the base shear response of the building which is an
implicit function of X, and V0 ¼ 1000kip is an allowable threshold.
Each of these random variable is lognormally distributed with
respective means and coefficients of variations listed in Table 6.
The base shear is computed by combining modal responses of the
11-DOF building-TMD system using the CQC rule [24]. Each reali-
zation of X involves an eigenvalue analysis of the system, the
computation of themodal contributions to the base shear, and their
combination according to the CQC rule.

Starting from the mean input, the first MPP was found with
a value of the Hasofer-Lind reliability index b1 ¼ 1:137 (over-
tuned). The second MPP was located with the corresponding index
b2 ¼ 1:846 (under-tuned). Table 7 summarizes various estimates of
the failure probability, based on single- and multi-point univariate
decomposition methods and FORM/SORM. These results are
compared with the solution using the direct Monte Carlo simulation
employing 5000 samples. For the univariate method, a value of n= 3
was selected. Failure probability estimates by all methods that are
based on a single MPP improve when both MPPs are considered.
Both the multi-point SORM (curvature-fitted) and multi-point
univariate method provide very accurate results. However, by
comparing the number of function evaluations, also listed in Table 7,
the multi-point univariate decomposition method is more compu-
tationally efficient than the multi-point curvature-fitted SORM.

In Examples 2 and 3, the point-fitted SORM is expected to yield
results as accurate as those obtained from the curvature-fitted
SORM. Therefore, both variants of the multi-point SORM and the
multi-point univariate decomposition provide satisfactory esti-
mates of the failure probability in the last two examples. The
fundamental reason is that a quadratic approximation of both
performance functions is adequate in the vicinity of MPPs. Lowly
nonlinear performance functions in the vicinity of MPPs, observed
in Fig. 7(a) and (b), explain why the multi-point FORM may also
perform well in Example 2. Indeed, the low nonlinearity in Exam-
ples 2 and 3 provide the rationale for selecting a low value of n in
Table 6
Statistical properties of random input for Example 3.

Random variable Mean Coefficient of variation Probability
distribution

M1,. ,M10 193 kip/g 0.2 Lognormal
K1,. ,K10 1200 kip/in 0.2 Lognormal
M0 158 kip/g 0.2 Lognormal
K0 22 kip/in 0.2 Lognormal
z0,. , z10 0.05 0.3 Lognormal



Table 7
Failure probability for Example 3.

MPP Reliability method Failure
probability

Number of function
evaluationsa

1st MPP (u1
*) Single-point univariate

method
0.1422 536

Single-point FORM 0.1278 470
Single-point SORM 0.1401 1593

2nd MPP (u2
*) Single-point univariate

method
0.0314 737

Single-point FORM 0.0324 671
Single-point SORM 0.0295 1794

Both MPPs
(u1

* and u2
*)

Multi-point univariate
method

0.163 1273

Multi-point FORM 0.151 1141
Multi-point SORM 0.161 3387
Direct Monte
Carlo simulation

0.163 5000

a Total number of times the original performance function is calculated.
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the univariate decomposition method. Nevertheless, in Example 3
(N ¼ 33;n ¼ 3), the total numbers of function evaluations by the
proposed method are: (1) 1st MPP: 470ðFORMÞ þ ð3� 1Þ�
33 ¼ 536; (2) 2nd MPP: 671ðFORMÞ þ ð3� 1Þ � 33 ¼ 737. In
contrast, the point-fitted SORM would have required the following
numbers of evaluations: (1) 1st MPP: 470ðFORMÞ þ 8�
ð33� 1Þ ¼ 726; (2) 2nd MPP: 671ðFORMÞ þ 8� ð33� 1Þ ¼ 927.
Therefore, both versions of SORM are more expensive than the
proposed univariate method with a low n e a claim supported by
Fig. 3 in Section 3.4. The comparison suggests that for lowly
nonlinear problems where the multi-point SORM is adequate, the
univariate method provides failure probability estimates as accu-
rate as existingmethods, but is computationally more efficient than
either the curvature- or the point-fitted SORM.

5. Summary and conclusions

A multi-point univariate decomposition method was developed
for solving component reliability problems involving multiple most
probable points (MPPs). The method is based on: (1) a novel
function decomposition at all MPPs that facilitates local univariate
approximations of a performance function in the rotated Gaussian
space, (2) Lagrange interpolation for univariate component func-
tions and return mapping to the standard Gaussian space, and (3)
Monte Carlo simulation. The proposed decomposition results in an
approximate failure domain that is constructed by a union of failure
sub-domains associated with all MPPs. The boundary of the
approximate failure domain can be highly nonlinear, which
consists of explicit functions of random input variables. Hence, the
embedded Monte Carlo simulation can be conducted for an arbi-
trarily large sample size. In addition to the effort in identifying all
MPPs, the computational effort in the multi-point method devel-
oped can be viewed as performing deterministic response analysis
at user-selected input defined by sample points. Comparedwith the
multi-point FORM/SORM available in the current literature, the
multi-point univariate method provides higher-order approxima-
tions of the boundary of the failure domain. Both the point-fitted
SORM and the univariate method entail linearly varying cost with
respect to the number of variables. However, the univariate method
with less than nine sample points requires fewer calculations of the
performance function than the point-fitted SORM.

Three numerical examples involving elementary mathematical
functions and a structural dynamics problem illustrate the proposed
method. Comparisons were made with existing multi-point FORM/
SORM and direct Monte Carlo simulation to evaluate the accuracy
and computational efficiency of the univariate method developed.
Results indicate that the multi-point univariate method consistently
provides an accurate and computationally efficient estimate of the
probability of failure. For lowly nonlinear problemswhere themulti-
point SORM is adequate, the univariate method provides failure
probability estimates as accurate as existing methods, but is
computationally more efficient than either the curvature- or the
point-fitted SORM.
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