
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2014; 98:881–916
Published online 7 April 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.4659

Novel computational methods for high-dimensional stochastic
sensitivity analysis

Sharif Rahman*,† and Xuchun Ren

College of Engineering, The University of Iowa, Iowa City, Iowa 52242, U.S.A.

SUMMARY

This paper presents three new computational methods for calculating design sensitivities of statistical
moments and reliability of high-dimensional complex systems subject to random input. The first method rep-
resents a novel integration of the polynomial dimensional decomposition (PDD) of a multivariate stochastic
response function and score functions. Applied to the statistical moments, the method provides mean-square
convergent analytical expressions of design sensitivities of the first two moments of a stochastic response.
The second and third methods, relevant to probability distribution or reliability analysis, exploit two dis-
tinct combinations built on PDD: the PDD-saddlepoint approximation (SPA) or PDD-SPA method, entailing
SPA and score functions; and the PDD-Monte Carlo simulation (MCS) or PDD-MCS method, utilizing the
embedded MCS of the PDD approximation and score functions. For all three methods developed, the sta-
tistical moments or failure probabilities and their design sensitivities are both determined concurrently from
a single stochastic analysis or simulation. Numerical examples, including a 100-dimensional mathemati-
cal problem, indicate that the new methods developed provide not only theoretically convergent or accurate
design sensitivities, but also computationally efficient solutions. A practical example involving robust design
optimization of a three-hole bracket illustrates the usefulness of the proposed methods. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Stochastic sensitivity analysis plays a central role in robust design optimization (RDO) and
reliability-based design optimization (RBDO) of complex systems. For calculating design sensi-
tivities of a stochastic response of interest, the finite-difference (FD) method [1] constitutes the
most general and straightforward approach, but it mandates repeated stochastic analyses for differ-
ent instances of design variables. Therefore, for practical design optimizations, the FD method is
very expensive, if not prohibitive. The two other prominent methods, the infinitesimal perturbation
analysis [2] and the score function method [3], have been mostly viewed as competing methods,
where both stochastic responses and sensitivities can be obtained from a single stochastic simula-
tion. However, there are additional requirements of regularity conditions, in particular smoothness
of the performance function or the probability measure. Both methods, when valid, are typically
employed in conjunction with crude Monte Carlo simulation (MCS). Unfortunately, for optimiza-
tion of complex mechanical systems, where stochastic response and sensitivity analyses are required
at each design iteration, even a single MCS is impractical, as each deterministic trial of simulation
often requires expensive finite-element or other numerical calculations [4].
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The dimensional decomposition is a finite, hierarchical, and convergent expansion of a mul-
tivariate output function in terms of its input variables with increasing dimensions [5–8]. The
decomposition ameliorates the curse of dimensionality [9] to some extent by developing an input–
output behavior of complex systems with low effective dimensions [10], wherein the degrees of
interactions between input variables attenuate rapidly or vanish altogether. Based on a coupling
between dimensional decomposition and score function, Rahman [4] developed an efficient method
for calculating design sensitivities of stochastic systems. The method, which sidesteps the need for
crude MCS, is capable of estimating both the probabilistic response and its sensitivity from a sin-
gle stochastic analysis without requiring performance function gradients. Another related method,
proposed by Huang and Zhang [11], combines Daniel’s saddlepoint approximation (SPA) [12] with
Xu and Rahman’s dimension-reduction integration technique [13] to perform stochastic sensitivity
analysis. In their method, the sensitivity of reliability through SPA is connected to the sensitivi-
ties of moments of the performance function. To calculate the sensitivities of moments, the kernel
functions, similar to the score functions, are used with dimension-reduction integration, which is
the same as the dimensional decomposition exploited by Rahman [4]. Nonetheless, Huang and
Zhang’s method offers a few additional advantages: the tail probabilistic characteristics of a stochas-
tic response, if they closely follow the exponential family of distributions, are accurately estimated
by SPA; furthermore, the embedded MCS of Rahman [4] for calculating sensitivity of reliability is
avoided. It is important to clarify that the ‘dimensional decomposition’ and ‘dimension-reduction’
concepts invoked by these two sensitivity methods are the same as the referential dimensional
decomposition (RDD) formally presented in latter works [8, 14]. Therefore, both methods essen-
tially employ RDD for multivariate function approximations, where the mean values of random
input are treated as the reference point [13]. The developments of these methods were motivated
by the fact that RDD requires only function evaluations, as opposed to high-dimensional inte-
grals required by another dimensional decomposition, known as the analysis-of-variance (ANOVA)
dimensional decomposition [6] or its polynomial version, the polynomial dimensional decom-
position (PDD) [15, 16]. However, a recent error analysis [8] reveals sub-optimality of RDD
approximations, meaning that an RDD approximation, regardless of how the reference point is
chosen, cannot be better than an ANOVA approximation for identical degrees of interaction. The
analysis also finds ANOVA approximations to be exceedingly more precise than RDD approxima-
tions at higher-variate truncations. Therefore, a more precise function decomposition, such as the
PDD [15, 16], which inherits all desirable properties of the ANOVA dimensional decomposition,
should be employed for sensitivity analysis.

This paper presents three new computational methods for calculating design sensitivities of sta-
tistical moments and reliability of high-dimensional complex systems subject to random input. The
first method represents a novel integration of PDD of a multivariate stochastic response function
and Fourier-polynomial expansions of score functions associated with the probability measure of
the random input. Applied to the statistical moments, the method provides analytical expressions of
design sensitivities of the first two moments of a stochastic response. The second and third methods,
relevant to probability distribution or reliability analysis, exploit two distinct combinations grounded
in PDD: the PDD-SPA method, entailing SPA and score functions; and the PDD-MCS method, uti-
lizing the embedded MCS of PDD approximation and score functions. Section 2 describes the PDD
approximation of a multivariate function, resulting in explicit formulae for the first two moments,
and the PDD-SPA and PDD-MCS methods for reliability analysis. Section 3 defines score func-
tions and unveils new closed-form formulae or numerical procedures for design sensitivities of
moments. The convergence of the sensitivities of moments by the proposed method is also proved
in this section. Section 4 describes the PDD-SPA and PDD-MCS methods for sensitivity analysis
and explains how the effort required to calculate the failure probability also delivers its design sen-
sitivities, sustaining no additional cost. The calculation of PDD expansion coefficients, required in
sensitivity analyses of both moments and failure probability, is discussed in Section 5. In Section 6,
six numerical examples are presented to probe the convergence properties, accuracy, and compu-
tational efficiency of the proposed methods, including design optimization of a three-hole bracket.
Finally, conclusions are drawn in Section 7.
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2. POLYNOMIAL DIMENSIONAL DECOMPOSITION FOR STOCHASTIC ANALYSES

Let N;N0;R, and RC0 represent the sets of positive integer (natural), non-negative integer, real, and
non-negative real numbers, respectively. For k 2 N, denote by Rk the k-dimensional Euclidean
space and by Nk

0 the k-dimensional multi-index space. These standard notations will be used
throughout the paper.

Consider a measurable space .˝d;Fd/, where ˝d is a sample space and Fd is a � -field on ˝d.
Defined over .˝d;Fd/, let ¹Pd W Fd ! Œ0; 1�º be a family of probability measures, where for
M 2 N andN 2 N;d D .d1; � � � ; dM / 2 D is an RM -valued design vector with non-empty closed
set D � RM , and X WD .X1; � � � ; XN / W .˝d;Fd/ ! .RN ;BN / be an RN -valued input random
vector with BN representing the Borel � -field on RN , describing the statistical uncertainties in
loads, material properties, and the geometry of a complex mechanical system. The probability law of
X is completely defined by a family of the joint probability density functions (PDF) ¹fX.xI d/; x 2
RN ; d 2 Dº that are associated with probability measures ¹Pd; d 2 Dº, so that the probability
triple .˝d;Fd; Pd/ of X depends on d. A design variable dk can be any distribution parameter or a
statistic � for instance, the mean or standard deviation � of one or more random variables.

2.1. Polynomial dimensional decomposition

Let y.X/ be a real-valued, square-integrable, measurable transformation on .˝d;Fd/, describing
the relevant performance function of a complex system. It is assumed that y W .RN ;BN /! .R;B/
is not an explicit function of d, although y implicitly depends on d via the probability law of
X. Assuming independent coordinates of X, its joint PDF is expressed by a product, fX.xI d/ DQiDN
iD1 fXi .xi I d/, of marginal PDF fXi W R ! RC0 of Xi ; i D 1; � � � ; N , defined on its probabil-

ity triple .˝i;d;Fi;d; Pi;d/ with a bounded or an unbounded support on R. Then, for a given subset
u � ¹1; � � � ; N º, fX�u.x�uId/ WD

QN
iD1;i…u fXi .xi Id/ defines the marginal density function of

X�u WD X¹1;��� ;N ºnu.

2.1.1. ANOVA dimensional decomposition. The ANOVA dimensional decomposition, expressed by
the recursive form [6–8]

y.X/ D
X

u�¹1;��� ;N º

yu.XuI d/; (1)

y;.d/ D
Z
RN

y.x/fX.xI d/dx; (2)

yu.XuId/ D
Z
RN�juj

y.Xu; x�u/fX�u.x�uId/dx�u �
X
v�u

yv.XvId/; (3)

is a finite, hierarchical expansion of y in terms of its input variables with increasing dimensions,
where u � ¹1; � � � ; N º is a subset with the complementary set �u D ¹1; � � � ; N ºnu and cardinality
0 6 juj 6 N , and yu is a juj-variate component function describing the interactive effect of Xu D�
Xi1 ; � � � ; Xijuj

�
; 1 6 i1 < � � � < ijuj 6 N , a subvector of X. The summation in Equation (1)

comprises 2N terms, with each term depending on a group of variables indexed by a particular
subset of ¹1; � � � ; N º, including the empty set ;.

The ANOVA component functions yu;; ¤ u � ¹1; � � � ; N º; have two remarkable properties: (1)
the component functions yu, ; ¤ u � ¹1; � � � ; N º, have zero means; and (2) any two distinct com-
ponent functions yu and yv , where u � ¹1; � � � ; N º; v � ¹1; � � � ; N º, and u ¤ v, are orthogonal.
Further details are available elsewhere [8].
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Remark 1
The coefficient y; D EdŒy.X/� in Equation (2) is a function of the design vector d; which describes
the probability distribution of the random vector X. Therefore, the adjective ‘constant’ used to
describe y; should be interpreted with respect to X, not d. A similar condition applies for the
non-constant component functions yu;; ¤ u � ¹1; � � � ; N º, which also depend on d.

2.1.2. Orthonormal polynomials and stochastic expansions. Let ¹ ij .xi I d/I j D 0; 1; � � � º be a set
of univariate, orthonormal polynomial basis functions in the Hilbert space L2.˝i;d;Fi;d; Pi;d/ that
is consistent with the probability measure Pi;d or fXi .xi Id/dxi of Xi for a given design d. For ; ¤

u D ¹i1; � � � ; ijujº � ¹1; � � � ; N º, where 1 6 juj 6 N , let
�
�
pDjuj
pD1 ˝ip ;d;�

pDjuj
pD1 Fip ;d;�

pDjuj
pD1 Pip ;d

�
be the product probability triple of Xu D

�
Xi1 ; � � � ; Xijuj

�
. Denote the associated space of the

juj-variate component functions of y by

L2
�
�
pDjuj
pD1 ˝ip ;d;�

pDjuj
pD1 Fip ;d;�

pDjuj
pD1 Pip ;d

�
WD

²
yu W

Z
Rjuj

y2u.xuId/fXu.xuId/dxu <1
³
;

(4)
which is a Hilbert space. Because the joint density of Xu is separable (independence of Xi ; i 2 u/,
that is, fXu.xuId/ D

Qjuj
pD1 fXip .xip Id/, the product  ujjuj.XuId/ WD

Qjuj
pD1  ipjp .Xip Id/,

where jjuj D .j1; � � � ; jjuj/ 2 N juj0 , a juj-dimensional multi-index, constitutes a multivari-

ate orthonormal polynomial basis in L2
�
�
pDjuj
pD1 ˝ip ;d;�

pDjuj
pD1 Fip ;d;�

pDjuj
pD1 Pip ;d

�
. Two important

properties of these product polynomials from tensor products of Hilbert spaces are as follows.

Proposition 2
The product polynomials  ujjuj.XuId/;; ¤ u � ¹1; � � � ; N º; j1; � � � ; jjuj ¤ 0;d 2 D, have zero
means, that is,

Ed
�
 ujjuj.XuId/

�
D 0: (5)

Proposition 3
Any two distinct product polynomials  ujjuj.XuId/ and  vkjvj.XvId/ for d 2 D, where ; ¤ u �
¹1; � � � ; N º;; ¤ v � ¹1; � � � ; N º; j1; � � � ; jjuj ¤ 0; k1; � � � ; kjvj ¤ 0, are uncorrelated, and each
has unit variance, that is,

Ed
�
 ujjuj.XuId/ vkjvj.XvI d/

�
D

²
1 if u D vI jjuj D kjvj;

0 otherwise.
(6)

Remark 4
Given a probability measure Pi;d of any random variable Xi , the well-known three-term recurrence
relation is commonly used to construct the associated orthogonal polynomials [16, 17]. Form 2 N,
the first m recursion coefficient pairs are uniquely determined by the first 2m moments of Xi that
must exist. When these moments are exactly calculated, they lead to exact recursion coefficients,
some of which belong to classical orthogonal polynomials. For an arbitrary probability measure,
approximate methods, such as the Stieltjes procedure, can be employed to obtain the recursion
coefficients [16, 17].

The orthogonal polynomial expansion of a non-constant juj-variate ANOVA component function
in Equation (3) becomes [15, 16]

yu.XuId/ D
X

jjuj2N
juj
0

j1;��� ;jjuj¤0

Cujjuj.d/ ujjuj.XuId/ (7)

for any ; ¤ u � ¹1; � � � ; N º with

Cujjuj.d/ WD
Z
RN

y.x/ ujjuj.xuId/fX.xI d/dx (8)
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representing the corresponding expansion coefficient. Similar to y;, the coefficient Cujjuj also
depends on the design vector d. When u D ¹iº; i D 1; � � � ; N , the univariate component functions
and expansion coefficients are

y¹iº.Xi Id/ D
1X
jD1

Cij .d/ ij .Xi Id/ (9)

and Cij .d/ WD C¹iº.j /.d/, respectively. When u D ¹i1; i2º; i1 D 1; � � � ; N � 1; i2 D i1 C 1; � � � ; N ,
the bivariate component functions and expansion coefficients are

y¹i1;i2º.Xi1 ; Xi2 Id/ D
1X
j1D1

1X
j2D1

Ci1i2j1j2.d/ i1j1.Xi1 Id/ i2j2.Xi2 I d/ (10)

and Ci1i2j1j2.d/ WD C¹i1;i2º.j1;j2/.d/, respectively, and so on. Using Propositions 2 and 3, all com-
ponent functions yu;; ¤ u � ¹1; � � � ; N º, are found to satisfy the annihilating conditions of the
ANOVA dimensional decomposition. The end result of combining Equations (1)–(3) and (7) is the
PDD [15, 16],

y.X/ D y;.d/C
X

;¤u�¹1;��� ;N º

X
jjuj2N

juj
0

j1;��� ;jjuj¤0

Cujjuj.d/ ujjuj.XuId/; (11)

providing a hierarchical expansion of y in terms of an infinite number of coefficients and orthonor-
mal polynomials. In practice, the number of coefficients or polynomials must be finite, say, by
retaining at most mth-order polynomials in each variable. Furthermore, in many applications,
the function y can be approximated by a sum of at most S -variate component functions, where
S 2 NI 1 6 S 6 N , resulting in the S -variate, mth-order PDD approximation

QyS;m.X/ D y;.d/C
X

;¤u�¹1;��� ;Nº
16juj6S

X
jjuj2N

juj
0
;jjjjujjj16m

j1;��� ;jjuj¤0

Cujjuj.d/ ujjuj.XuId/; (12)

containing
PS
kD0

�
N
k

�
mk number of PDD coefficients and corresponding orthonormal polynomials.

The inner sum of Equation (12) contains the1�norm jjjjujjj1 WD max
�
j1; � � � ; jjuj

�
2 N juj0 and

precludes j1; � � � ; jjuj ¤ 0, that is, the individual degree of each variable Xi in  ujjuj ; i 2 u, can
not be zero because yu is a zero-mean strictly juj�variate function. Because of its additive structure,
the approximation in Equation (12) includes degrees of interaction among at most S input variables
Xi1 ; � � � ; XiS ; 1 6 i1 6 � � � 6 iS 6 N . For instance, by selecting S D 1 and 2, the functions

Qy1;m.X/ D y; C
NX
iD1

mX
jD1

Cij .d/ ij .Xi Id/ (13)

and

Qy2;m.X/ D y;.d/C
NX
iD1

mX
jD1

Cij .d/ ij .Xi Id/

C

N�1X
i1D1

NX
i2Di1C1

mX
j1D1

mX
j2D1

Ci1i2j1j2.d/ i1j1.Xi1 I d/ i2j2.Xi2 Id/;

(14)

respectively, provide univariate and bivariatemth-order PDD approximations, contain contributions
from all input variables, and should not be viewed as first-order and second-order approxima-
tions, nor as limiting the nonlinearity of y. Depending on how the component functions are
constructed, arbitrarily high-order univariate and bivariate terms of y could be lurking inside Qy1;m
and Qy2;m. When S ! N and m ! 1; QyS;m converges to y in the mean-square sense, permitting
Equation (12) to generate a hierarchical and convergent sequence of approximations of y. Readers
interested in further details of PDD are referred to the authors’ past works [15, 16].
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DOI: 10.1002/nme



886 S. RAHMAN AND X. REN

2.2. Statistical moment analysis

Let m.r/.d/ WD EdŒy
r.X/�, if it exists, define the raw moment of y of order r , where r 2 N. Given

an S -variate,mth-order PDD approximation QyS;m.X/ of y.X/, let Qm.r/S;m.d/ WD Ed

h
QyrS;m.X/

i
define

the raw moment of QyS;m of order r . The following subsections describe the explicit formulae or
analytical expressions for calculating the moments by PDD approximations.

2.2.1. First-order and second-order moments. Applying the expectation operator on QyS;m.X/ and
Qy2S;m.X/, and recognizing Propositions 2 and 3, the first moment or mean [18]

Qm
.1/
S;m.d/ WD Ed Œ QyS;m.X/� D y;.d/ D EdŒy.X/� DW m.1/.d/ (15)

of the S -variate, mth-order PDD approximation matches the exact mean of y, regardless of S or m,
whereas the second moment [18]

Qm
.2/
S;m.d/ WD Ed

�
Qy2S;m.X/

�
D y2;.d/C

X
;¤u�¹1;��� ;Nº
16juj6S

X
jjuj2N

juj
0
;jjjjujjj16m

j1;��� ;jjuj¤0

C 2ujjuj
.d/ (16)

is calculated as the sum of squares of all expansion coefficients of QyS;m.X/. Clearly, the approximate
second moment in Equation (16) approaches the exact second moment

m.2/.d/ WD Ed
�
y2.X/

�
D y2;.d/C

X
;¤u�¹1;��� ;N º

X
jjuj2N

juj
0

j1;��� ;jjuj¤0

C 2ujjuj
.d/ (17)

of y when S ! N and m!1. The mean-square convergence of QyS;m is guaranteed as y, and its
component functions are all members of the associated Hilbert spaces. In addition, the variance of
QyS;m.X/ is also convergent.

For the two special cases, S D 1 and S D 2, the univariate and bivariate PDD approximations
yield the same exact mean value y;.d/, as noted in Equation (15). However, the respective second-
moment approximations,

Qm
.2/
1;m.d/ D y

2
;.d/C

NX
iD1

mX
jD1

C 2ij .d/ (18)

and

Qm
.2/
2;m.d/ D y

2
;.d/C

NX
iD1

mX
jD1

C 2ij .d/C
N�1X
i1D1

NX
i2Di1C1

mX
j2D1

mX
j1D1

C 2i1i2j1j2.d/; (19)

differ, depend onm, and progressively improve as S becomes larger. Recent works on error analysis
indicate that the second-moment properties obtained from the ANOVA dimensional decomposi-
tion, which leads to PDD approximations, are superior to those derived from dimension-reduction
methods that are grounded in RDD [8, 14].

2.2.2. Higher-order moments. When calculating higher-order .2 < r <1/ moments by the PDD
approximation, no explicit formulae exist for a general function y or the probability distribution of
X. In which instance, two options are proposed to estimate the higher-order moments.

Option I entails expanding the r th power of the PDD approximation of y by

QyrS;m.X/ D g;.d/C
X

;¤u�¹1;��� ;Nº
16juj6min.rS;N/

gu.XuId/ (20)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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in terms of a constant g;.d/ and at most min.rS;N /-variate polynomial functions gu.XuI d/ and
then calculating the moment

Qm
.r/
S;m.d/ WD

Z
RN
QyrS;m.x/fX.xI d/dx

D g;.d/C
X

;¤u�¹1;��� ;Nº
16juj6min.rS;N/

Z
Rjuj

gu.xuId/fXu.xuId/dxu
(21)

by integration, if it exists. For well-behaved functions, including many encountered in practical
applications, Qm.r/S;m.d/ should render an accurate approximation of m.r/.d/, the r th-order moment
of y.X/, although there is no rigorous mathematical proof of convergence when r > 2. Note that
Equation (21) involves integrations of elementary polynomial functions and does not require any
expensive evaluation of the original function y. Nonetheless, because QyS;m.X/ is a superposition of
at most S -variate component functions of independent variables, the largest dimension of the inte-
grals in Equation (21) is min.rS;N /. Therefore, Option I mandates high-dimensional integrations
if min.rS;N / is large. In addition, if rS > N and N is large, then the resulting N -dimensional
integration is infeasible.

As an alternative, Option II, relevant to large N , creates an additional NS -variate, Nmth-order PDD
approximation

Q́ NS; Nm.X/ D ´;.d/C
X

;¤u�¹1;��� ;Nº

16juj6 NS

X
jjuj2N

juj
0
;jjjjujjj16 Nm

j1;��� ;jjuj¤0

NCujjuj.d/ ujjuj.XuId/ (22)

of QyrS;m.X/, where NS and Nm, potentially distinct from S and m, are accompanying truncation
parameters, ´;.d/ WD

R
RN Qy

r
S;m.x/fX.xId/dx, and NCujjuj.d/ WD

R
RN Qy

r
S;m.x/ ujjuj.xuI d/

fX.xI d/dx are the associated PDD expansion coefficients of Q́ NS; Nm.X/. Replacing QyrS;m.x/ with
Q́ NS; Nm.x/, the first line of Equation (21) produces

Qm
.r/
S;m.d/ D

Z
RN
Q́ NS; Nm.x/fX.xId/dx DW ´;.d/: (23)

Then the evaluation of ´;.d/ from the definition, which also requires N -dimensional integration,
leads Equation (23) back to Equation (21), raising the question of why Option II is introduced.
Indeed, the distinction between the two options forms when the constant ´;.d/ is approximately
calculated by dimension-reduction integration, to be explained in Section 5, entailing at most NS -
dimensional integrations. Nonetheless, if NS � min.rS;N /, then a significant dimension reduction
is possible in Option II for estimating higher-order moments. In other words, Option II, which is
an approximate version of Option I, may provide efficient solutions to high-dimensional problems,
provided that a loss of accuracy in Option II, if any, is insignificant. The higher-order moments are
useful for approximating the probability distribution of a stochastic response or reliability analysis,
including their sensitivity analyses, and will be revisited in the next subsection.

2.3. Reliability analysis

A fundamental problem in reliability analysis entails calculation of the failure probability

PF .d/ WD Pd ŒX 2 �F � D
Z
RN

I�F .x/fX.xI d/dx DW Ed
�
I�F .X/

�
; (24)

where �F is the failure set and I�F .x/ is the associated indicator function, which is equal to one
when x 2 �F and zero otherwise. Depending on the nature of the failure domain�F , a component
or a system reliability analysis can be envisioned. For component reliability analysis, the failure
domain is often adequately described by a single performance function y.x/, for instance, �F WD
¹x W y.x/ < 0º. In contrast, multiple, interdependent performance functions yi .x/; i D 1; 2; � � � ;

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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are required for system reliability analysis, leading, for example, to �F WD ¹x W [iyi .x/ < 0º
and �F WD ¹x W \iyi .x/ < 0º for series and parallel systems, respectively. In this subsection, two
methods are presented for estimating the failure probability. The PDD-SPA method, which blends
the PDD approximation with SPA, is described first. Then the PDD-MCS method, which exploits
the PDD approximation for MCS, is elucidated.

2.3.1. The PDD-SPA method. Let Fy.�/ WD PdŒy 6 �� be the CDF of y.X/. Assume that the PDF
fy.�/ WD dFy.�/=d� exists and suppose that the cumulant generating function (CGF)

Ky.t/ WD ln

²Z C1
�1

exp.t�/fy.�/d�

³
(25)

of y converges for t 2 R in some non-vanishing interval containing the origin. Using inverse
Fourier transformation, exponential power series expansion, and Hermite polynomial approxima-
tion, Daniels [12] developed an SPA formula to approximately evaluate fy.�/. However, the success
of such formula is predicated on how accurately the CGF and its derivatives, if they exist, are
calculated. In fact, determining Ky.t/ is immensely difficult because it is equivalent to knowing all
higher-order moments of y. To mitigate this problem, consider the Taylor series expansion of

Ky.t/ D
X
r2N

�.r/t r

rŠ
(26)

at t D 0, where �.r/ WD d rKy.0/=dt r ; r 2 N, is known as the r th-order cumulant of y.X/. If some
of these cumulants are effectively estimated, then a truncated Taylor series provides a useful means
to approximateKy.t/. For instance, assume that, given a positive integerQ <1, the raw moments
Qm
.r/
S;m.d/ of order at most Q have been calculated with sufficient accuracy using an S -variate,

mth-order PDD approximation QyS;m.X/ of y.X/, as described in the preceding subsection. Then, the
corresponding approximate cumulants are easily obtained from the well-known cumulant-moment
relationship,

Q�
.r/
S;m.d/ D

8̂<
:̂
Qm
.1/
S;m.d/ W r D 1;

Qm
.r/
S;m.d/ �

r�1P
pD1

�
r�1
p�1

�
Q�
.p/
S;m.d/ Qm

.r�p/
S;m .d/ W 2 6 r 6 Q;

(27)

where the functional argument d serves as a reminder that the moments and cumulants all depend
on the design vector d. Setting �.r/ D Q�.r/S;m for r D 1; � � � ;Q, and zero otherwise in Equation (26),
the result is an S -variate, mth-order PDD approximation

QKy;Q;S;m.t Id/ D
QX
rD1

Q�
.r/
S;m.d/t

r

rŠ
(28)

of the Qth-order Taylor series expansion of Ky.t/. It is elementary to show that QKy;Q;S;m.t Id/!
Ky.t/ when S ! N;m!1, and Q!1.

Using the CGF approximation in Equation (28), Daniel’s SPA leads to the explicit formula [12],

Qfy;PS .�Id/ D
�
2� QK 00y;Q;S;m.tsId/

�� 12 exp
�
QKy;Q;S;m.tsI d/ � ts�

�
; (29)

for the approximate PDF of y, where the subscript ‘PS’ stands for PDD-SPA and ts is the saddlepoint
that is obtained from solving

QK 0y;Q;S;m.tsId/ D � (30)

with QK 0y;Q;S;m.t I d/ WD d QKy;Q;S;m.t I d/=dt and QK 00y;Q;S;m.t I d/ WD d2 QKy;Q;S;m.t I d/=dt2

defining the first-order and second-order derivatives, respectively, of the approximate CGF of y with
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respect to t . Furthermore, based on a related work of Lugannani and Rice [19], the approximate
CDF of y becomes

QFy;PS .�Id/ D ˆ.w/C �.w/
�
1

w
�
1

v

	
; w D sgn.ts/

®
2
�
ts� � QKy;Q;S;m.tsI d/

�¯ 1
2 ;

v D ts
�
QK 00y;Q;S;m.tsI d/

� 1
2 ;

(31)

where ˆ.�/ and �.�/ are the CDF and PDF, respectively, of the standard Gaussian variable and
sgn.ts/ D C1;�1, or 0, depending on whether ts is positive, negative, or zero. According to
Equation (31), the CDF of y at a point � is obtained using solely the corresponding saddlepoint ts ,
that is, without the need to integrate Equation (29) from �1 to � .

Finally, using Lugannani and Rice’s formula, the PDD-SPA estimate QPF;PS .d/ of the component
failure probability PF .d/ WD PdŒy.X/ < 0� is obtained as

QPF;PS .d/ D QFy;PS .0Id/; (32)

the PDD-SPA generated CDF of y at � D 0. It is important to recognize that no similar SPA-based
formulae are available for the joint PDF or joint CDF of dependent stochastic responses. Therefore,
the PDD-SPA method in the current form cannot be applied to general system reliability analysis.

The PDD-SPA method contains several truncation parameters that should be carefully selected.
For instance, if Q is too small, then the truncated CGF from Equation (28) may spoil the method,
regardless of how large are S and m chosen in the PDD approximation. On the other hand, if Q
is overly large, then many higher-order moments involved may not be accurately calculated by
the PDD approximation. More significantly, a finite-order truncation of CGF may cause loss of
convexity of the actual CGF, meaning that the one-to-one relationship between � and ts
in Equation (30) is not ensured for every threshold � . Furthermore, the important property
QK 00y;Q;S;m.tsId/ > 0 may not be maintained. To resolve this quandary, Yuen et al. [20] pre-

Table I. Intervals of the saddlepoint for Q D 4.a/.

Case Condition tl tu

1 Q�
.4/
S;m

> 0;	 > 0; Q�
.3/
S;m

> 0
�Q�

.3/
S;m
C
p
	

Q�
.4/
S;m

C1

2 Q�
.4/
S;m

> 0;	 > 0; Q�
.3/
S;m

< 0 �1
�Q�

.3/
S;m
�
p
	

Q�
.4/
S;m

3 Q�
.4/
S;m

> 0;	 D 0 �1.b/ C1.b/

4 Q�
.4/
S;m

> 0;	 < 0 �1 C1

5 Q�
.4/
S;m
D 0; Q�

.3/
S;m

> 0 �
Q�
.2/
S;m

Q�
.3/
S;m

C1

6 Q�
.4/
S;m
D 0; Q�

.3/
S;m
D 0 �1 C1

7 Q�
.4/
S;m
D 0; Q�

.3/
S;m

< 0 �1 �
Q�
.2/
S;m

Q�
.3/
S;m

8 Q�
.4/
S;m

< 0
�Q�

.3/
S;m
C
p
	

Q�
.4/
S;m

�Q�
.3/
S;m
�
p
	

Q�
.4/
S;m

.a/ For QKy;4;S;m.t Id/ D Q�
.1/
S;m

.d/tC 1
2Š
Q�
.2/
S;m

.d/t2C 1
3Š
Q�
.3/
S;m

.d/t3C 1
4Š
Q�
.4/
S;m

.d/t4, the

discriminant of QK0
y;4;S;m

.t Id/ is 	 WD Q�.3/
2

S;m
� 2 Q�

.2/
S;m
Q�
.4/
S;m

.

.b/ The point �Q�.3/
S;m

=
�
2 Q�
.2/
S;m

�
should not be an element of .tl ; tu/, that is, .tl ; tu/ D

.�1;1/ n
°
�Q�

.3/
S;m

=
�
2 Q�
.2/
S;m

�±
.
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sented for Q D 4 several distinct cases of the cumulants, describing the interval .tl ; tu/, where
�1 6 tl 6 0 and 0 6 tu 6 1, such that tl 6 ts 6 tu and QK 00y;Q;S;m.tsId/ > 0, ruling out
any complex values of the square root in Equation (29) or (31). Table I summarizes these cases,
which were employed in the PDD-SPA method described in this paper. If the specified thresh-
old � 2

�
QK 0y;Q;S;m.tl I d/; QK 0y;Q;S;m.tuI d/

�
, then the saddlepoint ts is uniquely determined from

Equation (30), leading to the CDF or reliability in Equation (31) or (32). Otherwise, the PDD-SPA
method will fail to provide a solution. It is important to note that developing similar cases forQ > 4,
assuring a unique solution of the saddlepoint, is not trivial, and was not considered in this work.

2.3.2. The PDD-MCS method. Depending on component or system reliability analysis, let
Q�F;S;m WD ¹x W QyS;m.x/ < 0º or Q�F;S;m WD ¹x W [i Qyi;S;m.x/ < 0º or Q�F;S;m WD ¹x W
\i Qyi;S;m.x/ < 0º be an approximate failure set as a result of S -variate, mth-order PDD approxima-
tions QyS;m.X/ of y.X/ or Qyi;S;m.X/ of yi .X/. Then the PDD-MCS estimate of the failure probability
PF .d/ is

QPF;PM .d/ D Ed

h
I Q�F;S;m.X/

i
D lim
L!1

1

L

LX
lD1

I Q�F;S;m

�
x.l/

�
; (33)

where the subscript ‘PM’ stands for PDD-MCS, L is the sample size, x.l/ is the l th realization of
X, and I Q�F;S;m.x/ is another indicator function, which is equal to one when x 2 Q�F;S;m and zero
otherwise.

Note that the simulation of the PDD approximation in Equation (33) should not be confused
with crude MCS commonly used for producing benchmark results. The crude MCS, which requires
numerical calculations of y.x.l// or yi .x.l// for input samples x.l/; l D 1; � � � ; L, can be expensive
or even prohibitive, particularly when the sample size L needs to be very large for estimating small
failure probabilities. In contrast, the MCS embedded in PDD requires evaluations of simple ana-
lytical functions that stem from an S -variate, mth-order approximation QyS;m.x.l// or Qyi;S;m.x.l//.
Therefore, an arbitrarily large sample size can be accommodated in the PDD-MCS method. In which
case, the PDD-MCS method also furnishes the approximate CDF QFy;PM .�Id/ WD Pd Œ QyS;m.X/ 6 ��
of y.X/ or even joint CDF of dependent stochastic responses, if desired.

Although the PDD-SPA and PDD-MCS methods are both rooted in the same PDD approxima-
tion, the former requires additional layers of approximations to calculate the CGF and saddlepoint.
Therefore, the PDD-SPA method, when it works, is expected to be less accurate than the PDD-MCS
method at comparable computational efforts. However, the PDD-SPA method facilitates an analyti-
cal means to estimate the probability distribution and reliability – a convenient process not supported
by the PDD-MCS method. The respective properties of both methods extend to sensitivity analysis,
presented in the following two sections.

3. DESIGN SENSITIVITY ANALYSIS OF MOMENTS

When solving RDO problems using gradient-based optimization algorithms, at least first-order
derivatives of the first and second moments of a stochastic response with respect to each design vari-
able are required. In this section, a new method, developed by blending PDD with score functions,
for design sensitivity analysis of moments of an arbitrary order, is presented.

3.1. Score functions

Suppose that the first-order derivative of a moment m.r/.d/, where r 2 N, of a generic stochastic
response y.X/ with respect to a design variable dk; 1 6 k 6M , is sought. Taking partial derivative
of the moment with respect to dk and then applying the Lebesgue dominated convergence theorem
[21], which permits the differential and integral operators to be interchanged, yields the sensitivity
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@m.r/.d/
@dk

WD
@Ed Œy

r.X/�
@dk

D
@

@dk

Z
RN

yr.x/fX.xI d/dx

D

Z
RN

yr.x/
@ lnfX.xId/

@dk
fX.xId/dx

DW Ed

h
yr.X/s.1/

dk
.XI d/

i
;

(34)

provided that fX.xI d/ > 0 and the derivative @ lnfX.xId/ =@dk exists. In the last line of
Equation (34), s.1/

dk
.XI d/ WD @ ln fX.XI d/ =@dk is known as the first-order score function for the

design variable dk [3, 4]. In general, the sensitivities are not available analytically because the
moments are not either. Nonetheless, the moments and their sensitivities have both been formulated
as expectations of stochastic quantities with respect to the same probability measure, facilitating
their concurrent evaluations in a single stochastic simulation or analysis.

Remark 5
The evaluation of score functions, s.1/

dk
.XI d/; k D 1; � � � ;M , requires differentiating only the PDF

of X. Therefore, the resulting score functions can be determined easily and, in many cases, analyt-
ically � for instance, when X follows classical probability distributions [4]. If the density function
of X is arbitrarily prescribed, the score functions can be calculated numerically, yet inexpensively,
because no evaluation of the performance function is involved.

When X comprises independent variables, as assumed here, lnfX.XI d/ D
PiDN
iD1 lnfXi .xi I d/

is a sum of N univariate log-density (marginal) functions of random variables. Hence, in general,
the score function for the kth design variable, expressed by

s
.1/

dk
.XI d/ D

NX
iD1

@ lnfXi .Xi Id/
@dk

D

NX
iD1

ski .Xi I d/; (35)

is also a sum of univariate functions ski .Xi Id/ WD @ lnfXi .Xi Id/ =@dk ; i D 1; � � � ; N , which
are the derivatives of log-density (marginal) functions. If dk is a distribution parameter of a single
random variable Xik , then the score function reduces to s.1/

dk
.XId/ D @ lnfXik .Xik Id/ =@dk DW

skik .Xik Id/, the derivative of the log-density (marginal) function ofXik , which remains a univariate
function. Nonetheless, combining Equations (34) and (35), the sensitivity is obtained as

@m.r/.d/
@dk

D

NX
iD1

Ed Œy
r.X/ski .Xi I d/� ; (36)

the sum of expectations of products comprising stochastic response and log-density derivative
functions with respect to the probability measure Pd;d 2 D.

3.2. Sensitivities of first-order and second-order moments

For independent coordinates of X, consider the Fourier-polynomial expansion of the kth log-density
derivative function

ski .Xi Id/ D ski;;.d/C
1X
jD1

Dk;ij .d/ ij .Xi I d/; (37)

consisting of its own expansion coefficients

ski;;.d/ WD
Z
R
ski .xi Id/fXi .xi Id/dxi (38)
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and

Dk;ij .d/ WD
Z
R
ski .xi Id/ ij .xi I d/fXi .xi Id/dxi : (39)

The expansion is valid if ski is square integrable with respect to the probability measure of Xi .
When blended with the PDD approximation, the score function leads to analytical or closed-form
expressions of the exact or approximate sensitivities as follows.

3.2.1. Exact sensitivities. Employing Equations (11) and (37), the product appearing on the right
side of Equation (36) expands to

yr.X/ski .Xi Id/ D

0
BBB@y;.d/C

X
;¤u�¹1;��� ;N º

X
jjuj2N

juj
0

j1;��� ;jjuj¤0

Cujjuj.d/ ujjuj.XuId/

1
CCCA
r

�

0
@ski;;.d/C 1X

jD1

Dk;ij .d/ ij .Xi Id/

1
A ;

(40)

encountering the same orthonormal polynomial bases that are consistent with the probability mea-
sure fX.xI d/dx. The expectations of Equation (40) for r D 1 and 2, aided by Propositions 2 and 3,
lead Equation (36) to

@m.1/.d/
@dk

D

NX
iD1

2
4y;.d/ski;;.d/C 1X

jD1

Cij .d/Dk;ij .d/

3
5 (41)

and

@m.2/.d/
@dk

D

NX
iD1

2
4m.2/.d/ski;;.d/C 2y;.d/ 1X

jD1

Cij .d/Dk;ij .d/C Tki

3
5 ; (42)

representing closed-form expressions of the sensitivities in terms of the PDD or Fourier-polynomial
expansion coefficients of the response or log-density derivative functions. The last term on the right
side of Equation (42) is

Tki D

NX
i1D1

NX
i2D1

1X
j1D1

1X
j2D1

1X
j3D1

Ci1j1.d/Ci2j2.d/Dk;ij3.d/

� Ed
�
 i1j1.Xi1 Id/ i2j2.Xi2 Id/ ij3.Xi Id/

�
;

(43)

which requires expectations of various products of three random orthonormal polynomials and is
further discussed in Subsection 3.2.4. Note that these sensitivity equations are exact because PDD
and Fourier-polynomial expansions are exact representations of square-integrable functions.

3.2.2. Approximate sensitivities. When y.X/ and ski .Xi I d/ are replaced by their S -variate, mth-
order PDD andm0th-order Fourier-polynomial approximations, respectively, the resultant sensitivity
equations, expressed by

@ Qm
.1/
S;m.d/

@dk
WD

@Ed Œ QyS;m.X/�
@dk

D

NX
iD1

2
4y;.d/ski;;.d/C mminX

jD1

Cij .d/Dk;ij .d/

3
5 (44)
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and

@ Qm
.2/
S;m.d/

@dk
WD

@Ed

h
Qy2S;m.X/

i
@dk

D

NX
iD1

2
4 Qm.2/S;m.d/ski;;.d/C 2y;.d/

mminX
jD1

Cij .d/Dk;ij .d/C QTki;m;m0

3
5 ;

(45)

where mmin WD min.m;m0/ and

QTki;m;m0 D

NX
i1D1

NX
i2D1

mX
j1D1

mX
j2D1

m0X
j3D1

Ci1j1.d/Ci2j2.d/Dk;ij3.d/

� Ed
�
 i1j1.Xi1 Id/ i2j2.Xi2 Id/ ij3.Xi I d/

�
;

(46)

become approximate, relying on the truncation parameters S;m, and m0 in general. At appropri-
ate limits, the approximate sensitivities of the moments converge to exactness as described by
Proposition 6.

Proposition 6
Let QyS;m.X/ be an S -variate, mth-order PDD approximation of a square-integrable function y.X/,
where X D .X1; � � � ; XN / 2 RN comprises independent random variables with marginal prob-
ability distributions fXi .xi I d/; i D 1; � � � ; N , and d D .d1; � � � ; dM / 2 D is a design vector
with non-empty closed set D � RM . Given the distribution parameter dk , let the kth log-
density derivative function ski .Xi I d/ of the i th random variable Xi be square integrable. Then
for k D 1; � � �M;

lim
S!N;m;m0!1

@ Qm
.1/
S;m.d/

@dk
D
@m.1/.d/
@dk

(47)

and

lim
S!N;m;m0!1

@ Qm
.2/
S;m.d/

@dk
D
@m.2/.d/
@dk

: (48)

Proof
Taking the limits S ! N;m!1, and m0 !1 on Equations (44) and (45) and recognizing that
Qm
.2/
S;m.d/! m.2/.d/ and QTki;m;m0 ! Tki ,

lim
S!N; m;m0!1

@ Qm
.1/
S;m.d/

@dk
D lim
S!N; m;m0!1

NX
iD1

2
4y;.d/ski;;.d/C mminX

jD1

Cij .d/Dk;ij .d/

3
5

D

NX
iD1

2
4y;.d/ski;;.d/C 1X

jD1

Cij .d/Dk;ij .d/

3
5

D
@m.1/.d/
@dk

(49)
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and

lim
s!N; m;m0!1

@ Qm
.2/
S;m.d/

@dk

D lim
S!N; m;m0!1

NX
iD1

2
4 Qm.2/S;m.d/ski;;.d/C 2y;.d/

mminX
jD1

Cij .d/Dk;ij .d/C QTki;m;m0

3
5

D

NX
iD1

2
4m.2/.d/ski;;.d/C 2y;.d/ 1X

jD1

Cij .d/Dk;ij .d/C Tki

3
5

D
@m.2/.d/
@dk

;

(50)

where the last lines follow from Equations (41) and (42). �

Of the two sensitivities, @ Qm.1/S;m.d/=@dk does not depend on S , meaning that both the univariate
.S D 1/ and bivariate .S D 2/ approximations, given the same mmin < 1, form the same result,
as displayed in Equation (44). However, the sensitivity equations of @ Qm.2/S;m.d/=@dk for the uni-
variate and bivariate approximations vary with respect to S;m, and m0. For instance, the univariate
approximation results in

@ Qm
.2/
1;m.d/

@dk
D

NX
iD1

2
4 Qm.2/1;m.d/ski;;.d/C 2y;.d/

mminX
jD1

Cij .d/Dk;ij .d/C QTki;m;m0

3
5 ; (51)

whereas the bivariate approximation yields

@ Qm
.2/
2;m.d/

@dk
D

NX
iD1

2
4 Qm.2/2;m.d/ski;;.d/C 2y;.d/

mminX
jD1

Cij .d/Dk;ij .d/C QTki;m;m0

3
5 : (52)

Analogous to the moments, the univariate and bivariate approximations of the sensitivities of the
moments involve only univariate and at most bivariate expansion coefficients of y, respectively.
Because the expansion coefficients of log-density derivative functions do not involve the response
function, no additional cost is incurred from response analysis. In other words, the effort required
to obtain the statistical moments of a response also furnishes the sensitivities of moments, a highly
desirable trait for efficiently solving RDO problems.

Remark 7
Because the derivatives of log-density functions are univariate functions, their expansion coefficients
require only univariate integration for their evaluations. When Xi follows classical distributions
� for instance, the Gaussian distribution � then the coefficients can be calculated exactly or ana-
lytically. Otherwise, numerical quadrature is required. Nonetheless, there is no need to employ
dimension-reduction integration for calculating the expansion coefficients of the derivatives of
log-density functions.

3.2.3. Special cases. There exist two special cases when the preceding expressions of the sensitiv-
ities of moments simplify slightly. They are contingent on how a distribution parameter affects the
probability distributions of random variables.

First, when X comprises independent variables such that dk is a distribution parameter of a single
random variable, say, Xik ; 1 6 ik 6 N , then skik .Xik I d/ – the kth log-density derivative function
ofXik – is the only relevant function of interest. Consequently, the expansion coefficients ski;;.d/ D
skik ;;.d/ (say) and Dk;ij .d/ D Dk;ikj .d/ (say), if i D ik and zero otherwise. Moreover, the outer
sums of Equations (44) and (45) vanish, yielding
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@ Qm
.1/
S;m.d/

@dk
D y;.d/skik ;;.d/C

mminX
jD1

Cikj .d/Dk;ikj .d/ (53)

and

@ Qm
.2/
S;m.d/

@dk
D Qm

.2/
S;m.d/skik ;;.d/C 2y;.d/

mminX
jD1

Cikj .d/Dk;ikj .d/C QTkik ;m;m0 : (54)

Second, when X consists of independent and identical variables, then ski .Xi I d/ D sk.Xi I d/
(say), that is, the kth log-density derivative functions of all random variables are alike. Accordingly,
the expansion coefficients ski;;.d/ D sk;;.d/ (say) and Dk;ij .d/ D Dk;j .d/ (say) for all i D
1; � � � ; N , producing

@ Qm
.1/
S;m.d/

@dk
D

NX
iD1

2
4y;.d/sk;;.d/C mminX

jD1

Cij .d/Dk;j .d/

3
5 (55)

and

@ Qm
.2/
S;m.d/

@dk
D

NX
iD1

2
4 Qm.2/S;m.d/sk;;.d/C 2y;.d/

mminX
jD1

Cij .d/Dk;j .d/C QTki;m;m0

3
5 : (56)

It is important to clarify that the first special case, that is, Equations (53) and (54), coincides
with those presented in a previous work [22] by the authors. However, the second case, that is,
Equations (55) and (56), including the generalized version, that is, Equations (44) and (45), are new.
The results of sensitivity equations from these two special cases will be discussed in Section 6.

3.2.4. Evaluation of QTki;m;m0 . The evaluation of QTki;m;m0 in Equation (46) requires expectations
of various products of three random orthonormal polynomials. The expectations vanish when
i1 ¤ i2 ¤ i , regardless of the probability measures of random variables. For classical polynomials,
such as Hermite, Laguerre, and Legendre polynomials, there exist formulae for calculating the
expectations when i1 D i2 D i .

When Xi follows the standard Gaussian distribution, the expectations are determined from the
properties of univariate Hermite polynomials, yielding [23]

Ed
�
 ij1.Xi Id/ ij2.Xi Id/ ij3.Xi Id/

�
D

p
j1Šj2Šj3Š

.q � j1/Š.q � j2/Š.q � j3/Š
(57)

if q 2 N, 2q D j1 C j2 C j3, and j1; j2; j3 6 q, and zero otherwise. When Xi follows the expo-
nential distribution with unit mean, the expectations are attained from the properties of univariate
Laguerre polynomials, producing [24]

Ed
�
 ij1.Xi I d/ ij2.Xi Id/ ij3.Xi Id/

�
D .�1/j1Cj2Cj3

vmaxX
vDvmin

.j1 C j2 � v/Š2
j3�j1�j2C2v

vŠ.j1 � v/Š.j2 � v/Š

 
v

j3 � j1 � j2 C 2v

!
(58)

if jj1 � j2j 6 j3 6 j1 C j2, and zero otherwise, where vmin D
1
2
.j1 C j2 C 1 � j3/; vmax D

min.j1; j2; j1 C j2 � j3/. When Xi follows the uniform distribution on the interval Œ�1; 1�, the
expectations are obtained from the properties of univariate Legendre polynomials, forming [24]

Ed
�
 ij1.Xi Id/ ij2.Xi I d/ ij3.Xi Id/

�
D
1

2

p
2.2j1 C 1/.2j2 C 1/.2j3 C 1/

�
.j1 C j2 � j3 � 1/ŠŠ.j2 C j3 � j1 � 1/ŠŠ.j1 C j2 C j3/ŠŠ.j1 C j3 � j2 � 1/ŠŠ

.j1 C j2 � j3/ŠŠ.j2 C j3 � j1/ŠŠ.j1 C j2 C j3 C 1/ŠŠ.j1 C j3 � j2/ŠŠ

(59)
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if q 2 N; 2q D j1 C j2 C j3, and jj1 � j2j 6 j3 6 j1 C j2, and zero otherwise. The symbol ŠŠ in
Equation (59) denotes the double factorial. However, deriving a master formula for arbitrary prob-
ability distributions of Xi is impossible. In which case, the non-trivial solution of the expectation
can be obtained by numerical integration of elementary functions.

3.3. Sensitivities of higher-order moments

No closed-form or analytical expressions are possible for calculating sensitivities of higher-order
.2 < r <1/moments by the PDD approximation. Two options, consistent with statistical moment
analysis in Subsection 2.2, are proposed for sensitivity analysis.

In Option I, the sensitivity is obtained by replacing y by QyS;m in Equation (34) and utilizing
Equations (20) and (35), resulting in

@ Qm
.r/
S;m.d/

@dk
D

Z
RN
QyrS;m.x/s

.1/

dk
.xI d/fX.xId/dx

D g;.d/
NX
iD1

Z
R
ski .xi Id/fXi .xi Id/dxi

C

NX
iD1

X
;¤u�¹1;��� ;Nº; i2u
16juj6min.rS;N/

Z
Rjuj

gu.xuId/ski .xi Id/fXu.xuId/dxu

C

NX
iD1

X
;¤u�¹1;��� ;Nº; i…u
16juj6min.rS;N/

Z
Rjuj

gu.xuId/fXu.xuId/dxu

�

Z
R
ski .xi Id/fXi .xi Id/dxi ;

(60)

which involves at most min.rS;N /-dimensional integrations. Similar to statistical moment analysis,
this option becomes impractical when min.rS;N / is large or numerous min.rS;N /-dimensional
integrations are required.

In contrast, the sensitivity in Option II is attained by replacing QyrS;m by Q́ NS; Nm in the first line of
Equation (60), yielding

@ Qm
.r/
S;m.d/

@dk

Š

Z
RN
Q́ NS; Nm.x/s

.1/

dk
.xI d/fX.xI d/dx

D ´;.d/
NX
iD1

Z
R
ski .xi I d/fXi .xi Id/dxiC

NX
iD1

X
;¤u�¹1;��� ;Nº

16juj6 NS; i2u

X
jjuj2N

juj
0
;jjjjujjj16 Nm

j1;��� ;jjuj¤0

NCujjuj.d/
Z
Rjuj

 ujjuj.xuId/ski .xi Id/fXu.xuId/dxu;

(61)

requiring at most NS -dimensional integrations of at most Nmth-order polynomials, where the terms
related to i … u vanish as per Proposition 2. Therefore, a significant gain in efficiency is possible
in Option II for sensitivity analysis as well. The sensitivity equations further simplify for special
cases, as explained in Section 3.2. Nonetheless, numerical integrations are necessary for calculating
the sensitivities by either option.
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4. DESIGN SENSITIVITY ANALYSIS OF RELIABILITY

When solving RBDO problems using gradient-based optimization algorithms, at least the first-order
derivative of the failure probability with respect to each design variable is required. Two methods
for the sensitivity analysis of the failure probability, named the PDD-SPA and PDD-MCS methods,
are presented.

4.1. PDD-SPA method

Suppose that the first-order derivative @ QFy;PS .�Id/=@dk of the CDF QFy;PS .�Id/ of QyS;m.X/,
obtained by the PDD-SPA method, with respect to a design variable dk , is desired. Applying the
chain rule on the derivative of Equation (31),

@ QFy;PS .�Id/
@dk

D

QX
rD1

 
@ QFy;PS

@w

@w

@ Q�
.r/
S;m

C
@ QFy;PS

@v

@v

@ Q�
.r/
S;m

!
@ Q�
.r/
S;m

@dk
(62)

is obtained via the partial derivatives

@ QFy;PS

@w
D �.w/

�
w

v
�

1

w2

	
;
@ QFy;PS

@v
D
�.w/

v2
; (63)

@ Q�
.r/
S;m

@dk
D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

@ Qm
.1/
S;m.d/

@dk
W r D 1;

@ Qm
.r/
S;m.d/

@dk
�

r�1X
pD1

 
r � 1

p � 1

! 
@ Q�
.r/
S;m

@dk
Qm
.r�p/
S;m .d/C Q�.p/S;m

@ Qm
.r�p/
S;m

@dk

!
W 2 6 r 6 Q;

(64)

where the derivatives of moments, that is, @ Qm.r/S;m=@dk; r D 1; � � � ;Q, required to calculate
the derivatives of cumulants, are obtained using score functions, as described in Section 3. The
remaining two partial derivatives are expressed by

@w

@ Q�
.r/
S;m

D
@w

@ts

@ts

@ Q�
.r/
S;m

C
@w

@ QKy;Q;S;m

"
@ QKy;Q;S;m

@ Q�
.r/
S;m

C
@ QKy;Q;S;m

@ts

@ts

@ Q�
.r/
S;m

#
(65)

and

@v

@ Q�
.r/
S;m

D
@v

@ts

@ts

@ Q�
.r/
S;m

C
@v

@ QK 00y;Q;S;m

"
@ QK 00y;Q;S;m

@ Q�
.r/
S;m

C
@ QK 00y;Q;S;m

@ts

@ts

@ Q�
.r/
S;m

#
; (66)

where

@w

@ts
D
�

w
;

@w

@ QKy;Q;S;m
D �

1

w
;
@ QKy;Q;S;m

@ts
D �;

@v

@ts
D
�
QK 00y;Q;S;m

� 1
2 ; (67)

@v

@ QK 00y;Q;S;m
D

ts

2
q
QK 00y;Q;S;m

;
@ts

@ Q�
.r/
S;m

D �

@ QK 0y;Q;S;m

@ Q�
.r/
S;m

@ QK 0y;Q;S;m

@ts

: (68)

The expressions of the partial derivatives @ QKy;Q;S;m=@ Q�
.r/
S;m; @

QK 0y;Q;S;m=@ Q�
.r/
S;m, and

@ QK 00y;Q;S;m=@ Q�
.r/
S;m, not explicitly presented here, can be easily derived from Equation (28) once the
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cumulants Q�.r/S;m; r D 1; � � � ;Q, and the saddlepoint ts are obtained. Similar sensitivity equations
were reported by Huang and Zhang [11]. However, Equation (62) is built on the PDD approxima-
tion of a stochastic response, as opposed to the RDD approximation used by Huang and Zhang.
Furthermore, no transformations of random variables are necessary in the proposed PDD-SPA
method.

Henceforth, the first-order derivative of the failure probability estimate by the PDD-SPA method
is easily determined from

@ QPF;PS .d/
@dk

D
@ QFy;PS .0I d/

@dk
; (69)

the sensitivity of the probability distribution evaluated at � D 0. Algorithm 1 describes the proce-
dure of the PDD-SPA method for calculating the reliability and its design sensitivity of a general
stochastic problem.

Algorithm 1 Numerical implementation of the PDD-SPA method for CDF QFy;PS .�Id/ and its
sensitivity @ QFy;PS .�Id/=@dk

Define � and d
Specify S , NS , m, Nm, and Q
Obtain the PDD approximation QyS;m.X/ F [from Equation (12)]
for r  1 to Q do

Calculate Qm.r/
S;m

.d/ F [from Equation (21) for Option I, or Equation (23) for
Option II;
if r D 1 and 2, then Equations (15) and (16) can be used]

Calculate @ Qm.r/
S;m

.d/=@dk F [from Equation (60) for Option I, or Equation (61) for
Option II;
if r D 1 and 2, then Equations (44) and (45) can be used]

end for
for r  1 to Q do

Calculate Q�.r/
S;m

.d/ F [from Equation (27)]

Calculate @ Q�.r/
S;m

.d/=@dk F [from Equation (64)]
end for
Obtain interval .tl ; tu/ for the saddlepoint F [from Table I if Q D 4]
Calculate QK0

y;Q;S;m
.tl Id/ and QK0

y;Q;S;m
.tuId/ F [from Equation (28)]

if � 2 . QK0
y;Q;S;m

.tl Id/; QK
0
y;Q;S;m

.tuId// then
Calculate saddlepoint ts F [from Equations (28) and (30)]
Calculate QFy;PS .�Id/ F [from Equation (31)]
Calculate @ QFy;PS .�Id/=@dk F [from Equations (62)-(68)]

else
Stop F [the PDD-SPA method fails]

end if

4.2. The PDD-MCS method

Taking a partial derivative of the PDD-MCS estimate of the failure probability in Equation (33) with
respect to dk and then following the same arguments in deriving Equation (34) produces

@ QPF;PM .d/
@dk

WD
@Ed

h
I Q�F;S;m.X/

i
@dk

D Ed

h
I Q�F;S;m.X/s

.1/

dk
.XI d/

i

D lim
L!1

1

L

LX
lD1

h
I Q�F;S;m

�
x.l/

�
s
.1/

dk

�
x.l/Id

�i
;

(70)

where L is the sample size, x.l/ is the l th realization of X, and I Q�F;S;m.x/ is the PDD-generated

indicator function, which is equal to one when x 2 Q�F;S;m and zero otherwise. Again, they are
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easily and inexpensively determined by sampling analytical functions that describe QyS;m and s.1/
dk

. A
similar sampling procedure can be employed to calculate the sensitivity of the PDD-MCS generated
CDF QFy;PM .�Id/ WD PdŒ QyS;m.X/ 6 ��. It is important to note that the effort required to calculate
the failure probability or CDF also delivers their sensitivities, incurring no additional cost. Setting
S D 1 or 2 in Equations (33) and (70), the univariate or bivariate approximation of the failure
probability and its sensitivities are determined.

Remark 8
It is important to recognize that no Fourier-polynomial expansions of the derivatives of log-density
functions are required or invoked in the PDD-MCS method for sensitivity analysis of failure
probability. This is in contrast to the sensitivity analysis of the first two moments, where such
Fourier-polynomial expansions aid in generating analytical expressions of the sensitivities. No ana-
lytical expressions are possible in the PDD-MCS method for sensitivity analysis of reliability or
probability distribution of a general stochastic response.

Remark 9
The score function method has the nice property that it requires differentiating only the underlying
PDF fX.xId/. The resulting score functions can be easily and, in most cases, analytically deter-
mined. If the performance function is not differentiable or discontinuous – for example, the indicator
function that comes from reliability analysis – the proposed method still allows evaluation of the sen-
sitivity if the density function is differentiable. In reality, the density function is often smoother than
the performance function, and therefore the proposed sensitivity methods will be able to calculate
sensitivities for a wide variety of complex mechanical systems.

5. CALCULATION OF EXPANSION COEFFICIENTS

The determination of PDD expansion coefficients y;.d/ and Cujjuj.d/, where ; ¤ u � ¹1; � � � ; N º

and jjuj 2 N juj0 jI jjjjujjj1 6 mI j1; � � � ; jjuj ¤ 0, is vitally important for evaluating the
statistical moments and probabilistic characteristics, including their design sensitivities, of stochas-
tic responses. The coefficients, defined in Equations (2) and (8), involve various N -dimensional
integrals over RN . For large N , a full numerical integration employing an N -dimensional tensor
product of a univariate quadrature formula is computationally prohibitive and is, therefore, ruled
out. The authors propose that the dimension-reduction integration scheme, developed by Xu and
Rahman [13], followed by numerical quadrature, be used to estimate the coefficients accurately and
efficiently.

5.1. Dimension-reduction integration

Let c D .c1; � � � ; cN / 2 RN , which is commonly adopted as the mean of X, be a reference point,
and y.xv; c�v/ represent an jvj-variate RDD component function of y.x/, where v � ¹1; � � � ; N º
[8, 14]. Given a positive integer S 6 R 6 N , when y.x/ in Equations (2) and (8) is replaced with
its R-variate RDD approximation, the coefficients y;.d/ and Cujjuj.d/ are estimated from [13]

y;.d/ Š
RX
iD0

.�1/i

 
N �RC i � 1

i

! X
v�¹1;��� ;Nº
jvjDR�i

Z
Rjvj

y.xv; c�v/fXv .xvId/dxv (71)

and

Cujjuj.d/ Š
RX
iD0

.�1/i

 
N �RC i � 1

i

! X
v�¹1;��� ;Nº
jvjDR�i;u�v

Z
Rjvj

y.xv; c�v/ ujjuj.xuId/fXv .xvId/dxv;

(72)
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respectively, requiring evaluation of at most R-dimensional integrals. The reduced integration
facilitates calculation of the coefficients approaching their exact values as R ! N , and is signifi-
cantly more efficient than performing one N -dimensional integration, particularly when R � N .
Hence, the computational effort is significantly lowered using the dimension-reduction integration.
For instance, when R D 1 or 2, Equations (71) and (72) involve one-dimensional, or at most,
two-dimensional integrations, respectively.

For a general function y, numerical integrations are still required for performing various jvj-
dimensional integrals over Rjvj; 0 6 jvj 6 R, in Equations (71) and (72). When R > 1,
multivariate numerical integrations are conducted by constructing a tensor product of underlying
univariate quadrature rules. For a given v � ¹1; � � � ; N º; 1 < jvj 6 R, let v D ¹i1; � � � ijvjº, where

1 6 i1 < � � � < ijvj 6 N . Denote by
°
x
.1/
ip
; � � � ; x

.n/
ip

±
� R a set of integration points of xip and by

¹w
.1/
ip
; � � � ; w

.n/
ip
º the associated weights generated from a chosen univariate quadrature rule and a

positive integer n 2 N. Denote by P .n/ D �pDjvjpD1

°
x
.1/
ip
; � � � ; x

.n/
ip

±
a rectangular grid consisting of

all integration points generated by the variables indexed by the elements of v. Then the coefficients
using dimension-reduction integration and numerical quadrature are approximated by

y;.d/ Š
RX
iD0

.�1/i

 
N �RC i � 1

i

! X
v�¹1;��� ;Nº
jvjDR�i

X
kjvj2P .n/

w.kjvj/y
�

x
.kjvj/
v ; c�v

�
(73)

and

Cujjuj.d/ Š
RX
iD0

.�1/i

 
N �RC i � 1

i

! X
v�¹1;��� ;Nº
jvjDR�i;u�v

X
kjvj2P .n/

w.kjvj/y
�
x
.kjvj/
v ; c�v

�
 ujjuj

�
x
.kjuj/
u Id

�
;

(74)

where x
.kjvj/
v D

°
x
.k1/
i1

; � � � ; x
.kjvj/

ijvj

±
and w.kjvj/ D

QpDjvj
pD1 w

.kp/

ip
is the product of integration

weights generated by the variables indexed by the elements of v. Similarly, the coefficients ´;.d/
and NCujjuj.d/ of an NS -variate, Nmth-order PDD approximation of QyrS;m.X/, required in Option II for
obtaining higher-order moments and their sensitivities, can also be estimated from the dimension-
reduction integration. For independent coordinates of X, as assumed here, a univariate Gauss
quadrature rule is commonly used, where the integration points and associated weights depend on
the probability distribution of Xi . They are readily available, for example, the Gauss-Hermite or
Gauss-Legendre quadrature rule, whenXi follows Gaussian or uniform distribution. For an arbitrary
probability distribution of Xi , the Stieltjes procedure can be employed to generate the measure-
consistent Gauss quadrature formulae [16, 17]. An n-point Gauss quadrature rule exactly integrates
a polynomial with a total degree of at most 2n � 1.

5.2. Computational expense

The S -variate, mth-order PDD approximation requires evaluations of
PkDS
kD0

�
N
k

�
mk expansion

coefficients, including y;.d/. If these coefficients are estimated by dimension-reduction integra-
tion with R D S < N and, therefore, involve at most an S -dimensional tensor product of an
n-point univariate quadrature rule depending on m, then the total cost for the S -variate, mth-
order approximation entails a maximum of

PkDS
kD0

�
N
k

�
nk.m/ function evaluations. If the integration

points include a common point in each coordinate – a special case of symmetric input prob-
ability density functions and odd values of n – the number of function evaluations reduces toPkDS
kD0

�
N
k

�
.n.m/ � 1/k . Nonetheless, the computational complexity of the S -variate PDD approx-

imation is an S th-order polynomial with respect to the number of random variables or integration
points. Therefore, PDD with dimension-reduction integration of the expansion coefficients alleviates
the curse of dimensionality to an extent determined by S .
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6. NUMERICAL EXAMPLES

Six numerical examples, comprising various mathematical functions and solid-mechanics problems,
are illustrated to examine the accuracy, efficiency, and convergence properties of the PDD methods
developed for calculating the first-order sensitivities of statistical moments, probability distributions,
and reliability. The PDD expansion coefficients were estimated by dimension-reduction integration
with the mean input as the reference point, R D S , and n D mC 1, where S andm vary depending
on the problem. In all examples, orthonormal polynomials and associated Gauss quadrature rules
consistent with the probability distributions of input variables, including classical forms, if they
exist, were employed. The first three examples entail independent and identical random variables,
where dk is a distribution parameter of all random variables, whereas the last three examples con-
tain merely independent random variables, where dk is a distribution parameter of a single random
variable. The sample size for the embedded simulation of the PDD-MCS method is 106 in Examples
2 and 3, and 107 in Example 5. Whenever possible, the exact sensitivities were applied to verify the
proposed methods, as in Examples 1 and 3. However, in Examples 2, 4, and 5, which do not support
exact solutions, the benchmark results were generated from at least one of two crude MCS-based
approaches: (1) crude MCS in conjunction with score functions (crude MCS/SF), which requires
sampling of both the original function y and the score function s.1/

dk
; and (2) crude MCS in tandem

with 1% perturbation of FD analysis (crude MCS/FD), which entails sampling of the original func-
tion y only. The sample size for either version of the crude MCS is 106 in Examples 2, 3, and 4, and
107 in Example 5. The derivatives of log-density functions associated with the five types of random
variables used in all examples are described in Table II.

6.1. Example 1: a trigonometric-polynomial function

Consider the function

y.X/ D aT1 XC aT2 sin XC aT3 cos XC XTMX; (75)

introduced by Oakley and O’Hagan [25], where X D ¹X1; � � � ; X15ºT 2 R15 is a 15-dimensional
Gaussian input vector with mean vector EdŒX� D ¹
; � � � ; 
ºT 2 R15 and covariance matrix
EdŒXXT � D �2diagŒ1; � � � ; 1� DW �2I 2 R15�15I d D ¹
; �ºT I sin X WD ¹sinX1; � � � ; sinX15ºT 2
R15 and cos X WD ¹cosX1; � � � ; cosX15ºT 2 R15 are compact notations for 15-dimensional vec-
tors of sine and cosine functions, respectively; and ai 2 R15; i D 1; 2; 3, and M 2 R15�15 are
coefficient vectors and matrix, respectively, obtained from Oakley and O’Hagan’s paper [25]. The
objective of this example is to evaluate the accuracy of the proposed PDD approximation in calcu-
lating the sensitivities of the first two moments, m.1/.d/ WD EdŒy.X/� and m.2/.d/ WD EdŒy

2.X/�,
with respect to the mean 
 and standard deviation � of Xi at d0 D ¹0; 1ºT .

Figure 1(a) through Figure 1(d) present the plots of the relative errors in the approximate sensitivi-
ties, @ Qm.1/S;m.d0/=@
; @ Qm

.1/
S;m.d0/=@�; @ Qm

.2/
S;m.d0/=@
, and @ Qm.2/S;m.d0/=@� , obtained by the proposed

univariate and bivariate PDD methods (Equations (55) and (56)) for increasing orders of orthonor-
mal polynomials, that is, when the PDD truncation parameters S D 1 and 2; 1 6 m 6 8, and
m0 D 2. The measure-consistent Hermite polynomials and associated Gauss-Hermite quadrature
rule were used. The relative error is defined as the ratio of the absolute difference between the exact
and approximate sensitivities, divided by the exact sensitivity, where the exact sensitivity can be
easily calculated for the function y in Equation (75). Although y is a bivariate function of X, the
sensitivities of the first moment by the univariate and bivariate PDD approximations are identical for
any m. This is because the expectations of Qy1;m.X/ and Qy2;m.X/, when X comprises independent
variables, are the same function of d. In this case, the errors committed by both PDD approximations
drop at the same rate, as depicted in Figure 1(a) and Figure 1(b), resulting in rapid convergence of
the sensitivities of the first moment. However, the same condition does not hold true for the sensitiv-
ities of the second moment, because the univariate and bivariate PDD approximations yield distinct
sets of results. Furthermore, the errors in the sensitivities of the second moment by the univariate
PDD approximation do not decay strictly monotonically, leveling off when m crosses a threshold,
as displayed in Figure 1(c) and Figure 1(d). In contrast, the errors in the sensitivities of the second
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(a)

(c) (d)

(b)

Figure 1. Relative errors in calculating the sensitivities of the first two moments by various PDD truncations:
(a) @ Qm.1/

S;m
.d0/=@
; (b)@ Qm.1/

S;m
.d0/=@� ; (c) @ Qm.2/

S;m
.d0/=@
; and (d) @ Qm.2/

S;m
.d0/=@� (Example 1).

moment by the bivariate PDD approximation attenuate continuously with respect tom, demonstrat-
ing rapid convergence of the proposed solutions. The numerical results presented are consistent with
the mean-square convergence of the sensitivities described by Proposition 6.

6.2. Example 2 : a cubic polynomial function

The second example is concerned with calculating the sensitivities of the probability distribution of

y.X/ D 500 � .X1 CX2/3 CX1 �X2 �X3 CX1X2X3 �X4; (76)

where Xi ; i D 1; 2; 3; 4, are four independent and identically distributed random variables. The
sensitivities were calculated by the proposed PDD-MCS method using two approaches: (1) a
direct approach employing measure-consistent orthonormal polynomials as bases and correspond-
ing Gauss type quadrature rules for calculating the PDD expansion coefficients and (2) an indirect
approach transforming original random variables into Gaussian random variables, followed by
Hermite orthonormal polynomials as bases and the Gauss-Hermite quadrature rule for calculating
the expansion coefficients. Because Equation (76) represents a third-order polynomial, the measure-
consistent orthonormal polynomials with the largest order m D 3 should exactly reproduce y. In

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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which case, the highest order of integrands for calculating the PDD expansion coefficients is six;
therefore, a four-point .n D 4/ measure-consistent Gauss quadrature should provide exact values
of the coefficients. In the direct approach, univariate .S D 1/, bivariate .S D 2/, and trivariate
.S D 3/ PDD approximations were applied, where the expansion coefficients were calculated using
R D S;m D 3, and n D 4 in Equations (73) and (74). Therefore, the only source of error in a
truncated PDD is the selection of S . In the indirect approach, the transformation of y, if the input
variables follow non-Gaussian probability distributions, leads to non-polynomials in the space of
Gaussian variables; therefore, approximation in a truncated PDD occur not only because of S but
also because of m. Hence, several values of 3 6 m 6 6 were employed for mappings into Gaussian
variables. The coefficients in the indirect approach were calculated by the n-point Gauss-Hermite
quadrature rule, where n D mC 1.

A principal objective of this example is to gain insights on the choice of orthonormal polynomials
for solving this problem by PDD approximations. Two distinct cases, depending on the probability
distribution of input variables, were studied.

6.2.1. Case 1: exponential distributions. For exponential distributions of input random variables,
the PDF

fXi .xi I�/ D

²
� exp.��xi / W xi > 0;
0 W xi < 0;

(77)

where � > 0 is the sole distribution parameter, d D ¹�º 2 R, and d0 D ¹1º.
Figure 2(a) presents the sensitivities of the probability distribution of y.X/ with respect to � cal-

culated at d0 for different values of � by the direct approach. It contains four plots: one obtained from
crude MCS/SF (106 samples) and the remaining three generated from univariate (S D 1), bivariate
(S D 2), and trivariate (S D 3) PDD-MCS methods. For the PDD-MCS methods, the measure-
consistent Laguerre polynomials and associated Gauss-Laguerre quadrature rule were used. The
sensitivity of distributions, all obtained for m D 3, converge rapidly with respect to S . Compared
with crude MCS/SF, the univariate PDD-MCS method is less accurate than others. This is due to the
absence of cooperative effects of random variables in the univariate approximation. The bivariate
PDD-MCS solution, which captures cooperative effects of any two variables, is remarkably close to
the crude Monte Carlo results. The results from the trivariate decomposition and crude MCS/SF are
coincident, as Qy3;3.X/ is identical to y.X/, which itself is a trivariate function.

Using the indirect approach, Figure 2(b), Figure 2(c), and Figure 2(d) depict the sensitivities of the
distribution of y.X/ by the univariate, bivariate, and trivariate PDD-MCS methods for several values
of m, calculated when the original variables are transformed into standard Gaussian variables. The
sensitivities obtained by all three decomposition methods from the indirect approach converge to
the respective solutions from the direct approach whenm and n increase. However, the lowest order
of Hermite polynomials required to converge in the indirect approach is six, a number twice that
employed in the direct approach employing Laguerre polynomials. This is due to higher nonlinearity
of the mapped y induced by the transformation from exponential to Gaussian variables. Clearly,
the direct approach employing Laguerre polynomials and the Gauss-Laguerre quadrature rule is
the preferred choice for calculating sensitivities of the probability distribution by the PDD-MCS
method.

6.2.2. Case 2: Weibull distributions. For Weibull distributions of input random variables, the PDF

fXi .xi I�; k/ D

8̂<
:̂
k

�

�xi
�

�k�1
exp



�
�xi
�

�k�
W xi > 0;

0 W xi < 0;

(78)

where � > 0 and k > 0 are scale and shape distribution parameters, respectively, d D ¹�; kºT 2 R2,
and d0 D ¹1; 0:5ºT .

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
DOI: 10.1002/nme



STOCHASTIC SENSITIVITY ANALYSIS 905

(a) (b)

(c) (d)

Figure 2. Sensitivities of the probability distribution of y with respect to � for exponential distributions of
input variables: (a) direct approach; (b) indirect approach-univariate; (c) indirect approach-bivariate; and (d)

indirect approach-trivariate (Example 2).

The sensitivities of the probability distribution of y.X/ with respect to � and k, calculated
by the direct approach, at d0 are exhibited in Figures 3(a) and Figure 4(a), respectively. Again,
four plots, comprising the solutions from crude MCS/SF .106 samples) and three PDD-MCS
methods using the direct approach, are illustrated. Because classical orthonormal polynomials do
not exist for Weibull probability measures, the Stieltjes procedure was employed to numerically
determine the measure-consistent orthonormal polynomials and corresponding Gauss quadrature
formula [16]. Similar to Case 1, both sensitivities of the distribution by the PDD-MCS method
in Figure 3(a) and Figure 4(a), all obtained for m D 3, converge rapidly to crude MCS solu-
tions with respect to S . However, the sensitivities of the distribution by all three PDD-MCS
approximations, when calculated using the indirect approach and shown in Figure 3(b) through
Figure 3(d) and Figure 4(b) through Figure 4(d), fail to get closer even when the order of Hermite
polynomials is twice that employed in the direct approach. The lack of convergence is attributed
to a significantly higher nonlinearity of the transformation from Weibull to Gaussian variables
than that from exponential to Gaussian variables. Therefore, a direct approach entailing measure-
consistent orthogonal polynomials and associated Gauss quadrature rule, even in the absence of
classical polynomials, is desirable for generating both accurate and efficient solutions by the PDD-
MCS method.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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(a) (b)

(c) (d)

Figure 3. Sensitivities of the probability distribution of y with respect to � for Weibull distributions of
input variables: (a) direct approach; (b) indirect approach-univariate; (c) indirect approach-bivariate; and (d)

indirect approach-trivariate (Example 2).

6.3. Example 3: a function of Gaussian variables

Consider a component reliability problem with the performance function

y.X/ D
1

1000C
NP
iD1

Xi

�
1

1000C 3
p
N
; (79)

where X � N.�;†/ is an N -dimensional Gaussian random vector with mean vector � D
¹
; � � � ; 
ºT and covariance matrix† D �2diagŒ1; � � � ; 1� DW �2I, and d D ¹
; �ºT . The objective
of this example is to evaluate the accuracy of the proposed PDD-SPA and PDD-MCS methods in
calculating the failure probability PF .d/ WD PdŒy.X/ < 0� and its sensitivities @PF .d0/ =@
 and
@PF .d0/ =@� at d0 D ¹0; 1ºT for two problem sizes or dimensions: N D 10 and N D 100. The
exact solutions for a general N -dimensional problem are

PF .d/ D ˆ.�ˇ/;
@PF .d/
@


D
�.�ˇ/

p
N

�
;
@PF .d/
@�

D
�.�ˇ/.3 � 


p
N/

�2
; (80)

where ˇ D .3 � 

p
N/ =� , provided that 0 < �2 <1.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
DOI: 10.1002/nme



STOCHASTIC SENSITIVITY ANALYSIS 907

(a) (b)

(c) (d)

Figure 4. Sensitivities of the probability distribution of y with respect to k for Weibull distributions of
input variables: (a) direct approach; (b) indirect approach-univariate; (c) indirect approach-bivariate; and (d)

indirect approach-trivariate (Example 2).

Because y in Equation (79) is a non-polynomial function, the univariate .S D 1/ or bivariate
.S D 2/ truncation of PDD for a finite value of m, regardless how large, provides only an approx-
imation. Nonetheless, using only m D 3 and n D 4, the univariate and bivariate estimates of the
failure probability and its two sensitivities by the PDD-SPA and PDD-MCS methods for N D 10

are listed in Table III. The measure-consistent Hermite polynomials and associated Gauss-Hermite
quadrature rule were used in both methods. The results of the PDD-SPA method are further broken
down according to Options I (Equation (60)) and II (Equation (61)) for calculating all moments of
order up to four to approximate the CGF of y.X/, as explained in Algorithm 1. Option I requires at
most eight-dimensional integrations in the bivariate PDD-SPA method for calculating the moments
of y.X/, whereas Option II entails at most two-dimensional integrations for the values of NS D 2

and Nm D 6 selected. However, the differences between the two respective estimates of the fail-
ure probability and its sensitivities by these options, in conjunction with either the univariate or the
bivariate PDD approximation, are negligibly small. Therefore, Option II is not only accurate, but
also facilitates efficient solutions by the PDD-SPA method, at least in this example. Compared with
the results of crude MCS/SF .106 samples) or the exact solution, also listed in Table III, both uni-
variate and bivariate versions of the PDD-SPA method, regardless of the option, are satisfactory. The
same trend holds for the univariate and bivariate PDD-MCS methods. No meaningful difference is
found between the respective accuracies of the PDD-SPA and PDD-MCS solutions for a given trun-

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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Table III. Component failure probability and sensitivities at d0 D ¹0; 1ºT for N D 10 (Example 3).

PDD-SPA PDD-SPA PDD-SPA PDD-SPA
(Univariate, (Univariate, (Bivariate, (Bivariate, PDD-MCS PDD-MCS Crude

Option I) Option II) Option I) Option II) (Univariate) (Bivariate) MCS/SF Exact

PF .d0/ 1.349 1.453 1.349 1.347 1.510 1.397 1.397 1.350
.�10�3/
@PF .d0/=@� 1.401 1.529 1.401 1.550 1.553 1.447 1.447 1.401
.�10�2/
@PF .d0/=@� 1.330 1.409 1.330 1.326 1.472 1.371 1.371 1.330
.�10�2/

No. of 41 41 761 761 41 761 106 —
function eval.

PDD, polynomial dimensional decomposition; SPA, saddlepoint approximation; MCS, Monte Carlo simulation;
SF, score functions.

Table IV. Component failure probability and sensitivities at d0 D ¹0; 1ºT forN D 100 (Example 3).

PDD-SPA PDD-SPA
(Univariate, (Bivariate, PDD-MCS PDD-MCS Crude
Option II) Option II) (Univariate) (Bivariate) MCS/SF Exact

PF .d0/.�10�3/ 1.731 1.320 1.724 1.344 1.352 1.350
@PF .d0/=@
.�10�2/ 5.994 6.412 5.538 4.413 4.437 4.432
@PF .d0/=@�.�10�2/ 1.612 1.277 1.556 1.291 1.302 1.330
No. of function eval. 401 79,601 401 79,601 106 —

PDD, polynomial dimensional decomposition; SPA, saddlepoint approximation; MCS, Monte Carlo
simulation; SF, score functions.

cation S . Indeed, the agreement between the bivariate solutions from the PDD-SPA or PDD-MCS
method and the benchmark results is excellent.

For high-dimensional problems, such as N D 100, Table IV summarizes the estimates of the
failure probability and its sensitivities by the PDD-SPA and PDD-MCS methods using m D 3.
Because of the higher dimension, the PDD-SPA method with Option I requires numerous eight-
dimensional integrations for calculating moments of y.X/ and is no longer practical. Therefore, the
PDD-SPA method with Option II requiring only two-dimensional . NS D 2; Nm D 6/ integrations
was used for N D 100. Again, both univariate and bivariate approximations were invoked for the
PDD-SPA and PDD-MCS methods. Compared with the benchmark results of crude MCS/SF .106

samples) or the exact solution, listed in Table IV, the bivariate PDD-SPA method or the bivariate
PDD-MCS method provides highly accurate solutions for this high-dimensional reliability problem.

Tables III and IV also specify the relative computational efforts of the PDD-SPA and PDD-
MCS methods, measured in terms of numbers of original function evaluations, when N D 10 and
N D 100. Given the truncation parameter S , the PDD-SPA and PDD-MCS methods require identi-
cal numbers of function evaluations, meaning that their computational costs are practically the same.
Although the bivariate approximation is significantly more expensive than the univariate approxi-
mation, the former generates highly accurate solutions, as expected. However, both versions of the
PDD-SPA or PDD-MCS method are markedly more economical than the crude MCS/SF method
for solving this high-dimensional reliability problem.

6.4. Example 4 : a function of non-Gaussian variables

Consider the univariate function [11]

y.X/ D X1 C 2X2 C 2X3 CX4 � 5X5 � 5X6 (81)

of six statistically independent and lognormally distributed random variables Xi with means 
i and
standard deviations c
i ; i D 1; � � � ; 6, where c > 0 is a constant, representing the coefficient of

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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variation of Xi . The design vector d D ¹
1; � � �
6; �1; � � � ; �6ºT . The objective of this example
is to evaluate the accuracy of the proposed PDD-SPA method in estimating the failure probability
PF .d/ WD PdŒy.X/ < 0� and its sensitivities @PF .d/ =@
i and @PF .d/ =@�i , i D 1; � � � ; 6, at
d D d0 D ¹120; 120; 120; 120; 50; 40; 120c; 120c; 120c; 120c; 50c; 40cºT for 0:1 6 c 6 0:7.

The function y, being both univariate and linear, is exactly reproduced by the univariate .S D 1/,
first-order .m D 1/ PDD approximation when orthonormal polynomials consistent with lognor-
mal probability measures are used. Therefore, the univariate, first-order PDD approximation, along
with Option I (Equation (60)), was employed in the PDD-SPA method to approximate PF .d0/,
@PF .d0/ =@
i , and @PF .d0/ =@�i . All moments of order up to four were estimated according to
Algorithm 1. The measure-consistent solutions by the PDD-SPA method and crude MCS/SF are
presented in Figure 5(a), Figure 5(b), and Figure 5(c). Huang and Zhang [11], who solved the same
problem, reported similar results, but at the expense of higher-order integrations stemming from
transformation to Gaussian variables. No such transformation was required or performed in this
work. According to Figure 5(a), the failure probability curve generated by the PDD-SPA method
closely traces the path of crude MCS/SF (106 samples) for low coefficients of variation, although
a slight deviation begins to appear when c exceeds about 0.4. The loss of accuracy becomes more
pronounced when comparing the sensitivities of the failure probability with respect to means and
standard deviations in Figure 5(b) and Figure 5(c). Indeed, for large coefficients of variation, that is,
for c > 0:4, some of the sensitivities are no longer accurately calculated by the PDD-SPA method.
This is because the fourth-order (Q D 4/ approximation of the CGF of y.X/, used for constructing
the PDD-SPA method, is inadequate. Indeed, Table V reveals that the relative errors in the fourth-
order Taylor approximation of the CGF, obtained by MCS .108 samples) and evaluated at respective
saddlepoints, rises with increasing values of the coefficient of variation from 0:2 to 0:7. Therefore,
a truncation larger than four is warranted for higher-order approximations of CGF, but doing so
engenders an added difficulty in finding a unique saddlepoint. The topic merits further study.

It is important to note that the univariate, first-order PDD-MCS method, employing measure-
consistent orthonormal polynomials, should render the same solution of crude MCS/SF. This is
the primary reason why the PDD-MCS results are not depicted in Figure 5(a) through Figure 5(c).
Nonetheless, the PDD-MCS method should be more accurate than the PDD-SPA method in solving
this problem, especially at larger coefficients of variation.

6.5. Example 5: a six-bay, twenty-one-bar truss

This example demonstrates how system reliability and its sensitivities can be efficiently estimated
with the PDD-MCS method. A linear-elastic, six-bay, twenty-one-bar truss structure, with geo-
metric properties shown in Figure 6, is simply supported at nodes 1 and 12 and is subjected to
four concentrated loads of 10,000 lb (44,482 N) at nodes 3, 5, 9, and 11 and a concentrated load
of 16,000 lb (71,172 N) at node 7. The truss material is made of an aluminum alloy with the
Young’s modulus E D 107 psi (68.94 GPa). The random input is X D ¹X1; � � � ; X21ºT 2 R21,
where Xi is the cross-sectional areas of the i th truss member. The random variables are inde-
pendent and lognormally distributed with means 
i , i D 1; � � � ; 21, each of which has a 10%
coefficient of variation. From linear-elastic finite-element analysis (FEA), the maximum vertical
displacement vmax.X/ and maximum axial stress �max.X/ occur at node 7 and member 3 or 4, respec-
tively, where the permissible displacement and stress are limited to dallow D 0:266 in (6.76 mm)
and �allow D 37; 680 psi (259.8 MPa), respectively. The system-level failure set is defined as
�F WD ¹x W ¹y1.x/ < 0º [ ¹y2.x/ < 0ºº, where the performance functions

y1.X/ D 1 �
jvmax.X/j
dallow

; y2.X/ D 1 �
j�max.X/j
�allow

: (82)

The design vector is d D ¹
1; � � � ; 
21ºT . The objective of this example is to evaluate the accu-
racy of the proposed PDD-MCS method in estimating the system failure probability PF .d/ WD
Pd Œ¹y1.X/ < 0º [ ¹y2.X/ < 0º� and its sensitivities @PF .d/=@
i ; i D 1; : : : ; 21 at d D d0 D
¹2; 2; 2; 2; 2; 2; 10; 10; 10; 10; 10; 10; 3; 3; 3; 3; 3; 1; 1; 1; 1ºT in2 (�2:542 cm2).
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(a)

(b)

(c)

Figure 5. Results of reliability and sensitivity analyses by the PDD-SPA method and crude MCS/SF: (a)
failure probability; (b) sensitivities of failure probability with respect to means; and (c) sensitivities of failure

probability with respect to standard deviations (Example 4).
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Table V. Relative errors in calculating cumulant generating
function (Example 4).

c ts Relative error .a/

0.1 �1:0029 � 10�1 0:0248

0.2 �2:5008 � 10�2 0:0068

0.3 �1:1066 � 10�2 0:0125

0.4 �6:1850 � 10�3 0:0183

0.5 �3:9250 � 10�3 0:0329

0.6 �2:6966 � 10�3 0:0447

0.7 �1:9551 � 10�3 0:2781

.a/The sample size of Monte Carlo simulation is 108.

Figure 6. A six-bay, twenty-one-bar truss structure (Example 5).

Table VI presents the system failure probability and its 21 sensitivities obtained using the bivariate
.S D 2/, third-order .m D 3/ PDD approximations of y1.X/ and y2.X/ and two versions of crude
MCS: crude MCS/SF and crude MCS/FD, providing benchmark solutions. The crude MCS/FD
method does not depend on score functions and, therefore, facilitates an independent verification
of the PDD-MCS method. The respective sensitivities obtained by the PDD-MCS method and
crude MCS/SF are practically the same. However, crude MCS/FD typically gives biased sensitiv-
ity estimates, where slight fluctuations in the results are expected because of a finite variance of the
estimator. For two instances, such as when the sensitivities are too small, crude MCS/FD produces
trivial solutions and hence cannot be used as reference solutions. Nonetheless, the general quality of
agreement between the results of the PDD-MCS method and crude MCS/FD is very good. Compar-
ing the computational efforts, only 3445 FEA were required to produce the results of the PDD-MCS
method in Table VI, whereas 107 and 22� 107 FEA (samples) were incurred by crude MCS/SF and
crude MCS/FD, respectively. The 22-fold increase in the number of FEA in crude MCS/FD is due
to forward FD calculations entailing all 21 sensitivities. Therefore, the PDD-MCS method provides
not only highly accurate, but also vastly efficient, solutions of system reliability problems.

It is important to recognize that the PDD-SPA method can be applied to solve this series-system
reliability problem by interpreting the failure domain as �F WD ¹x W ys.x/ < 0º, where ys.X/ WD
min¹y1.X/; y2.X/º and then constructing a PDD approximation of ys.X/. In doing so, however,
ys is no longer a smooth function of X, meaning that the convergence properties of the PDD-SPA
method can be significantly deteriorated. More importantly, the PDD-SPA method is not suitable
for a general system reliability problem involving multiple, interdependent component performance
functions. This is the primary reason why the results of the PDD-SPA method are not included in
this example.

6.6. Example 6: a three-hole bracket

The final example involves robust shape design optimization of a two-dimensional, three-hole
bracket, where nine random shape parameters, Xi ; i D 1; � � � ; 9, describe its inner and outer

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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Table VI. System failure probability and sensitivities for the six-bay, twenty-one-bar
truss (Example 5).

PDD-MCS Crude MCS/SF Crude MCS/FD

PF .d0/ 8:1782 � 10�3 8:3890 � 10�3 8:3890 � 10�3

@PF .d0/=@
1 �2:6390 � 10�2 �2:6546 � 10�2 �2:3895 � 10�2

@PF .d0/=@
2 �2:6385 � 10�2 �2:6505 � 10�2 �2:3810 � 10�2

@PF .d0/=@
3 �1:0010 � 10�1 �1:0320 � 10�1 �8:8875 � 10�2

@PF .d0/=@
4 �3:5684 � 10�2 �3:5972 � 10�2 �3:1960 � 10�2

@PF .d0/=@
5 �2:6356 � 10�2 �2:6469 � 10�2 �2:3825 � 10�2

@PF .d0/=@
6 �2:6266 � 10�2 �2:6364 � 10�2 �2:3950 � 10�2

@PF .d0/=@
7 �1:3189 � 10�3 �1:3213 � 10�3 �1:1970 � 10�3

@PF .d0/=@
8 �1:3294 � 10�3 �1:3244 � 10�3 �1:2820 � 10�3

@PF .d0/=@
9 �1:6665 � 10�3 �1:6514 � 10�3 �1:5610 � 10�3

@PF .d0/=@
10 �1:7554 � 10�3 �1:7576 � 10�3 �1:5670 � 10�3

@PF .d0/=@
11 �1:3892 � 10�3 �1:3945 � 10�3 �1:2530 � 10�3

@PF .d0/=@
12 �1:3136 � 10�3 �1:3140 � 10�3 �1:2060 � 10�3

@PF .d0/=@
13 9:1378 � 10�5 7:2857 � 10�5 0:0

@PF .d0/=@
14 2:3126 � 10�4 2:0942 � 10�4 1:3000 � 10�4

@PF .d0/=@
15 �6:3125 � 10�4 �6:2761 � 10�4 �5:8333 � 10�4

@PF .d0/=@
16 2:2333 � 10�4 2:2261 � 10�4 1:3333 � 10�4

@PF .d0/=@
17 �3:0844 � 10�5 �3:9551 � 10�5 0:0

@PF .d0/=@
18 �2:0729 � 10�4 �2:6582 � 10�4 �8:8000 � 10�4

@PF .d0/=@
19 �3:5881 � 10�3 �3:4714 � 10�3 �3:2900 � 10�3

@PF .d0/=@
20 �4:1604 � 10�3 �4:0774 � 10�3 �3:2200 � 10�3

@PF .d0/=@
21 �7:7002 � 10�4 �7:2830 � 10�4 �8:5000 � 10�4

No. of FEA 3445 107 22 � 107

PDD, polynomial dimensional decomposition; MCS, Monte Carlo simulation; SF, score
functions; FD, finite difference.

boundaries, while maintaining symmetry about the central vertical axis. The design variables,
dk D EdŒXk�; k D 1; � � � ;9, are the means of these independent random variables, with Figure 7(a)
depicting the initial design of the bracket geometry at the mean values of the shape parameters. The
bottom two holes are fixed, and a deterministic horizontal force F D 15; 000 N is applied at the
center of the top hole. The bracket material has a deterministic mass density � D 7810 kg/m3, deter-
ministic elastic modulus E D 207:4 GPa, deterministic Poisson’s ratio  D 0:3, and deterministic
uniaxial yield strength Sy D 800 MPa. The objective is to minimize the second-moment properties
of the mass of the bracket by changing the shape of the geometry such that the maximum von Mises
stress �e;max.X/ does not exceed the yield strength Sy of the material with 99.875% probability if
y1 is Gaussian. Mathematically, the RDO problem is defined to

min
d2D

c0.d/ D 0:5
EdŒy0.X/�
Ed0 Œy0.X/�

C 0:5

p
vardŒy0.X/�p
vard0 Œy0.X/�

;

subject to c1.d/ D 3
p

vardŒy1.X/� � EdŒy1.X/� 6 0;

0 mm 6 d1 6 14 mm; 17 mm 6 d2 6 35 mm;

10 mm 6 d3 6 30 mm; 30 mm 6 d4 6 40 mm;

12 mm 6 d5 6 30 mm; 12 mm 6 d6 6 30 mm;

50 mm 6 d7 6 140 mm; �15 mm 6 d8 6 10 mm;

�8 mm 6 d9 6 15 mm;

(83)

where d D .d1; � � � ; d9/ 2 D � R9 is the design vector;

y0.X/ D �
Z
D0.X/

dD0 (84)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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Figure 7. A three-hole bracket: (a) design parameterization; (b) von Mises stress at the initial design; (c) von
Mises stress at the final design; and (d) iteration history of the objective function (Example 6).

and

y1.X/ D Sy � �e;max.X/ (85)

are two random response functions; EdŒy0.X/� and vardŒy0.X/� WD EdŒy0.X/ � EdŒy0.X/��2

are the mean and variance, respectively, of y0 at design d; and EdŒy1.X/� and vardŒy1.X/� WD
EdŒy1.X/�EdŒy1.X/��2 are the mean and variance, respectively, of y1 at design d. The initial design
d0 D ¹0; 30; 10; 40; 20; 20; 75; 0; 0ºT mm. Figure 7(b) portrays the contours of the von Mises stress
calculated by FEA of the initial bracket design, which comprises 11,908 nodes and 3914 eight-noded
quadrilateral elements. A plane stress condition was assumed. The approximate optimal solution is

denoted by Qd� D
°
Qd�1 ; � � � ;

Qd�9

±T
.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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Because of their finite bounds, the random variables Xi ; i D 1; � � � ; N , were assumed to follow
truncated Gaussian distributions with densities

fXi .xi Id/ D

8̂<
:̂

1

ˆ.Di / �ˆ.�Di /
�

�
xi � di

�i

	
W ˛i 6 xi 6 ˇi ;

0 W otherwise;

(86)

where �i D 0:2 and ˛i D di � Di and ˇi D di C Di are the lower and upper bounds, respec-
tively, of Xi . To avoid unrealistic designs, the bounds were chosen as follows: Di D 2 for all
i D 1; � � � ; 9. These conditions are consistent with the bound constraints of design variables stated
in Equation (83).

A multi-point single-step PDD method [22], employing univariate .S D 1/, first-order .m D 1/

PDD approximation of the objective and constraint functions and their design sensitivities from
the proposed method, was employed to solve this RDO problem. Because classical orthonormal
polynomials do not exist for truncated Gaussian distributions, again the Stieltjes procedure was
employed to determine the measure-consistent orthonormal polynomials and corresponding Gauss
quadrature formula [16]. The largest order m0 D 2 for the Fourier-polynomial expansions of the
derivatives of log-density functions. The sensitivities of the first two moments of y0.X/ and y1.X/,
required in the sequential quadratic optimization, were analytically calculated from Equations (53)
and (54). Table VII summarizes the optimization results, requiring 37 design iterations and 703 FEA
to attain the final optimal design with the corresponding mean shape presented in Figure 7(c). The
iteration history, depicted in Figure 7(d), indicates rapid convergence due to accurate and efficient
calculation of the design sensitivities. Compared with the initial design in Figure 7(b), the overall
area of the optimal design has been substantially reduced, mainly due to significant alteration of
the inner boundary and moderate alteration of the outer boundary of the bracket. All nine design
variables have undergone moderate to significant changes from their initial values. The optimal mass
of the bracket is 0:1207 kg – about a 65% reduction from the initial mass of 0:3415 kg. Because
of robust design, the reduction of the mean is 65:1%, whereas the standard deviation diminishes by
4:4%. The smaller drop in the standard deviation is attributed to the objective function that combines
both the mean and standard deviation of y0.

Table VII. Optimization results by the univariate polynomial dimensional
decomposition approximation .S D 1;m D 1/ (Example 6).

Initial design .d0/ Final design . Qd�/

Qd�1 , mm 0 13.4031

Qd�2 , mm 30 17.0003

Qd�3 , mm 10 27.1802

Qd�4 , mm 40 30.0056

Qd�5 , mm 20 12.0004

Qd�6 , mm 20 12.0000

Qd�7 , mm 75 118.035

Qd�8 , mm 0 �13.8359

Qd�9 , mm 0 14.9785

Qc0

�
Qd�
�

1 0.6858

Qc1

�
Qd�
�

, MPa �433.328 �8.084

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:881–916
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7. CONCLUSIONS

Three novel computational methods grounded in PDD were developed for design sensitivity analysis
of high-dimensional complex systems subject to random input. The first method, capitalizing on
a novel integration of PDD and score functions, provides analytical expressions of approximate
design sensitivities of the first two moments that are mean-square convergent. Applied to higher-
order moments, the method also estimates design sensitivities by two distinct options, depending on
how the high-dimensional integrations are performed. The second method, the PDD-SPA method,
integrates PDD, SPA, and score functions, leading to analytical formulae for calculating design sen-
sitivities of probability distribution and component reliability. The third method, the PDD-MCS
method, also relevant to probability distribution or reliability analysis, utilizes the embedded MCS
of the PDD approximation and score functions. Unlike the PDD-SPA method, however, the sen-
sitivities in the PDD-MCS method are estimated via efficient sampling of approximate stochastic
responses, thereby affording the method to address both component and system reliability prob-
lems. Furthermore, the PDD-MCS method is not influenced by any added approximations, involving
calculations of the saddlepoint and higher-order moments, of the PDD-SPA method. For all three
methods developed, both the statistical moments or failure probabilities and their design sensi-
tivities are determined concurrently from a single stochastic analysis or simulation. Numerical
results from mathematical examples corroborate fast convergence of the sensitivities of the first
two moments. The same condition holds for the sensitivities of the tails of probability distributions
when orthonormal polynomials are constructed consistent with the probability measure of random
variables. Otherwise, the convergence properties may markedly degrade or even disappear when
resorting to commonly used transformations. For calculating the sensitivities of reliability, the PDD-
MCS method, especially its bivariate version, provides excellent solutions to all problems, including
a 100-dimensional mathematical function, examined. In contrast, the PDD-SPA method also gen-
erates very good estimates of the sensitivities, but mostly for small to moderate uncertainties of
random input. When the coefficient of variation is large, the PDD-SPA method may produce inaccu-
rate results, suggesting a need for further improvements. Finally, a successful application on RDO
of a three-hole bracket demonstrates the usefulness of the methods developed.

The computational effort of the univariate PDD method varies linearly with respect to the num-
ber of random variables, and, therefore, the univariate method is highly economical. In contrast,
the bivariate PDD method, which generally outperforms the univariate PDD method, demands a
quadratic cost scaling, making it also more expensive than the latter method. Nonetheless, both
versions of the PDD method are substantially more efficient than crude MCS.
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