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SUMMARY

This paper presents an enriched meshless method for fracture analysis of cracks in homogeneous,
isotropic, non-linear-elastic, two-dimensional solids, subject to mode-I loading conditions. The method
involves an element-free Galerkin formulation and two new enriched basis functions (Types I and II) to
capture the Hutchinson–Rice–Rosengren singularity �eld in non-linear fracture mechanics. The Type I
enriched basis function can be viewed as a generalized enriched basis function, which degenerates to the
linear-elastic basis function when the material hardening exponent is unity. The Type II enriched basis
function entails further improvements of the Type I basis function by adding trigonometric functions.
Four numerical examples are presented to illustrate the proposed method. The boundary layer analysis
indicates that the crack-tip �eld predicted by using the proposed basis functions matches with the
theoretical solution very well in the whole region considered, whether for the near-tip asymptotic �eld
or for the far-tip elastic �eld. Numerical analyses of standard fracture specimens by the proposed
meshless method also yield accurate estimates of the J -integral for the applied load intensities and
material properties considered. Also, the crack-mouth opening displacement evaluated by the proposed
meshless method is in good agreement with �nite element results. Furthermore, the meshless results
show excellent agreement with the experimental measurements, indicating that the new basis functions
are also capable of capturing elastic–plastic deformations at a stress concentration e�ectively. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the pioneering work of Irwin [1], who demonstrated that the stress intensity factor (SIF)
characterizes linear-elastic crack-tip �elds, linear-elastic fracture mechanics (LEFM) methods
are now widely used in engineering practice to help ensure that structures fabricated from met-
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als do not fail prematurely. However, in much or all of the working temperature regime of
cracked components, such as reactor pressure vessels, automotive structures, micro-electronic
devices, aerospace and aircraft propulsion systems, and others, the material is being typically
stressed above the brittle-to-ductile transition temperature where the fracture response is es-
sentially ductile and the material is capable of absorbing considerable inelastic deformation.
With the knowledge that this energy absorption capability should be exploited so that struc-
tural designs based on LEFM methods do not lead to overly large, heavy, and expensive
structures, elastic–plastic fracture mechanics (EPFM) methods have evolved and are used in
many industries today. This is because the asymptotic solution of the crack-tip �eld under
EPFM conditions, developed by Hutchinson, Rice, and Rosengren (HRR) [2, 3], reveals that
the Eshelby–Cherepanov–Rice J -integral [4–6] characterizes the amplitude of this �eld, just
as SIF characterizes the �eld in LEFM. Therefore, an accurate evaluation of the J -integral
and=or other relevant EPFM fracture parameters is essential for simulation-based life-cycle
design of engineering structures.
In recent years, various Galerkin-based meshless methods have been developed or inves-

tigated to solve fracture mechanics problems without the use of a structured grid [7–16].
These gridless or meshless methods employ moving least-squares (MLS) approximation of
a function that permits the resultant shape functions to be constructed entirely in terms of
arbitrarily placed nodes. Since no element connectivity data is required, burdensome mesh-
ing or remeshing characteristic of the �nite element methods (FEM) is avoided. A growing
crack can be modelled by simply extending the free surfaces, which correspond to the crack.
By sidestepping remeshing requirements, crack-propagation analysis can be signi�cantly sim-
pli�ed. However, most development in meshless methods to date has been focused on only
LEFM problems [7–16]. Research in non-linear fracture mechanics using meshless methods
has not been widespread and is only currently gaining attention. Recently, Xu and Saigal
[17] employed the element-free Galerkin method (EFGM) to study quasi-static crack growth
in elastic–plastic materials under plane strain conditions. However, the accuracy of predicted
crack-tip �elds and J -integral calculations, which are essential for fracture integrity evalu-
ations, were not discussed. Furthermore, the use of enriched basis functions, typically used
to capture the LEFM singularity [9], may not be appropriate for solving non-linear fracture
mechanics problems. The singularity of crack-tip �eld in EPFM is di�erent than that in LEFM
and depends on the material hardening characteristics. This implies that material properties
could be embedded in the development of new or improved basis functions for meshless
fracture analysis. Hence, there is a considerable interest in developing meshless methods for
solving EPFM problems.
This paper presents an enriched meshless method for fracture analysis of cracks in ho-

mogeneous, isotropic, non-linear-elastic, two-dimensional solids, subject to mode-I loading
conditions. The method involves an element-free Galerkin formulation and two new enriched
basis functions to capture the HRR singularity �eld in non-linear fracture mechanics. One
enriched basis function can be viewed as a generalized enriched basis function, which degen-
erates to the linear-elastic basis function when the material hardening exponent is unity. The
other enriched basis function entails further improvements by adding trigonometric functions.
Four numerical examples are presented to illustrate the proposed method. The examples in-
clude evaluation of near-tip stress �eld, J -integral calculations of standard fracture specimens,
load vs crack-mouth opening displacement predictions, and comparisons with experimental
data.
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Figure 1. Co-ordinates at the crack tip.

2. THE J INTEGRAL AND HRR FIELD

The J -integral parameter proposed by the Eshelby, Cherepanov, and Rice [4–6] is extensively
used in assessing fracture integrity of cracked engineering structures, which undergo plastic
deformation at the crack tip. For a general cracked body with an arbitrary counter-clockwise
path � around the crack tip (see Figure 1), a formal de�nition of J is

J =
∫
�

[
W dx2 − Ti @ui@xi ds

]
(1)

where W=
∫
�ij d�ij is the strain energy density with �ij and �ij representing components of

stress and strain tensors, respectively, ui and Ti=�ijnj are the ith component of displacement
and traction vectors, nj is the j-th component of unit outward normal n to integration path,
and ds is the di�erential length along contour �.
Consider a power-law hardening material with a uniaxial stress–strain (�–�) relation as

�
�0
= �

(
�
�0

)n
(2)

where �0 is the reference stress, �0 =�0=E is the reference strain with E representing Young’s
modulus, � is a material constant, and n is the material hardening exponent. When n=1 and
∞, Equation (2) represents linear-elastic and rigid-perfectly plastic materials, respectively. In
reality, however, the Ramberg–Osgood law is used to describe non-linear stress–strain curve,
which is

�
�0
=
�
�0
+ �

(
�
�0

)n
(3)

For multiaxial stress state, the Ramberg–Osgood law can be generalized as

�ij= �eij(�ij) + �
p
ij(�ij) (4)

where

�eij=
1+ �
E

sij +
1− 2�
3E

�kk�ij (5)
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and

�pij=
3
2
��0

(
�e
�0

)n−1 sij
�0

(6)

are the elastic and plastic components of strain, respectively, � is the Poisson ratio, sij=�ij−
�kk�ij=3 is the deviatoric stress, �e =

√
3sijsij=2 is the von Mises e�ective stress, and �ij is the

Kronecker delta. If elastic strains are negligible compared with plastic strains (i.e. �ij � �pij),
Equation (6) represents a pure power-law-strain-hardening material, for which the asymptotic
crack-tip �elds under mode-I loading are [2, 3]

�ij=�0

[
J

��0�0Inr

]1=(n+1)
�̃ij(�; n) (7)

�ij= ��0

[
J

��0�0Inr

]n=(n+1)
�̃ij(�; n) (8)

and

ui= ��0r
[

J
��0�0Inr

]n=(n+1)
ũi(�; n) (9)

where r and � are the polar co-ordinates with the origin at the crack tip, In is a dimensionless
constant that depends on n, and �̃ij, and �̃ij, and ũi are dimensionless angular functions of �
and n. The parameters In, �̃ij, �̃ij, and ũi also depend on the state of stress. Equations (7)–(9)
represent the well-known HRR �eld under mode-I deformation [2, 3]. Note, the same HRR
�eld also exists in mixed-mode fracture, in which case the dimensionless angular functions
also depend on the magnitude of mode-mixity [18].
Although the HRR solution describes the nature of the dominant singularity, higher order

terms may have an important e�ect on the constraint of plane strain crack-tip �elds [19–22].
The HRR �eld is thus not the only possible crack-tip �eld, but should be regarded as an
important limiting case of a family of �elds, which arise when higher order terms are in-
signi�cant.

3. ENRICHED BASIS FUNCTIONS FOR NON-LINEAR MESHLESS
FRACTURE ANALYSIS

There are several ways to enrich the EFGM formulation to capture the stress singularity in
fracture analysis. One approach involves augmenting the EFGM trial functions by the near-
tip displacement �eld, thereby including additional unknown coe�cients for each crack tip
[9]. Hence, both the sti�ness matrix and the force vector need to be augmented leading to a
larger system of equations. Furthermore, the computer programming can be rather involved.
An alternative approach entails expanding the EFGM basis functions directly to include terms
from the near-tip displacement �eld. The enrichment based on expanded basis functions re-
quires simpler computer programming, but can become expensive for multiple cracks [9].
The enrichment based on expanded basis functions was adopted in this study. In this section,

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:197–223



ENRICHED MESHLESS METHOD 201

existing enrichment for LEFM basis functions is brie�y summarized and then new enrichment
for non-linear fracture mechanics is presented.

3.1. Linear-elastic fracture mechanics

In LEFM, the asymptotic near tip displacement �eld u= {u1; u2}T is given by

u1 =
1
�

√
r
2�
[KIgI1(�) + KIIg

II
1 (�)] (10)

and

u2 =
1
�

√
r
2�
[KIgI2(�) + KIIg

II
2 (�)] (11)

where �=E=[2(1 + �)] is the shear modulus,

gI1(�)=	 − cos
�
2
+ sin � sin

�
2

gI2(�)=	+ sin
�
2
− sin � cos �

2

gII1 (�)=	+ sin
�
2
+ sin � cos

�
2

gII2 (�)=	 − cos
�
2
− sin � sin �

2

(12)

are the well-known angular functions of LEFM, KI and KII are mode-I and mode-II SIFs,
and the kolosov constant 	=(3− �)=(1 + �) for plane stress and 	=3− 4� for plane stress.
Using trigonometric identities, it can be shown that the basis, given by

pT(x)=
{
1; x1; x2;

√
r cos

�
2
;
√
r sin

�
2
;
√
r sin

�
2
sin �;

√
r cos

�
2
sin �

}
(13)

spans the LEFM crack-tip displacement �eld in Equations (10) and (11) exactly [9]. In-
deed, the enriched basis in Equation (13) has been successfully used in meshless analy-
sis of linear-elastic cracked structures [9, 12–15], including analysis of cracks in function-
ally graded materials [16]. However, the HRR �eld is di�erent from the LEFM crack-tip
�eld. Hence, new basis functions need to be developed for non-linear fracture mechanics
analysis.

3.2. Non-linear fracture mechanics

According to Equations (7)–(9), the HRR �eld is a known �eld. Hence, by embedding the
HRR displacement �eld, enriched basis functions similar to Equation (13) can be devel-
oped for its use in non-linear fracture mechanics. However, the angular functions ũi(�; n) in
Equation (9) cannot be obtained in closed-form. An eigenvalue problem needs to be solved
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numerically to determine ũi(�; n) [23]. As an alternative, simpler functional forms that can
approximate the HRR �eld can be potentially used to form the enriched basis.
Consider two approximations of ũi(�; n), given by

Approximation I

ũi(�; n) � ã0i(n) + ã1i(n) cos �2 + ã2i(n) sin
�
2
+ ã3i(n) sin

�
2
sin �+ ã4i(n) cos

�
2
sin �

(14)

and

Approximation II

ũi(�; n)� ã0i(n) + ã1i(n) cos �2 + ã2i(n) sin
�
2
+ ã3i(n) sin

�
2
sin �+ ã4i(n) cos

�
2
sin �

+ ã5i(n) sin
�
2
sin 3�+ ã6i(n) cos

�
2
sin 3� (15)

The �rst equation (Equation (14)) involves a linear combination of components of the
basis function vector in Equation (13) (minus the linear terms). The second equation (Equa-
tion (15)) entails adding two terms, sin(�=2) sin 3� and cos(�=2) sin 3�, to Equation (14)
for a better approximation. The selection of the two additional terms, sin(�=2) sin 3� and
cos(�=2) sin 3� is made based on a trial and error procedure. Initially the two additional
terms were chosen to be, sin(�=2) sin 2� and cos(�=2) sin 2� for a better approximation, but
these resulted in ill-conditioned moment matrix (Equation (22)) and subsequent problem in
inverting the moment matrix (Equation (22)). Hence, as a second guess the two additional
terms were chosen to be sin(�=2) sin 3� and cos(�=2) sin 3�, for a better approximation. The
latter guess resulted in a well-conditioned matrix, even though the accuracy in the approx-
imation of ũi(�; n), using either sin(�=2) sin 2� and cos(�=2) sin 2� or sin(�=2) sin 3� and
cos(�=2) sin 3� as additional terms, is observed to be the same. To evaluate both Types I
and II approximations, Shih’s [23] HRR �eld data of ũi(�; n), i=1; 2, obtained by solving
the eigenvalue problem numerically, were �tted with Equations (14) and (15). Note that
Shih’s [23] HRR �eld data were reported in polar, co-ordinate system, so a polar to rect-
angular co-ordinate system transformation was performed before �tting the HRR data using
Equations (14) and (15). Figure 2(a) show the plots of ũi(�; n) from Equation (14), as a
function of � for materials with high-hardening (n=3), medium-hardening (n=10), and low-
hardening (n=50) characteristics for the plane stress condition. The comparison with Shih’s
HRR �eld data indicates that Equation (14), obtained from the LEFM basis function, pro-
vides a reasonably good approximation of ũi(�; n). Similar comparisons in Figure 2(b), which
involve plots of Equation (15), show slightly improved results in �tting Shih’s numerical
results. The above observations also hold true for the plane strain condition, the results of
which are shown in Figures 3(a) and 3(b), involving plots of Equations (14) and (15), re-
spectively. Hence, both Equations (14) and (15) can be used to approximate ũi(�; n) for
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Figure 2. Approximations of HRR displacement �eld for plane stress: (a) approximation I
(Equation (14)); and (b) approximation II (Equation (15)).

non-linear-fracture mechanics analysis. Consequently, two types of enriched basis functions
are proposed, which are

Type I: pT(x) =
{
1; x1; x2; r1=(n+1) cos

�
2
; r1=(n+1) sin

�
2
; r1=(n+1)

sin
�
2
sin �; r1=(n+1) cos

�
2
sin �

}
(16)
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Figure 3. Approximations of HRR displacement �eld for plane strain: (a) approximation I
(Equation (14)); and (b) approximation II (Equation (15)).

and

Type II: pT(x)=



1; x1; x2; r1=(n+1) cos

�
2
; r1=(n+1) sin

�
2
; r1=(n+1) sin

�
2
sin �; r1=(n+1) cos

�
2
sin �;

r1=(n+1) sin
�
2
sin 3�; r1=(n+1) cos

�
2
sin 3�

(17)
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Note, the linear terms in both enriched bases are not related to crack-tip �elds, but are needed
for linear completeness of EFGM. The Type I enriched basis function in Equation (16) can
be viewed as a generalized enriched basis function, which degenerates to the LEFM basis
function (Equation (13)) when n=1 (linear-elastic).
The dimension of the enriched basis function vector increases when compared with that

of commonly used linear or quadratic basis function vectors in solid mechanics. This in-
duces additional computational e�ort required to invert the moment matrix (Equation (22))
in EFGM. In addition, the enriched basis can also lead to an ill-conditioned moment matrix
(Equation (22)). An ill-conditioned moment matrix (Equation (22)) may not a�ect the quality
of meshless solution when the enriched basis is adopted for the entire domain. However, it
does have a degrading e�ect on the quality of meshless solution when coupling shape func-
tions (Equation (28)) from an enriched basis to shape functions from linear or quadratic basis.
Two treatments have been found to be e�ective in alleviating ill-conditioning. One approach
involves diagonalizing the EFGM moment matrix (Equation (22)) by Gram–Schmidt orthog-
onalization. Another approach, which was adopted in this study, entails computing EFGM
shape functions using LU decomposition and backsubstitution rather than inverting the mo-
ment matrix (Equation (22)). Further details are given by Fleming et al. [9].

4. THE ELEMENT-FREE GALERKIN METHOD

4.1. Moving least squares and meshless shape function

Consider a function u(x) over a domain �⊆R2. Let �x ⊆� denote a sub-domain describing
the neighbourhood of a point x∈R2 located in �. According to the moving least-squares
method (MLS) [24], the approximation uh(x) of u(x) is

uh(x)=
m∑
i=1
pi(x)ai(x)= pT(x)a(x) (18)

where pT(x)= {p1(x); : : : ; pm(x)} is a vector of complete basis functions of order m and
a(x)= {a1(x); : : : ; am(x)} is a vector of unknown parameters that depend on x. The coe�cient
vector a(x) is determined by minimizing a weighted discrete L2 norm, de�ned as

JE(x)=
l∑
I=1
wI (x)[pT(xI)a(x)− dI ]2 = [Pa(x)− d]TW[Pa(x)− d] (19)

where xI denotes the co-ordinates of node I , dT = {d1; d2; : : : ; dn} with dI representing the
nodal parameter for node I , W=diag[w1(x); w2(x); : : : ; wl(x)] with wI (x) being the weight
function associated with node I , such that wI (x)¿0 for all x in the support �x of wI (x) and
zero otherwise, l is the number of nodes in �x for which wI (x)¿0, and P=[pT(x1); : : : ; pT(xl)]
∈L(Rn×Rm). In this study, a weight function proposed by Rao and Rahman [12] was used,
which is

wI (x)=




(
1 + 
2

z2I
z2mI

)−(1+
)=2
− (1 + 
2)−(1+
)=2

1− (1 + 
2)−(1+
)=2 ; zI6zmI

0; zI¿zmI

(20)
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where 
 is a shape controlling parameter, zI = ‖x − xI‖, and zmI is the domain of in�uence
of node I . The stationarity of J (x) with respect to a(x) yields

A(x)a(x)=C(x)d (21)

where

A(x)=
l∑
I=1
wI (x)p(xI)pT(xI)=PTWP (22)

and

C(x)= [w1(x)p(x1); : : : ; wl(x)p(xl)]=PTW (23)

Solving for a(x) in Equation (21) and then substituting into Equation (18) yields

uh(x)=
l∑
I=1
�I (x)dI =�

T(x)d (24)

where

�T(x)= {�1(x);�2(x); : : :�l(x)}= pT(x)A−1(x)C(x) (25)

is a vector with its I -th component,

�I (x)=
m∑
j=1
pj(x)[A−1(x)C(x)]jI (26)

representing the shape function of the MLS approximation corresponding to node I . The
partial derivatives of �I (x) can also be obtained as

�I; i(x)=
m∑
j=1

{pj; i(A−1C)jI + pj(A−1
; i C+A

−1C; i)jI} (27)

where A−1
; i = −A−1A; iA−1 and ( ); i= @( )=@xi.

Note that the MLS=meshless shape function �I (x) strongly depends on the type of basis
functions used. For problem involving cracks, the enriched basis function, such as the one in
Equations (16) or (17), is required to produce stress singularity at the crack tip. However, this
singularity �eld is only local to the crack tip. Therefore, it is unnecessary to use an enriched
basis for the entire domain. In that case, a hybrid approach involving an enriched basis close
to the crack tip and a linear basis function far away from the crack tip can be used. For
example, if �rI (x) and �

e
I (x) denote two resulting shape functions using regular and enriched

basis functions, respectively, the e�ective shape function due to coupling can be expressed by
[9, 12]

�I (x)=R�eI (x) + (1− R)�rI (x) (28)

where R is an appropriate ramp function that is equal to unity on the enriched boundary
of the coupling region and zero on the regular side of the coupling region. However, in all
numerical examples of this study, fully enriched bases are adopted for the entire domain.
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4.2. Variational formulation and discretization

For small displacements in two-dimensional, homogeneous, isotropic solids, the equilibrium
equations and boundary conditions are

∇ ·�+ b= 0 in � (29)

and

� · n= �t on �t (natural boundary conditions)

u= �u on �u (essential boundary conditions)
(30)

respectively, where U is the stress vector, U = ∇su is the strain vector, u is the displacement
vector, b is the body force vector, �t and �u are the vectors of prescribed surface tractions and
displacements, respectively, n is a unit normal to the domain, �, �t and �u are the portions
of boundary � where tractions and displacements are prescribed, ∇T = {@=@x1; @=@x2} is the
vector of gradient operators, and ∇su is the symmetric part of ∇u. The variational or weak
form of Equations (29) and (30) is∫

�
�T�U d�−

∫
�
bT�u d�−

∫
�t
tT�u d� + �Wu=0 (31)

where � denotes the variational operator and �Wu represents a term introduced to enforce
essential boundary conditions. The explicit form of this term depends on the method by
which the essential boundary conditions are imposed [17]. In this study, Wu is de�ned as

Wu=
∑
xK∈�u

fT(xK)[u(xK)− �u(xK)] (32)

where fT(xK) is the vector of reaction forces at the constrained node K on �u. Hence,

�Wu=
∑
xK∈�u

� fT(xK)[u(xK)− �u(xK)] + fT(xK)�u(xK) (33)

Consider a vector of all prescribed displacements on �u, g= {�u(xK1); : : : ; �u(xKL)}T ∈R2L. The
variational form given by Equations (31) and (33) can then be expressed by∫

�
�T�U d� +

∑
xK∈�u

fT(xK)�u(xK)=
∫
�
bT�u d� +

∫
�t

�tT�u d� (34)

and ∑
xK∈�u

�fT(xK)[u(xK)− �u(xK)]=0 (35)

Note, Equation (34) is non-linear with respect to displacement u, because of the non-linearity
in the stress–strain relationship. From Equation (24), the MLS approximation of u(x)=
{u1(x); u2(x)}T in two dimensions is

uh(x)=�Td (36)
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where

�T(x)=

[
�1(x) 0 �2(x) 0 · · · �N (x) 0

0 �1(x) 0 �2(x) · · · 0 �N (x)

]
(37)

d= {d11; d21; : : : ; d1N ; d2N}T ∈R2N is the vector of nodal parameters or generalized displacements,
and N is the total number of nodal points in �. Applying the MLS approximation of
Equation (36) into Equations (34) and (35) yields a system of non-linear algebraic equa-
tions, which must be solved by iterative methods. The standard Newton–Raphson method was
used to solve these non-linear equations, as follows.
Let dr denote the nodal parameter vector at the r-th iteration. Upon Taylor series expansion

at dr and retaining only the linear term, Equations (34) and (35) leads to[
k(dr) G

GT 0

]{
	dr

fR

}
−
{
f ext − f int(dr)
g− h(dr)

}
= 0 (38)

where 	dr = dr+1−dr is the incremental solution, h(dr)= {�T(xK1)dr ; : : : ;�
T(xKL)dr}T ∈R2L,

k=[krIJ ]=




kr11 kr12 · · · kr1N
kr21 kr22 · · · kr2N
...

...
...

...

krN1 krN2 · · · krNN



∈L(R2N ×R2N ) (39)

is the tangent sti�ness matrix at dr with

krIJ =
∫
�
BTl

[
@U
@�

∣∣∣∣
dr

]−1
BJ d�∈L(R2×R2) (40)

GT =




�1(x1) 0 �1(x2) 0 · · · �1(xN ) 0

0 �1(x1) 0 �1(x2) · · · 0 �1(xN )

�2(x1) 0 �2(x2) 0 : : : �2(xN ) 0

· · · �2(x1) 0 �2(x2) : : : 0 �2(xN )

...
...

...
...

...
...

...

�L(x1) 0 �L(x2) 0 : : : �L(xN ) 0

0 �L(x1) 0 �L(x2) : : : 0 �L(xN )




∈L(R2L×R2N ) (41)

is a matrix comprising shape functions of L nodes at which the displacement boundary con-
ditions are prescribed on �u, fR= {f1(xK1); f2(xK1); : : : ; f1(xKL); f2(xKL)}T ∈R2L is the vector
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of all reaction forces on �u,

f ext =
∫
�
�Tb d� +

∫
�i
�T�t d�∈R2N (42)

is the external force vector. Noting that drJ = {drJ1; drJ2}T ∈R2, f int(dr)= {f int1 (dr); : : : ; f intN (dr)}T
∈R2N is the internal force vector with

f intI (d
r)=

∫
�
BTI

[
@U
@�

∣∣∣∣
dr

]−1
BJdrJ d�∈R2 (43)

and

BI =



�I;1 0

0 �I;2

�I;2 �I;1


 (44)

Equation (38) represents a system of linear equations in 	dr and can be easily solved using
standard numerical methods. Hence, the total solution at the (r + 1)th iteration is

dr+1 = dr +	dr (45)

The iteration in Equation (45) is continued until both convergence criteria, de�ned by∥∥∥∥	drdr+1

∥∥∥∥6�1 (46)

and ∥∥∥∥	RrRr+1

∥∥∥∥6�2 (47)

are satis�ed, where Rr = f ext − f int(dr) is the residual at the i-th iteration, 	Rr =Rr+1 − Rr ,
and �1 and �2 are the pre-selected tolerances.
To perform numerical integration in Equations (40), (42) and (43), a background mesh

is required, which can be independent of the arrangement of the meshless nodes. However,
in this study, the nodes of the background mesh coincide with the meshless nodes. Standard
Gaussian quadratures were used to evaluate the integrals for assembling the sti�ness matrix
and the force vector. In general, a 4× 4 quadrature is adequate, except in the cells surrounding
a high stress gradient (e.g. near a crack tip) where a 8× 8 quadrature is suggested.
In solving for 	dr , the essential boundary conditions must be enforced. The lack of

Kronecker delta properties in the meshless shape functions presents some di�culty in impos-
ing the essential boundary conditions in EFGM. Nevertheless, several methods are currently
available for enforcing essential boundary conditions. A full transformation method [12, 25]
was used in this work.
It should be noted that the generalized displacement vector d represents the nodal param-

eters, not the actual displacements at the meshless nodes. However, the actual displacement
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vector d̂= {u(x1); : : : ; u(xN )}T ∈R2N can be easily calculated from

d̂=�d (48)

where �=[�(x1); : : : ;�(xN )]T ∈L(R2N ×R2N ) is the transformation matrix.

5. NUMERICAL EXAMPLES

5.1. Example 1: Crack-tip �elds by boundary layer analysis

In order to evaluate the accuracy of predicted crack-tip �elds, the near-tip region of a mode
I plane stress crack in a semi-circular patch of homogeneous elastic–plastic material, shown
in Figure 4(a), was investigated. The near-tip �elds are supposed to be dominated by the
well-known HRR solution in Equations (7)–(9). The patch had a radius R=800 units and
was discretized with 253 meshless nodes, as shown in Figure 4(b). The weight function pa-
rameter 
=3 was used for meshless analysis. The domain of the patch was divided into 240
cells with corner points coincident with the 253 meshless nodes, for the purposes of numer-
ical integration. A boundary layer approach within the framework of small deformation was
employed to calculate the near-tip elastic–plastic �elds by imposing mode I linear-elastic dis-
placement �eld on the circular boundary remote from the crack tip and homogenous boundary
conditions [u2(r; 0)=0] ahead of the crack. The material parameters were selected as follows:
E=209; 400 units, �=0:3, �0 = 698 units, �=0:1, and n=3. A plane stress condition was
employed.
Figures 5(a) and 5(b) present the variations of the normalized stress components �r=�0,

��=�0, and �r�=�0 from the present meshless analysis using Types I and II enriched bases,
respectively, as functions of normalized radial distance r�0=J , for �=41:3◦. For comparisons,
both HRR (Equation (7)) and LEFM solutions are also plotted in Figures 5(a) and 5(b).
When r → 0, the plastic strain is much larger than the elastic strain and hence, the stress
�eld obtained by the proposed meshless method matches with the HRR �eld. As r becomes
larger, the elastic strain dominates over the plastic strain. Therefore, the associated stress �eld
from the meshless analysis is well described by the LEFM solution. Similar comparisons of
meshless results for �=86:3◦ and 131:3◦, shown in Figures 6 and 7, also indicate excellent
agreement with the HRR or LEFM solutions.
In summary, the numerical results obtained by the meshless method using proposed basis

functions correlate very well with the theoretical solution in the whole region considered,
whether for the near-tip asymptotic �eld or for the far-tip elastic �eld. This demonstrates the
high accuracy of the proposed method in solving elastic–plastic crack problems.

5.2. Example 2: J -integral evaluations for SE(T ), DE(T ), and M (T ) specimens

Consider three rectangular plates illustrated in Figures 8(a)–(c), comprising single-edge ten-
sion [SE(T )], double-edge tension [DE(T )], and middle tension [M (T )] specimens [26],
subjected to a far-�eld remote tensile stress �∞. For numerical analysis, values of width
2W =1:016m, length 2L=5:08m, crack length a=0:254m. The material parameters involved:
E=206:8 GPa, �=0:3, �0 = 154:8 MPa, �=3:8, and n=8:073.
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Figure 4. Boundary layer analysis: (a) semi-circular patch of radius; and
(b) meshless discretization (253 nodes).

Due to symmetry, meshless discretizations were performed for only half the plate for the
SE(T ) specimen, and a quarter of the plate for the DE(T ) and M (T ) specimens, as depicted by
the shaded regions in Figures 8(a)–8(c). The discretization involves 286 regularly distributed
nodes, however, in the vicinity of the crack-tip region Q1Q2Q3Q4, [see Figure 9(a)] additional
63 nodes were used, as shown in the Figure 9(b), for a total of 349 meshless nodes. A domain
of size 2b× b, with b=0:254m, was used to calculate the J -integral. The domain of the plate
in Figure 9(a) was divided by 10× 25 rectangular cells with corner points coincident with
the 286 meshless nodes, solely for the purpose of numerical integration. An 8× 8 Gaussian
integration scheme was employed over the background grid. The weight function parameter
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Figure 5. Crack-tip stress components along radial lines for �=41:3◦:
(a) Type I enriched basis; and (b) Type II enriched basis.


=3 was used for meshless analysis. Both plane stress and plane strain conditions were
employed.
Figures 10(a)–(c) show plots of J -integral vs �∞ for the plane stress condition, as predicted

by the meshless method for SE(T ), DE(T ), and M (T ) plates, respectively using both Types I
and II basis functions. A domain form of Equation (1) was used in calculating the J -integral
[12]. Also plotted in the same �gures are the corresponding analytical J -integral solutions,
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Figure 6. Crack-tip stress components along radial lines for �=86:3◦:
(a) Type I enriched basis; and (b) Type II enriched basis.

which are described in Appendix A. Similar comparisons between meshless and analytical
results are shown in Figure 11(a)–(c) for the plane strain condition. In both stress states, the
meshless results using proposed basis functions match very well with the analytical solutions
for load intensities and material constants considered.
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Figure 7. Crack-tip stress components along radial lines for �=131:3◦:
(a) Type I enriched basis; and (b) Type II enriched basis.

5.3. Example 3: Crack-mouth opening displacement evaluation for three point bend
specimen specimens

Consider a three-point bend specimen with length L=5:08m, depth H =0:508m, and thickness
t=1 mm, as shown in Figure 12(a). A concentrated load P=1420 N was applied at the
middle of the beam of span LS =4:572 m and two supports were symmetrically placed with
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Figure 8. Fracture specimens under far-�eld tension: (a) SE(T ) specimen;
(b) DE(T ) specimen; and (c) M (T ) specimen.

respect to an edge crack of length a. The material parameters involved: E=207GPa, �=0:3,
�0 = 154:8 MPa, �=3:8, and n=8:073. A plane stress condition was assumed.
Due to symmetric geometry and loading with respect to the crack, only a half model of

the beam, as shown in Figure 12(b), was analysed. Figure 13(a) shows the details of the
meshless discretization involving 286 regularly distributed nodes, and additional 63 nodes in
the vicinity of the crack-tip region for a total of 349 meshless nodes. The domain of the plate
in Figure 12(a) was divided by 10× 25 rectangular cells with corner points coincident with
the 286 meshless nodes, solely for the purpose of numerical integration. An 8× 8 Gaussian
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Figure 9. Meshless discretization of fracture specimens: (a) half (SE(T )) and Quarter (DE(T ) and
M (T )) model; and (b) closeup of Q1Q2Q3Q4 region.

integration scheme was employed over the background grid. The weight function parameter

=3 was used for meshless analysis. For the purpose of comparison elastic–plastic �nite
element analysis using ABAQUS (Version 6.2) [27] was also performed on the half model of
the beam as shown in Figure 12(b). Figure 13(b) depicts the �nite element mesh for the half
model of the beam. Second-order elements from ABAQUS (Version 6.2) element library were
used. The element type was CPS8—the reduced integration, eight-noded quadrilateral element.
The number of elements and nodes were 410 and 1273, respectively. Focused elements with
collapsed nodes were employed in the vicinity of crack tip. A 2× 2 Gaussian integration was
employed.
Figure 14 shows a plot of crack-mouth opening displacement (�) vs load (P), as predicted

by the meshless method using both Type I or Type II basis functions. However, both basis
functions led to very close results, which are practically coincident with each other. Also
plotted in the same �gures are the corresponding �nite element results. The meshless results
using proposed basis functions are in good agreement with the �nite element solutions, indi-
cating that the new basis functions are capable of predicting elastic–plastic deformations of
cracked structures accurately.

5.4. Example 4: Comparison with experimental data from blunt-notch specimen

In this example, the ability of the meshless method in modelling elastic–plastic deformations
at a stress concentration is demonstrated. The meshless results are compared with experimental
results of a blunt-notch specimen tested by Newman et al. [28]. The blunt-notch specimen,
shown in Figure 15, is similar to the M (T ) specimen, except that a small hole was drilled
at the end of the saw cut, and the holes were polished to help prevent premature fracture.
The specimen was made of 2024-T3 aluminium with elastic modulus E=10400 ksi and
Poisson’s ratio �=0:3. Due to symmetry, a meshless discretization involving 615 nodes was
employed for a quarter of the blunt-notch specimen, as depicted in Figure 16. The geometric

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:197–223



ENRICHED MESHLESS METHOD 217

0 25 50 75 100

σ  , MPa∞

σ  , MPa∞

σ  , MPa∞

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

J,
 k

J/
m

2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

J,
 k

J/
m

2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

J,
 k

J/
m

2

Analytical
Type I

Type II

0 50 100 150 200

Analytical
Type I

Type II

0 50 100 150 200

Analytical
Type I

Type II

(a)

(b)

(c)

0 25 50 75 100

σ∞, MPa

σ∞, MPa

σ∞, MPa

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

J,
 k

J/
m

2

Analytical
Type I

Type II

0 50 100 150 200
0

1000

2000

3000

J,
 k

J/
m

2

Analytical
Type I

Type II

0 50 100 150 200
0

1000

2000

3000

J,
 k

J/
m

2

Analytical
Type I

Type II

(a)

(b)

(c)

Figure 10. J -Integral vs �∞ for all the three
specimens under plane stress: (a) SE(T )
specimen; (b) DE(T ) specimen; and (c)

M (T ) specimen.

Figure 11. J -Integral vs �∞ for all the three
specimens under plane strain: (a) SE(T )
specimen; (b) DE(T ) specimen; and (c)

M (T ) specimen.

parameters are as follows: h=6 in, W =5 in, and c=W =1=3. A far-�eld remote tensile stress
�∞=35MPa was applied along the top edge of the model. Figure 17 shows the stress–strain
data of 2024-T3 aluminium obtained from Reference [27]. By �tting these raw data by the
Ramberg–Osgood equation (Equation (3)), also shown in Figure 17, the following material
parameters were estimated: �0 = 50 ksi, �=0:453, and n=12:37.
Figure 18 compares the applied stress vs notch-root displacement relationship predicted by

the meshless method with the experimental record [28]. The notch-root displacement, V2 is
de�ned as the displacement measured at both notch roots during monotonic loading to failure
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Figure 12. Three-point bend specimen under mode I loading:
(a) Geometry and loads; and (b) half model.

and is also shown in Figure 18. According to Figure 18, the meshless results using either
Type I or Type II basis show excellent agreement with the experimental measurements, indi-
cating that the new basis functions are also capable of capturing elastic–plastic deformations
at a stress concentration e�ectively.
The CPU time required for meshless methods increases with the length of basis functions,

because the dimension of the matrix that needs to be inverted for the construction of meshless
shape function is directly proportional to the square of the length of basis function. Hence,
the CPU time using the Type II enriched basis is slightly higher than that using the Type I
enriched basis. All numerical examples of this study show that in terms of accuracy, the
performance of the Type I enriched basis function is comparable to the Type II enriched
basis function.

6. CONCLUSIONS

An enriched meshless method is presented for fracture analysis of cracks in homogeneous,
isotropic, non-linear-elastic, two-dimensional solids, subject to mode-I loading conditions. The
method involves an element-free Galerkin formulation and two new enriched basis functions
(Types I and II) to capture the Hutchinson–Rice–Rosengren singularity �eld in non-linear
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Figure 15. Geometry of the blunt-notch specimen. Figure 16. Meshless discretization using 615
nodes (1=4 model).

fracture mechanics. The Type I enriched basis function can be viewed as a generalized en-
riched basis function, which degenerates to the linear-elastic basis function when the material
hardening exponent is unity. The Type II enriched basis function entails further improvements
of the Type I basis function by adding trigonometric functions. Four numerical examples are
presented to illustrate the proposed method. The boundary layer analysis indicates that the
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crack-tip �eld predicted by using the proposed basis functions matches with the theoretical
solution very well in the whole region considered, whether for the near-tip asymptotic �eld
or for the far-tip elastic �eld. This demonstrates the high accuracy of the proposed method in
solving elastic–plastic crack problems. Numerical analyses of standard fracture specimens by
the proposed meshless method also yield accurate estimates of the J -integral for the applied
load intensities and material properties considered. Also, the crack-mouth opening displace-
ment evaluated by the proposed meshless method is in good agreement with elastic–plastic
�nite element results. Furthermore, the meshless results show excellent agreement with the ex-
perimental measurements, indicating that the new basis functions are also capable of capturing
elastic–plastic deformations at a stress concentration e�ectively.
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APPENDIX A: J -INTEGRAL FOR SE(T), DE(T), AND M(T) SPECIMENS

Consider SE(T ), DE(T ), and M (T ) specimens subjected to quasi-static far-�eld tension stress
�∞. The geometrical parameters of these specimens are de�ned in Figures 8(a)–8(c). The
total J -integral can be obtained from

J = Je + Jp (A1)

where Je and Jp are the elastic and plastic solutions, respectively, and are de�ned as follows.

A.1. SE(T ) specimen [26]

The elastic J is

Je =
�∞

2
�a

E′ [0:265(1− a=W )4 + (0:857 + 0:265a=W )=(1− a=W )1:5]2 (A2)

The plastic J is

Jp =
��20
E
(W − a)h1(a=W; n)

(
P
P0

)n+1
(A3)

where P=�∞WB is the far-�eld tensile load,

P0 =

{
1:072
B(a−W )�0; plane stress

1:455
B(a−W )�0; plane strain
(A4)

is the reference load, and h1(a=W; n) is a dimensionless plastic in�uence function that are
tabulated in Reference [26].

A.2. DE(T ) specimen [26]

The elastic J is

Je =
�∞

2
�a

E′ [1:12 + 0:2(a=W )− 1:2(a=W )2 + 1:93(a=W )3]2 (A5)

The plastic J is

Jp =
��20
E
(W − a)h1(a=W; n)

(
P
P0

)n+1
(A6)

where P=�∞2WB is the far-�eld tensile load,

P0 =




4√
3
�0(W − a)B; plane stress

[
0:72 + 1:82

(
1− a

W

)]
�0WB; plane strain

(A7)

is the reference load, and h1(a=W; n) is a dimensionless plastic in�uence function that are
tabulated in Reference [26].
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A.3. M (T ) specimen [26]

The elastic J is

Je =
�∞

2
�a

E′ [1 + 0:128a=W − 0:288(a=W )2 + 1:525(a=W )3]2 (A8)

The plastic J is

Jp =
��20
E
(W − a)h1(a=W; n)

(
P
P0

)n+1
(A9)

where P=�∞2WB is the far-�eld tensile load,

P0 =



2B(a−W )�0; plane stress

4√
3
B(a−W )�0; plane strain

(A10)

is the reference load, and h1(a=W; n) is a dimensionless plastic in�uence function that are
tabulated in Reference [26].
In Equations (A2), (A5), and (A8),

E′=



E; plane stress

E
1− �2 ; plane strain

(A11)

is the e�ective modulus of elasticity and � is the Poisson ratio.
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