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SUMMARY

This article presents a new polynomial dimensional decomposition method for solving stochastic problems
commonly encountered in engineering disciplines and applied sciences. The method involves a hierarchical
decomposition of a multivariate response function in terms of variables with increasing dimensions, a broad
range of orthonormal polynomial bases consistent with the probability measure for Fourier-polynomial
expansion of component functions, and an innovative dimension-reduction integration for calculating the
coefficients of the expansion. The new decomposition method does not require sample points as in the
previous version; yet, it generates a convergent sequence of lower-variate estimates of the probabilistic
characteristics of a generic stochastic response. The results of five numerical examples indicate that the
proposed decomposition method provides accurate, convergent, and computationally efficient estimates of
the tail probability of random mathematical functions or the reliability of mechanical systems. Copyright
q 2008 John Wiley & Sons, Ltd.

Received 23 November 2007; Revised 6 May 2008; Accepted 7 May 2008

KEY WORDS: uncertainty analysis; probabilistic mechanics; reliability; orthogonal polynomials; Fourier-
polynomial expansion; ANOVA; polynomial chaos; Monte Carlo simulation

1. INTRODUCTION

A wide variety of stochastic methods, comprising simulation, numerical integration, and analytical
methods, exist in the current literature for calculating the probabilistic characteristics of response
of stochastic systems [1, 2]. Although simulation methods can solve any stochastic problem,
they generally require a large number of deterministic trials to calculate low probability and
are prohibitive when each trial involves expensive numerical calculation. The analytical methods

∗Correspondence to: Sharif Rahman, Department of Mechanical and Industrial Engineering, College of Engineering,
The University of Iowa, Iowa City, IA 52242, U.S.A.

†E-mail: rahman@engineering.uiowa.edu
‡Professor.

Contract/grant sponsor: U.S. National Science Foundation; contract/grant numbers: DMI-0355487, CMMI-0653279

Copyright q 2008 John Wiley & Sons, Ltd.



2092 S. RAHMAN

require additional assumptions, mostly for computational expediency, that begin to break down
when the input–output mapping is highly non-linear and the input uncertainty is large. More
importantly, many high-dimensional problems are all but impossible to solve using analytical
methods or numerical integration. The root deterrence to practical computability is often related
to the high dimension of the multivariate integration or interpolation problem, known as the curse
of dimensionality [3]. The curse of dimensionality means that the computational cost increases
exponentially with the dimension of the problem. The recently developed dimensional decom-
position [4, 5] of a multivariate function addresses the curse of dimensionality by developing an
input–output behavior of complex stochastic systems with low effective dimension [6], where the
degree of cooperativity between variables dies off rapidly.

Past stochastic studies stemming from the dimensional decomposition require a reference point,
commonly assumed to be the mean value of the random input and sample points surrounding that
reference point [5]. Based on these sample points, deterministic calculations of a performance
function, either exactly or numerically, are conducted to generate Lagrange interpolations of various
component functions embedded in the decomposition. They lead to a hierarchical sequence of
approximations of a stochastic response, each described by an explicit function of the random input.
There are two weaknesses in this procedure. First, the decomposition constructed above depends
on a selected reference point. It is elementary to show that an improper or careless selection of
the reference point can spoil the approximation. Second and more importantly, the sample points
are vaguely selected with no strict guidelines. For instance, sample points are commonly deployed
based on the standard deviation of the random input, but still it is an arbitrary decision [5]. If
an input variable is strictly positive (or strictly negative) or follows a probability density with
compact support, the resultant sample points from the current practice may fall outside the physical
domain. In that case, existing decomposition methods may either fail or generate unrealistic sample
properties of a random output. Therefore, alternative means of approximating the component
functions by dropping the sample points altogether are highly desirable.

This paper presents a new polynomial dimensional decomposition method for solving stochastic
problems encountered in engineering and science disciplines. The method is based on (1)
a hierarchical decomposition of a multivariate response function in terms of variables with
increasing dimensions, (2) a broad range of orthonormal polynomial bases consistent with
the probability measure for Fourier-polynomial expansion of component functions, and (3) an
innovative dimension-reduction integration for calculating the coefficients of the expansion.
Section 2 reviews a generic dimensional decomposition and its various component functions.
Section 3 presents orthonormal polynomials in developing the Fourier-polynomial expansion of
the component functions. The formulation of the coefficients of the expansion and their numerical
evaluation by the dimension-reduction integration are described. The section also discusses
the computational flow and required effort. Section 4 compares the polynomial dimensional
decomposition with the existing polynomial chaos expansion. Five numerical examples illustrate
the accuracy, convergence, and computational efficiency of the proposed method in Section 5.
Conclusions are drawn in Section 6.

2. MULTIVARIATE FUNCTION DECOMPOSITION

Consider a continuous, differentiable, real-valued, multivariate function y(x) that depends on x=
{x1, . . . , xN }T∈RN , where RN is an N -dimensional real vector space. A dimensional decomposition
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of y(x), described by [4, 5, 7–11]

y(x) = y0+
N∑
i=1

yi (xi )+
N∑

i1,i2=1;i1<i2

yi1i2(xi1, xi2)+
N∑

i1,i2,i3=1;i1<i2<i3

yi1i2i3(xi1, xi2, xi3)

+·· ·+
N∑

i1,...,iS=1;i1<···<iS

yi1···iS (xi1, . . . , xiS )+·· ·+ y12···N (x1, . . . , xN ) (1)

can be viewed as a finite hierarchical expansion of an output function in terms of its input variables
with increasing dimensions, where y0 is a constant, yi (xi ) is a univariate component function
representing individual contribution to y(x) by input variable xi acting alone, yi1i2(xi1, xi2) is a
bivariate component function describing the cooperative influence of two input variables xi1 and xi2 ,
yi1i2i3(xi1, xi2, xi3) is a trivariate component function describing the cooperative influence of three
input variables xi1 , xi2 , and xi3 , yi1···iS (xi1, . . . , xiS ) is an S-variate component function quantifying
the cooperative effects of S input variables xi1, . . . , xiS , and so on. The last term in Equation (1)
represents any residual dependence of all input variables cooperatively locked together to affect
the output function y. If

ỹS(x) = y0+
N∑
i=1

yi (xi )+
N∑

i1,i2=1;i1<i2

yi1i2(xi1, xi2)+
N∑

i1,i2,i3=1;i1<i2<i3

yi1i2i3(xi1, xi2, xi3)

+·· ·+
N∑

i1,...,iS=1;i1<···<iS

yi1···iS (xi1, . . . , xiS ) (2)

represents a general S-variate approximation of y(x), the univariate (S=1), bivariate (S=2), and
trivariate (S=3) approximations, ỹ1(x), ỹ2(x), and ỹ3(x), respectively, provide two-, three-, and
four-term approximants of the finite decomposition in Equation (1). Similarly, quadrivariate
and other higher-variate approximations can be derived by appropriately selecting the value of S.
The fundamental conjecture underlying this decomposition is that component functions arising in
the function decomposition will exhibit insignificant S-variate effects cooperatively when S→N ,
leading to useful lower-variate approximations of y(x). When S=N , ỹ1(x) converges to the exact
function y(x). In other words, Equation (2) generates a hierarchical and convergent sequence of
approximations of y(x).

The decomposition in Equation (1) can be traced to the work of Hoeffding [7] in the 1940s and
is well known in the statistics literature as analysis of variance (ANOVA) [8]. This decomposition,
later referred to as the high-dimensional model representation (HDMR), was subject to further
refinements, leading to notable contributions in function approximations [9–11]. Recently, the
author’s group exploited this decomposition in calculating statistical moments of response [4] and
reliability [5] of uncertain mechanical systems.

3. POLYNOMIAL DIMENSIONAL DECOMPOSITION METHOD

Let (�,F, P) be a complete probability space, where � is a sample space,F is a �-field on �, and
P :F→[0,1] is a probability measure. WithBN representing the Borel �-field on RN , consider an
RN -valued independent random vector {X={X1, . . . , XN }T :(�,F)→(RN ,BN )} that describes
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statistical uncertainties in all coefficients of and input to the governing (algebraic, differential, and
integral) equation of a given stochastic problem. The probability law of X is completely defined by
the joint probability density function fX(x)=∏i=N

i=1 fi (xi ) that is associated with the probability
measure P , where fi (xi ) is the probability density function of Xi with the probability measure Pi .

Let y(X), a real-valued, measurable transformation on (�,F), define a relevant performance
function of a stochastic system. In general, the multivariate function y :RN →R is implicit, is
not analytically available, and can be viewed only as a high-dimensional input–output mapping,
where the evaluation of the output function y for a given input x requires expensive finite element,
boundary element, or mesh-free analysis. Therefore, methods employed in stochastic analysis must
be capable of generating accurate probabilistic characteristics of y(X) with an acceptably small
number of output function evaluations.

3.1. Orthonormal polynomial basis

Let Xi follow the probability density function fi (xi ) with support [ai ,bi ]⊆R, where −∞�ai<
bi�+∞. Consider a collection of univariate component functions on [ai ,bi ] equipped with the
measure Pi (dxi )= fi (xi )dxi , where dxi is the Lebesgue measure. Denote the space of square-
integrable functions with the measure Pi as

L2(�i ,Fi , Pi ) :=
{
yi (xi ) :

∫ bi

ai
y2i (xi ) fi (xi )dxi<∞

}
(3)

where (�i ,Fi , Pi ) is the triple associated with the random variable Xi . The inner product of this
space is defined as

(yi , zi )Pi :=
∫ bi

ai
yi (xi )zi (xi ) fi (xi )dxi =EPi [yi (Xi )zi (Xi )] (4)

where yi (xi ) and zi (xi ) are any two univariate functions of xi and EPi [y2i (Xi )]<∞ with EPi
representing the expectation operator with respect to the probability measure Pi . Therefore,
L2(�i ,Fi , Pi ) is a Hilbert space that can also be interpreted as the space of functions of random
variables with finite second moments.

Consider a set of complete orthonormal bases in the Hilbert space L2(�i ,Fi , Pi ) and denote
it by {� j (xi ); j =0,1, . . .}, which satisfies

EPi [� j (Xi )]=
∫ bi

ai
� j (xi ) fi (xi )dxi =

⎧⎨
⎩
1 if j =0

0 if j �=0
(5)

and

EPi [� j1(Xi )� j2(Xi )]=
∫ bi

ai
� j1(xi )� j2(xi ) fi (xi )dxi =

⎧⎨
⎩
1 if j1= j2

0 if j1 �= j2
(6)

i.e. the basis functions have a zero mean, unit variance (norm), and are mutually orthogonal
for j, j1, j2�1. A broad range of polynomial basis functions satisfying Equations (5) and (6)
can be constructed when the probability density of Xi is prescribed. Table I shows a few clas-
sical orthonormal polynomials, including Hermite, Legendre, and Jacobi polynomials, when Xi
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POLYNOMIAL DIMENSIONAL DECOMPOSITION 2097

follows Gaussian, Uniform, and Beta probability distributions, respectively. A more extensive list
of orthogonal polynomials is available elsewhere [12].
3.2. Fourier-polynomial expansions

The polynomials {� j (xi ); j=0,1, . . .} form an orthonormal basis inL2(�i ,Fi , Pi ). Therefore, for
any zero-mean univariate random function yi (Xi )∈L2(�i ,Fi , Pi ) with EPi [y2i (Xi )]<∞, there
exists a Fourier-polynomial expansion

yi (xi )=
∞∑
j=1

�i j� j (xi ) (7)

where �i j :=
∫ bi
ai

yi (xi )� j (xi ) fi (xi )dxi for i=1, . . . ,N and j =1, . . . ,∞ is a coefficient associated
with the j th basis function expressed in terms of the i th variable.

The Fourier-polynomial expansion can be easily extended to multiple dimensions. For a finite
index JS ={ j1, . . . , jS} with non-negative integers and S=1, . . . ,N , define a multivariate polyno-
mial by the tensor product

�JS (xi1, . . . , xiS )=
S∏

k=1
� jk (xik ) (8)

and a product probability space (�S,FS, PS), where �S =×k=S
k=1�k is the product sample space,

FS =⊗k=S
k=1 Fk is the associated product �-field, and PS =⊗k=S

k=1 Pk is the associated product
probability measure. Then, {�JS (xi1, . . . , xiS )} constitutes an orthonormal polynomial basis in the

Hilbert space L2(�S,FS, PS). Suppose yi1···iS (xi1, . . . , xiS ) is an S-variate component function
such that EPS

[y2i1···iS (Xi1, . . . , XiS )]<∞, where the expectation operator EPS
is associated with

PS; then yi1···iS (Xi1, . . . , XiS )∈L2(�S,FS, PS). Therefore, there exists a Fourier-polynomial
expansion

yi1···iS (xi1, . . . , xiS )=
∞∑
jS=1

· · ·
∞∑
j1=1

Ci1···iS j1··· jS
S∏

k=1
� jk (xik ) (9)

where

Ci1···iS j1··· jS =
∫

AS
yi1···iS (xi1, . . . , xiS )

S∏
k=1

� jk (xik ) fk(xk)dxk (10)

is a coefficient associated with the product of j1 through jS basis functions expressed in terms
of xi1, . . . , xiS and AS =×i=S

i=1 [ai ,bi ] is a rectangle in RS . The expansion is valid for any finite-
dimensional space L2(�S,FS, PS) with 1�S�N . In other words, Equations (9) and (10) can
represent all component functions of the multivariate function decomposition in Equation (1).
Furthermore, for any two integers S �=T , if the chosen basis functions satisfy∫

AN
�JS (xi1, . . . , xiS )�JT (xi1, . . . , xiT ) fX(x)dx=0 (11)

the component functions yi1···iS (xi1, . . . , xiS ) and yi1···iT (xi1, . . . , xiT ) will preserve their orthogo-
nality in the decomposition presented in Equation (1).
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The Fourier-polynomial expansion in Equation (9) is an infinite series. In practice, it must be
truncated, say, by m terms in each variable, yielding the Fourier-polynomial approximation

yi1···iS (xi1, . . . , xiS )∼=
m∑

jS=1
· · ·

m∑
j1=1

Ci1···iS j1··· jS
S∏

k=1
� jk (xik ) (12)

which approaches yi1···iS (xi1, . . . , xiS ) in the mean square sense as m→∞. The approximation
converges very fast if the component function yi1···iS (xi1, . . . , xiS ) is very smooth. However, the
convergence rate can be quite complicated in general. For a specific polynomial approximation,
such as the Fourier–Hermite approximation, a nice overview of convergence properties is available
in Boyd’s textbook [13].

3.3. Formulation of coefficients

An important feature of the decomposition in Equation (1) is the selection of the constant y0 and
component functions yi1···iS (xi1, . . . , xiS ), S=1, . . . ,N . By defining an error functional associated
with a given y(x), an appropriate kernel function, and the domain of x, an optimization problem
can be formulated and solved to obtain the desired component functions. However, different
kernel functions will create distinct, yet formally equivalent, decompositions, all exhibiting the
same structure as Equation (1). In particular, the ANOVA decomposition containing densities of
{Xi1, . . . , XiS }T as the kernel function leads to [9]

y0 :=
∫

AN
y(x) fX(x)dx=EP [y(X)]

yi (xi ) :=
∫

AN−1
y(x)

∏
k �=i

fk(xk)dxk− y0

yi1i2(xi1, xi2) :=
∫

AN−2
y(x)

∏
k /∈{i1,i2}

fk(xk)dxk− yi1(xi1)− yi2(xi2)− y0

...
...

...

yi1···iS (xi1, . . . , xiS ) :=
∫

AN−S
y(x)

∏
k /∈{i1,...,iS}

fk(xk)dxk

− ∑
k1<···<kS−1⊂{i1,...,iS}

yk1···kS−1(xk1, . . . , xkS−1)

− ∑
k1<···<kS−2⊂{i1,...,iS}

yk1···kS−2(xk1, . . . , xkS−2)

−·· ·−∑
k
yik (xik )− y0

(13)

where EP is the expectation operator with respect to P . Substituting the last expression of Equation
(13) into Equation (10) and then employing the orthogonality condition for basis functions yields

Ci1···iS j1··· jS :=
∫

AN
y(x)

S∏
k=1

� jk (xik ) fX(x)dx=EP

[
y(X)

S∏
k=1

� jk (Xik )

]
(14)
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from which all coefficients of the Fourier-polynomial approximations of component functions can
be derived. For example, setting S=1, 2, and 3, the univariate, bivariate, and trivariate component
functions, respectively, are

yi (xi ) ∼=
m∑
j=1

�i j� j (xi ) (15)

yi1i2(xi1, xi2) ∼=
m∑

j2=1

m∑
j1=1

�i1i2 j1 j2� j1(xi1)� j2(xi2) (16)

and

yi1i2i3(xi1, xi2, xi3)∼=
m∑

j3=1

m∑
j2=1

m∑
j1=1

�i1i2i3 j1 j2 j3� j1(xi1)� j2(xi2)� j3(xi3) (17)

where

�i j :=
∫

AN
y(x)� j (xi ) fX(x)dx=EP [y(X)� j (Xi )] (18)

�i1i2 j1 j2 :=
∫

AN
y(x)� j1(xi1)� j2(xi2) fX(x)dx=EP [y(X)� j1(Xi1)� j2(Xi2)] (19)

and

�i1i2i3 j1 j2 j3 :=
∫

AN
y(x)� j1(xi1)� j2(xi2)� j3(xi3) fX(x)dx

= EP [y(X)� j1(Xi1)� j2(Xi2)� j3(Xi3)] (20)

are the corresponding coefficients. The calculation of these coefficients requires evaluating N -
dimensional integrals over the entire domain of X. For large N , direct numerical integration to
calculate these coefficients is prohibitive and is, therefore, ruled out. It is worth noting that similar
integrals appear in the polynomial chaos expansion method [14, 15], where the coefficients are
commonly estimated by Galerkin-based methods [15], sampling methods [16], and others [17].
In this study, an alternative method entailing dimension-reduction integration of a multivariate
function was employed to determine the coefficients.

A similar expansion adopting the shifted Legendre polynomials of scaled variables as the
orthonormal basis has been reported in conjunction with the random sampling HDMR [11]. In
contrast, the Fourier-polynomial expansion presented in this study does not require any scaling of
variables and can accommodate a host of orthonormal polynomials that are consistent with the
probability measure of a random variable.

3.4. Dimension-reduction integration for calculating coefficients

Following an early idea by Xu and Rahman [4], consider a lower-variate approximation of the
N -variate function y(x), which results in lower-dimensional integrations for evaluating an N -
dimensional integral, leading to the coefficients. Let c={c1, . . . ,cN }T be the mean value of X and
y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ckR−k−1, xkR−k ,ckR−k+1, . . . ,cN ) represent an (R−k)th dimensional
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component function of y(x), where S�R�N and k=0, . . . , R. For example, when R=1, the zero-
dimensional component function, which is a constant, is y(c) and the one-dimensional component
functions are y(x1,c2, . . . ,cN ), y(c1, x2, . . . ,cN ), . . . , y(c1,c2, . . . , xN ). Using Xu and Rahman’s
multivariate function theorem [4], it can be shown that a special R-variate approximation of y(x),
defined by

ŷR(x) :=
R∑

k=0
(−1)k

(
N−R+k−1

k

)
×

N∑
k1,...,kR−k=1;k1<···<kR−k

× y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ckR−k−1, xkR−k ,ckR−k+1, . . . ,cN ) (21)

consists of all terms of the Taylor series of y(x) that have less than or equal to R variables. The
expanded form of Equation (21), when compared with the Taylor expansion of y(x), indicates that
the residual error in ŷR(x) includes terms of dimensions R+1 and higher. All higher-order R-
and lower-variate terms of y(x) are included in Equation (21), which should therefore generally
provide a higher-order approximation of a multivariate function than equations derived from first- or
second-order Taylor expansions. Therefore, for R<N , an N -dimensional integral can be efficiently
estimated by at most R-dimensional integrations, if the contributions from terms of dimensions
R+1 and higher are negligible.
Substituting y(x) in Equations (13) (first line) and (14) by ŷR(x), the coefficients can be

estimated from

y0 ∼=
R∑

k=0
(−1)k

(
N−R+k−1

k

)
N∑

k1,...,kR−k=1;k1<···<kR−k

×
∫

AR−k
y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ckR−k−1, xkR−k ,ckR−k+1, . . . ,cN )

×
R−k∏
m=1

fkm (xkm )dxkm (22)

and

Ci1···iS j1··· jS ∼=
R∑

k=0
(−1)k

(
N−R+k−1

k

)
N∑

k1,...,kR−k=1;k1<···<kR−k

×
∫

AR−k
y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ckR−k−1, xkR−k ,ckR−k+1, . . . ,cN )

×
S∏

m=1
� jm (xim )

R−k∏
m=1

fkm (xkm )dxkm (23)

which require evaluating at most R-dimensional integrals. The proposed equations, Equations (22)
and (23), are substantially simpler and more efficient than performing one N -dimensional integra-
tion, as in Equations (13) and (14), particularly when R�N . Hence, the computational effort in
calculating the coefficients is significantly lowered using the dimension-reduction integration. When
R=1, 2, or 3, Equations (22) and (23) involve one-, at most two-, and at most three-dimensional
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integrations, respectively. Nonetheless, numerical integration is still required for a general func-
tion y. The integration points and associated weights depend on the probability distribution of Xi .
They are readily available as Gauss–Hermite, Gauss–Legendre, and Gauss–Jacobi quadrature rules
when a random variable follows Gaussian, Uniform, and Beta distributions, respectively [12]. For
an arbitrary probability distribution of Xi , see the author’s past work [18].

In performing the dimension-reduction integration, the value of R should be selected in such
a manner that it is either equal to or greater than the value of S, which defines the truncation
of Equation (1). Then all coefficients of S- or lower-variate approximations of y(x) will have
non-trivial solutions. For example, when R=3 and N�3, Equation (21) yields

ŷ3(x) ∼=
N−2∑
k1=1

N−1∑
k2=k1+1

N∑
k3=k2+1

× y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ck2−1, xk2,ck2+1, . . . ,ck3−1, xk3,ck3+1, . . . ,cN )

−(N−3)
N−1∑
k1=1

N∑
k2=k1+1

y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ck2−1, xk2,ck2+1, . . . ,cN )

+ (N−2)(N−3)

2

N∑
k=1

y(c1, . . . ,ck−1, xk,ck+1, . . . ,cN )

− (N−1)(N−2)(N−3)

6
y(c) (24)

Correspondingly, Equations (22) and (23) lead to non-trivial expressions of the coefficients

y0 ∼=
N−2∑
k1=1

N−1∑
k2=k1+1

N∑
k3=k2+1

×
∫

A3
y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ck2−1, xk2,ck2+1, . . . ,ck3−1, xk3,ck3+1, . . . ,cN )

×
3∏

m=1
fkm (xkm )dxkm −(N−3)

N−1∑
k1=1

N∑
k2=k1+1

×
∫

A2
y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ck2−1, xk2,ck2+1, . . . ,cN )

2∏
m=1

fkm (xkm )dxkm

+ (N−2)(N−3)

2

N∑
k=1

∫
A1

y(c1, . . . ,ck−1, xk,ck+1, . . . ,cN ) fk(xk)dxk

− (N−1)(N−2)(N−3)

6
y(c) (25)
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�i j ∼=
N−2∑
k1=1

N−1∑
k2=k1+1

N∑
k3=k2+1

×
∫

A3
y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ck2−1, xk2,ck2+1, . . . ,ck3−1, xk3,ck3+1, . . . ,cN )

×� j (xi )
3∏

m=1
fkm (xkm )dxkm −(N−3)

N−1∑
k1=1

N∑
k2=k1+1

×
∫

A2
y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ck2−1, xk2,ck2+1, . . . ,cN )� j (xi )

×
2∏

m=1
fkm (xkm )dxkm + (N−2)(N−3)

2

×
∫

A1
y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN )� j (xi ) fi (xi )dxi (26)

�i1i2 j1 j2
∼=

N−2∑
k1=1

N−1∑
k2=k1+1

N∑
k3=k2+1

×
∫

A3
y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ck2−1, xk2,ck2+1, . . . ,ck3−1, xk3,ck3+1, . . . ,cN )

×
2∏

m=1
� jm (xim )

3∏
m=1

fkm (xkm )dxkm −(N−3)

×
∫

A2
y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,cN )

×
2∏

m=1
� jm (xim ) fim (xim )dxim (27)

�i1i2i3 j1 j2 j3
∼=
∫

A3
y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,ci3−1, xi3,ci3+1, . . . ,cN )

×
3∏

m=1
� jm (xim ) fim (xim )dxim (28)

whereas the remaining coefficients associated with higher than trivariate component functions are
zero. Therefore, the coefficients in Equations (25)–(28), which require at most three-dimensional
integrations, can be used only for the univariate [ỹ1(x)], bivariate [ỹ2(x)], and trivariate [ỹ3(x)]
approximations of y(x). If only the univariate or bivariate approximations of y(x) are desired, it is
possible to select R=1 or 2, thereby requiring only one-dimensional and at most two-dimensional
integrations. The latter choice of R significantly reduces the computational effort, because
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of a lower-dimensional integration in estimating the corresponding coefficients. The impact of R
will be numerically evaluated in the example section.

3.5. Computational flow and effort

From Equations (2) and (13)–(20), an S-variate approximation of the polynomial dimensional
decomposition of y(X) is

ỹS(X) ∼= y0+
N∑
i=1

m∑
j=1

�i j� j (Xi )+
N∑

i1,i2=1;i1<i2

m∑
j2=1

m∑
j1=1

�i1i2 j1 j2� j1
(Xi1 )� j2

(Xi2 )

+
N∑

i1,i2,i3=1;i1<i2<i3

m∑
j3=1

m∑
j2=1

m∑
j1=1

�i1i2i3 j1 j2 j3� j1(Xi1)� j2(Xi2)� j3(Xi3)

+·· ·+
N∑

i1,...,iS=1;i1<···<iS

m∑
jS=1

· · ·
m∑

j1=1
Ci1···iS j1··· jS

S∏
k=1

� jk (Xik ) (29)

which, for S=N , converges to y(X) in the mean square sense as m→∞. The embedded coef-
ficients, defined by Equations (13), (14), and (18)–(20), can be estimated by lower-dimensional
numerical integrations, described by Equations (22) and (23). Once these coefficients are calcu-
lated, Equation (29) furnishes an approximate but explicit map ỹS :RN →R that can be viewed
as a surrogate of the exact map y :RN →R on (�,F). Therefore, any probabilistic characteristic
of y(X), including its statistical moments and probability density function, can be easily esti-
mated by performing Monte Carlo simulation of ỹS(X). Figure 1 shows the computational flow
for constructing ỹS(X).

The S-variate approximation of the decomposition method requires evaluation of the
deterministic coefficients y0 and Ci1···iS j1··· jS . If these coefficients are estimated by at most
the R-dimensional (R�S�1) numerical integration with an n-point quadrature rule in
Equations (22) and (23), the following deterministic responses (function evaluations) are required:
y(c), y(c1, . . . ,ck1−1, x

( j1)
k1

,ck1+1, . . . ,ckR−1, x
( jR)
kR

,ckR+1, . . . ,cN ) for k1, . . . ,kR =1, . . . ,N and
j1, . . . , jR =1, . . . ,n, where the superscripts on variables indicate the corresponding integration
points. Therefore, the total cost for an S-variate polynomial dimensional decomposition entails a

maximum of
∑k=R

k=0

(
N

R−k

)
nR−k function evaluations. If the integration points include a common

point in each coordinate xi (see the forthcoming example section), the numbers of function

evaluations reduce to
∑k=R

k=0

(
N

R−k

)
(n−1)R−k . In the latter case, for example, the univariate

(S= R=1), bivariate (S= R=2), and trivariate (S= R=3) approximations require (n−1)N+1,
N (N−1)(n−1)2/2+(n−1)N+1, and N (N−1)(N−2)(n−1)3/6+N (N−1)(n−1)2/2+(n−
1)N+1 function evaluations, respectively.

Finally, the Monte Carlo simulation in the decomposition method should not be confused with
the direct Monte Carlo simulation. The direct Monte Carlo simulation, which requires numerical
calculations of y(x(l)) for a sample x(l), can be expensive or even prohibitive, particularly when
the sample size needs to be very large for estimating higher-order moments or small failure
probabilities. In contrast, the Monte Carlo simulation embedded in the decomposition method
requires evaluations of simple analytical functions that stem from an S-variate approximation ỹS(x(l)

of y(x(l)). Therefore, an arbitrarily large sample size can be accommodated in the decomposition
method.
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Specify probability 
distribution of X

[fX(x)] 

Derive orthonormal polynomial 
basis for the distribution 

[ψj(xi)]

Select initial values  
of m and n

Construct S-variate 
approximation 

[ ( )]Sy X

Generate integration 
points and weights

Run model at integration points 
and calculate coefficients 

[ 0 , , , ,, i i j jy C ]

Are m and n
adequate? 

Update m
and/or n

Yes 

No

Dimension-
reduction 

integration 

Figure 1. A flowchart for constructing an S-variate approximation of the polynomial
dimensional decomposition method.

4. REMARKS

The Wiener polynomial chaos expansion of a stochastic response is [14, 15]

y = a0+
∞∑

i1=1
ai1H1(Ui1)+

∞∑
i1=1

i1∑
i2=1

ai1i2H2(Ui1,Ui2)

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3H3(Ui1,Ui2,Ui3)+·· · (30)

where {U1,U2, . . .}T is an infinite-dimensional standard Gaussian vector, HS(Ui1, . . . ,UiS ) is an S-
variate Hermite polynomial of order S, a0 and ai1···iS are expansion coefficients, and S=1, . . . ,∞.
Although a generalized version subsuming other types of random variables and orthogonal polyno-
mials is available [19], several important observations can be made when comparing the dimensional
decomposition and polynomial chaos expansion methods.

First, the dimensional decomposition is a finite sum that contains 2N −1 number of summands
and N random variables. In contrast, the polynomial chaos expansion is an infinite series and
contains an infinite number of random variables. Therefore, if the component functions in
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Equation (1) are exact or the polynomial expansion of the component functions is convergent, the
dimensional decomposition is exact or convergent.

Second, the terms in the polynomial chaos expansion are organized with respect to the order
of polynomials. On the other hand, the dimensional decomposition is structured with respect to
the degree of cooperativity between a finite number of random variables. If a response is highly
non-linear but contains rapidly diminishing cooperative effects of multiple random variables, the
dimensional decomposition is effective. This is because the lower-variate (univariate, bivariate,
etc.) terms of the decomposition can be just as non-linear by selecting appropriate values of m
in Equation (29). In contrast, many terms are required to be included in the polynomial chaos
expansion to capture high non-linearity. However, if a response is lowly or mildly non-linear, is
influenced by high-degree cooperativity of random variables, and the cooperative effects from a
large number of variables are higher than those from a small number of variables, then nothing
useful is gained from the dimensional decomposition. In the latter case, the polynomial chaos
expansion is effective.

Third, the polynomial dimensional decomposition and polynomial chaos expansion methods are
both convergent in the mean square sense. This is because of the inherent properties of orthogonal
polynomials embedded in these methods. Further work is necessary to examine the convergence
modes and properties of these methods when a stochastic response is discontinuous, non-smooth,
or a function of mixed random variables with an arbitrary probability measure.

Finally, the polynomial dimensional decomposition can also be derived from the truncated
polynomial chaos expansion. When the component functions in Equation (13), with y(x) obtained
from Equation (30), are substituted into Equation (2), the result is Equation (29). This relationship
exists because of the common ingredient entailing Fourier-polynomial expansions in both methods.
Nonetheless, the orderings of terms in these two methods are quite different. Therefore, significant
differences exist regarding the accuracy, efficiency, and convergence properties of their truncated
sum or series.

5. NUMERICAL EXAMPLES

Five numerical examples involving mathematical functions and solid mechanics problems are
presented to illustrate the polynomial dimensional decomposition method for obtaining the proba-
bilistic characteristics of response, including the tail distribution and reliability. The exact solution,
when it exists, or direct Monte Carlo simulation, was employed to evaluate the accuracy, conver-
gence, and computational efficiency of the decomposition method. The sample sizes for the direct
Monte Carlo simulation and the embedded Monte Carlo simulation of the decomposition method
varied from 106 in Examples 1–4 to 107 in Example 5, but they were identical for a specific
problem. The expansion coefficients in Example 1 were calculated by exact numerical integration.
For the remaining examples, the coefficients were estimated by the dimension-reduction integra-
tion. In Examples 2 and 3, a value of R=3 was selected, furnishing all required coefficients
of the univariate to trivariate decomposition methods. Several values of S�R�3 were selected
in Example 4 to determine its impact, if any, on the result. In Example 5, R is identical to S,
so that an S-variate decomposition method requires at most S-variate numerical integration. In
Examples 3–5, all non-Gaussian random variables were transformed into Gaussian random vari-
ables. When comparing the computational efforts by various methods, the number of original
performance function evaluations was chosen as the primary metric in this paper.
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5.1. Example 1: polynomial function

The first example involves a cubic polynomial

y(X)=50−(X1+X2)
3+X1−X2−X3+X1X2X3−X4 (31)

where Xi , i=1−4 are four independent and identically distributed random variables with mean
�i =0 and standard deviation �i =1. Four probability distributions of Xi were examined: (1)
Gaussian or N (0,1); (2) Uniform or U (−√

3,+√
3); (3) Beta or B(−3,+3,3,3); and (4) Beta or

B(−√
5,+√

5,1,1). The respective probability densities, defined by

fi (xi )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1/
√
2�)exp(−x2i /2), −∞�xi�+∞ Gaussian

1/(2
√
3),−√

3�xi�+√
3;0, o.w. Uniform

[�(8)/{�2(4)67}](xi +3)3(3−xi )
3,

−3�xi�+3;0, o.w. Beta

[�(4)/{�2(2)(2
√
5)3}](xi +

√
5)(

√
5−xi ),

−√
5�xi�+√

5;0, o.w. Beta

(32)

are plotted in Figure 2. The Hermite, Legendre, and Jacobi polynomials, listed in Table I, were
normalized and then employed as complete orthonormal bases for probability measures associated
with the Gaussian, Uniform, and Beta distributions, respectively. Since Equation (31) represents a
third-order polynomial, a value of m=3 should exactly reproduce y. In that case, the highest order
of integrands for calculating the coefficients of the polynomial dimensional decomposition is 6. A
four-point numerical integration—Gauss–Hermite, Gauss–Legendre, and Gauss–Jacobi quadratures
for Gaussian, Uniform, and Beta distributions, respectively—should then provide exact values of
the coefficients. In this example, the coefficients were calculated using m=3 in Equation (12) and
then numerically integrating Equations (13) x(first line) and 14 with n=4. Therefore, the only
source of error in a truncated polynomial dimensional decomposition is the selection of S.

xi

0.0

0.1

0.2

0.3

0.4

0.5

f i(
x i

)

N(0,1)

µi = 0, σi = 1

43210

Figure 2. Gaussian, Uniform, and Beta probability densities of Xi .
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Figure 3. Probability densities of a polynomial function by various methods: (a) Xi ∼N (0,1);
(b) Xi ∼U (−√

3,+√
3); (c) Xi ∼ B(−3,+3,3,3); and (d) Xi ∼ B(−√

5,+√
5,1,1).

Figures 3(a)–(d) and 4(a)–(d) show the probability densities and tail probability distributions,
respectively, of y(X) by several methods when the random variables follow Gaussian, Uniform,
and two Beta distributions. Each of these figures contains four plots—one obtained from the direct
Monte Carlo simulation and the remaining three generated from the univariate (S=1), bivariate
(S=2), and trivariate (S=3) polynomial dimensional decomposition method. The probability
densities and tail distributions converge rapidly with respect to S, regardless of the distribution of Xi .
Compared with the direct Monte Carlo simulation, the univariate results are clearly inadequate.
This is due to the absence of cooperative effects (mixed terms) of random variables in the univariate
approximation. The bivariate solution, which captures cooperative effects of any two variables, is
remarkably close to the Monte Carlo result. The probabilistic characteristics from the trivariate
decomposition and Monte Carlo simulation are coincident, as ỹ3(X) is identical to y(X), which
itself is a trivariate function. For the same reason, there is no need to pursue the quadrivariate
approximation.
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Figure 4. Tail probability distributions of a polynomial function by various methods: (a) Xi ∼N (0,1);
(b) Xi ∼U (−√

3,+√
3); (c) Xi ∼ B(−3,+3,3,3); and (d) Xi ∼ B(−√

5,+√
5,1,1).

5.2. Example 2: non-polynomial functions

The objective of the second example is to illustrate the proposed decomposition method for non-
polynomial performance functions, for instance, exponential and logarithmic functions. Two such
functions are

y1(X)=3+exp[− 1
4 (X1+2X2+3X3)]−X4 (33)

and

y2(X)= 1√
N

[
N∑
i=1

− ln{�(−Xi )}−N

]
(34)

where Xi , i=1,2, . . . are independent and identically distributed Gaussian random variables
with mean �i =0 and standard deviation �i =1, �(u) :=(1/

√
2�)

∫ u
−∞ exp(−	2/2)d	, and N =5

or 15. Since these functions are non-polynomials, the orthonormal Hermite polynomials or any
other polynomial basis for a finite value of m provides only an approximation. For the same
reason, the coefficients, which involve Gauss–Hermite integrations of non-polynomials, can only be
estimated for a finite value of n. Therefore, approximations in a truncated polynomial dimensional
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Table II. Results of P[y1(X)<0] in Example 2∗.

m n Univariate Bivariate Trivariate

1 1 0 0 0
2 2.34×10−3 1×10−3 9.88×10−4

3 4.62×10−3 2.49×10−3 2.5×10−3

2 2 2.34×10−3 1×10−3 9.88×10−4

3 9.15×10−4 1.89×10−4 1.75×10−4

4 9.18×10−4 1.96×10−4 1.81×10−4

3 3 9.15×10−4 1.89×10−4 1.75×10−4

4 7.81×10−4 2.05×10−4 1.91×10−4

5 8.02×10−4 2.3×10−4 2.15×10−4

4 4 7.81×10−4 2.05×10−4 1.91×10−4

5 7.9×10−4 1.77×10−4 1.64×10−4

6 7.96×10−4 1.76×10−4 1.62×10−4

5 5 7.9×10−4 1.77×10−4 1.64×10−4

6 7.83×10−4 1.75×10−4 1.64×10−4

7 7.83×10−4 1.78×10−4 1.63×10−4

∗y1(X)=3+exp[−(X1+2X2+3X3)/4]−X4.

decomposition of non-polynomials occur not only due to S but also due to m and n. In both
performance functions, the coefficients were calculated using the dimension-reduction integration
with R=3, i.e. by Equations (25)–(28).

Several combinations of 1�m�5 and m�n�m+2 and three values of S=1, 2, and 3 were
employed to calculate the probability P[y1(X)<0] by the decomposition method. The calculated
probabilities from the univariate, bivariate, and trivariate approximations are presented in Table II.
The probabilities approach steady-state values whenm and/or n increase, as expected. The bivariate
and trivariate solutions are closer to the benchmark result of 1.61×10−4, obtained from the direct
Monte Carlo simulation.

The second performance function y2(X) is a non-linear but univariate function, regardless
of N . Therefore, only the univariate decomposition method is needed. Using m=1−3 and n=5,
Figures 5(a) and (b) display the tail probability distributions of y2(X) for N =5 and 15, respectively,
by the univariate method. Since y2(X) follows a Gamma distribution, an exact solution exists and
is also plotted in Figures 5(a) and (b). The univariate results derived from two or three Hermite
polynomials are practically coincident with the exact distributions for both low-dimensional (N =5)
and high-dimensional (N =15) problems.

5.3. Example 3: mixed random variables

Consider three stochastic problems with mixtures of Gaussian and non-Gaussian independent
random variables, where the performance functions, described by

y1(X) = X1X2X3X4− 1
8 X5X

2
6 (35)

y2(X) = 7.645×10−4X1X2

(
1− 7.217×10−3X2

X3

)
−X4−X5 (36)
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Figure 5. Tail probability distributions of two non-polynomial functions by various methods: (a) exponential
function and (b) logarithmic function.

and

y3(X)=
√

3X1X2(X5−X6)

X4(2�X3/60)2(X3
5−X3

6)
−0.37473 (37)

were obtained from Melchers and Ahammed [20], Hong and Lind [21], and Penmetsa and Grandhi
[22], respectively. The statistical properties and probability distributions of all random variables
are described in Table III. The first problem contains a purely mathematical function, whereas
the second and third problems are related to structural reliability analysis. The objective of each
problem is to calculate the probability of failure, defined as P[yi (X)<0], i=1,2,3.

For random variables with arbitrary probability measures, several possibilities exist in defining a
complete set of orthonormal polynomials. A direct approach is to construct one from scratch, which
is consistent with the given probability distribution. However, an attractive alternative is to transform
all original random variables into new random variables for which orthonormal polynomials are
readily available. In this study, all non-Gaussian random variables were transformed into Gaussian
random variables, so that Hermite polynomials can be used to approximate the mapped performance
function in the Gaussian space.

The order of Hermite polynomials and the number of integration points were selected as follows:
m=4 and n=5 for y1(X) and y2(X) and m=5 and n=7 for y3(X). Using these parameters,
Table IV lists the estimated failure probabilities by the univariate, bivariate, and trivariate versions of
the decomposition method and direct Monte Carlo simulation. The agreement between the predicted
failure probabilities from all three versions, particularly the bivariate and trivariate versions, of
the decomposition method and Monte Carlo simulation is excellent. It is worth noting that the
univariate method, which underperformed in some of the previous examples, provided decent
estimates of the failure probability in this example. This is because of the realistic performance
functions and random variables chosen, where the individual effects of input variables are dominant
over their cooperative effects.

The choice of transforming non-Gaussian variables to Gaussian variables, although a standard
practice in the stochastic mechanics community, is somewhat arbitrary. Alternative transformations
of original random variables into all-Uniform or all-Beta or other types of random variables are
quite possible. The option remains whether the non-Gaussian variables are defined directly as an
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Table III. Statistical properties of mixed random variables in Example 3.

Performance function Random variable Mean Standard deviation Probability distribution

y1(X) X1 4 0.1 Weibull
X2 25 000 2000 Lognormal
X3 0.875 0.1 Gumbel
X4 20 1 Uniform
X5 100 100 Exponential
X6 150 10 Gaussian

y2(X) X1 1.01 0.0606 Gaussian
X2 (MPa) 400 40 Lognormal
X3 (MPa) 20 3.6 Gaussian
X4 (MNm) 95.87×10−3 9.587×10−3 Gaussian
X5 (MNm) 67.11×10−3 16.78×10−3 Gumbel

y3(X) X1 0.9377 0.0459 Weibull
X2 (psi) 220 000 5000 Gaussian
X3 (rpm) 21 000 1000 Gaussian

X4 (lbs2/in4) 0.29/g∗ 0.0058/g∗ Uniform
X5 (in) 24 0.5 Gaussian
X6 (in) 8 0.3 Gaussian

∗g=385.82in/s2.

Table IV. Failure probabilities in Example 3.

Failure probability Univariate Bivariate Trivariate Monte Carlo

P[y1(X)<0]∗ 3.06×10−3 3.42×10−3 3.42×10−3 3.42×10−3

P[y2(X)<0]† 3.52×10−3 2.73×10−3 2.73×10−3 2.75×10−3

P[y3(X)<0]‡ 1.58×10−3 9.64×10−4 9.66×10−4 9.66×10−4

∗y1(X)= X1X2X3X4− 1
8 X5X

2
6.

†y2(X)=7.645×10−4X1X2

(
1− 7.217×10−3X2

X3

)
−X4−X5.

‡y3(X)=
√

3X1X2(X5−X6)

X4(2�X3/60)2(X3
5−X3

6)
−0.37473.

input to a stochastic problem, as done here, or are derived from the discretization of a non-Gaussian
random field, not considered in this study. Nonetheless, it would be interesting to study how a
choice of transformation affects the smoothness of a performance function and to evaluate the
accuracy and convergence properties of the resultant failure probability solution.

In all three examples presented so far, the performance functions are explicit and simple math-
ematical constructs. Two practical examples where a stochastic response is implicit and requires
linear or non-linear finite element analysis via external commercial codes are demonstrated next.

5.4. Example 4: 10-bar truss

A linear-elastic, 10-bar truss, shown in Figure 6, is simply supported at nodes 1 and 4 and
is subjected to two concentrated loads of 105 lb at nodes 2 and 3. The truss material is
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Figure 6. A 10-bar truss; a boxed or unboxed number indicates a member or node number.

made of an aluminum alloy with Young’s modulus E=107 psi. The random input is X=
{X1, . . . , X10}T∈R10, where Xi denotes the cross-sectional area of the i th bar. The random variables
are independent and lognormally distributed with means �i =30in2, i=1, . . . ,10, each of which
has a 15% coefficient of variation. From a linear-elastic finite element analysis, the maximum
vertical displacement v3(X) occurs at node 3, where the permissible displacement is limited to
1.7 in. The analysis also reveals that maximum axial stress �1(X) occurs in member 1, where the
allowable stress is 10 800 psi. The displacement- and stress-based performance functions,

y1(X)=1.7−v3(X) (38)

and

y2(X)=10800−�1(X) (39)

were employed to define two component-level failure probabilities: PF,1 := P[y1(X)<0] and
PF,2 := P[y2(X)<0] and a series system-level failure probability: PF,3 := P[{y1(X)<0}∪
{y2(X)<0}].

Table V presents two component failure probabilities and a system failure probability of the
truss structure, calculated using the proposed univariate (S=1), bivariate (S=2), and trivariate
(S=3) decomposition methods, and direct Monte Carlo simulation. For the decomposition method,
m=4, n=5, and several values of R=1, 2, and 3 were selected. As can be seen from Table V,
all three versions of the decomposition method, regardless of R, provide satisfactory to excellent
predictions of these failure probabilities; yet, their required numbers of function evaluations are
significantly less than that required by the Monte Carlo simulation. A larger value of R for the
univariate or bivariate method results only in a marginal improvement of the failure probability
estimate. Therefore, the value of R can be selected same as that of S. The univariate method
(S= R=1) is the most computationally inexpensive method, but it is also the least accurate among
the three decomposition methods. The bivariate (S= R=2) and trivariate (S= R=3) methods are
highly accurate, but their computational efforts, particularly the effort of the trivariate method, are
much larger than that of the univariate method.
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Table V. Component and system failure probabilities of a 10-bar truss.

Failure Univariate Bivariate Trivariate
probability
and effort R=1 R=2 R=3 R=2 R=3 R=3 Monte Carlo

P∗
F,1 1.04×10−4 1.1×10−4 1.1×10−4 1.87×10−4 1.86×10−4 1.82×10−4 1.82×10−4

P†
F,2 2.75×10−4 2.81×10−4 2.81×10−4 3.71×10−4 3.7×10−4 3.72×10−4 3.72×10−4

P‡
F,3 3.47×10−4 3.59×10−4 3.59×10−4 5.12×10−4 5.1×10−4 5.1×10−4 5.08×10−4

No. of finite 41 761 8441 761 8441 8441 106

element
analyses

∗PF,1= P[1.7−v3(X)<0].
†PF,2= P[10800−�1(X)<0].
‡PF,3= P[{1.7−v3(X)<0}∪{10800−�1(X)<0}].

5.5. Example 5: probabilistic fracture mechanics

The final example involves a circumferential, through-wall-cracked (TWC), non-linearly elastic
cylinder that is subjected to a four-point bending, as shown in Figure 7(a). The cylinder has a
mid-thickness radius Rm =50.8mm, a wall thickness t=5.08mm, and a symmetrically centered
through-wall crack with the normalized crack angle 
/�= 1

8 . The outer span Lo=1.5m and the
inner span L i=0.6m. The cross-sectional geometry at the cracked section is shown in Figure 7(b).
The cylinder is composed of an ASTM Type 304 stainless steel, which follows the Ramberg–
Osgood constitutive equation [23]

�i j = 1+�

E
Si j + 1−2�

3E
�kk�i j + 3

2E
�0

(
�e
�0

)m0−1

Si j (40)

where �i j and �i j are stress and strain components, respectively, E is Young’s modulus, � is the
Poisson ratio, �0 is a reference stress, �0 is a dimensionless material coefficient, m0 is a strain
hardening exponent, �i j is the Kronecker delta, Si j :=�i j −�kk�i j/3 is a deviatoric stress, and
�e :=√3Si j Si j/2 is the von Mises equivalent stress. Table VI lists the means, standard deviations,
and probability distributions of tensile parameters (E,�0,m0), four-point bending load (F), and
fracture toughness (JIc). All random variables are statistically independent. In addition, �0=
154.78MPa and �=0.3. A finite element mesh of the quarter-cylinder model, consisting of 236
elements and 1805 nodes, is shown in Figure 7(c). Twenty-noded isoparametric solid elements
from the ABAQUS library [24] were used, with focused singular elements at the crack tip. This
type of TWC cylinders is frequently analyzed for fracture evaluation of pressure boundary integrity
in the nuclear industry.

For a non-linearly elastic cracked solid, the J -integral is a useful crack-driving force that uniquely
characterizes the asymptotic crack-tip stress and strain fields [23]. Therefore, a fracture criterion,
where the J -integral exceeds the fracture toughness of the material, can be used to calculate the
probability of fracture initiation: P[J (X)>JIc(X)], in which the thickness-averaged J depends
only on the first four random variables of X defined in Table VI. For the dimension-reduction
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Figure 7. A through-wall-cracked cylinder under four-point bending: (a) geometry and loads; (b) cracked
cross section; and (c) finite element discretization.

integration, the values of R and S are identical. The bivariate (S= R=2) decomposition method,
using m=4, n=5, and only 113 ABAQUS-aided finite element analyses, predicts a fracture-
initiation probability of 6.04×10−4. The estimate of the fracture-initiation probability by the
trivariate (S= R=3) decomposition method, which requires 369 finite element analyses, is 6.44×
10−4. Both estimates are similar and reasonably close to 5.91×10−4, a value obtained from using
the original bivariate decomposition method with sample points [5]. Due to expensive, non-linear,
finite element analysis, direct Monte Carlo simulation was not feasible to verify the low probability
in this example. Nonetheless, both Examples 4 and 5 demonstrate the non-intrusive nature of the
proposed decomposition method, which can be easily integrated with external numerical analysis
codes for solving complex stochastic problems.
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Table VI. Statistical properties of random input for a through-wall-cracked cylinder.

Random variable Mean Standard deviation Probability distribution

Elastic modulus, E (GPa) 182.7 18.27 Gaussian
Ramberg–Osgood coefficient, �0 8.073 3.544 Lognormal
Ramberg–Osgood exponent, m0 3.8 0.5548 Lognormal
Four-point bending load, F (kN) 28 2.8 Gaussian
Initiation toughness, JIc (kJ/m2) 1242.6 584.02 Lognormal

6. CONCLUSIONS AND OUTLOOK

A new polynomial dimensional decomposition method was developed for solving stochastic prob-
lems commonly encountered in engineering disciplines and applied sciences. The method is based
on a hierarchical decomposition of a multivariate response function in terms of variables with
increasing dimensions. Compared with the previous development, the new decomposition method
does not require sample points around the mean input to approximate the component functions.
Instead, orthogonal polynomial basis functions in the Hilbert space, ranging from the Hermite,
Legendre, and Jacobi polynomials, were employed, yielding the Fourier-polynomial expansion of
the component functions. An innovative dimension-reduction integration scheme was applied for
efficiently calculating the expansion coefficients. The end result is a convergent sequence of lower-
variate estimates of the probabilistic characteristics of a generic stochastic response. The method is
non-intrusive in the sense that the expansion coefficients are obtained by calculating responses at
selected deterministic input defined by the integration points. Therefore, the method can be easily
adapted to solving complex stochastic problems requiring external commercial codes.

The decomposition method was employed to solve five examples, where the performance func-
tions are polynomials or non-polynomials, include mixtures of Gaussian and non-Gaussian random
variables, and are described by simple mathematical functions or mechanical responses from linear
or non-linear finite element analysis. The results indicate that the decomposition method devel-
oped, in particular the bivariate and trivariate versions, provides very accurate estimates of the tail
distribution of random response or reliability. The computational effort by the univariate method
varies linearly with respect to the number of random variables or the number of integration points.
Therefore, the univariate method is economic. In contrast, the bivariate or trivariate method, which
generally outperforms the univariate method, demands a quadratic or cubic cost scaling, making
either method also more expensive than the univariate method. Nonetheless, all three versions of
the decomposition method are far less expensive than the direct Monte Carlo simulation.

There are important differences between the dimensional decomposition and polynomial chaos
expansion methods. The dimensional decomposition is a finite sum, whereas the polynomial
chaos expansion is an infinite series and contains an infinite number of random variables. More
importantly, the dimensional decomposition is structured with respect to the degree of cooperativity
between a finite number of random variables. Consequently, if a response is highly non-linear but
contains rapidly diminishing cooperative effects of multiple random variables, the dimensional
decomposition is highly effective. Nonetheless, the polynomial dimensional decomposition and
polynomial chaos expansion methods are both convergent, but in the mean square sense. Further
work is necessary to examine the convergence modes and properties of these methods when a
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stochastic response is discontinuous, non-smooth, or a function of mixed random variables with
an arbitrary probability measure.
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