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SUMMARY

The authors of the paper published in Commun. Numer. Methods Eng. (2009; 25:301–337) have claimed to
present a new computational tool entailing high-dimensional model representation for structural reliability
analysis. This letter demonstrates that the underlying reliability method already exists and was originally
developed in the Xu and Rahman paper, published in Probabilist. Eng. Mech. (2005; 20:239–250). The
authors do not acknowledge the contribution of Xu and Rahman and convey the impression that they are
developing the method for the very first time. Instead, the authors have reinvented the wheel. Copyright
q 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

The authors, Chowdhury et al. [1], of the paper ‘High-dimensional model representation for struc-
tural reliability analysis’ published in Communications in Numerical Methods in Engineering
[1] have claimed to present a new computational tool entailing high-dimensional model repre-
sentation for structural reliability analysis. The objective of writing the letter is to refute this
claim by showing that the underlying reliability method already existed and was originally
developed by Xu and Rahman, as previously published in Probabilistic Engineering Mechanics
[2]. Chowdhury et al. do not acknowledge any contribution by Xu and Rahman and convey
the impression that they are presenting a new methodology and original contribution to the
literature.

Section 2 provides a brief overview of dimensional decomposition of a multivariate func-
tion, followed by specific decomposition methods developed or employed by Xu and Rahman
[2] and Chowdhury et al. [1] and discusses the selection of reference and sample points
and subsequent Monte Carlo simulation for estimating the failure probability in both papers.
Section 3 discusses numerical results, textual contents, and linguistic styles in both papers.
Section 4 presents our conclusions.

2. DIMENSIONAL DECOMPOSITION

Dimensional decomposition of a multivariate function is a finite sum of simpler component
functions of input variables with increasing dimensions. This decomposition, first presented by
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Hoeffding [3] in relation to his seminal work on U -statistics, has been applied by many other
researchers [4]: Sobol [5] used it in the study of quadrature methods, calling it the ‘decomposition
into summands of different dimensions’ and also for analysis of variance (ANOVA) [6]; Efron
and Stein [7] used it to prove their famous lemma on jackknife variances; Owen [8] presented
a continuous space version of the nested ANOVA; and Hickernell [9] developed a reproducing
kernel Hilbert space version. This decomposition has been lately examined by Rabitz and Alis [10]
for high-dimensional model representation (HDMR), resulting in notable contributions to function
approximations, and more recently, by Xu and Rahman [2] for reliability analysis. Takemura [11]
provides a historical account, which reveals that the decomposition existed as early as the 1940s
and, therefore, the original development of the decomposition predates the timeline specified in
the authors’ response (Chowdhury et al., 2009).

Consider a continuous, differentiable, real-valued, and multivariate function y(x) that depends
on x={x1, . . . , xN }T∈RN , where RN is an N -dimensional real vector space. The dimensional
decomposition represents a finite, hierarchical, and convergent expansion of a multivariate output
function [2, 3, 6, 7, 10]

y(x) = y0+
N∑
i=1

yi (xi )+
N∑

i1,i2=1;i1<i2

yi1i2(xi1, xi2)+
N∑

i1,i2,i3=1;i1<i2<i3

yi1i2i3(xi1, xi2, xi3)

+·· ·+
N∑

i1,...,iS=1;i1<···<iS

yi1...iS (xi1, . . . , xiS )+·· ·+ y12...N (x1, . . . , xN ) (1)

in terms of input x with increasing dimensions, where y0 is a constant and yi1...iS :RS →R,
1�S�N is an S-variate component function quantifying the cooperative effects of S input vari-
ables xi1, . . . , xiS . Such a decomposition is also called the Hoeffding decomposition, the ANOVA
decomposition, HDMR, and possibly others. If

ŷS(x) = y0+
N∑
i=1

yi (xi )+
N∑

i1,i2=1;i1<i2

yi1i2(xi1, xi2)+
N∑

i1,i2,i3=1;i1<i2<i3

yi1i2i3(xi1, xi2, xi3)

+·· ·+
N∑

i1,...,iS=1;i1<···<iS

yi1...iS (xi1, . . . , xiS ) (2)

represents a general S-variate approximation of y(x), the univariate (S=1) and bivariate (S=2)
approximations, ŷ1(x) and ŷ2(x), respectively, provide two- and three-term approximants of the
finite decomposition in Equation (1). Similarly, trivariate and other higher-variate approxima-
tions can be derived by appropriately selecting the value of S. The decomposition is useful
only when the component functions exhibit insignificant S-variate effects cooperatively when
S→N .

If the input is random, say, an N -dimensional random vector X={X1, . . . , XN }T∈RN , then
the response y(X) is also random. Structural reliability analysis involving y(X) as a performance
function and employing its surrogate ŷS(X) from Equation (2) has been conducted by Xu and
Rahman [2] in 2005 and Chowdhury et al. [1] in 2009. The following discussion demonstrates
that the decomposition employed by Chowdhury et al. [1] is exactly the same as that previously
developed by Xu and Rahman [2].

2.1. Decomposition method of Xu and Rahman [2]
Let c={c1, . . . ,cN }T be a reference point of input x and y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ckS−i−1,

xkS−i ,ckS−i+1, . . . ,cN ) represents an (S−i)th dimensional component function of y(x), where
S<N , i=0, . . . , S, and 1�k1< · · ·<kS−i�N . For example, when S=1, the zero-dimensional
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component function, which is a constant, is y(c) and the one-dimensional component functions are
y(x1,c2, . . . ,cN ), y(c1, x2, . . . ,cN ), · · ·, y(c1,c2, . . . , xN ). In 2005, Xu and Rahman [2] developed
the S-variate approximation

ŷS,DD(x) :=
S∑

i=0
(−1)i

(
N−S+i−1

i

)

×
N∑

k1,...,kS−i=1;k1<···<kS−i

y(c1, . . . ,ck1−1, xk1,ck1+1, . . . ,ckS−i−1, xkS−i ,ckS−i+1, . . . ,cN )

(3)

of y(x), which appears as Equation 8 in the original paper [2]. The subscript ‘DD’ represents
Xu and Rahman’s [2] decomposition method, where the approximation ŷS,DD(x) in Equation (3)
follows the same structure, as shown in Equation (2). Using a multivariate function decomposition
theorem, Xu and Rahman [12] proved that the right side of Equation (3) consists of all terms of the
Taylor series of y(x) that have less than or equal to S variables. The expanded form of Equation (3),
when compared with the Taylor expansion of y(x), indicates that the residual error in ŷS,DD(x)
includes only terms of dimensions S+1 and higher. All higher-order S- and lower-variate terms
of y(x) are included in Equation (3), which should, therefore, generally provide a higher-order
approximation of a multivariate function than equations derived from first- or second-order Taylor
expansions.

When S=1 and S=2, Equation (3), respectively, degenerates to the univariate approximation

ŷ1,DD(x)=
N∑
i=1

y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN )−(N−1)y(c) (4)

and the bivariate approximation

ŷ2,DD(x) =
N∑

i1,i2=1;i1<i2

y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,cN )

−(N−2)
N∑
i=1

y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN )+ (N−1)(N−2)

2
y(c), (5)

presented as Equations (4) and (6) in the original paper [2]. Similarly, trivariate and other higher-
variate approximations can be derived by appropriately selecting the value of S. Equation (3)
generates a hierarchical and convergent sequence of approximations of y(x).

To obtain explicit forms of Equations (4) and (5), Xu and Rahman [2] generated response
surface approximations of univariate functions y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN ), i=1, . . . ,N and
bivariate functions y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,cN ), i1=1, . . . ,N−1, i2=
i1+1, . . . ,N by using their Lagrange interpolations. Subsequently, the probabilistic characteristics
of y(X) were estimated by direct Monte Carlo simulation of ŷ1,DD(X) or ŷ2,DD(X). The reliability
analyses employing ŷ1,DD(X) and ŷ2,DD(X) as surrogates of y(X) are explicitly termed as
univariate and bivariate decomposition methods, respectively, in the Xu and Rahman [2] paper.

2.2. Cut-HDMR method of Chowdhury et al. [1]
An important feature of the approximation in Equation (2) is the selection of the constant y0
and component functions yi1...iS (xi1, . . . , xiS ), 1�S<N . By defining an error functional associated
with a given y(x) and an appropriate kernel function, an optimization problem can be formulated
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and solved to obtain the desired component functions. In particular, a decomposition involving the
Dirac measure �N

i=1�(xi −ci ) at the reference point c as the kernel function leads to [10]

y0 := y(c)

yi (xi ) := y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN )− y(c)

yi1i2(xi1, xi2) := y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,cN )

−yi1(xi1)− yi2(xi2)− y(c)

...

yi1...iS (xi1, . . . , xiS ) := y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ciS−1, xiS ,ciS+1, . . . ,cN )

− ∑
j1<···< jS−1⊂{i1,...,iS}

y j1... jS−1(x j1, . . . , x jS−1)

− ∑
j1<···< jS−2⊂{i1,...,iS}

y j1... jS−2(x j1, . . . , x jS−2)

−·· ·− ∑
j⊂{i1,...,iS}

y j (x j )− y(c),

(6)

the first three lines of which appear as Equations (2), (3), and (4), respectively, in the Chowdhury
et al. [1] paper. For S=1, the first two lines of Equation (6) substituted in Equation (2) yield the
first-order cut-HDMR approximation

ŷ1,cut−HDMR(x)=
N∑
i=1

y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN )−(N−1)y(c), (7)

whereas for S=2, the first three lines of Equation (6) applied to Equation (2) yield the second-order
cut-HDMR approximation

ŷ2,cut−HDMR(x) =
N∑

i1,i2=1;i1<i2

y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,cN )

−(N−2)
N∑
i=1

y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN )+ (N−1)(N−2)

2
y(c), (8)

which appear as Equations (9) and (10) in Chowdhury et al.’s [1] paper. The subscript ‘cut-HDMR’
represents the cut-HDMR approximation employed by Chowdhury et al. [1]. The reliability analyses
using ŷ1,cut−HDMR(X) and ŷ2,cut−HDMR(X) as surrogates of y(X) are called first-order cut-HDMR
and second-order cut-HDMR methods, respectively, in the Chowdhury et al. [1] paper.

Comparing Equations (4), (5) and (7), (8) reveals that the Sth (S=1 or 2) order cut-HDMR
approximation employed by Chowdhury et al. [1] is identical to the S-variate dimensional decompo-
sition developed by Xu and Rahman [2]. In other words, the first-order cut-HDMR and second-order
cut-HDMR are exactly the same as Xu and Rahman’s [2] univariate and bivariate decomposition
methods, respectively. Therefore, the claim by Chowdhury et al. [1] of a new computational tool
is unfounded. Instead, the authors have reinvented the wheel. As well, Chowdhury et al. [1] fail
to acknowledge any contribution from Xu and Rahman [2], who have essentially derived the same
multivariate function decomposition. The only difference between the Chowdhuryet al. [1] and Xu
and Rahman [2] papers is the use of moving least-squares approximation by Chowdhury et al. [1]
as opposed to Lagrange interpolation by Xu and Rahman [2] to approximate component functions
of the decomposition. Otherwise, the methods and results in Chowdhury et al. [1], which derive
from Equations (7) and (8), are based on identical derivations previously developed by Xu and
Rahman [2].
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2.3. Reference point, sample points, failure probability

The univariate (or first-order HDMR) and bivariate (or second-order HDMR) approxima-
tions in Equations (4) (or (7)) and (5) (or (8)) require the constant y(c), univariate compo-
nent functions y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN ), i=1, . . . ,N , and bivariate component functions
y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,cN ), i1=1, . . . ,N−1, i2= i1+1, . . . ,N , all of
which depend on the reference point c. Sobol [6] suggested selecting the reference point to be
the realization x∗ of the random input X that yields the corresponding response y(x∗) closest to
the mean value of y(X). However, Sobol’s selection requires Monte Carlo simulation of y(X),
adding to the computational burden of the decomposition methods. Instead, Xu and Rahman [2]
proposed selecting the mean value of the random input X as the reference point. Furthermore,
Xu and Rahman [2] employed uniformly distributed sample points, centered at the mean point
and distributed one standard deviation apart from each other, for response surface generations
of y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN ) and y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,cN ). It
must be explicitly noted that Chowdhury et al. [1] also applied the mean point as the reference
point and the uniform distribution of sample points, as did in Xu and Rahman [2], again, without
appropriate acknowledgment of credit.

Once the explicit forms of component functions have been generated, Equations (4) (or (7))
and (5) (or (8)) furnish approximate but explicit maps ŷ1,DD :RN →R [or ŷ1,cut−HDMR :RN →R]
and ŷ2,DD :RN →R [or ŷ2,cut−HDMR :RN →R] that can be viewed as surrogates of the exact map
y :RN →R, describing the input–output relation from a complex numerical simulation. There-
fore, any probabilistic characteristic of y(X), including failure probabilities, can be easily esti-
mated by performing Monte Carlo simulation of ŷ1,DD(X) [or ŷ1,cut−HDMR(X)] and ŷ2,DD(X) [or
ŷ2,cut−HDMR(X)] rather than of y(X), as previously proposed by Xu and Rahman [2] and later
followed by Chowdhury et al. [1]. Indeed, Equation (31) in Chowdhury et al. [1] and Equations (17)
and (18) in Xu and Rahman [2] for estimating the failure probability are identical, even though
the latter work is not cited by Chowdhury et al. [1].

In the authors’ response, Chowdhury et al. erroneously stated that the selection of the reference
point as the mean point was originally suggested by Sobol [6]. In fact, the concept of ‘mean
point’ does not appear anywhere in the entire Sobol paper. A simple word search of Sobol’s paper
on ‘mean point’ will verify our claim. Nor does Sobol [6] suggest utilization of the mean value
of random input as the reference point. Instead, Section 10 of Sobol [6] proposes determination
of the reference point by random sampling of input variables and then minimizing an objective
function from the input samples. The last three equations of the Sobol [6] paper, which discuss the
reference point, do not involve the mean value of random input at all, raising a serious question
as to the credibility of the authors’ response. It is worth noting that the authors failed to explain
their choices of sample points and Monte Carlo simulation, which are identical to those employed
by Xu and Rahman [2].

2.4. Development and coinage of decomposition methods

In the authors’ response, Chowdhury et al. questioned our development of ‘decomposition methods’
in comparison with Rabitz and Alis’s cut-HDMR method and coinage of terms ‘univariate decom-
position method’ and ‘bivariate decomposition method’ in the Xu and Rahman [2] paper. Our
response is as follows.

Although the dimensional decomposition and cut-HDMR methods are equivalent, see
Sections 2.1 and 2.2, the former method was developed independently and from a completely
different perspective. The decomposition method was formulated based on the Taylor series
expansion described in detail in a prequel [12]. In contrast, the cut-HDMR was developed by
minimizing an error functional and a Dirac measure as the kernel function [10]. In our decompo-
sition methods, we provided rigorous proof of a multivariate function decomposition theorem and
a generalized formulation [12] that cannot be found in the HDMR literature. Precisely because
of this new perspective, we were able to develop a new generalized equation (Equation (3)),
which appears as Equation (8) in the Xu and Rahman [2] paper, to yield univariate and bivariate
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approximations of the response as special cases. The generalized equation and/or its special cases
do not exist in the cut-HDMR method or any other HDMR-related work that we are familiar with.
Readers should note that the authors’ response contains an ill-considered attempt to deflect our
arguments by repeatedly disparaging our decomposition methods, but avoids the most pressing
issue in our letter: Equations (7) and (8) ‘derived’ in Chowdhury et al.’s (2009) paper are identical
to Equations (4) and (5) originally developed in the Xu and Rahman [2] paper, refuting the claim
of new reliability tool by Chowdhury et al.

At the time we developed our decomposition methods, we were not aware of the HDMR
methods, due to the fact that the HDMR papers were published in different disciplines than ours.
Consequently, we were not able to cite the cut-HDMR method in the Xu and Rahman [2] paper,
which we regret. However, once we became cognizant of the HDMR methods and realized the
similarity between these two methods, we acknowledged the HDMR methods in our subsequent
papers [13, 14] and other related publications.

Since the right side of Equation (4) comprises only univariate functions, the interpolation or inte-
gration of ŷ1,DD(X) is essentially univariate. Similarly, the right side of Equation (5), which contains
at most bivariate functions, requires at most bivariate interpolation or integration of ŷ2,DD(X).
Therefore, we believe that appellation of the terms ‘univariate decomposition method’ and ‘bivariate
decomposition method’ for approximations resulting from ŷ1,DD(X) in Equation (4) and ŷ2,DD(X) in
Equation (5), respectively, makes sense and is more appropriate than referring to them as first-order
and second-order methods. Note that the component functions y(c1, . . . ,ci−1, xi ,ci+1, . . . ,cN ) and
y(c1, . . . ,ci1−1, xi1,ci1+1, . . . ,ci2−1, xi2,ci2+1, . . . ,cN ), embedded in the expressions of ŷ1,DD(X)

and/or ŷ2,DD(X), are generally nonlinear. Moreover, a univariate or bivariate approximation may
contain very high-order (i.e. higher than first- or second-order) terms, depending on the nonlinearity
of the response. Therefore, characterizing these approximations by first- and second-order methods
is confusing and possibly inaccurate based on the traditional definition of the order of a function.

3. NUMERICAL RESULTS, TEXTUAL CONTENTS, LINGUISTIC STYLES

Although Chowdhury et al. [1] include many examples, two problems examined in Examples
7 and 9 are the same or closely related to those studied by Xu and Rahman [2] and another
related work [15]. For instance, Example 7 in Chowdhury et al. [1] and Example 4 in Xu and
Rahman [2], which are based on reliability analysis of a 10-bar truss, are identical, even though the
latter work is not cited by Chowdhury et al. [1]. Rather, Chowdhury et al. [1] cite a similar work
by Penmetsa and Grandhi [16], which, however, does not apply the same performance function.
The critical thresholds of displacement in the Chowdhury et al. [1] and Xu and Rahman [2]
papers are both 18 in, whereas Penmetsa and Grandhi [16] stipulate a threshold of 1.8 in. Clearly,
citation of Xu and Rahman [2] and a discussion of their numerical results would have been more
appropriate. It must be explicitly noted that the first eight lines in Section 6.2.5, p. 326 of Chowdhury
et al. [1] are almost an identical copy of the text contained in Example 4, p. 245 of Xu and
Rahman’s [2] paper. Therefore, by not acknowledging the work of Xu and Rahman [2], Chowdhury
et al. [1] convey a misleading impression that they have developed a new reliability method and
are presenting an original contribution to the literature.

From Xu and Rahman’s [2] paper, Table I [Table 4 of the Xu and Rahman [2] paper] shows
failure probability estimates of the truss structure using various approximate methods, including
the univariate decomposition method. The results of the univariate method are quite similar to
those presented in Table IX of Chowdhury et al.’s [1] paper. Again, it appears that Chowdhury
et al. [1] have disregarded prior works, which could have been effectively employed to critically
examine their HDMR methods. Indeed, Example 9 in Chowdhury et al. [1] is closely related to a
problem solved in yet another paper by Wei and Rahman [15].

In addition to the fundamental similarities in technical aspects of the Chowdhury et al. [1] and
Xu and Rahman [2] papers discussed earlier, there exist striking similarities in textual content and
linguistic style in the Summary, Introduction, Concept of HDMR and Its Importance to Reliability
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Table I. Failure probability estimates for 10-bar truss [2].
Method Failure probability No. of function evaluations∗

Univariate method 0.1357 61†
FORM 0.0863 127
SORM (Breitung)‡ 0.1286 506
SORM (Hohenbichler)§ 0.1524 506
SORM (Cai & Elishakoff)¶ 0.1467 506
Direct Monte Carlo simulation 0.1397 1 000 000

∗Total number of times the original performance function is calculated.
†(7−1)×10+1=61.
‡See Ref. 4 of Xu and Rahman [2].
§See Ref. 5 of Xu and Rahman [2].
¶See Ref. 6 of Xu and Rahman [2].

Analysis, Failure Probability Estimation, and Numerical Examples sections. The specific places in
Chowdhury et al.’s [1] paper, where close imitation of our language is detected, include (1) lines
1–5 and lines 10–12 in page 301 (2) lines 5–25 in page 302; (3) lines 6–9 in page 305; (4) lines
18–20 in page 309; (5) lines 5–7 and lines 13–17 in page 311; (6) lines 11–19 in page 326. We
would be happy to provide a side-by-side comparison of text if desired.

4. CONCLUDING REMARKS

The paper by Chowdhury et al., published in Communications in Numerical Methods in Engi-
neering (2009; 25:301–337), claims to present a new HDMR-based computational tool for struc-
tural reliability analysis. This letter demonstrates such a claim to be unfounded, given that the
decomposition method previously developed by Xu and Rahman, as published in Probabilistic
Engineering Mechanics 2005; 20:239–250, is precisely the same as the cut-HDMR employed by
Chowdhury et al. Therefore, Chowdhury et al. have reinvented the wheel. The only difference
that exists between these two papers is the application of different approximation or interpolation
schemes for approximating lower-variate component functions. Otherwise, the reliability method
employing multivariate function decomposition is exactly the same as that developed four years
prior by Xu and Rahman. Chowdhury et al. do not acknowledge Xu and Rahman, despite near-
identical theoretical formulations presented in both works. Having thus presented our evidence, we
are unable to reject the possibility that this failure to extend appropriate credit may be intentional,
given the obvious similarities in theoretical development, numerical results, and even descriptive
style and content.

The authors’ response is replete with erroneous arguments and misleading statements, including
incomplete historical account of the function decomposition, mistaken conclusion as to the refer-
ence point, total disregard of our distinct perspective in developing decomposition methods,
and misinterpretation of our designation of the terms ‘univariate’ and ‘bivariate’ decomposi-
tion methods, to name a few.
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