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Abstract
An optimal version of spline dimensional decomposition (SDD) is unveiled
for general high-dimensional uncertainty quantification analysis of complex
systems subject to independent but otherwise arbitrary probability measures
of input random variables. The resulting method involves optimally derived
knot vectors of basis splines (B-splines) in some or all coordinate direc-
tions, whitening transformation producing measure-consistent orthonormal-
ized B-splines equipped with optimal knots, and Fourier-spline expansion of a
general high-dimensional output function of interest. In contrast to standard
SDD, there is no need to select the knot vectors uniformly or intuitively. The
generation of optimal knot vectors can be viewed as an inexpensive preprocess-
ing step toward creating the optimal SDD. Analytical formulas are proposed to
calculate the second-moment properties by the optimal SDD method for a gen-
eral output random variable in terms of the expansion coefficients involved.
It has been shown that the computational complexity of the optimal SDD
method is polynomial, as opposed to exponential, thus mitigating the curse of
dimensionality by a discernible magnitude. Numerical results affirm that the
optimal SDD method developed is more precise than polynomial chaos expan-
sion, sparse-grid quadrature, and the standard SDD method in calculating not
only the second-moment statistics, but also the cumulative distribution function
of an output random variable. More importantly, the optimal SDD outperforms
standard SDD by sustaining nearly identical computational cost.
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1 INTRODUCTION

Uncertainty quantification, commonly referred to as UQ, is a contemporary scientific discipline, cutting across traditional
research areas of engineering and applied sciences, numerical analysis, and probability and statistics. A long-standing
staple for UQ analysis involves measure-consistent orthogonal polynomials in input random variables, such as those
readily exploited by the polynomial chaos expansion (PCE)1-3 and polynomial dimensional decomposition (PDD)4-6

methods. These methods are known to offer significant computational advantages over crude Monte Carlo sim-
ulation (MCS), especially when the output variable is globally smooth over the entire domain of input random
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variables. While the polynomial-based expansion methods have become mainstream and found numerous applica-
tions, they are not well suited to deal with locally significant changes, including discontinuity and nonsmoothness,
in stochastic responses of interest. In this regard, two relatively new expansion methods introducing orthonormal
version of basis splines (B-splines), namely, the spline chaos expansion (SCE)7 and spline dimensional decomposi-
tion (SDD),8,9 have been created to tackle locally pronounced, highly nonlinear, or nonsmooth responses. In conse-
quence, a low-degree SCE or SDD approximation with an adequate mesh size is capable of producing a markedly
more accurate estimate of the output variance than PCE or PDD approximations with exceedingly large expansion
orders.7-9

While the SCE and SDD methods both entail orthonormalized B-splines as their basis functions, the SDD method,
akin to its predecessor, the PDD method, is better adapted to handling high-dimensional UQ problems than SCE or
PCE. However, the basis functions of the existing SDD are often predicated on knot vectors with uniform spacing in all
coordinate directions. As a result, they are not necessarily maximally empowered to capture locally abrupt changes in
stochastic responses, if they exist, in an efficient manner. The authors argue that the knot vectors should be selected
optimally, leading to more powerful basis functions, thereby imparting superior approximation quality to the resulting
SDD expansion. The development of such SDD featuring optimally derived knot vectors is the principal motivation for
this work.

Two other UQ methods, frequently used by engineers and applied mathematicians, are the stochastic collocation
method10,11 and sparse-grid quadrature.12,13 Depending on the problem at hand, both of them are generally more effi-
cient than crude MCS. However, for truly high-dimensional problems, a collocation method like PCE or SCE also
requires an astronomically large number of basis functions or coefficients, succumbing to the curse of dimensional-
ity. While the B-splines have also been employed to construct the sparse-grid quadrature, they are neither orthogonal
nor measure-consistent, meaning that the basis functions are not adapted to the probability measure of input ran-
dom variables. More importantly, the foundational idea of sparse grids can be traced to the referential dimensional
decomposition (RDD),14 also known as anchored decomposition15 or cut-high-dimensional model representation,16 of a
high-dimensional function. By contrast, SDD is rooted in the analysis-of-variance (ANOVA) dimensional decomposition
(ADD), which is generally superior to RDD. Indeed, an error analysis reveals the suboptimality of RDD approximations,
meaning that an RDD approximation, regardless of how the reference point is chosen, cannot be better than an ADD
approximation for identical degrees of interaction.14

This article presents a novel optimal SDD method for general uncertainty quantification analysis of complex systems
subject to independent but otherwise arbitrary probability measures of input random variables. The method involves (1)
optimally derived knot vectors of B-splines in some or all coordinate directions; (2) whitening transformation produc-
ing measure-consistent orthonormalized B-splines equipped with optimal knots; and (3) Fourier-spline expansion of a
general high-dimensional output function of interest. The article is structured as follows. Section 2 formally defines a
general UQ problem, including a list of requisite assumptions for input and output random variables. Section 3 describes
the construction of measure-consistent orthonormalized B-splines. A general SDD method is summarized in Section 4,
including derivation of the output statistics from the truncated expansion. Two approximate methods for estimating
the SDD coefficients are presented in Section 5. Section 6 explains the derivation of the optimal knots from two dis-
tinct approaches, thereby yielding the new optimal SDD method. The results from two numerical examples and an
industrial-scale engineering application are reported in Sections 7 and 8, respectively. Finally, conclusions are drawn in
Section 9.

2 A GENERAL UQ PROBLEM

Let N ∶= {1, 2, …}, N0 ∶= N ∪ {0}, and R ∶= (−∞,+∞) represent the sets of positive integer (natural), nonnegative inte-
ger, and real numbers, respectively. Denote by [ak, bk] a finite closed interval, where ak, bk ∈ R and bk > ak. Then, given
N ∈ N, AN = ×N

k=1[ak, bk] represents a closed bounded domain of RN .

2.1 Input random variables

Let (Ω, ,P) be a probability space, where Ω is a sample space representing an abstract set of elementary events,  is a
𝜎-algebra onΩ, and P ∶  → [0, 1] is a probability measure. Defined on this probability space, consider an N-dimensional
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input random vector X ∶= (X1, … ,XN)⊺, describing the statistical uncertainties in all system parameters, including exter-
nal loads, displacement boundary conditions, material properties, and geometry, of a complex mechanical system. Denote
by FX(x) ∶= P(∩N

k=1{Xk ≤ xk}) the joint cumulative distribution function (CDF) of X. The kth component of X is a ran-
dom variable Xk, which has the marginal CDF FXk (xk) ∶= P(Xk ≤ xk). The positive integer N, which represents the total
number of input random variables, is often referred to as the dimension of the stochastic or UQ problem. As an example,
consider a cantilevered beam with length L and Young’s modulus E, which is subjected to a vertically applied concen-
trated force F and moment M at its free end. If all of these input parameters are modeled as random variables, then
X ∶= (L,E,F,M)⊺ with stochastic dimension N = 4.

Depending on the UQ problem, some of the input parameters may possess spatial variability, suggesting a need for
their random field description. Common examples are elastic properties of engineering materials, size and shape charac-
teristics of mechanical components, and wind and snow loads in structural systems, to name a few. For computational
purposes, the random fields must be discretized into a finite number of constituent random variables. An often-used
approach entails the Karhunen–Loève (K–L) expansion,17 leading to an infinite series expansion of the random field con-
sisting of deterministic functions of space and uncorrelated random variables. Recent works on the K–L approximation
are premised on Galerkin isogeometric18 and isogeometric collocation methods,19,20 where the latter, by eliminating one
dimension-order of domain integration, offers a hefty computational advantage over the former. Readers interested in
further detail are directed to the aforementioned works.

In summary, the randomness in the UQ problem may stem from spatially invariant random variables alone, from the
discretization of spatially variant random fields, or both. If the problem contains spatially invariant random variables and
random fields, then N represents the total number of random variables.

A set of assumptions on input random variables used or required by SDD is as follows.

Assumption 1. The input random vector X ∶= (X1, … ,XN)⊺ satisfies all of the following conditions:

(1) All component random variables Xk, k = 1, … ,N, are statistically independent, but not necessarily identically
distributed.

(2) Each input random variable Xk is defined on a bounded interval [ak, bk] ⊂ R. Therefore, all moments of Xk exist, that
is, for all l ∈ N,

E
[
Xl

k

]
∶= ∫Ω

Xl
k(𝜔) dP(𝜔) < ∞,

where E is the expectation operator with respect to the probability measure P.
(3) Each input random variable Xk has absolutely continuous marginal CDF FXk (xk) and continuous marginal probability

density function (PDF) fXk (xk) ∶= 𝜕FXk (xk)∕𝜕xk with a bounded support [ak, bk] ⊂ R. Consequently, with Items (1)
and (2) in mind, the joint CDF FX(x) and joint PDF fX(x) ∶= 𝜕N FX(x)∕𝜕x1 … 𝜕xN of X are obtained from

FX(x) =
N∏

k=1
FXk (xk) and fX(x) =

N∏
k=1

fXk (xk),

respectively, with a bounded support AN ⊂ RN of the density function.

Assumption 1 ensures the existence of a relevant sequence of orthogonal polynomials or splines consistent with the
input probability measure. The discrete distributions and dependent variables are not dealt with in this work.

2.2 An output random variable of interest

Given an input random vector X ∶= (X1, … ,XN)⊺ ∶ (Ω, ) → (AN ,N) with known PDF fX(x) on AN ⊂ RN , denote by
y(X) ∶= y(X1, … ,XN) a real-valued, square-integrable, measurable transformation on (Ω, ). Here, y ∶ AN → R repre-
sents a relevant function from a mathematical model, describing an output response of interest for a UQ problem. A major
objective of UQ analysis is to estimate the probabilistic characteristics of an output random variable Y = y(X), including
its statistical moments and CDF, when the probability law of the input random vector X is prescribed. More often than
not, Y is assumed to belong to a reasonably large class of random variables, such as the weighted L2 space
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L2(Ω, ,P) ∶=
{

Y ∶ Ω → R ∶ ∫Ω
|y(X(𝜔))|2 dP(𝜔) = ∫

AN
|y(x)|2fX(x) dx < ∞

}
,

which is a Hilbert space with the inner product

(y(X), z(X))L2(Ω, ,P) ∶= ∫Ω
y(X(𝜔))z(X(𝜔)) dP(𝜔) = ∫

AN
y(x)z(x)fX(x) dx

and norm

||y(X)||L2(Ω, ,P) ∶=
√
(y(X), y(X))L2(Ω, ,P) =

√
∫Ω

y2(X(𝜔)) dP(𝜔) =

√
∫

AN
y2(x)fX(x) dx.

3 MEASURE- CONSISTENT ORTHONORMAL SPLINES

For the coordinate direction k = 1, … ,N, define a nonnegative integer pk ∈ N0 and a positive integer nk ≥ pk + 1,
representing the degree and number of basis functions, respectively. Then, a knot vector

𝝃k ∶= {𝜉k,ik}
nk+pk+1
ik=1 = {ak = 𝜉k,1, 𝜉k,2, … , 𝜉k,nk+pk+1 = bk}

is defined on the interval [ak, bk] by a nondecreasing sequence of real numbers, where 𝜉k,ik is the ikth knot with ik =
1, 2, … ,nk + pk + 1. Any knot may appear up to pk + 1 times in the sequence. Hence, the knot vector can be rewritten as

𝝃k = {ak =

mk,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,1, … , 𝜁k,1,

mk,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,2, … , 𝜁k,2, … ,

mk,rk−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,rk−1, … , 𝜁k,rk−1,

mk,rk
times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,rk , … , 𝜁k,rk = bk},

ak = 𝜁k,1 < 𝜁k,2 < · · · < 𝜁k,rk−1 < 𝜁k,rk = bk,

where 𝜁k,jk , jk = 1, 2, … , rk are the rk unique knots, each of which has multiplicity 1 ≤ mk,jk ≤ pk + 1. For more details,
readers are referred to Appendix A of this article and Chapter 2 of the book by Cottrell et al.21 A knot vector is called
(pk + 1)-open if the end knots have multiplicities pk + 1. In this work, only (pk + 1)-open knot vectors are considered.

Denote by Bk
ik ,pk ,𝝃k

(xk) the ikth univariate B-spline with degree pk. Given the knot vector 𝝃k and zero-degree basis
functions, all higher-order* B-spline functions on [ak, bk] are defined recursively, where 1 ≤ k ≤ N, 1 ≤ ik ≤ nk, and
1 ≤ pk < ∞. See Appendix A for an explicit definition of Bk

ik ,pk ,𝝃k
(xk).

The B-splines are endowed with a number of desirable properties, which can generally deliver tremendous approxi-
mating power to numerical methods. More specifically, they are21,22: (1) nonnegative; (2) locally supported on the interval
[𝜉k,ik , 𝜉k,ik+pk+1) for all ik; (3) linearly independent; (4) committed to partition of unity; and (5) pointwise C∞-continuous
everywhere except at the knots 𝜁k,jk of multiplicity mk,jk for all jk, where they are Cpk−mk,jk -continuous, provided that
1 ≤ mk,jk < pk + 1.

3.1 Univariate orthonormalized B-splines

The aforementioned B-splines, although they form a basis of the spline space of degree pk and knot vector 𝝃k, are not
orthogonal with respect to the probability measure fXk (xk) dxk of Xk. A linear transformation, originally proposed in the
prequel,8 is summarized here in three steps to generate their orthonormal version.

(1) Given a set of B-splines of degree pk, create an auxiliary set by replacing any element, arbitrarily chosen to be the
first, with one. Arrange the elements of the set into an nk-dimensional vector

Pk(xk) ∶=
(

1,Bk
2,pk ,𝝃k

(xk), … ,Bk
nk ,pk ,𝝃k

(xk)
)⊺

comprising the auxiliary B-splines. The linear independence of the auxiliary B-splines is preserved.7

*Degree and order are used interchangeably in this article.
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(2) Construct an nk × nk spline moment matrix

Gk ∶= E[Pk(Xk)P⊺
k(Xk)].

The matrix Gk exists because Xk has finite moments up to order 2pk, as stated in Assumption 1. Furthermore, it is
symmetric and positive-definite,7 ensuring the existence of a nonsingular nk × nk whitening matrix Wk such that

W⊺
kWk = G−1

k .

(3) Apply a whitening transformation to create a vector of orthonormalized B-splines

𝝍k(xk) = WkPk(xk),

consisting of uncorrelated components

𝜓k
ik ,pk ,𝝃k

(xk), ik = 1, … ,nk, k = 1, … ,N.

Note that the invertibility of Gk does not uniquely determine Wk. Indeed, there are several ways to choose Wk such
that the condition described in Step 2 is satisfied.7 One prominent, relatively stable option is to invoke the Cholesky
factorization Gk = QkQ⊺

k, leading to

Wk = Q−1
k .

Figure 1(A–D) depicts a set of second-order (p = 2) B-spline functions on [−1, 1] with an arbitrarily chosen, nonuni-
formly spaced knot vector 𝝃 = {−1,−1,−1,−0.75, 0, 0.75, 1, 1, 1} before and after orthonormalization. The six B-splines in
Figure 1(A) were derived using the Cox–de Boor formula in Appendix A. Once again, they are nonnegative and locally sup-
ported, but not orthonormal with respect to the probability measure of the random variable X with the bounded domain
[−1, 1]. By contrast, Figure 1(B–D) illustrates the associated orthonormalized B-splines, obtained when X is a uniform,
truncated Gaussian, and beta random variable, respectively, with their PDFs fX ∶ [−1, 1] → R ⧵ (−∞, 0) given as

1
2
,

2𝜙(2x + 1)
Φ(3) − Φ(−1)

, and Γ(5)(x + 1)2(1 − x)
16Γ(3)Γ(2)

,

where Φ and 𝜙 respectively denote the probability distribution and density functions of a standard Gaussian random
variable. For all three cases, the spline moment matrix was calculated analytically and the whitening matrix was obtained
by inverting the Cholesky factorization, as suggested previously. The shapes of the spline functions depend on both the
spacing of the knots and the probability measure of X . Unlike in Figure 1(A), all nonconstant functions in Figure 1(B–D)
have a mean of zero. Furthermore, the orthonormalized B-splines are neither nonnegative nor locally supported. However,
an orthonormal basis is an essential ingredient in constructing an SDD expansion.

As illustrated by the examples in Figure 1(B–D), the spline moment matrix can be evaluated analytically for some
PDFs. If this is not the case, it can be approximated using a Gauss-type quadrature rule. Since no potentially expensive
output function evaluations are involved, the numerical integration can be performed with an arbitrary level of precision.
While it is possible to do this using a single set of measure-consistent quadrature points and weights of sufficiently high
order corresponding to the entire domain [ak, bk], it is often more accurate to generate measure-consistent quadrature
points and weights for each subinterval defined between successive, unique knots. In this case, the integral is split into
several integrals, each operating on a polynomial of order 2pk multiplied by a part of the PDF. Whichever method used
to compute the spline moment matrix can also be used to compute its derivatives, given in Appendix B, with respect to
the internal knots for purposes that will be explained later.

3.2 Multivariate orthonormalized B-splines

Due to the product-type probability measure of independent random input variables, measure-consistent multivariate
orthonormalized B-splines in N variables are easily built from the N-dimensional tensor product of measure-consistent
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F I G U R E 1 A set of B-splines associated with the knot vector 𝝃 = {−1,−1,−1,−0.75, 0, 0.75, 1, 1, 1} and order p = 2: (A)
nonorthonormal basis; (B) orthonormal basis for uniform measure; (C) orthonormal basis for truncated Gaussian measure; and (D)
orthonormal basis for beta measure

univariate orthonormalized B-splines. However, forming such a tensor product in a high-dimensional setting is not
recommended. Instead, the authors advocate constructing a series of tensor products in a dimensionwise manner.

Denote by ∅ ≠ u = {k1, … , k|u|} ⊆ {1, … ,N} a nonempty subset of the index set {1, … ,N} with cardinality 1 ≤|u| ≤ N. For such a subset, let Xu ∶= (Xk1 , … ,Xk|u| )⊺ be a subvector of X defined on the abstract probability space
(Ωu,u,Pu), where Ωu is the sample space of Xu, u is a 𝜎-algebra on Ωu, and Pu is a probability measure. As X comprises
independent random variables, the PDF of Xu is

fXu(xu) =
∏
k∈u

fXk (xk) =
|u|∏
l=1

fXkl
(xkl ), xu ∶= (xk1 , … , xk|u| )⊺.

Define three multiindices iu ∶= (ik1 , … , ik|u|) ∈ N|u|, nu ∶= (nk1 , … ,nk|u|) ∈ N|u|, and pu ∶= (pk1 , … , pk|u|) ∈ N
|u|
0 , repre-

senting the knot indices, numbers of basis functions, and degrees of splines, respectively, in all |u| coordinate directions.
Denote by 𝚵u ∶= {𝝃k1

, … , 𝝃k|u|} a family of all |u| knot sequences. Associated with iu, define an index set

u,nu ∶=
{

iu = (ik1 , … , ik|u| ) ∶ 1 ≤ ikl ≤ nkl , l = 1, … , |u|} ⊂ N
|u|

with cardinality

|u,nu | =∏
k∈u

nk.
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For the coordinate direction kl, define by

Ikl = rkl − 1,

the number of subintervals corresponding to the knot vector 𝝃kl
with rkl distinct knots. Then the partition, defined by the

knot vectors 𝝃k1
, … , 𝝃k|u| , decomposes the |u|-dimensional rectangle Au ∶= ×k∈u[ak, bk] into smaller rectangles{

xu = (xk1 , … , xk|u| ) ∶ 𝜁kl,jkl
≤ xkl < 𝜁kl,jkl+1 , l = 1, … , |u|} , jkl = 1, … , Ikl ,

where 𝜁kl,jkl
is the jkl th distinct knot in the coordinate direction kl. A mesh is defined by the partition of Au into such

rectangular elements. Define the largest element size in each coordinate direction k ∈ u by

hu,kl ∶= max
jkl
=1,… ,Ikl

(
𝜁kl,jkl

+1 − 𝜁kl,jkl

)
, l = 1, … , |u|.

Then, given the knot vectors 𝚵u = {𝝃k1
, … , 𝝃k|u|},

hu ∶= (hu,k1 , … , hu,k|u| ) and hu ∶= max
l=1,… ,|u| hu,kl

define a vector of the largest element sizes in all |u| coordinates and the global mesh size, respectively, for the domain Au.
Consequently, for ∅ ≠ u = {k1, … , k|u|} ⊆ {1, … ,N}, with pu = (pk1 , … , pk|u|) ∈ N

|u|
0 and 𝚵u = {𝝃k1

, … , 𝝃k|u|} in mind,
the multivariate orthonormalized B-splines in xu = (xk1 , … , xk|u| ) consistent with the probability measure fXu(xu) dxu are

Ψu
iu,pu,𝚵u

(xu) =
∏
k∈u

𝜓k
ik ,pk ,𝝃k

(xk) =
|u|∏
l=1

𝜓
kl
ikl
,pkl

,𝝃kl
(xkl ), iu = (ik1 , … , ik|u|) ∈ u,nu , (1)

where

u,nu ∶=
{

iu = (ik1 , … , ik|u| ) ∶ 2 ≤ ikl ≤ nkl , l = 1, … , |u|} ⊂ (N ⧵ {1})|u|
is a reduced index set, which has cardinality

|u,nu | ∶=∏
k∈u

(nk − 1). (2)

The key difference between the index sets u,nu and u,nu is that the former limits the range of index ikl , l = 1, … , |u|,
associated with the klth variable xkl , to 2, … ,nkl . The exclusion of ikl = 1 removes the first constant element of 𝝍kl

(xkl ) in
order to prevent reduction of the degree of interaction of the corresponding multivariate spline basis below |u|.

When the input random variables X1, … ,XN , instead of real variables x1, … , xN , are inserted in the argument, the
multivariate splines Ψu

iu,pu,𝚵u
(Xu), ∅ ≠ u ⊆ {1, … ,N}, iu ∈ u,nu , become functions of random input variables. Then, for

∅ ≠ u, v ⊆ {1, … ,N}, iu ∈ u,nu , and jv ∈ v,nv , the first- and second-order moments of multivariate orthonormalized
B-splines are9

E

[
Ψu

iu,pu,𝚵u
(Xu)

]
= 0 (3)

and

E

[
Ψu

iu,pu,𝚵u
(Xu)Ψv

jv,pv,𝚵v
(Xv)

]
=

{
1, u = v and iu = jv,

0, otherwise,
(4)

respectively. The zero-mean and orthonormal properties of spline functions, defined in Equations (3) and (4), are crucial
ingredients of SDD.



DIXLER et al. 5905

It is important to underscore that the multivariate and univariate orthonormalized B-splines derived in this section
are both consistent with an arbitrary probability measure of input random variables with bounded domains. However,
there are many UQ problems where there exist random variables with unbounded domains. In such a case, an appropriate
probability preserving transformation, mapping a random variable with unbounded domain to another with bounded
domain solves the problem. The transformation will be revisited when numerical examples are discussed.

4 A GENERAL SPLINE DIMENSIONAL DECOMPOSITION

A principal objective of solving the UQ problem is to effectively estimate the relevant probabilistic characteristics of y(X) ∈
L2(Ω, ,P). The dimension N of a real-life stochastic problem often exceeds 10 and may even be in the realm of hundreds,
where the output response function y(X) is highly nonlinear with locally significant changes, including discontinuity
and nonsmoothness, with respect to the random input X. Although somewhat subjective, here, the stochastic dimension
exceeding 10 is viewed as a high-dimensional UQ problem. Nonetheless, stochastic computation for complex mechanical
systems in a high-dimensional stochastic domain AN is an expensive initiative.

4.1 ANOVA dimensional decomposition

For any nonempty subset u and subvector Xu ∶= (Xk1 , … ,Xk|u|)⊺, denote by −u ∶= {1, … ,N} ⧵ u and X−u ∶= X{1,… ,N}⧵u
their complementary subset and subvector, respectively. Then, for a given ∅ ≠ u ⊆ {1, … ,N}, the marginal density
function of Xu, defined on Au ∶= ×k∈uA{k} ⊂ R|u|, is

fXu(xu) ∶= ∫
A−u

fX(x) dx−u =
∏
k∈u

fXk (xk),

where the second equality forms due to statistical independence of the input random variables as per Assumption 1.
Hence, it can be shown that, for any function y ∈ L2(Ω, ,P), there exists a unique, finite, hierarchical expansion14,23,24

y(X) = y∅ +
∑

∅≠u⊆{1,… ,N}
yu(Xu), (5a)

y∅ ∶= ∫
AN

y(x)fX(x) dx, (5b)

yu(Xu) ∶= ∫
A−u

y(Xu, x−u)fX−u(x−u) dx−u −
∑
v⊂u

yv(Xv), (5c)

referred to as ADD, where yu is a |u|-variate component function describing a constant or a |u|-variate interaction of
xu = (xk1 , … , xk|u| ) on y when |u| = 0 or |u| > 0. Here, (Xu, x−u) denotes an N-dimensional vector whose kth component
is Xk if k ∈ u and xk if k ∉ u. The summation in Equation (5a) comprises 2N − 1 terms with each term depending on a
group of variables indexed by a particular subset of {1, … ,N}.

The decomposition presented in Equations (5a)–(5c) has two notable properties:14

(1) Any nonconstant component function yu(Xu) has a zero mean, that is,

E[yu(Xu)] = 0, ∅ ≠ u ∈ {1, … ,N}. (6)

(2) Any two distinct component functions yu(Xu) and yv(Xv) are mutually orthogonal, that is,

E[yu(Xu)yv(Xv)] = 0, u, v ∈ {1, … ,N}, u ≠ v. (7)

Readers interested in further details of ADD are directed to prior works.14,23,24

It is elementary to show that all ADD component functions of y(X) are members of respective subspaces of
L2(Ω, ,P). Unfortunately, the subspaces are infinite-dimensional. Therefore, a further discretization or refinement is
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necessary. In contrast to the past works on polynomial refinements, a new spline adaptation of the subspaces, spanning
measure-consistent orthonormalized B-splines, is proposed.

4.2 Fourier spline expansion

Consider any nonconstant component function of ADD defined in Equation (5c). Given the second-moment properties
in Equations (3) and (4), yu(Xu) belongs to the Hilbert space

u ∶=
{

yu(Xu) ∈ L2(Ωu,u,Pu) ∶ E [yu(Xu)yv(Xv)] = 0 if u ≠ v, u, v ⊆ {1, … ,N}
}
.

Denote by

{Ψu
iu,pu,𝚵u

(Xu) ∶ iu ∈ u,nu}

a set of measure-consistent multivariate orthonormalized B-splines in Xu. The cardinality of the set is |u,nu |, defined in
Equation (2). It is controlled by the numbers of basis functions nkl , which in turn is determined by the lengths of the
knot vectors 𝝃kl

and the corresponding orders pkl . Clearly, any increase in the lengths of the knot vectors increases the
number of bases, thereby expanding u,nu . With this in mind, consider a refinement process with fixed pu in which nkl

or, equivalently, the length of 𝝃kl
is increased in all |u| coordinate directions, in such a way that the largest element size

hu,kl is monotonically reduced. The result is an increasing family of the sets of such basis functions. In the limit, when
nkl → ∞, kl = 1, … , |u|, denote by 𝝃kl,∞ and 𝚵u,∞ = (𝝃1,∞, … , 𝝃|u|,∞) the associated knot vector in the klth coordinate
direction and the family of such |u| knot vectors, respectively. Then, there exists an infinite number of basis functions
with the associated index set

u,∞ ∶=
{

iu = (ik1 , … , ik|u| ) ∶ 2 ≤ ikl < ∞, l = 1, … , |u|} ,
representing the infinite counterpart of u,nu . Consequently, the infinite set of multivariate orthonormalized B-splines
{Ψu

iu,pu,𝚵u,∞
(Xu) ∶ iu ∈ u,∞} forms an orthonormal basis of u, yielding

u = span{Ψu
iu,pu,𝚵u,∞

(Xu) ∶ iu ∈ u,∞},

where the overline stands for set closure.
According to the standard Hilbert space theory, every yu(Xu) ∈ u can be expanded in terms of the aforementioned

spanning set, resulting in

yu(Xu) ∼
∑

iu∈u,∞

Cu
iu,pu,𝚵∞

Ψu
iu,pu,𝚵u,∞

(Xu), (8)

where

Cu
iu,pu,𝚵u,∞

∶= ∫
Au

yu(xu)Ψu
iu,pu,𝚵u,∞

(xu)fXu(x) dxu = ∫
AN

y(x)Ψu
iu,pu,𝚵u,∞

(xu)fX(x) dx, iu ∈ u,∞,

are the expansion coefficients. Here, the integral in the second equality forms when Equation (5c) is applied to the first
integral. Finally, Equations (5c) and (8) can be combined to obtain the Fourier spline expansion

y(X) ∼ y∅ +
∑

∅≠u⊆{1,… ,N}

∑
iu∈u,∞

Cu
iu,pu,𝚵u,∞

Ψu
iu,pu,𝚵u,∞

(Xu), (9)

where the constant component function y∅ is already defined in Equation (5b). The expansion in Equation (9) behaves
like a Fourier series and is referred to as SDD in this article. According to Equation (9), the SDD of any random
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variable y(X) ∈ L2(Ω, ,P) is a dimensionwise orthogonal projection onto the spline space spanning the set of associated
measure-consistent multivariate orthonormalized B-splines.

The connection between SDD in Equation (9) and ADD in Equations (5a)–(5c) is obvious, as the former is derived
by exploiting the spline adaptation of the latter. In addition, because of the zero-mean value and orthonormality of
basis functions, as described in Equations (3) and (4), SDD inherits all the desirable properties of ADD, including the
second-moment properties of yu(Xu) described in Equations (6) and (7).

4.3 Truncation of SDD

In a practical setting, the lengths of all knot vectors, and therefore the total number of basis functions, are finite. In this
case, a truncated set {Ψu

iu,pu,𝚵u
(Xu) ∶ iu ∈ u,nu} is used to approximate y(X), resulting in the SDD approximation

yp,𝚵(X) ∶= y∅ +
∑

∅≠u⊆{1,… ,N}

∑
iu∈u,nu

Cu
iu,pu,𝚵u

Ψu
iu,pu,𝚵u

(Xu) (10)

with the expansion coefficients

Cu
iu,pu,𝚵u

∶= ∫
AN

y(x)Ψu
iu,pu,𝚵u

(xu)fX(x) dx, iu ∈ u,nu . (11)

From Equations (10) and (11), there are

Lp,𝚵 = 1 +
∑

∅≠u⊆{1,… ,N}

∏
k∈u

(nk − 1) =
N∏

k=1
nk (12)

basis functions. By inspection of Equation (12), it is clear that the SDD approximation suffers from the curse of dimen-
sionality if all terms in Equation (10) are retained. However, many higher-variate interaction terms of SDD contribute
only a negligible amount to the function value and can therefore be safely ignored. Due to the dimensional hierarchical
structure of SDD, this can be done by simply keeping all basis functions in at most 1 ≤ S ≤ N variables, thereby retaining
the degrees of interaction among input variables less than or equal to S. The result is an S-variate SDD approximation

yS,p,𝚵(X) ∶= y∅ +
∑

∅≠u⊆{1,… ,N}
1≤|u|≤S

∑
iu∈u,nu

Cu
iu,pu,𝚵u

Ψu
iu,pu,𝚵u

(Xu) (13)

of y(X), comprising

LS,p,𝚵 = 1 +
∑

∅≠u⊆{1,… ,N}
1≤|u|≤S

∏
k∈u

(nk − 1) ≤
N∏

k=1
nk = Lp,𝚵 (14)

basis functions. When S = 1 or S = 2, the resulting SDD approximations are referred to as univariate and bivariate SDD
approximations, respectively. In such cases, the functions y1,p,𝚵(X) or y2,p,𝚵(X) should not be interpreted as first- and
second-order approximations, as S does not limit the accuracy of SDD in capturing the potential nonlinearity of y(X). On
the contrary, depending on how the orders and knot vectors are chosen, arbitrarily high-order univariate and bivariate
terms of y(X), including discontinuity and nonsmoothness, could be lurking inside y1,p,𝚵(X) or y2,p,𝚵(X).

The SDD approximations in Equations (10) and (13) are both convergent to the correct limit in mean-square, in
probability, and in distribution. Readers interested in formal proofs are directed to a prior work.8

4.4 Computational expense

Due to matching hierarchical structures of function decompositions, the SDD method is endowed with the same order of
computational complexity as the existing PDD method. In general, if S ≪ N, as is often the case in practical applications,
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the number of basis functions in the S-variate SDD approximation decreases rapidly, resulting in significant compu-
tational savings. To explain the scalability of SDD with respect to the stochastic dimension N, consider the univariate
(S = 1) approximation y1,p,𝚵(X) and bivariate (S = 2) approximation y2,p,𝚵(X) of y(X). In either approximation, the required
computational effort can be assessed by the associated number of basis functions involved. For instance, there are

L1,p,𝚵 = 1 +
N∑

k=1
(nk − 1)

and

L2,p,𝚵 = 1 +
N∑

k=1
(nk − 1) +

N−1∑
k1=1

N∑
k2=k1+1

(nk1 − 1)(nk2 − 1)

basis functions involved in forming y1,p,𝚵(X) and y2,p,𝚵(X), respectively. Hence, given the values of nk, k = 1, … ,N, which
are determined by p and 𝚵, the computational effort with respect to N increases linearly for univariate approximation and
quadratically for bivariate approximation. For example, when N = 12 and n1 = · · · = n12 = 6, the univariate and bivariate
SDD approximations involve 61 and 1711 basis functions, respectively. By contrast, the numbers of basis functions in
the SCE and tensor-product-truncated PCE approximations with six bases in each direction both jump to 612, which is
substantially larger than that required by either of the two SDD approximations. In general, from Equation (14), the
computational effort by an S-variate SDD approximation scales S-degree-polynomially with respect to N. Therefore, the
computational complexity of a truncated SDD is polynomial, as opposed to exponential, thereby alleviating the curse of
dimensionality by a substantial magnitude.

4.5 Output statistics and other properties

The S-variate SDD approximation yS,p,𝚵(X) can be treated as an inexpensive surrogate of a function y(X), which may
require expensive computation to evaluate. Accordingly, the relevant statistical properties of y(X), such as its first two
moments, can be estimated by those of yS,p,𝚵(X).

Evaluating the expectation of yS,p,𝚵(X) in Equation (13) and recognizing Equation (3), its mean

E
[
yS,p,𝚵(X)

]
= y∅ = E [y(X)] (15)

is independent of S, p, and 𝚵. More importantly, the SDD approximation always yields the exact mean, provided that the
expansion coefficient y∅ is determined exactly.

Applying the expectation operator on [yS,p,𝚵(X) − y∅]2 and using Equation (4) results in the variance

var
[
yS,p,𝚵(X)

]
=

∑
∅≠u⊆{1,… ,N}

1≤|u|≤S

∑
iu∈u,nu

(
Cu

iu,pu,𝚵u

)2 ≤ var [y(X)] (16)

of yS,p,𝚵(X). Therefore, the second-moment statistics of an SDD approximation in Equations (15) and (16) are determined
based on a reduced set of expansion coefficients corresponding to at most S-variate interactions between input variables.
The formulas for the mean and variance of the SDD approximation are identical to those established for the PDD approx-
imation, although the respective expansion coefficients and corresponding basis functions are not. The fundamental
reason for this similarity is rooted in the use of hierarchically ordered orthonormal basis functions in both decompositions.

Being convergent in probability and in distribution, the CDF and PDF of y(X), if they exist, can also be estimated
economically by resampling yS,p,𝚵(X). This will be illustrated in a numerical example.

4.6 A single-index version

While the compact notations enable a concise description of SDD, a version using a single index notation should impart
an alternative interpretation of the corresponding approximation. Besides, the single-index version allows a simpler
explanation of the calculation of expansion coefficients, to be discussed in the next section.
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Recall that the set

{Ψu
iu,pu,𝚵u

(Xu) ∶ 1 ≤ |u| ≤ S, iu ∈ u,nu},

consisting of LS,p,𝚵 basis functions, is required to construct the S-variate SDD approximation yS,p,𝚵(X) of y(X). Given
Ψ1(X;𝚵) = 1 but otherwise with an arbitrary order of choice, arrange the elements of the set by{

Ψu
iu,pu,𝚵u

(Xu) ∶ 1 ≤ |u| ≤ S, iu ∈ u,nu

}
=
{
Ψ2(X;𝚵), … ,ΨLS,p,𝚵(X;𝚵)

}
, Ψ1(X;𝚵) = 1,

such that Ψi(X;𝚵), i = 1, … ,LS,p,𝚵, represents the ith basis function of the aforementioned set. In this way, the same basis
functions in the set can be indexed with a single integer i. Obviously, Ψi(X;𝚵) also depends on p, but the latter symbol is
suppressed for brevity.

Associated with each i = 1, … ,LS,p,𝚵, denote by Ci(𝚵) ∈ R the ith SDD coefficient. As a result, the S-variate SDD
approximation can also be written as

yS,p,𝚵(X) ∶=
LS,p,𝚵∑
i=1

Ci(𝚵)Ψi(X;𝚵)

with the expansion coefficients

Ci(𝚵) ∶= ∫
AN

y(x)Ψi(X;𝚵)fX(x) dx, i = 1, … ,LS,p,𝚵. (17)

Thenceforth, the mean and variances of yS,p,𝚵(X) are calculated from the expansion coefficients as

E
[
yS,p,𝚵(X)

]
= C1(𝚵) = E [y(X)]

and

var
[
yS,p,𝚵(X)

]
=

LS,p,𝚵∑
i=2

C2
i (𝚵) ≤ var [y(X)] , (18)

respectively.

5 CALCULATION OF EXPANSION COEFFICIENTS

The determination of the SDD coefficients Ci(𝚵), i = 1, … ,LS,p,𝚵, involves various high-dimensional integrations. For an
arbitrary function y and an arbitrary probability distribution of random input X, an exact evaluation of these coefficients
from definition alone is impossible. Two approximate methods are proposed to estimate the coefficients as follows.

5.1 Numerical integration

A natural instinct is to approximate the coefficients by numerical integration, for instance, by a general anisotropic
(Qk1 , … ,QkN )-point, multivariate, tensor-product Gauss-type quadrature rule with Qk1 , … ,QkN ∈ N, yielding the esti-
mate

Ci(𝚵) =
Q1∑

j1=1
…

QN∑
jN=1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
N sums

y(x(j1)
1 , … , x(jN )

N )Ψi(x
(j1)
1 , … , x(jN )

N ;𝚵)
N∏

k=1

w(jk)
k (19)
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of Ci, where, for each k = 1, … ,N, x(jk)
k and w(jk)

k are the integration points and matching weights, consistent with the prob-
ability measure fXk (xk) dxk. As is the case for computing the spline moment matrix by numerical integration, it is generally
best practice to split the integrals in each direction k into Ik integrals between the corresponding distinct knots. In real-life
applications, the output function y is often determined algorithmically by performing time-consuming finite-element
analysis (FEA), isogeometric analysis (IGA), or other numerical calculations. Clearly, for a high-dimensional problem,
say, with N exceeding 10, evaluating the N-dimensional sums in Equation (19) is computationally formidable and likely
prohibitive. Furthermore, if any alterations are made to any of the knot vectors, the output function must be recom-
puted at an entirely different set of integration points, further increasing computational cost. While methods, such as
the dimension-reduction techniques,25 have been developed to tackle the former issue, they do not address the latter.
Therefore, a practical alternative to numerical integration, such as regression analysis, is often necessary to estimate these
coefficients.

5.2 Least-squares regression

The standard least-squares (SLS) regression is predicated on the optimal approximation quality of the SDD approximation.
In other words, the S-variate SDD approximation yS,p,𝚵(X) is the best approximation of y(X) in the sense that

E[y(X) − yS,p,𝚵(X)]2 = inf
yS,p,𝚵

E[y(X) − yS,p,𝚵(X)]2.

Thereafter, the approximate expansion coefficients of yS,p,𝚵(X) are determined from the minimization of

E

⎡⎢⎢⎣y(X) −
LS,p,𝚵∑
i=1

Ci(𝚵)Ψi(X;𝚵)
⎤⎥⎥⎦

2

. (20)

Given a UQ problem with known distribution of random input X and an output function y ∶ AN → R, consider an
input–output data set {x(l), y(x(l))}L

l=1 of size L ∈ N. The mapping y can be as simple as an explicitly defined mathematical
function or as intricate as an implicitly described function obtained via computational simulation, such as FEA or IGA of
complex mechanical systems. In either case, the data set, often referred to as the experimental design, can be generated
by calculating the function y(x(l)) at each input data point x(l). Various sampling methods, namely, standard MCS, quasi
MCS, and Latin hypercube sampling, can be used to build the experimental design.

According to SLS, the expansion coefficients of the S-variate SDD approximation are estimated by minimizing

êS,p,𝚵 ∶= 1
L

L∑
l=1

⎡⎢⎢⎣y(x(l)) −
LS,p,𝚵∑
i=1

Ci(𝚵)Ψi(x(l);𝚵)
⎤⎥⎥⎦

2

,

which is an empirical analogue of Equation (20). Denote by

A ∶=
⎡⎢⎢⎢⎣
Ψ1(x(1);𝚵) … ΨLS,p,𝚵(x

(1);𝚵)
⋮ ⋱ ⋮

Ψ1(x(L);𝚵) … ΨLS,p,𝚵(x
(L);𝚵)

⎤⎥⎥⎥⎦ and b ∶=
(

y(x(1)), … , y(x(L))
)⊺ (21)

an L × LS,p,𝚵 matrix and an L-dimensional column vector comprising evaluations of the orthonormal spline basis func-
tions and output function at the data points, respectively. Then, the estimated coefficients Ĉi(𝚵), i = 1, … ,LS,p,𝚵, are
obtained as

ĉ(𝚵) ∶=
(

Ĉ1(𝚵), … , ĈLS,p,𝚵(𝚵)
)⊺

= (A⊺A)−1A⊺b. (22)

Here, A⊺A is an LS,p,𝚵 × LS,p,𝚵 matrix, often referred to as the information or data matrix. A necessary condition
for the SLS solution is L > LS,p,𝚵, that is, the data size must be larger than the number of coefficients. Even when this
condition is satisfied, the experimental design must be judiciously selected in such a way that the information matrix is
well conditioned.
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6 OPTIMAL SPLINE DIMENSIONAL DECOMPOSITION

The SDD method presented in Section 4 is general in the sense that the knot vectors are yet to be specified, meaning that
they can be chosen freely. While such a freedom is normally welcome, an indiscriminate selection of knot vectors may also
produce inadequate or weak basis functions, vitiating the approximation quality of SDD. A standard approach in selecting
the basis functions entails uniformly spaced knots. Such an approach makes sense when there is no prior knowledge of
the behavior of the function being approximated. By contrast, a potentially better alternative is possible if the information
from the function is propagated to the knot vectors, which are subsequently derived in an optimal fashion. Indeed, this
can be achieved by minimizing the error of the SDD approximation in the mean-square sense, as is the primary objective
in calibrating the SDD coefficients. However, there are several key differences between the optimization of the coefficients
and that of the knot locations.

6.1 An overview of the optimization problem

The optimization of the knot locations is considerably more complex than that of the SDD coefficients. Firstly, the depen-
dence of the mean-square error of the SDD approximation on the knot locations is, in general, highly nonlinear, in contrast
to its dependence on the coefficients. Thus, an iterative procedure is required to derive an optimal solution. Furthermore,
given that the knot sequences in each coordinate direction are nondecreasing by definition, the optimal solution space
must be restricted by a corresponding set of linear inequality constraints. In this work, it will be assumed for simplicity
that the internal knots in all coordinate directions are simple, that is, they each have a multiplicity of one. Thus, to avoid
coincident knots, the aforementioned constraints are implemented by enforcing a user-specified minimum separation
distance 𝛿 > 0 between any two adjacent knots. These constraints will be explicitly defined later in each of the alternative
optimization approaches described in the next two sections.

Although the derivations of the expansion coefficients and optimal knot locations both entail a minimization of the
mean-square error between the series expansion and the output function, the two corresponding optimization subprob-
lems are uncoupled, thereby mitigating the complexity introduced by the knot sequence optimization, to the extent
possible. This may seem counterintuitive, given that the dependence of the splines on the knot locations is imparted onto
the expansion coefficients. Nevertheless, for a given UQ problem with a fixed selection of spline degrees p, the solution
of the coefficients can be uniquely determined by a set of knot vectors 𝚵, whether or not they are optimally selected.
Consequently, the mean-square error can effectively be reduced to a function of 𝚵 alone when the expansion coefficients
are optimally derived. Hence, the minimization of the mean-square error entails a constrained nonlinear optimization
with respect to the knot locations, wherein the expansion coefficients are computed during each iteration such that the
mean-square error between the output function and its surrogate is minimized for each successive guess of the family of
optimal knot vectors, denoted by 𝚵∗ = (𝝃∗1, … , 𝝃∗N).

In this work, the SDD methods entailing uniformly spaced knots and optimally selected knots are referred to as the
standard SDD and optimal SDD methods, respectively. There are at least two approaches to generate optimal knots for
the S-variate optimal SDD approximation, depending on whether or not the basis functions are orthonormalized. While
SDD is fundamentally rooted in an orthonormal basis of the spline space, as explained in Section 3, a nonorthonor-
malized basis is also possible for a similar expansion. Therefore, both approaches, described in the next two sections,
will be studied and tested during numerical implementation. The optimization problems formulated in either of these
approaches are traditionally solved by employing a suitable gradient-based method, such as the well-known sequential
linear programming (SLP) and sequential quadratic programming (SQP) methods. In this regard, the gradients of the cor-
responding objective functions with respect to the knot locations can be computed using the relevant equations provided
in Appendix B.

6.2 Optimal knots with orthonormal basis

In the first approach, the optimal knots are generated using the orthonormal basis set{
Ψ1(X;𝚵), … ,ΨLS,p,𝚵(X;𝚵)

}
, Ψ1(X) = 1,
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as described in Section 4, for the function expansion. Define

eLS,p,𝚵 ∶= E

⎡⎢⎢⎣y(X) −
LS,p,𝚵∑
i=1

Ci(𝚵)Ψi(X;𝚵)
⎤⎥⎥⎦

2

to be the mean-square error committed by yS,p,𝚵(X). Here, Ci(𝚵) and Ψi(X;𝚵) are the ith coefficient and basis function
of the SDD approximation, respectively, each depending on the family 𝚵 = (𝝃1, … , 𝝃N) of knot vectors in all coordinate
directions. The definition and construction of the coefficients and basis functions are already described in Section 4 for
an arbitrary 𝚵. Thereafter, the determination of the optimal knot vectors requires one to

min
𝚵

eLS,p,𝚵 ∶= E

⎡⎢⎢⎣y(X) −
LS,p,𝚵∑
i=1

Ci(𝚵)Ψi(X;𝚵)
⎤⎥⎥⎦

2

,

subject to 𝜉k,ik − 𝜉k,ik−1 ≥ 𝛿, ik = pk + 2, … ,nk + 1, k = 1, … ,N. (23)

The objective function on the right-hand side of Equation (23) can be further reduced by expanding the squared term
inside the expectation operator and invoking the orthonormal properties of the basis functions. In so doing,

eLS,p,𝚵 = E
[
y2(X)

]
−

LS,p,𝚵∑
i=1

C2
i (𝚵),

where the second term represents the second raw moment of yS,p,𝚵(X). Since C1(𝚵) = E[y(X)] and E[y2(X)] do not depend
on 𝚵, the optimization problem is reduced to

min
𝚵

ẽLS,p,𝚵 ∶= −
LS,p,𝚵∑
i=2

C2
i (𝚵),

subject to 𝜉k,ik − 𝜉k,ik−1 ≥ 𝛿, ik = pk + 2, … ,nk + 1, k = 1, … ,N. (24)

When the output function is simple and low-dimensional, the expectations in Equation (23) or (24) can be determined
analytically or numerically, say, using Gauss quadrature, as explained in Section 5. In this case, Equation (23) or (24) is
readily solved, as will be demonstrated in one numerical example.

For practical applications involving high-dimensional functions, a discrete version of Equation (23) or (24) is neces-
sary. Furthermore, the SDD expansion coefficients are estimated by an approximate method, say, by the SLS regression.
In this case, the optimization problem in Equation (23) is simplified to

min
𝚵

êLS,p,𝚵 ∶= 1
L

L∑
l=1

⎡⎢⎢⎣y(x(l)) −
LS,p,𝚵∑
i=1

Ĉi(𝚵)Ψi(x(l);𝚵)
⎤⎥⎥⎦

2

,

subject to 𝜉k,ik − 𝜉k,ik−1 ≥ 𝛿, ik = pk + 2, … ,nk + 1, k = 1, … ,N, (25)

where the estimated SDD coefficients Ĉi(𝚵), i = 1, … ,LS,p,𝚵, are obtained from Equation (22).
The primary advantage of the first approach in formulating the optimization problem in Equation (25) lies in a

well-conditioned information matrix A⊺A. The result is an efficient and stable estimation of the SDD coefficients. This
is obviously due to the orthonormal basis employed in forming the information matrix, which is symmetric, diagonally
dominant, and sparse. It is important to note that, due to the nature of the SLS approximation, the SDD estimate of the
variance of y(X) may exceed the exact variance in some cases, which is not the case when the coefficients are calculated
by integration, as stated in Equation (18). Consequently, the knot vectors should be optimized according to Equation (25),
rather than Equation (24), when obtaining the coefficients by SLS regression, to avoid convergence issues. Furthermore,
as 𝚵 evolves during the iterations of the knot vector optimization, there is a tedious need to recalculate the whitening
matrix during the orthonormalization process. Therefore, the first approach is appropriate when the whitening matrix is
produced accurately and efficiently.
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6.3 Optimal knots with nonorthonormal basis

In the second approach, the optimal knots are generated employing the nonorthonormal basis set for the function expan-
sion. They are obtained from a similar dimensionwise tensorization of univariate B-splines, as done in Equation (1),
yielding

Φu
iu,pu,𝚵u

(xu) =
∏
k∈u

Bk
ik ,pk ,𝝃k

(xk) =
|u|∏
l=1

Bkl
ikl
,pkl

,𝝃kl
(xkl ), iu = (ik1 , … , ik|u|) ∈ u,nu .

Then, arrange the elements of the set by{
Φu

iu,pu,𝚵u
(Xu) ∶ 1 ≤ |u| ≤ S, iu ∈ u,nu

}
=
{
Φ2(X;𝚵), … ,ΦLS,p,𝚵(X;𝚵)

}
, Φ1(X;𝚵) = 1,

such that Φi(X;𝚵), i = 1, … ,LS,p,𝚵, represents the ith nonorthonormal basis function of the aforementioned set. In this
manner, the same basis functions in the set can also be indexed with a single integer i. Again, Φi(X;𝚵) also depends on p,
but the latter symbol is dropped for conciseness.

Henceforth, the optimization problem from Equation (23), but formulated with respect to the nonorthonormal basis,
is rephrased to

min
𝚵

ēLS,p,𝚵 ∶= E

⎡⎢⎢⎣y(X) −
LS,p,𝚵∑
i=1

Ci(𝚵)Φi(X;𝚵)
⎤⎥⎥⎦

2

,

subject to 𝜉k,ik − 𝜉k,ik−1 ≥ 𝛿, ik = pk + 2, … ,nk + 1, k = 1, … ,N, (26)

where Cj, j = 1, … ,LS,p,𝚵, are new expansion coefficients relative to nonorthonormal basis functions. However, the
expansion in Equation (26) does not lead to SDD, as the basis is no longer orthonormal with respect to the probability
measure of input random variables. Consequently, there does not exist a simplified variant of the optimization problem,
as recognized by Equation (24).

Finally, the discrete version of Equation (26) requires one to

min
𝚵

̂̄eLS,p,𝚵 ∶= 1
L

L∑
l=1

⎡⎢⎢⎣y(x(l)) −
LS,p,𝚵∑
i=1

̂Ci(𝚵)Φi(x(l);𝚵)
⎤⎥⎥⎦

2

,

subject to 𝜉k,ik − 𝜉k,ik−1 ≥ 𝛿, ik = pk + 2, … ,nk + 1, k = 1, … ,N. (27)

Then, the coefficients ̂Ci(𝚵), i = 1, … ,LS,p,𝚵, are estimated from the SLS regression as

ĉ(𝚵) ∶=
(
̂C1(𝚵), … ,

̂CLS,p,𝚵(𝚵)
)⊺

=
(

A
⊺
A
)−1

A
⊺
b,

where

A ∶=
⎡⎢⎢⎢⎣
Φ1(x(1);𝚵) … ΦLS,p,𝚵(x

(1);𝚵)
⋮ ⋱ ⋮

Φ1(x(L);𝚵) … ΦLS,p,𝚵(x
(L);𝚵)

⎤⎥⎥⎥⎦ ,
and b was defined in Equation (21). When formulating the optimization problem in Equation (27), the information matrix
A

⊺
A is constructed using nonorthonormal basis functions. Therefore, it is generally dense and may encounter a high con-

dition number. In consequence, the estimation of the associated expansion coefficients, which involves inversion of the
information matrix, is relatively more difficult to obtain in general. Hence, the second approach is relevant primarily for
low-order SDD approximations. Nevertheless, the second approach eliminates the need to perform the whitening trans-
formation for each iteration of the knot optimization, rendering the process more computationally expedient than that in
the first approach. Once the optimal knot vectors are derived, it is generally useful to orthonormalize the corresponding
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basis functions, especially if the first or second moments of the underlying SDD approximation are of interest. This will
be discussed in the following section.

It is worth noting that an optimization problem involving nonorthonormal, standard B-spline expansion in a single
random variable was applied for data-driven UQ analysis.26 By contrast, the B-spline expansion in Equation (27) stems
from dimensionwise decomposition of a high-dimensional function. In other words, the expansion exploited here is not
merely due to a straightforward tensor-product construction of univariate B-splines, which is impractical for addressing
high-dimensional UQ problems. This will be more evident when numerical examples are presented.

6.4 Optimal SDD and output statistics

Once the optimal knot vectors are determined, in conjunction with either the orthonormal (first approach) or
nonorthonormal basis (second approach), the optimal S-variate SDD approximation is expressed by

yS,p,𝚵∗ (X) =
LS,p,𝚵∗∑

i=1
Ci(𝚵∗)Ψi(X;𝚵∗)

with the expansion coefficients

Ci(𝚵∗) ∶= ∫
AN

y(x)Ψi(X;𝚵∗)fX(x) dx, i = 1, … ,LS,p,𝚵∗ .

Here, Ψi(X;𝚵∗) and Ci(𝚵∗) are the ith orthonormal basis function and ith expansion coefficient of an S-variate SDD
approximation generated from a family of optimal knot vectors.

Henceforth, the mean and variances of yS,p,𝚵∗ (X) are calculated from the expansion coefficients as

E
[
yS,p,𝚵∗ (X)

]
= C1(𝚵∗) (28)

and

var
[
yS,p,𝚵∗ (X)

]
=

LS,p,𝚵∑
i=2

C2
i (𝚵

∗), (29)

respectively. In practice, the coefficients are estimated, say, by SLS regression, as discussed in Section 6. In this case, the
approximate expansion coefficients must be used in Equations (28) and (29).

7 NUMERICAL EXAMPLES

Two numerical problems are presented to highlight the proposed optimal SDD method for obtaining the second-moment
statistics and probability distribution of various responses. Each example follows a particular objective. Example 1 fea-
tures a two-dimensional UQ problem entailing three mathematical functions and provides a rigorous comparison among
the optimal SDD, standard SDD, and a few existing UQ methods from the current literature. Example 2 represents
a 16-dimensional UQ problem from linear elasticity. The latter example encompasses stochastic stress analysis of a
complex horseshoe geometry in three physical dimensions. The stresses were calculated using the standard method of
IGA.21

All knot vector optimizations were performed using the well-known method of SQP. The minimum separation dis-
tance 𝛿 used in the constraints of the knot vector optimization was taken to be 10% of the uniform knot spacing in both
examples. Until this point, it was assumed for the sake of generality that the knot sequences in all coordinate directions
are chosen independently. However, for a high-dimensional UQ problem, simultaneous optimization of all internal knots
in all coordinate directions may be computationally infeasible. For example, if SDD with four subintervals were employed
in 50 different coordinate directions, a total of 150 knot locations would need to be optimized. Furthermore, it is often
the case in realistic UQ problems that several coordinate directions pertain to input variables that have similar physical
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meaning, are identically or similarly distributed, and are expected to have similar influence on the output of interest. In
such instances as this, it is recommended that the knot sequences in each coordinate direction be arranged into groups
accordingly, and a set of knot sequences associated with each group be optimized, thereby reducing the number of opti-
mization parameters and thus the required computational effort. This was done in the following numerical examples, as
will be explained in further detail.

7.1 Example 1: Three mathematical functions

In the first example, consider three bivariate output functions yi ∶ [−1, 1]2 → R, i = 1, 2, 3, of two independent and
identically distributed input random variables X1 and X2, each with a uniform distribution over [−1, 1], as follows:

1. Exponential drop function8:

y1(X1,X2) = g(X1) + g(X2) +
1
5

g(X1)g(X2),

where, for i = 1, 2,

g(xi) =

{
1, −1 ≤ xi ≤ 0,
exp(−10xi), 0 < xi ≤ 1.

2. Continuous function27:

y2(X1,X2) = exp(−2|X1| − 2|X2|).
3. Product peak function27:

y3(X1,X2) =
1

(1 + X2
1 )(1 + X2

2 )
.

From the graphs of these functions, depicted in Figure 2, the exponential drop and continuous functions are both
nonsmooth, whereas the product peak function is smooth. The objective of this example is to evaluate the accuracy of
the proposed optimal SDD method for estimating the second-moment statistics of all three functions in comparison with
those obtained from the standard SDD method, PCE, and sparse-grid quadrature. It is important to recognize that some
of these functions are well-known Genz functions introduced to examine various numerical integration methods for cal-
culating their means.27 Here, instead, the variances of these functions are evaluated, which is relatively more challenging
to compute. Nonetheless, these functions, although purely mathematical, provide a wonderful prospect to rigorously
scrutinize the proposed SDD method before delving into complex engineering problems.

For the SDD approximations, the degrees, numbers of subintervals, and knot vectors in both coordinate directions
were chosen to be identical, that is, p1 = p2 = p (say), I1 = I2 = I (say), and 𝝃1 = 𝝃2 = 𝝃 (say). Therefore, only one knot
vector was optimized, but it was used in both coordinate directions, resulting in a total of I − 1 parameters in the opti-
mization. Given the low dimensionality of these functions, the SDD coefficients and exact variances were computed
analytically by integration. Hence, the knot vector was optimized according to Equation (24).

7.1.1 Optimal knots

The optimal knot locations corresponding to the linear (p = 1) and quadratic (p = 2) SDD approximations, each with five
distinct numbers of subintervals I = 4, 6, 8, 10, 12 in each coordinate direction, were calculated for all three functions and
are displayed in Figure 3(A–C). They were determined by solving the optimization problem in Equation (24) with the SDD
coefficients exactly calculated from their definition in Equation (17). As all three functions satisfy the symmetry property,
that is, yi(x1, x2) = yi(x2, x1), i = 1, 2, 3, the same respective knot locations were used in both coordinate directions.
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F I G U R E 2 Three mathematical functions in Example 1: (A) exponential drop; (B) continuous; and (C) product peak

From Figure 2(A), the exponential drop function is flat for −1 ≤ xi ≤ 0. Consequently, the objective function is insen-
sitive to the locations of all knots belonging to a subinterval to the left of zero, placing the corresponding optimal knots
arbitrarily, as depicted in Figure 3(A). For example, for p = 1, I = 4, the location of the first internal knot (around −0.45)
in Figure 3(A) is arbitrary, but the location of the second internal knot (around −0.02) is not, because the subinterval
between the second and third internal knots is not entirely to the left of zero, since the third internal knot is located around
0.17. The density of the remaining knots, that is the proximity of adjacent knots, is high near zero and gradually decreases
as xi increases. However, a phenomenon similar to that occurring with the knots to the left of zero can be seen with the
last internal knot for p = 1, I = 12 and p = 2, I = 8, 10, as well as the last two knots for p = 2, I = 12; these locations do
not follow the pattern seen in the other nonarbitrary knot locations because the exponential drop function decays as xi
increases, therefore the objective function loses sensitivity to the knot locations closer to one. The crowding of the knots
near zero occurs in part because the function changes more abruptly in that region, so smaller subintervals are required
there. For p = 2, this crowding is particularly pronounced for the two knots located closest to zero. This is because there is
a discontinuity in the slope of the response at xi = 0, which the quadratic basis requires a repeated knot to capture. How-
ever, a limit was placed on how close two adjacent knots could be placed in the optimization process, as shown in the
constraints of Equation (24), so these knots were not permitted to coincide. Nevertheless, the near-coincidence of adja-
cent knots at a location of nonsmoothness in the response is expected in general, which motivates a further modification
to the optimization process to be pursued in a future work.

According to Figure 2(B,C), the continuous and product peak functions are also even functions. Therefore, the optimal
knot sequences exhibit the same symmetry, as can be seen in Figure 3(B,C). Similar to what occurred with the exponential
drop function, the density of the knots were largest near zero and decreased in either direction, due to the higher varia-
tion of the response near zero. The continuous function has a slope discontinuity at xi = 0, where the optimal knots for
p = 2 are nearly coincident, once again. It is worth noting, however, that although there are three consecutive knots that
converge in that region, a multiplicity of only two would be sufficient to capture the nonsmoothness of the response.
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(A)

(B)

(C)

F I G U R E 3 Optimal knot spacing for all three functions in Example 1: (A) exponential drop; (B) continuous; and (C) product peak

Due to the smoothness of the product peak function, none of the corresponding optimal knots came close to coinciding.
However, there was considerable relocation of the knots to improve the accuracy of the surrogate model. For all three
functions, the greatest change in the optimal knot locations relative to the those of the uniformly spaced knots is seen for
smaller values of I. This makes sense intuitively, as the knots have more freedom when there are fewer of them, and the
corresponding spline expansion is generally of relatively lower accuracy, offering the greatest potential for improvement.
This suggests that optimization of the knot locations is most relevant when using relatively few subintervals.

7.1.2 Error analysis

Given the probability distribution of input variables, the output variances for all three functions were obtained by
four different approximate methods: (1) optimal SDD with the knots generated by solving the optimization problem in
Equation (24); (2) standard SDD with uniformly spaced knots;8,9 (3) tensor-product PCE,1,3 and (4) sparse grids with
the Clenshaw–Curtis quadrature rule.12,13 For the SDD methods, whether optimal or standard, both linear (p = 1) and
quadratic (p = 2) splines were employed. The coefficients of both SDD methods were determined exactly. The variances
of optimal SDD and standard SDD were calculated using Equations (18) and (29), respectively. To grade the approxima-
tion quality of each method, the exact variances of the exponential drop, continuous, and product peak functions were
calculated to be 0.550270499, 2.52956894 × 10−2, and 3.25578478 × 10−2, respectively.

Figure 4(A–C) describes how the absolute errors in the variance, calculated by the aforementioned methods, decay
with respect to the number of basis functions for the exponential drop, continuous, and product peak functions, respec-
tively. According to Figure 4(A,B), the standard SDD method appears to perform about as well as PCE, which consistently
outperforms sparse grids. The sharp slope discontinuity of the continuous function causes the standard linear SDD to
perform better than both the standard quadratic SDD and PCE methods, as is apparent in Figure 4(B). More importantly,
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F I G U R E 4 Errors in variances for all three functions in Example 1: (A) exponential drop; (B) continuous; and (C) product peak

optimization of the knot locations causes substantial decrease in the variance error for the exponential drop and contin-
uous functions in comparison with sparse-grid quadrature, PCE, and standard SDD. What is particularly noteworthy is
that the optimization led to nearly repeated knots for the quadratic optimal SDD approximation of the continuous func-
tion, allowing it to capture the slope discontinuity more closely and offering a marked improvement over the standard
quadratic SDD approximation. This indicates that the proposed optimization scheme is a promising method to improve
the accuracy of the existing methods, including the standard SDD approximation, when the response is not smooth. On
the other hand, as can be seen in Figure 4(C), use of optimal knots offers only marginal improvement over the correspond-
ing SDD approximations with uniform knots when the response is smooth, although most methods perform quite well.
Hence, an SDD, whether optimal or standard, may not be needed in this case. It is interesting to note that the convergence
rates of the linear and quadratic SDD approximations appear to be roughly equal for both the standard and optimal knot
sequences. Furthermore, the basis functions of odd orders do not contribute to the PCE approximations for continuous
and product peak functions, as they are even functions. Overall, numerical evidence reveals significant improvement in
the accuracy of the SDD method by optimization of the knot locations.



DIXLER et al. 5919

7.2 Example 2: A horseshoe under asymmetric loading

The second example tackles a linear elasticity problem with a geometrically complex yet single-patch three-dimensional
horseshoe shape and a 16-dimensional random input. The solid horseshoe is constructed by executing a U-shaped sweep
of a cross-section consisting of a square with side length L = 20 units subtracted by a quarter disk of radius r2 = 4 units,
as shown in Figure 5(A). Furthermore, the center of the quarter disk is located at a distance r1 = 3 units from the origin,
and the straight section of the horseshoe has height h = 20 units.

For material properties, the Poisson’s ratio 𝜈 = 1∕3. Moreover, the Young’s modulus E(z; ⋅) is a homogeneous lognor-
mal random field with mean 𝜇E = 210 × 109 units and coefficient of variation 𝜈E = 0.1. As a translation random field,
E(z; ⋅) is written as

E(z; ⋅) = C𝛼 exp[𝛼(z; ⋅)],

where z is a spatial point in the physical domain of the horseshoe,

C𝛼 =
𝜇E√
1 + 𝜈2

E

,

and 𝛼(z; ⋅) is a homogeneous Gaussian random field with mean zero and covariance function

Γ(z, z′) = 𝜎2 exp
(
− ||z − z′||

bL

)
, z, z′ ∈  ⊂ R

3

with 𝜎2 = 0.01 and b = 1.
For the stress analysis, the top surfaces of the horseshoe are subjected to a pair of random displacements of mag-

nitude us, which is distributed uniformly over [−0.005, 0.01] units, in the directions shown in Figure 5(A). This causes
asymmetric deformation and resultant twisting of the horseshoe. Furthermore, allowing the applied displacements to
change direction introduces a slope discontinuity in the von Mises stress, which is the output quantity of interest. This
necessitates the application of optimal SDD to be demonstrated in the context of a realistic linear elasticity problem. The
stochastic problem requires calculating the various probabilistic characteristics of stresses due to uncertain boundary
conditions and material properties.

Employing IGA with quadratic nonuniform rational B-splines (NURBS), the geometry was constructed precisely.
First, a base eight-element mesh was generated with quadratic NURBS; the corresponding knot vectors are reported

F I G U R E 5 A horseshoe under asymmetric loading in Example 2: (A) problem schematic; (B) refined mesh employed in the analyses.
The control points are illustrated by red closed squares
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in a prior work.9 Second, the fine mesh illustrated in Figure 5(B) was constructed by simple knot insertion, which
consists of 1024 quadratic elements and 2442 control points. The control points are depicted by red closed squares.
Readers interested in modeling techniques of three-dimensional objects via NURBS are directed to the book by Cottrell
et al.21

The random field describing Young’s modulus was discretized by the K–L expansion, exploiting the isogeometric
collocation method19 and considering 15 independent standard Gaussian random variables. As the 15th eigenvalue was
only 2.47% of the first eigenvalue, this number was deemed adequate to satisfactorily approximate the random field. The
domain discretization and NURBS objects, such as orders and knot vectors, for the K–L expansion and deterministic
IGA were identical. The eigenpairs {𝜆i, 𝜙i(z)}, i = 1, … , 15, were then numerically calculated. By dint of the collocation
method, the random field is efficiently discretized with adequate accuracy. In aggregate, there are 16 random variables in
this problem.

In the horseshoe problem, a crude MCS with a sample size of 10,000 provided a benchmark solution for univariate
SDD with uniform and optimal knot vectors. From prior experience,9 no tangible improvement was noticed when imple-
menting bivariate SDD over univariate SDD, indicating that the original function is dominantly univariate with weak
interaction terms, hence the focus on univariate SDD here. Furthermore, the same degrees and numbers of subinter-
vals were adopted in all 16 coordinate directions, that is, pk = p (say) and Ik = I (say) for k = 1, 2, … 16, while the knot
vectors in all but the coordinate direction associated with the applied displacement were identical. More specifically,
only the knot locations associated with the applied displacement were optimized, whereas the remaining 15 directions
were assigned uniformly spaced knots. Given the high dimension of the problem and relatively expensive computa-
tion involved in evaluating the output function, the SDD coefficients were estimated by SLS regression (Section 5.2),
rather than numerical integration, using a subset of the MCS-generated input-output data set. A nonorthonormal
spline basis was used during the knot vector optimization process, according to Equation (27), after which the coef-
ficients with respect to an orthonormal basis were computed for the resulting optimal knot sequence according to
Equation (22).

For the SDD methods, each standard Gaussian random variable Xi was transformed to a truncated Gaussian variable,
where the PDF was truncated at xi = ±3. Such a transformation was necessary because splines require bounded support
by definition. It is worth noting that transforming to other desired probability measures may affect the results. However,
it is best practice to choose a transformation yielding as little difference between the original and mapped distributions as
is possible, since in general, heavily nonlinear transformations are to be avoided to obtain better approximations. Hence,
the truncated Gaussian is an appropriate choice of mapped distribution in this context. Univariate SDD with a linear
(p = 1) basis and two or four subintervals (I = 2, 4) was employed. The expansion coefficients were estimated by SLS
regression employing an MCS-generated input–output data set of size 350 for I = 2 and 650 for I = 4. To avoid the need to
compute the whitening matrix during each iteration, the optimization problem in Equation (27) was used in this example.
Both second moment and probabilistic distribution analyses were performed for this example, the results of which are
presented next.

7.2.1 Second-moment analysis

The first set of analyses entails the evaluation of the second-moment properties of the von Mises stress. The crude
MCS was chosen to provide the benchmark solution along with four univariate, linear SDD methods: standard SDD
method with p = 1, I = 2 and p = 1, I = 4; and optimal SDD method with p = 1, I = 2 and p = 1, I = 4. Figures 6
and 7 display the contour plots of the mean and SD, respectively, of the von Mises stress 𝜎v, obtained by MCS and the
aforementioned SDD methods. All four SDD methods satisfactorily estimate the mean of the von Mises stress in com-
parison with those obtained from the MCS to the extent that any differences in the contours are barely distinguishable.
Almost the same can be said about the SD of the von Mises stress, although there is a slight degradation in the accu-
racy of the estimated results by the standard SDD method with p = 1, I = 2. It is evident that the optimal SDD method
with p = 1, I = 2 is capable of delivering better results than the standard SDD method without increasing the num-
ber of subintervals. The error in the maximum values of the SD of the von Mises stress estimated by the optimal SDD
is below 0.3%. More importantly, the numbers of function evaluations (IGA) required for all four SDD methods are
only 350–650. This reveals that the SDD approximations with four subintervals are more than adequate for comput-
ing the second-moment properties of the stochastic responses, requiring only a fraction of the computational effort by
MCS.
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F I G U R E 6 Contour plots for the mean of the von Mises stress obtained by various methods in consistent units in Example 2

7.2.2 Probability distribution analysis

In this section, the CDF of a relevant stress at a critical point of the horseshoe is discussed. Let the point at which the mean
of the von Mises stress 𝜎v is maximum be the critical point and denote by 𝜎v,c the random von Mises stress at that point.
For CDF analysis of this specific von Mises stress, the crude MCS was selected along with the same four SDD methods
defined in the preceding section. With each SDD surrogate constructed, one is able to resample the SDD approximation
with a relatively large sample size—105 in this example—to estimate the CDF of 𝜎v,c.

Figure 8(A,B) illustrates the CDF of 𝜎v,c calculated by the optimal and standard SDD methods for I = 2 and I = 4,
respectively. For comparison, the MCS estimate is also shown. Evidently, the optimal SDD approximations not only
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F I G U R E 7 Contour plots for the SD of the von Mises stress obtained by various methods in consistent units in Example 2

assiduously capture the second-moment statistical properties of the response, as observed previously, but also provide
an impressive approximation of the CDF with only 350 to 650 response (IGA) evaluations, compared with 10,000 in the
case of MCS. Furthermore, the knot vector optimization offers a marked improvement in accuracy of the CDF over the
standard SDD, especially in the case of SDD with only two subintervals, as can be seen in Figure 8(A). It should be noted
that, because von Mises stress is positive by definition, there is a sharp decrease in the CDF near zero according to crude
MCS. In this regard, the SDD surrogate models may yield invalid results, as they can become negative. This is a known
problem faced by surrogate methods entailing orthogonal expansions, including SDD.

In summary, the optimal SDD method can reliably estimate the statistical moments and probability distribution of a
random response for bounded or unbounded distributions.



DIXLER et al. 5923

(A)

(B)

F I G U R E 8 Probability distribution of the von Mises stress at a critical point in Example 2 obtained by crude MCS and univariate SDD
methods: (A) p = 1, I = 2; (B) p = 1, I = 4

8 APPLICATION

This section illustrates the power of the optimal SDD method in solving a large-scale, 43-dimensional practical engi-
neering problem. The application involves a free-free modal analysis of a model aircraft, which is comprised of several
materials with uncertain properties, and subsequent estimation of the statistical moments of the natural frequencies and
mode shapes.

8.1 A blended wing-body model aircraft

The subject of the modal analysis is an airplane prototype designed by Airbus, known as the Model Aircraft for Valida-
tion and Experimentation of Robust Innovative Controls (MAVERIC), which is shown in Figure 9(A–C). A finite-element
mesh consisting of 115,774 linear tetrahedral elements, 44 linear brick elements, and 27,175 nodes was employed to
solve the underlying problem. While the specific material composition of this model aircraft is not publicly available, five
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F I G U R E 9 MAVERIC model aircraft: (A) computer-aided design model and material designation; (B) actual prototype;28 (C) finite
element mesh

materials—four composites and one metal alloy—commonly used in aerospace applications were assigned to different
components for the purpose of this analysis. These materials are numbered and color-coded according to Figure 9(A),
which also shows the material orientations of the four composites that were modeled as orthotropic. A total of 43 mate-
rial properties among the five materials constitute the stochastic input of the problem: (1) the mass densities of all five
materials; (2) the nine elastic constants, consisting of three Young’s moduli (Ex, Ey, Ez), three shear moduli (Gxy, Gxz,
Gyz), and three Poisson’s ratios (𝜈xy, 𝜈xz, 𝜈yz), of the four orthotropic materials; and (3) the two elastic constants, consist-
ing of the Young’s modulus and Poisson’s ratio of the isotropic material. In this way, a realistic high-dimensional problem
is proposed without the need to select a large number of materials. The mean values of these properties, provided in
Table 1, are representative of several variants of carbon fiber for materials 1–3, fiberglass for material 4, and aluminum
for material 5. It should be noted that, although the mean values of the moduli of the orthotropic materials are equal
in two directions, they are treated as independent random variables in the context of this problem. No damping was
included.

The 43 material properties were divided into three groups, each with a different probability distribution. The five
mass densities comprised the first group, which followed an upper-truncated Weibull distribution with a coefficient of
variation of 0.15 and a domain of two SDs below and three above the mean. The second group consisted of 25 properties,
including the Young’s moduli and shear moduli of the four orthotropic materials as well as the Young’s modulus of the
isotropic material. The samples corresponding to this group were drawn from a similar distribution as those in the first
group, but with a coefficient of variation of 0.1. The final group included the three Poisson’s ratios of each of the four
orthotropic materials, as well as that of the isotropic material, for a total of 13 properties. The samples in this group were
drawn from a beta distribution with a coefficient of variation of 0.05 and a domain of three SDs below and two above
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T A B L E 1 Mean values of random material properties for the model aircraft

Orthotropic materials

Material Density (kg/m3) Ex (GPa) Ey (GPa) Ez (GPa) Gxy (GPa) Gxz (GPa) Gyz (GPa) 𝝂xy 𝝂xz 𝝂yz

1 2100 96 36 96 17 21 17 0.22 0.06 0.22

2 2060 36 36 141 14 20 20 0.18 0.25 0.18

3 2140 98 37 98 18 21 18 0.21 0.06 0.21

4 2375 8.417 4.257 5.511 1.764 2.356 1.797 0.217 0.16 0.225

Isotropic materials

Material Density (kg/m3) Young’s modulus (GPa) Poisson’s ratio

5 2810 71.7 0.33

the mean. It is worth noting that because the mean values of all 43 properties are different, with the exception of some
orthotropic moduli, the variables in each group are not necessarily identically distributed.

Hence, a total of three knot vectors were used—one for each of the aforementioned groups of variables. The values of
the variables within each group could then be obtained by linear transformations of independent draws from the proba-
bility distribution corresponding to the group. For simplicity, the degrees, p, and numbers of subintervals, I, for all three
knot sequences were chosen to be identical. Furthermore, the minimum separation distance 𝛿 used in the constraints
of the knot vector optimization was taken to be 40% of the uniform knot spacing. This tightening of the constraints, rel-
ative to those in Examples 1 and 2 of Section 7, was done to mitigate issues encountered for lower values of 𝛿 with the
conditioning of the information matrix used to compute the expansion coefficients. Despite this restriction, it is believed
that a sufficient amount of freedom was allowed in the optimal solution, as there were not expected to be any slope
discontinuities or rapid changes in the response that would necessitate more closely spaced knots.

8.2 Results

A mode-based steady-state dynamic analysis was performed to obtain the eigensolutions of the model aircraft, which
represent its natural frequencies and mode shapes. This was done using the Lanczos method,29 available in ABAQUS
(version 2019).30 Since the model was unconstrained, the first six eigensolutions corresponding to the rigid-body modes
were excluded from the results presented here.

Due to the uncertainty in the material properties, the eigensolutions of the model aircraft are stochastic. Three univari-
ate optimal SDD methods, two of linear order (p = 1, I = 2, 4) and one of quadratic order (p = 2, I = 4), were employed to
estimate the first and second moment properties, while a crude MCS entailing 10,000 samples provided the benchmark
solution. The SDD expansion coefficients were again estimated by SLS regression of an MCS-generated input–output data
set consisting of only 750 samples (FEA).

Table 2 lists the means and SDs of the natural frequencies of the model aircraft associated with the first 10
non-rigid-body modes, obtained using the aforementioned optimal SDD methods and MCS. A comparison of respective
statistics of the eigenfrequencies by these four methods indicate a high level of accuracy of all three optimal SDD meth-
ods. For example, the relative errors in the SDs of the 10th natural frequency calculated by each of the three optimal SDD
methods with respect to MCS are 2.7%, 1.6%, and 1.1%, respectively. The quadratic optimal SDD approximation with four
subintervals, despite having the largest number of bases, is able to produce especially accurate results while only requiring
750 samples (FEA) for this 43-dimensional stochastic problem.

In addition to the frequency analysis, the nodal displacement magnitudes were calculated to assess the second
moment properties of the mode shapes. Contour plots of the SDs of the first and third non-rigid-body mode shapes,
calculated using crude MCS and the three optimal SDD methods, are shown in Figures 10(A–D) and 11(A–D), respec-
tively. Once more, the optimal SDD methods yield such a degree of accuracy that the corresponding contour plots
are nearly indistinguishable from those generated by MCS for both mode shapes. Hence, for both the eigenfrequency
and eigenmode analyses, the proposed optimal SDD methods deliver highly accurate second moment statistics, while
requiring less than 10% of the computational effort mandated by crude MCS. The success of the UQ analysis for the
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T A B L E 2 Second-moment statistics of first 10 non-rigid-body eigenfrequencies of the model aircraft by various methods

Univariate optimal SDD methods (750 samples)

p = 1, I = 2 p = 1, I = 4 p = 2, I = 4
Crude MCS

(10,000 samples)

Mode Mean (Hz) SD (Hz) Mean (Hz) SD (Hz) Mean (Hz) SD (Hz) Mean (Hz) SD (Hz)

1 59.4406 4.4204 59.4427 4.4181 59.4430 4.4221 59.4224 4.4218

2 60.7739 4.4636 60.7757 4.4659 60.7757 4.4658 60.7523 4.4653

3 121.0259 9.4724 121.1010 9.6434 121.0426 9.7088 120.7733 9.7645

4 128.7155 8.1245 128.6913 8.2728 128.6898 8.3703 128.4790 8.4839

5 136.7336 7.2396 136.6542 7.4320 136.7404 7.5433 136.8959 7.7858

6 143.9950 7.6669 143.9679 7.9409 144.0157 8.0612 144.1646 8.4261

7 259.2875 15.8346 259.3240 16.1396 259.3251 16.1679 259.1993 16.4193

8 265.1022 15.9591 265.1741 16.2490 265.1863 16.3037 265.0101 16.5504

9 295.8141 20.2159 295.6427 20.4128 295.6370 20.5291 295.5515 20.6350

10 299.8269 20.3640 299.7538 20.5772 299.6423 20.6819 299.5501 20.9212

F I G U R E 10 Contour plots for the SD of the first non-rigid-body mode shape of the model aircraft obtained by crude MCS and various
optimal SDD (OSDD) methods

model aircraft demonstrates the viability of optimal SDD in solving high-dimensional, industrial-scale engineering
problems.

9 CONCLUSION

A novel dimensional decomposition, designated as optimal SDD, is introduced for general high-dimensional uncertainty
quantification analysis of complex systems. The method is premised on optimally derived knot vectors of B-splines in
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F I G U R E 11 Contour plots for the SD of the third non-rigid-body mode shape of the model aircraft obtained by crude MCS and various
optimal SDD (OSDD) methods

some or all coordinate directions, whitening transformation producing measure-consistent orthonormalized B-splines
equipped with optimal knots, and Fourier-spline expansion of a general high-dimensional output function of inter-
est. Compared with the standard SDD, developed in a prior work, the knot vectors are not mandated to be uniformly
spaced or selected instinctively. Two distinct approaches, one exploiting an orthonormal basis and the other utilizing a
nonorthonormal basis, are advocated for determining the optimal locations of the knots by minimizing the mean-squared
approximation error. In doing so, no expensive function evaluations, in excess of those required to estimate the expan-
sion coefficients, are incurred, meaning that the optimization can be performed with little additional effort. Indeed, the
generation of optimal knot vectors can be viewed as an inexpensive preprocessing step toward creating the optimal SDD.
Thereafter, the optimal SDD method is formed by retaining relevant tensor products of univariate splines associated with
a chosen degree of interaction from the ANOVA decomposition. Analytical formulas have been proposed to calculate the
second-moment properties by the optimal SDD method for a general output random variable in terms of the expansion
coefficients involved. Akin to that of the standard SDD method, the computational complexity of the optimal SDD method
is polynomial, as opposed to exponential, thus alleviating the curse of dimensionality to an appreciable magnitude.

Numerical results indicate that the optimal SDD method is more precise than the standard SDD method in predicting
not only the variance, but also the CDF of an output random variable, with both methods demanding practically the
same computational resources. Moreover, a low-order optimal SDD approximation with an adequate mesh size generates
a substantially more accurate estimate of the output variance than a high-order approximation from existing polynomial
chaos expansion or sparse-grid quadrature. The optimal SDD method proposed is most relevant under locally nonlinear
or nonsmooth behavior often recognized in engineering applications.
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APPENDIX A. UNIVARIATE B-SPLINES

Let x = (x1, … , xN) be an arbitrary point in AN . For the coordinate direction k, k = 1, … ,N, define a positive integer
nk ∈ N and a nonnegative integer pk ∈ N0, representing the total number of basis functions and polynomial degree,
respectively. The rest of this appendix briefly describes the paraphernalia of univariate B-splines.
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A.1 Knot Vector
In order to define B-splines, the concept of knot vector, also referred to as knot sequence, for each coordinate direction k
is needed.

Definition 1. A knot vector 𝝃k for the interval [ak, bk] ⊂ R, given nk > pk ≥ 0, is a vector comprising nondecreasing
sequence of real numbers

𝝃k ∶= {𝜉k,ik}
nk+pk+1
ik=1 = {ak = 𝜉k,1, 𝜉k,2, … , 𝜉k,nk+pk+1 = bk},

𝜉k,1 ≤ 𝜉k,2 ≤ · · · ≤ 𝜉k,nk+pk+1, (A1)

where 𝜉k,ik is the ikth knot with ik = 1, 2, … ,nk + pk + 1 representing the knot index for the coordinate direction k. The
elements of 𝝃k are called knots.

According to Equation (A1), there are a total of nk + pk + 1 knots, which may be equally or unequally spaced.
To monitor knots without repetitions, denote by 𝜁k,1, … , 𝜁k,rk the rk distinct knots in 𝝃k with respective multiplicities
mk,1, … ,mk,rk . Then the knot vector in Equation (A1) can be expressed more compactly by

𝝃k = {ak =

mk,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,1, … , 𝜁k,1,

mk,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,2, … , 𝜁k,2, … ,

mk,rk−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,rk−1, … , 𝜁k,rk−1,

mk,rk
times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,rk , … , 𝜁k,rk = bk},

ak = 𝜁k,1 < 𝜁k,2 < · · · < 𝜁k,rk−1 < 𝜁k,rk = bk, (A2)

which consists of a total number of
rk∑

jk=1
mk,jk = nk + pk + 1

knots. As shown in Equation (A2), each knot, whether interior or exterior, may appear 1 ≤ mk,jk ≤ pk + 1 times, where
mk,jk is referred to as its multiplicity. The multiplicity has important implications on the regularity properties of B-spline
functions. A knot vector is called open if the end knots have multiplicities pk + 1. In this case, definitions of more specific
knot vectors are in order.

Definition 2. A knot vector is said to be (pk + 1)-open if the first and last knots appear pk + 1 times, that is, if

𝝃k = {ak =

pk+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,1, … , 𝜁k,1,

mk,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,2, … , 𝜁k,2, … ,

mk,rk−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,rk−1, … , 𝜁k,rk−1,

pk+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,rk , … , 𝜁k,rk = bk},

ak = 𝜁k,1 < 𝜁k,2 < · · · < 𝜁k,rk−1 < 𝜁k,rk = bk.

Definition 3. A knot vector is said to be (pk + 1)-open with simple knots if it is (pk + 1)-open and all interior knots appear
only once, that is, if

𝝃k = {ak =

pk+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,1, … , 𝜁k,1, 𝜁k,2, … , 𝜁k,rk−1,

pk+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁k,rk , … , 𝜁k,rk = bk},

ak = 𝜁k,1 < 𝜁k,2 < · · · < 𝜁k,rk−1 < 𝜁k,rk = bk.

A (pk + 1)-open knot vector with or without simple knots is commonly found in applications.21

A.2 B-Splines
The B-spline functions for a given degree are defined in a recursive manner using the knot vector as follows.

Definition 4. Let 𝝃k be a general knot vector of length at least pk + 2 for the interval [ak, bk], as defined by Equation (A1).
Denote by Bk

ik ,pk ,𝝃k
(xk) the ikth univariate B-spline function with degree pk ∈ N0 for the coordinate direction k. Given the

zero-degree basis functions,

Bk
ik ,0,𝝃k

(xk) ∶=

{
1, 𝜉k,ik ≤ xk < 𝜉k,ik+1,

0, otherwise,
(A3)
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for k = 1, … ,N, all higher-order B-spline functions on R are defined recursively by

Bk
ik ,pk ,𝝃k

(xk) ∶= qik ,pk ,𝝃k (xk)Bk
ik ,pk−1,𝝃k

(xk) +
(
1 − qik+1,pk ,𝝃k (xk)

)
Bk

ik+1,pk−1,𝝃k
(xk), (A4)

where

qik ,pk ,𝝃k (xk) ∶=
⎧⎪⎨⎪⎩

xk−𝜉k,ik
𝜉k,ik+pk

−𝜉k,ik

, 𝜉k,ik < 𝜉k,ik+pk ,

0, otherwise,
(A5)

and 1 ≤ k ≤ N, 1 ≤ ik ≤ nk, 1 ≤ pk < ∞.

The recursive formula in Definition 4 was derived by Cox31 and de Boor.22

APPENDIX B. OBJECTIVE FUNCTION GRADIENTS

This appendix serves the purpose of providing explicit expressions involved in evaluating the sensitivity, with respect to
the knot locations, of the objective functions given in Sections 6.2 and 6.3, which is needed when using a gradient-based
method, such as SLP or SQP, to solve the underlying constrained nonlinear optimization problems. As mentioned pre-
viously, it is assumed for the sake of simplicity that every internal knot has a multiplicity of one. Hence, the number of
internal knots in each coordinate direction is equal to nk − pk − 1. The procedure described in this appendix is repeated
to obtain derivatives with respect to all internal knots in all coordinate directions, that is for all 𝜉k,jk , pk + 2 ≤ jk ≤ nk,
1 ≤ k ≤ N.

B.1 Sensitivity of B-Splines
From Equation (A3), it is clear that 𝜕Bk

ik ,0,𝝃k
(xk)∕𝜕𝜉k,jk = 0 for all admissible values of k, ik, jk, 𝝃k, and xk. Hence, the

propagation of the influence of the internal knot locations in 𝝃k begins with that on the quotients qik ,pk ,𝝃k (xk), given in
Equation (A5). Accordingly, the partial derivatives are

𝜕qik ,pk ,𝝃k (xk)
𝜕𝜉k,jk

=

⎧⎪⎪⎨⎪⎪⎩

xk−𝜉k,ik+pk
(𝜉k,ik+pk

−𝜉k,ik
)2
, jk = ik and 𝜉k,ik < 𝜉k,ik+pk ,

𝜉k,ik
−xk

(𝜉k,ik+pk
−𝜉k,ik

)2
, jk = ik + pk and 𝜉k,ik < 𝜉k,ik+pk ,

0, otherwise.

The sensitivity of the higher-order B-splines can then be derived recursively by differentiation of Equation (A4),
yielding

𝜕Bk
ik ,pk ,𝝃k

(xk)

𝜕𝜉k,jk

=
𝜕qik ,pk ,𝝃k (xk)

𝜕𝜉k,jk

Bk
ik ,pk−1,𝝃k

(xk) + qik ,pk ,𝝃k (xk)
𝜕Bk

ik ,pk−1,𝝃k
(xk)

𝜕𝜉k,jk

−
𝜕qik+1,pk ,𝝃k (xk)

𝜕𝜉k,jk

Bk
ik+1,pk−1,𝝃k

(xk)

+
(
1 − qik+1,pk ,𝝃k (xk)

) 𝜕Bk
ik+1,pk−1,𝝃k

(xk)

𝜕𝜉k,jk

. (B1)

It is important to note the distinction between the derivatives of the B-spline functions with respect to the knot loca-
tions 𝝃k and those with respect to the coordinate xk. At this point, the sensitivity of the B-splines propagates in different
ways, depending on which approach, described in Sections 6.2 and 6.3, is followed to optimize the internal knot locations.

B.2 Sensitivity with Orthonormal Basis
When an orthonormal basis is employed during the optimization procedure, the dependence of the whitening transfor-
mation on the internal knots must be considered. Recall that this transformation is given by

𝝍k(xk) = WkPk(xk), (B2)
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where𝝍k(xk) consists of the univariate orthonormal spline functions 𝜓k
ik ,pk ,𝝃k

(xk), Wk is the nk × nk whitening matrix, and

Pk(xk) ∶=
(

1,Bk
2,pk ,𝝃k

(xk), … ,Bk
nk ,pk ,𝝃k

(xk)
)⊺

. Differentiating Equation (B2) yields

𝜕𝝍k(xk)
𝜕𝜉k,jk

= 𝜕Wk

𝜕𝜉k,jk

Pk(xk) + Wk
𝜕Pk(xk)
𝜕𝜉k,jk

. (B3)

Whereas 𝜕Pk(xk)∕𝜕𝜉k,jk simply involves the derivatives given in Equation (B1), with the first element replaced by zero,
the sensitivity of Wk is yet to be determined. Recall that

W⊺
kWk = G−1

k , (B4)

where Gk is the spline moment matrix. Equation (B4) can be implicitly differentiated to obtain

𝜕W⊺
k

𝜕𝜉k,jk

Wk + W⊺
k
𝜕Wk

𝜕𝜉k,jk

= −G−1
k
𝜕Gk

𝜕𝜉k,jk

G−1
k . (B5)

Equation (B5) cannot be solved for 𝜕Wk∕𝜕𝜉k,jk by simple matrix inversion or rearrangement of terms. However,
when obtained by inverting the Cholesky factorization of the spline moment matrix, Wk, and its derivatives by exten-
sion, are nk × nk lower triangular matrices. Furthermore, since Gk is an nk × nk symmetric matrix, so too is the term on
the right-hand side of Equation (B5), which is consistent with the obvious symmetry of the sum on the left-hand side.
Consequently, there are nk(nk + 1)∕2 equations in the nk(nk + 1)∕2 unknown elements of 𝜕Wk∕𝜕𝜉k,jk .

The solution to this system of equations can be found by performing a half-vectorization on 𝜕Wk∕𝜕𝜉k,jk and the matrix
resulting from evaluation of the right-hand side of Equation (B5), and constructing a nk(nk + 1)∕2 × nk(nk + 1)∕2 coeffi-
cient matrix containing a pattern of the elements of Wk, some of which are doubled due to the sum, that multiply the
respective unknown elements of 𝜕Wk∕𝜕𝜉k,jk . This matrix can be derived by expanding the left-hand side of Equation (B5),
collecting like terms of 𝜕Wk∕𝜕𝜉k,jk , and expressing the result as a matrix–vector product. More practically, a very simple
computer algorithm can be implemented to construct this matrix for any arbitrary number of basis functions nk. This
exercise is left up to the reader, if desired.

Before Equation (B5) can be solved, the gradients of the spline moment matrix must be computed. Recall that

Gk ∶= E[Pk(Xk)P⊺
k(Xk)].

This equation can be differentiated with respect to the knot locations to obtain

𝜕Gk

𝜕𝜉k,jk

= E

[
𝜕Pk(Xk)
𝜕𝜉k,jk

P⊺
k(Xk) + Pk(Xk)

𝜕P⊺
k(Xk)
𝜕𝜉k,jk

]
. (B6)

Once again, the derivatives of Pk have already been determined. Therefore, the derivatives of Gk are determined by
Equation (B6), which in turn allow the solution of Equation (B5) for the derivatives of Wk, which can finally be substituted
into Equation (B3) to obtain the derivatives of 𝜓k

ik ,pk ,𝝃k
(xk). The next step is to compute the gradients of the multivariate

orthonormalized B-spline functions, related to 𝜓k
ik ,pk ,𝝃k

(xk) by

Ψu
iu,pu,𝚵u

(xu) =
∏
k∈u

𝜓k
ik ,pk ,𝝃k

(xk), iu = (ik1 , … , ik|u| ) ∈ u,nu , (B7)

where ∅ ≠ u = {k1, … , k|u|} ⊆ {1, … ,N} andu,nu ∶=
{

iu = (ik1 , … , ik|u| ) ∶ 2 ≤ ikl ≤ nkl , l = 1, … , |u|} ⊂ (N ⧵ {1})|u|.
Differentiating Equation (B7) yields

𝜕Ψu
iu,pu,𝚵u

(xu)

𝜕𝜉k,jk

=
∑
s∈u

𝜕𝜓 s
is,ps,𝝃s

(xs)

𝜕𝜉k,jk

∏
t∈u
t≠s

𝜓 t
it ,pt ,𝝃t

(xt), iu = (ik1 , … , ik|u| ) ∈ u,nu . (B8)
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Note that the sum in Equation (B8) need only be evaluated over the values of s that pertain to coordinate directions
that share a knot sequence with coordinate direction k. Hence, if the knot sequences in all coordinate directions are to be
optimized independently, then the sum can be omitted and s can be replaced with k.

Once the multivariate orthonormalized B-spline functions are converted to their single-index analogues according to{
Ψu

iu,pu,𝚵u
(Xu) ∶ 1 ≤ |u| ≤ S, iu ∈ u,nu

}
=
{
Ψ2(X;𝚵), … ,ΨLS,p,𝚵(X;𝚵)

}
, Ψ1(X;𝚵) = 1,

the SDD expansion coefficients are calculated in one of two ways.
One option is to compute the coefficients according to

Ci(𝚵) ∶= ∫
AN

y(x)Ψi(X;𝚵)fX(x) dx, i = 1, … ,LS,p,𝚵, (B9)

where LS,p,𝚵 is the total number of basis functions. Equation (B9) can be differentiated to obtain

𝜕Ci(𝚵)
𝜕𝜉k,jk

= ∫
AN

y(x)𝜕Ψi(X;𝚵)
𝜕𝜉k,jk

fX(x) dx, i = 1, … ,LS,p,𝚵. (B10)

Finally, differentiation of the corresponding objective function, given in the problem statement of Equation (24)

ẽLS,p,𝚵 ∶= −
LS,p,𝚵∑
i=2

C2
i (𝚵),

yields

𝜕ẽLS,p,𝚵

𝜕𝜉k,jk

= −2
LS,p,𝚵∑
i=2

Ci(𝚵)
𝜕Ci(𝚵)
𝜕𝜉k,jk

. (B11)

So the derivatives of 𝜓k
ik ,pk ,𝝃k

(xk) obtained by Equation (B3) are substituted into Equation (B8) to obtain the derivatives
of Ψu

iu,pu,𝚵u
(xu), which are substituted into Equation (B10) to obtain the derivatives of Ci(𝚵), which are finally substituted

into Equation (B11) to obtain the derivatives of ẽLS,p,𝚵 .
Alternatively, if the SDD expansion coefficients are computed by the SLS regression

ĉ(𝚵) ∶=
(

Ĉ1(𝚵), … , ĈLS,p,𝚵(𝚵)
)⊺

= (A⊺A)−1A⊺b, (B12)

where

A ∶=
⎡⎢⎢⎢⎣
Ψ1(x(1);𝚵) … ΨLS,p,𝚵(x

(1);𝚵)
⋮ ⋱ ⋮

Ψ1(x(L);𝚵) … ΨLS,p,𝚵(x
(L);𝚵)

⎤⎥⎥⎥⎦ and b ∶=
(

y(x(1)), … , y(x(L))
)⊺

and {x(l), y(x(l))}L
l=1 is the input-output data set of size L, the sensitivity of the coefficients can be evaluated by differenti-

ation of Equation (B12), resulting in

𝜕ĉ(𝚵)
𝜕𝜉k,jk

= (A⊺A)−1
[
𝜕A⊺

𝜕𝜉k,jk

b −
(
𝜕A⊺

𝜕𝜉k,jk

A + A⊺ 𝜕A
𝜕𝜉k,jk

)
ĉ(𝚵)

]
, (B13)

where 𝜕A∕𝜕𝜉k,jk simply contains evaluations of the corresponding derivatives of the multivariate orthonormalized
B-spline functions, given in Equation (B8), at the input data points x(l). Finally, differentiation of the corresponding
objective function, given in the problem statement of Equation (25),

êLS,p,𝚵 ∶= 1
L

L∑
l=1

⎡⎢⎢⎣y(x(l)) −
LS,p,𝚵∑
i=1

Ĉi(𝚵)Ψi(x(l);𝚵)
⎤⎥⎥⎦

2

,
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yields

𝜕êLS,p,𝚵

𝜕𝜉k,jk

= − 2
L

L∑
l=1

LS,p,𝚵∑
i=1

(
𝜕Ĉi(𝚵)
𝜕𝜉k,jk

Ψi(x(l);𝚵) + Ĉi(𝚵)
𝜕Ψi(x(l);𝚵)
𝜕𝜉k,jk

)⎛⎜⎜⎝y(x(l)) −
LS,p,𝚵∑
j=1

Ĉj(𝚵)Ψj(x(l);𝚵)
⎞⎟⎟⎠ . (B14)

So the derivatives of 𝜓k
ik ,pk ,𝝃k

(xk) obtained by Equation (B3) are substituted into Equation (B8) to obtain the derivatives
of Ψu

iu,pu,𝚵u
(xu), which are evaluated at the input data points and substituted into Equation (B13) to obtain the derivatives

of Ĉi(𝚵), which are finally substituted along with the evaluations of the derivatives of Ψu
iu,pu,𝚵u

(xu) into Equation (B14) to
obtain the derivatives of êLS,p,𝚵 .

B.3 Sensitivity with nonorthonormal Basis
When a nonorthonormal basis set is employed for the function expansion, as described in Section 6.3, the gradients of
the corresponding objective function with respect to the internal knot locations are simpler to compute. In this case, the
first step is to compute the gradients of the multivariate B-spline functions, related to Bk

ik ,pk ,𝝃k
(xk) by

Φu
iu,pu,𝚵u

(xu) =
∏
k∈u

Bk
ik ,pk ,𝝃k

(xk), iu = (ik1 , … , ik|u| ) ∈ u,nu . (B15)

Differentiating Equation (B15) yields

𝜕Φu
iu,pu,𝚵u

(xu)

𝜕𝜉k,jk

=
∑
s∈u

𝜕Bs
is,ps,𝝃s

(xs)

𝜕𝜉k,jk

∏
tu∈t≠s

Bt
it ,pt ,𝝃t

(xt), iu = (ik1 , … , ik|u| ) ∈ u,nu , (B16)

where 𝜕Bk
ik ,pk ,𝝃k

(xs)∕𝜕𝜉k,jk are evaluated according to Equation (B1). Once again, this sum only needs to be evaluated
over the values of s that pertain to coordinate directions that share a knot sequence with coordinate direction k. The
multivariate B-spline functions must then be converted to their single-index analogues according to{

Φu
iu,pu,𝚵u

(Xu) ∶ 1 ≤ |u| ≤ S, iu ∈ u,nu

}
=
{
Φ2(X;𝚵), … ,ΦLS,p,𝚵(X;𝚵)

}
, Φ1(X;𝚵) = 1.

The expansion coefficients are then calculated according to

ĉ(𝚵) ∶=
(
̂C1(𝚵), … ,

̂CLS,p,𝚵(𝚵)
)⊺

=
(

A
⊺
A
)−1

A
⊺
b, (B17)

where

A ∶=
⎡⎢⎢⎢⎣
Φ1(x(1);𝚵) … ΦLS,p,𝚵(x

(1);𝚵)
⋮ ⋱ ⋮

Φ1(x(L);𝚵) … ΦLS,p,𝚵(x
(L);𝚵)

⎤⎥⎥⎥⎦ .
The sensitivity of the coefficients can then be evaluated by differentiation of Equation (B17), resulting in

𝜕ĉ(𝚵)
𝜕𝜉k,jk

=
(

A
⊺
A
)−1

[
𝜕A

⊺

𝜕𝜉k,jk

b −

(
𝜕A

⊺

𝜕𝜉k,jk

A + A
⊺ 𝜕A
𝜕𝜉k,jk

)
ĉ(𝚵)

]
, (B18)

where 𝜕A∕𝜕𝜉k,jk simply contains evaluations of the corresponding derivatives of the multivariate nonorthonormal, stan-
dard B-spline functions, given in Equation (B16), at the input data points x(l). Finally, differentiation of the corresponding
objective function, given in the problem statement of Equation (27),

̂̄eLS,p,𝚵 ∶= 1
L

L∑
l=1

⎡⎢⎢⎣y(x(l)) −
LS,p,𝚵∑
i=1

̂Ci(𝚵)Φi(x(l);𝚵)
⎤⎥⎥⎦

2

,
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yields

𝜕̂̄eLS,p,𝚵

𝜕𝜉k,jk

= − 2
L

L∑
l=1

LS,p,𝚵∑
i=1

(
𝜕
̂Ci(𝚵)
𝜕𝜉k,jk

Φi(x(l);𝚵) + ̂Ci(𝚵)
𝜕Φi(x(l);𝚵)
𝜕𝜉k,jk

)⎛⎜⎜⎝y(x(l)) −
LS,p,𝚵∑
j=1

̂Cj(𝚵)Φj(x(l);𝚵)
⎞⎟⎟⎠ . (B19)

So the derivatives of Bk
ik ,pk ,𝝃k

(xk) obtained by Equation (B1) are substituted into Equation (B16) to obtain the derivatives
of Φu

iu,pu,𝚵u
(xu), which are evaluated at the input data points and substituted into Equation (B18) to obtain the derivatives

of ̂Ci(𝚵), which are finally substituted along with the evaluations of the derivatives of Φu
iu,pu,𝚵u

(xu) into Equation (B19) to
obtain the derivatives of ̂̄eLS,p,𝚵 .


