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A random field model for generating synthetic microstructures
of functionally graded materials
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SUMMARY

This article presents a new level-cut, inhomogeneous, filtered Poisson random field model for repre-
senting two-phase microstructures of statistically inhomogeneous, functionally graded materials with fully
penetrable embedded particles. The model involves an inhomogeneous, filtered Poisson random field
comprising a sum of deterministic kernel functions that are scaled by random variables and a cut of
the filtered Poisson field above a specified level. The resulting level-cut field depends on the Poisson
intensity, level, kernel functions, random scaling variables, and random rotation matrices. A reconstruction
algorithm including model calibration and Monte Carlo simulation is presented for generating samples
of two-phase microstructures of statistically inhomogeneous media. Numerical examples demonstrate that
the model developed is capable of producing a wide variety of two- and three-dimensional microstructures
of functionally graded composites containing particles of various sizes, shapes, densities, gradations, and
orientations. An example involving finite element analyses of random microstructures, leading to statistics
of effective properties of functionally graded composites, illustrates the usefulness of the proposed model.
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1. INTRODUCTION

Mathematical models involving Voronoi tessellations [1], regular lattices [2], random checker-
boards [3], random fields [4–8], and others [2] are frequently used to simulate random
microstructures of heterogeneous materials and calculate their effective material properties. Many
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reconstruction algorithms entailing Monte Carlo simulation have been developed to generate
samples of two-phase random media [2]. An essential step in all reconstruction algorithms is the
selection of a microstructure model based on statistics obtained from available measurements. For
example, the selection of probabilistic models for two-phase, particle-matrix composites is usually
based on estimates of the phase volume fraction and the two-point correlation function. Information
on particle geometry can also be incorporated in the model selection process, for instance, a
lineal-path function [9, 10]. Random field models derived from non-linear transformations with
the memory of Gaussian fields have also been proposed to capture higher-order statistics and
describe a broader range of two-phase microstructures [11].

Level-cut random fields, defined by cuts of random fields above the specified levels or outside the
bounded intervals, are currently employed for simulating random microstructures [2]. It is typically
assumed that the random field that is cut is a homogeneous Gaussian field [5, 6]. The resulting
field, known as the level-cut Gaussian random field, however, is non-Gaussian whether or not the
initial field is Gaussian. Available measurements of microstructure properties provide information
on some features of the level-cut Gaussian field models, which may be limited to estimates of their
mean and correlation functions. The selection of a level-cut Gaussian field for a microstructure
with specified second-moment properties poses at least two problems. First, it is not possible to
uniquely determine a level-cut field from its mean and correlation functions, i.e. second-moment
properties alone, as the field is non-Gaussian. Such a lack of uniqueness in modeling microstruc-
tures under partial information has been illustrated by Yeong and Torquato [9, 10]. Second, there
may not be a Gaussian field such that its level-cut image contains the target second-moment
properties. This is because the correlation structure of the Gaussian field may not even exist if the
second-moment properties of the level-cut field are specified arbitrarily [12]. Alternative level-cut
fields, defined as cuts of a homogeneous, filtered Poisson field, have been proposed to circumvent
some of these problems, leading to a wide variety of two-phase microstructures [8]. More recently,
non-Gaussian random field models entailing a hard-core Poisson field and spherical harmonics have
also appeared [13]. However, most existing models are meant for statistically homogeneous media,
where the mean and correlation functions of the random field are spatially and translationally
invariant, respectively. In statistically inhomogeneous media, such as those encountered in func-
tionally graded materials (FGMs) [14–17], porous media [18], and others [19], the probabilistic
characteristics of the random field depend on the absolute values of its argument. Therefore, a prac-
tical need clearly exists for modeling statistically inhomogeneous microstructures. Unfortunately,
research in microstructure modeling of inhomogeneous media has not been widespread and is
only now gaining attention. For example, a noteworthy work by Quintanilla and Torquato presents
microstructure functions for modeling statistically inhomogeneous two-phase media comprising
fully penetrable spherical particles in a matrix [20]. While such works are encouraging and
constitute a step in the right direction, more general probabilistic models of microstructures are
required, where embedded particles in a matrix can have random size, orientation, and/or shape
characteristics.

This article presents a level-cut, inhomogeneous, filtered Poisson random field model for repre-
senting two-phase microstructures of FGMs. The model is based on (1) an inhomogeneous, filtered
Poisson random field comprising a sum of deterministic kernel functions that are scaled by random
variables and centered at Poisson points and (2) a cut of the Poisson field above a specified
level. Section 2 describes some fundamental properties of a generic inhomogeneous random field.
Section 3 presents the proposed random field, including a calibration procedure for matching target
statistics from the measurements of actual microstructures. A Monte Carlo algorithm is proposed
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to generate samples of the level-cut, inhomogeneous, filtered Poisson field. Numerical examples
illustrating the proposed model and its usefulness in stochastic evaluations of effective proper-
ties are presented in Section 4. The limitations of the model and future work are discussed in
Section 5. Finally, the conclusions are given in Section 6.

2. RANDOM FIELD

Let (�,F, P) be a probability space, where � is the sample space, F is the �-algebra of
subsets of �, and P is the probability measure. Defined on the probability space and indexed
by a spatial coordinate x∈D⊂Rd , where d�1 is an integer and D is a bounded subset of Rd ,
consider a real-valued inhomogeneous random field Z(x) :D×�→R. The probability law of Z
is completely defined by its nth-order finite-dimensional distribution, i.e. the joint distribution of
the random vector {Z(x1), . . . , Z(xn)}, where n�1 is an arbitrary integer, xi ∈D, and i=1, . . . ,n.
The nth-order distribution is the probability of

⋂n
i=1{Z(xi )�zi }, where zi ∈R. Unlike a homoge-

neous random field, the nth-order distribution of Z depends on the absolute values of arguments
x1, . . . ,xn .

Denote by L2(�,F, P), or simply L2, a collection of random variables Z for each x∈D such
that E[|Z |2]<∞, where E represents the expectation operator. If Z is in L2, then its second-
moment properties, i.e. mean �(x) :=E[Z(x)], correlation function r(x,u) :=E[Z(x)Z(u)], and
covariance function c(x,u) :=E[(Z(x)−�(x))(Z(u)−�(u))], exist and are finite. Again, unlike a
homogeneous random field, the second-moment properties of Z also depend on the absolute values
of arguments x and u.

3. PROPOSED MODEL

3.1. Inhomogeneous, filtered Poisson field

Filtered Poisson processes or fields are characterized by pulses of random or deterministic shapes
and random magnitudes arriving at Poisson points in a bounded Borel set of Rd . These processes
or fields have been successfully applied to various science and engineering disciplines, including
mechanics, physics, astronomy, earthquake engineering, finance, and others [12].

Consider an inhomogeneous, Poisson random field N(D′) with an intensity measure �D′ :=∫
D′ �(x)dx, where �(x)�0 is a spatially variant intensity function and D′ ∈B(Rd) is a bounded
Borel set. The Poisson point field has the following properties: (1) the number N(D′) of points
in a bounded subset D′ has the Poisson distribution with intensity measure �D′ and (2) random
variables N(D′

1), . . . ,N(D′
K ) for any integer K�2 and disjoint sets D′

1, . . . ,D
′
K are statistically

independent. The Poisson field N(D′) gives the number of points in D′ and is characterized by
the probability

P[N(D′)=n]=
(∫

D′ �(x)dx
)n

n! exp

(
−
∫
D′

�(x)dx
)

, n=0,1,2, . . . (1)

that n Poisson points exist in D′. The mean E[N(D′)] and the variance var[N(D′)] of N(D′)
are both equal to �D′ :=∫D′ �(x)dx.
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Consider an inhomogeneous, filtered Poisson random field

Z(x) :=

⎧⎪⎨
⎪⎩
0, N(D′)=0

N(D′)∑
i=1

Zih (Ri (x−Ci )) , N(D′)>0
, x∈D⊂D′ ⊂Rd (2)

where {Ci } is a collection of Poisson points, h :Rd →R is a non-negative kernel function, {Zi } is
a collection of independent and identically distributed real-valued random variables, and {Ri } is a
collection of independent and identically distributed rotation matrices in Rd . In Equation (2), both
D and D′ are bounded subsets of Rd such that points of N falling in the set difference Rd \D′
do not contribute to the value of Z in D. Also, the subset D′ is bounded if, for example, h has
a compact support. The filtered Poisson field Z(x) can be viewed as the response of a filter with
a transfer function at point x that is subjected to a collection of random pulses arriving at the
Poisson points {Ci }.

3.1.1. Characteristic functions and moments. Suppose that the random variable Zi ∈L2 and h are
square integrable in Rd . From Equation (1), P[N(D′)=n]=(�n

D′/n!)exp(−�D′), where �D′ :=∫
D′ �(x)dx. Given N(D′)=n, the unordered set of points C1, . . . ,Cn has the same distribution

as n independent and identical copies of V that follows the probability density �(v)/�D′ for v∈�D′
and zero otherwise. By conditioning on N(D′), the characteristic function of Z(x) is

�Z(x)(t) := E[exp{ j t Z(x)}]

= E

[
exp

{
j t
N(D′)∑
i=1

Zih (Ri (x−Ci ))
}]

=
∞∑
n=0

E

[
exp

{
j t
N(D′)∑
i=1

Zih(Ri (x−Ci ))|N(D′)=n

}]
P(N(D′)=n)

=
∞∑
n=0

E

[
exp

{
j t

n∑
i=1

Zih(Ri (x−Ci ))
}]

P(N(D′)=n)

=
∞∑
n=0

(E[exp{ j t Z1h(R1(x−V))}])n P(N(D′)=n)

=
∞∑
n=0

�n
D′

n! exp(−�D′)

(∫
D′

�(v)
�D′

E[exp{ j t Z1h(R1(x−v))}]dv
)n

=
∞∑
n=0

exp(−�D′)

(∫
D′�(v)E[exp{ j t Z1h(R1(x−v))}]dv)n

n!

= exp

{∫
D′

�(v)E[exp{ j t Z1h(R1(x−v))}−1]dv
}

(3)
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where j =√−1. Taking first- and second-order derivatives of �Z(x)(t) with respect to t yields

d�Z(x)(t)

dt
=�Z(x)(t)

∫
D′

�(v)E[exp{ j t Z1h(R1(x−v))} j Z1h(R1(x−v))]dv (4)

and

d2�Z(x)(t)

dt2
= �Z(x)(t)

∫
D′

�(v)E[exp{ j t Z1h(R1(x−v))} j2Z2
1h

2(R1(x−v))]dv

+d�Z(x)(t)

dt

∫
D′

�(v)E[exp{ j t Z1h(R1(x−v))} j Z1h(R1(x−v))]dv (5)

Therefore, the mean �(x) and the variance �2(x) of Z(x), derived from the characteristic function
and its derivatives in Equations (3)–(5), are

�(x) :=E[Z(x)]= 1

j

d�Z(x)(0)

dt
=E[Z1]

∫
D′

�(v)E[h(R1(x−v))]dv (6)

and

�2(x) :=E[Z2(x)]−(E[Z(x)])2 = 1

j2
d2�Z(x)(0)

dt2
−
(
1

j

d�Z(x)(0)

dt

)2

= E[Z2
1]
∫
D′

�(v)E[h2(R1(x−v))]dv (7)

respectively, where the expectation operator inside the integrals acts on the random rotation matrix
R1. Higher-order moments of Z(x) can be obtained in a similar manner, for instance,

�m(x) :=E[Zm(x)]= 1

jm
dm�Z(x)(0)

dtm
(8)

thereby furnishing a moment of an arbitrary order m�1. These moments can also be derived by
evaluating the mth-order cumulant

�m(x)= 1

jm
dm

dtm
ln�Z(x)(0)=E[Zm

1 ]
∫
D′

�(v)E[hm(R1(x−v))]dv (9)

of Z(x) first, then recognizing the generic moment–cumulant relationship

1+
∞∑
i=1

( j t)i

i ! �i (x)=exp

{ ∞∑
i=1

( j t)i

i ! �i (x)
}

(10)

and finally expanding in series the exponential function of Equation (10) and equating coefficients
of the same powers of j t . Following similar arguments, the mixed moments of {Z(x1), . . . , Z(xn)},
n�1, can also be formulated, although the algebra associated with their derivations is less simple.

The joint characteristic function of {Z(x1), . . . , Z(xn)}, n�1, is defined as

�Z(x1)···Z(xn)(t) :=E
[
exp{ j (t1Z(x1)+·· ·+ tn Z(xn))}

]
(11)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:972–993
DOI: 10.1002/nme



RANDOM FIELD MODEL FOR GENERATING SYNTHETIC MICROSTRUCTURES 977

which can be further expanded by similar arguments employed in deriving Equation (3). The Fourier
transformation of the joint characteristic function yields the joint probability density function of
{Z(x1), . . . , Z(xn)}. The characteristic functions and moments in Equations (3)–(11) provide useful
information on the filtered Poisson field Z(x) in Equation (2). If the Poisson counting field N(D′)
is homogeneous with a constant intensity, the resulting expressions of the characteristic functions
and moments simplify significantly, rendering Z(x) to be a weakly homogeneous random field
[8]. Unfortunately, these simplified statistical properties do not apply when modeling statistically
inhomogeneous media, which is the focus of this paper.

3.1.2. Asymptotic property. A valuable insight can be gained by examining the asymptotic property
of the Poisson field. To do so, let �(x)=c�0(x), where c is a constant intensity parameter and
denote the second-moment properties �(x)=c�0(x) and �2(x)=c�20(x), where Equations (6) and
(7) lead to

�0(x)=E[Z1]
∫
D′

�0(v)E[h(R1(x−v))]dv (12)

and

�20(x)=E[Z2
1]
∫
D′

�0(v)E[h2(R1(x−v))]dv (13)

Consider the standardized random field Z̄(x) :=(Z(x)−�(x))/�(x), which has zero mean and unit
variance. The characteristic function of Z̄(x) is

�Z̄(x)(t) := E[exp{ j t Z̄(x)}]

= exp

{
− j t

�(x)
�(x)

}
E

[
exp

{
j t
Z(x)
�(x)

}]

= exp

{
− j tc1/2

�0(x)
�0(x)

}
�Z(x)(t/�(x))

= exp

{
− j tc1/2

�0(x)
�0(x)

+
∫
D′

�(v)E
[
exp

{
j t Z1h(R1(x−v))

�(x)

}
−1

]
dv
}

= exp

{
− j tc1/2

�0(x)
�0(x)

+
∫
D′

�0(v)E

[
∞∑
k=1

c1−k/2

k!
{
j t Z1h(R1(x−v))

�0(x)

}k]
dv

}

= exp

{
− t2

2
+O(c−1/2)

}
(14)

which approaches exp(−t2
/
2 ), the characteristic function of a standard Gaussian variable, when

c→∞. Similar derivations reveal that the random vector {Z̄(x1), . . . , Z̄(xn)}, for any integer n�1
and arguments (x1, . . . ,xn), also becomes Gaussian asymptotically as c→∞. Therefore, the inho-
mogeneous, filtered Poisson field Z(x) in Equation (2) can be approximated by an inhomogeneous
Gaussian random field when c is very large. In other words, the commonly used Gaussian random
field can be viewed as a special case of the filtered Poisson random field.
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3.2. Level-cut, inhomogeneous, filtered Poisson field

For an increasing function g :R→R, consider a real-valued translation random field

Y (x) :=g(Z(x)) (15)

which describes a memoryless, measurable, non-linear function of a real-valued random field Z(x).
The translation field Y (x) is completely determined by the mapping g and Z(x) with statistical
properties derived from Equations (3)–(11). Consider a special form of

g(z)= I (z;a) :=
{
1, z>a

0, z�a
, z∈R (16)

where a is a deterministic constant, known as level, and I (z;a) denotes an indicator function.
The translation field Y in Equation (15) with g in Equation (16) is referred to as a level-cut
random field. Most existing random field models of microstructures are based on level-cut Gaussian
fields, where the random field that is cut is a homogeneous Gaussian field. A notable exception
is the work of Grigoriu, who proposed a level-cut filtered Poisson field that leads to a broad
range of microstructures, although it is statistically homogeneous [8]. The present work, motivated
by spatially variant microstructures of FGMs, requires clipping an inhomogeneous random field,
which is defined here as an inhomogeneous, filtered Poisson field Z(x), as in Equation (2). The
resulting translation field

Y (x) := I (Z(x);a) (17)

then becomes a level-cut, inhomogeneous, filtered Poisson field, which provides a convenient model
for two-phase functionally graded composites. For example, the subsets {x∈D :Y (x)=1} and
{x∈D :Y (x)=0} define particles (phase 1) and matrix (phase 2), respectively, that can be derived
from a d−1-dimensional contour of Z(x) at level a. Figure 1§ depicts a schematic illustration
of the two subsets when d=2, obtained from a cut (Figure 1(b)) of a generic random field
Z(x) (Figure 1(a)). The dark (charcoal) phase indicates particles embedded in the light (light
blue) phase representing the matrix. Equation (17) can be generalized by defining an appropriate
indicator function with multiple levels. Furthermore, level-cut fields modeled by multiple versions
of Equation (17) can be developed to represent multiphase FGMs, including porous composites. In
this paper, however, the theoretical formulation and the numerical examples are limited to single
level-cut fields and two-phase FGMs.

The second-moment characteristics of the level-cut field Y (x) in Equation (17) are

E[Y (x)]= P[Z(x)>a]= p1(x) (18)

and

E[Y (x1)Y (x2)]= P[Z(x1)>a∩Z(x2)>a]= p11(x1,x2) (19)

where p1(x) represents the spatially variant volume fraction of phase 1 and p11(x1,x2) denotes the
translationally variant two-point correlation function. Higher-order moments of Y (x) defined by

E[Y (x1) · · ·Y (xk)]= P[Z(x1)>a∩·· ·∩Z(xk)>a]= p1···1(x1, . . . ,xk) (20)

§For interpretation of color in Figure 1, the reader is referred to the web version of this article.
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Z(x1,x2)

x2

x1

a

A cut of Z at
level a

(a)

matrix 

x2

particle

x1(b)

Figure 1. Schematic illustration of a generic level-cut random field in R2: (a) a sample of
Z(x1, x2) with a cut at level a and (b) two subsets of Y (x1, x2) obtained from the contour

of the sample of Z(x1, x2) at level a.

can also be related to the k-point correlation function p1···1(x1, . . . ,xk), where k�1 is a positive
integer. As Y (x) is an inhomogeneous field, the correlation function p1···1(x1, . . . ,xk) is also
spatially variant, i.e. it explicitly depends on the arguments x1, . . . ,xk . It is not possible to derive
analytically the second- or higher-order moments of Y (x) in a general setting, i.e. when h, {Zi }, and
{Ri } are arbitrarily prescribed. However, these moments are directly related to finite-dimensional
distribution functions of Z(x), the statistical properties of which are presented in Section 3.1.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:972–993
DOI: 10.1002/nme



980 S. RAHMAN

Let the kernel h(n) introduced in Equation (2) be a compactly supported, non-negative function,
for example,

h(n)=exp(−nTcn) (21)

where n∈Rd , �k>0 are some constants, and c=diag[1/�1, . . . ,1/�d ]∈Rd×d is a diagonal matrix.
Suppose that �(x) , Zi , and h are such that the values of Z in a small vicinity D(Ci ) of Ci can be
approximated by

Z̃(x)= Zih(Ri (x−Ci )), x∈D(Ci ) (22)

leading to an approximate version

Ỹ (x)= I (Z̃(x);a)= I (Zih(Ri (x−Ci ));a), x∈D(Ci ) (23)

of the level-cut field Y (x) in Equation (17). Therefore, the particles in the microstructure of a
two-phase FGMs can be conveniently approximated by the subsets

(x−Ci )TRT
i c(x−Ci )�− ln(a/Zi ) (24)

of D for Zi >a and x∈Rd . Note that the approximate level-cut field Ỹ (x) is applicable when �(x)
and �k are both small. While such smallness restriction limits the usefulness of Ỹ (x) somewhat,
Equations (23) and (24) can be conveniently employed for finite element discretization of fully
penetrable particles even when �(x) and �k are not small. Further explanation is given in the
Example section.

3.3. Reconstruction algorithm

3.3.1. Model calibration. Consider a two-phase particle-matrix FGMmicrostructure, which can be
modeled by Y in Equation (17), where Z is defined in Equation (2). Suppose that the estimates of
some features of Y are available—for instance, the functions p1(x) and p11(x1,x2) and information
on the number of particles and particle geometry. The objective of calibration is to determine
parameters of the proposed model such that the second moments of Y in Equations (18) and
(19), which are also the first- and second-order probability distributions of Z , match known target
statistics p̄1(x) and p̄11(x1,x2). If estimates of higher-order moments, such as k-point correlation
functions p̄1···1(x1, . . . ,xk), k�3, are available, they can also be incorporated into the calibration
process.

Let h define a vector of parameters comprising �(x), h, a, Zi , and Ri , which are embedded in
the proposed random field model. Using any admissible values of these parameters, Monte Carlo
simulation can be employed to generate samples of the random field Y and hence calculate its
desired moments. Let p1···1(·;h) represent the k-point correlation function of Y corresponding to a
selected value of h. Denote by h∗ the value of h that minimizes the difference between p1···1(·;h)
and the target p̄1···1(x1, . . . ,xk) for all k=1, . . . ,K in the least squares or other sense, where K is
a user-selected positive integer. The optimization process must consider only feasible values of h
for which p1···1(·;h) constitutes a legitimate correlation function. The subspace of feasible values
of h also depends on the indicator function defined in Equation (16). Most existing models entail
calibration processes that are based on matching only the first moment (K =1), i.e. p̄1(x), and
sometimes also on matching the second moment (K =2), i.e. p̄11(x1,x2). The proposed model
permits a calibration process that can match up to K -point correlation functions for any K�1 with
their corresponding estimates, if available.
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Microstructural reconstruction of random heterogeneous materials using specified yet limited
correlation functions constitutes an intriguing inverse problem. As Y (x) is non-Gaussian, the
statistics p1···1(x1, . . . ,xk), k=1, . . . ,K , i.e. its 1- to K -point correlation functions, only partially
describe its probability law. Consequently, there may exist a collection of random fields, referred
to as the class of competing models, that have the same aforementioned statistics. The number
of competing models can be reduced if K is theoretically made a large number; however, from
a practical viewpoint, the value of K is usually decided based on the available information.
Nonetheless, a finite value of K , regardless how large, will yield a class of competing models
with two or more members. If these members have different sample properties, they will generate
microstructures with distinct morphological features, pointing to a lack of uniqueness in any
reconstruction algorithm.

3.3.2. Monte Carlo simulation. Recall the inhomogeneous, filtered Poisson field Z(x) defined
in Equation (2). The parameters that describe Z(x) are the bounded subsets D and D′ of Rd ,
the probability distribution of Zi , the inhomogeneous Poisson field N(D′) with spatially variant
intensity function �(x), the compactly supported, non-negative function h, and the rotation matrix
Ri . In R2, the rotation matrix for the i th Poisson point in D′ is represented by

Ri =
[

cos�i sin�i

−sin�i cos�i

]
, i=1, . . . ,N, x∈R2 (25)

where �i ’s are independent and identical random variables (rotations) and are uniformly distributed
in [0,2�], for example, when particles in a graded material have random orientations with equal
probability. The rotation matrix in R3 takes the form

Ri =
⎡
⎢⎣

cos�i sin�i 0

−sin�i cos�i 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣
1 0 0

0 cos�i sin�i

0 −sin�i cos�i

⎤
⎥⎦
⎡
⎢⎣

cos�i sin�i 0

−sin�i cos�i 0

0 0 1

⎤
⎥⎦

i=1, . . . ,N, x∈R3 (26)

where �i ’s, �i ’s, and �i ’s are independent and identical random variables (Euler angles) and are
uniformly distributed in [0,2�], [0,�], and [0,2�], respectively. If the particle orientations can be
controlled or have desired orientations, more appropriate probability distributions of rotations or
Euler angles can be prescribed for defining Ri .

Once the parameters of the level-cut field Y (x) have been optimized from the calibration process
described in the previous subsection, samples of synthetic microstructures of two-phase FGMs can
be generated based on the following algorithm:

• Step 1: Define bounded subsets D and D′ of Rd . The bounded subset D′ must be such that
points of N falling in Rd \D′ do not contribute to the value of Z(x) in D. Specify the kernel
function h—for example, Equation (21)—and define its parameters.

• Step 2: Generate a sample n∗ of the homogeneous Poisson random variable N∗(D′), which
has a constant intensity �∗ =maxx∈Rd �(x), where �(x) is a bounded intensity function in D′.

• Step 3: Generate n∗ independent uniformly distributed points in D′. Denote these points by
xi , i=1, . . . ,n∗.
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• Step 4: Perform thinning of the point set obtained in Step 3. In doing so, each point xi ,
independent of the other, is kept with probability �(xi )/�∗, which is equivalent to discarding
the point with probability 1−�(xi )/�∗. The resulting point pattern with the size n∗∗�n∗
follows the inhomogeneous Poisson field N(D′) with intensity function �(x). Denote these
points by Ci , i=1, . . . ,n∗∗.

• Step 5: Generate n∗∗ independent samples of random rotation matrices {Ri } and random
variables {Zi }.

• Step 6: Calculate the corresponding samples of the random fields Z(x) from Equation (2)
and Y (x) from Equation (17) for a specified level a. The sample of Y (x) yields a two-phase,
statistically inhomogeneous microstructure.

Independent samples of Z(x) and Y (x) are delivered by repeated application of the above-stated
algorithm. The resulting samples can be analyzed to estimate various statistics of these random
fields.

4. NUMERICAL EXAMPLES

4.1. Example 1

Consider a two-dimensional (d=2), functionally graded composite with the bounded domainD :=
(0,10)×(0,10)∈R2, where fully penetrable elliptical or circular particles with random lengths
and widths are embedded in the matrix. The aspect ratio, defining the length-to-width ratio of
each particle, is deterministic and identical for all particles. For the inhomogeneous Poisson field
N(D′), three types of intensity functions, defined by

�(x)=

⎧⎪⎨
⎪⎩
cx1x2 diagonal

c[(x1−5.25)2+(x2−5.25)2] centrifugal

cexp[−
√

(x1−5.25)2+(x2−5.25)2] anticentrifugal

(27)

represent diagonal, centrifugal, and anticentrifugal variations of the particle locations, where D′ =
(0,10.5)×(0,10.5), x={x1, x2}T∈D′ ⊂R2, and c is the intensity parameter. The kernel function
is given by

h(n)=exp

(
−�21

�21
− �22

�22

)
(28)

where n={�1,�2}T∈R2, �1=0.2, �2=0.1 for the diagonally varying intensity function, and �1=
�2=0.1 for the remaining two intensity functions with centrifugal or anticentrifugal variations. In
other words, the particles have elliptical shapes for the diagonal variation or circular shapes for
the centrifugal or anticentrifugal variations. For all three intensity functions, the random variable
Zi =10|Ui |, where Ui is a standard Gaussian random variable with zero mean and unit variance.
The rotation matrix Ri is defined by Equation (25), where the rotation �i is uniformly distributed
in [0,2�].

Figure 2 shows a sample of the filtered Poisson field Z(x) in Equation (2) for a diagonally
varying intensity function with the parameter c=0.1 entailing low intensity. The number, location,
and shapes of the peaks of Z depend on the intensity function, kernel function h defined by
Equation (28), and statistical properties of random variables {Ri } and {Zi }. Figure 3(a) shows three
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Figure 2. A sample of an inhomogeneous, filtered Poisson field Z(x1, x2) with a diagonally varying
intensity function �(x)=cx1x2; c=0.1.

samples of the level-cut filtered Poisson field Y (x) in Equation (17) obtained from a single sample
of Z(x), but three distinct levels, a=0.1, 1, and 5. They represent synthetic samples of FGM
microstructures, where the particles have a target aspect ratio of two, but their sizes are random.
Both the number and the sizes of the particles in these composites decrease when the magnitude of
level a increases. Therefore, it is possible to calibrate a, leading to a synthetic microstructure with
the desired statistical properties. If the intensity is sufficiently low, the resulting filtered Poisson
field Z can also be approximated by Z̃ in Equation (22). In that case, the geometry of the particles
is easy to control as the value of Z at a point x∈D depends only on the function Zih(Ri (x−Ci ))
with the center Ci in the vicinity of x. Modeling random microstructures by Ỹ , which is a cut field
of Z̃ , can be viewed as placing particles of random or deterministic shapes at Poisson points in D′.

Consider now a slight modification of the graded composites, which still follow a diagonally
varying intensity function, but with a higher intensity parameter, c=0.5, and three distinct levels,
a=1, 5, and 15. Figure 3(b) shows three samples of Y (x) in Equation (17), obtained again from a
single sample of Z(x). Individual particles intersect frequently, particularly for low magnitudes of
level a. The resulting composites correspond to level-cut filtered Poisson fields of high intensity. If
the intensity is sufficiently high, the geometry of the particles will be relatively difficult to control.
This is because the value of Z at a point x∈D is derived from a sum of functions Zih(Ri (x−Ci ))
with centers Ci in the vicinity of x, so that the excursions of Z above level a depend on all these
functions. Nevertheless, the Monte Carlo simulation algorithm described in a previous section can
be employed to generate microstructures defined by random fields Y associated with a collection
of parameters �(x), h, a, Zi , and Ri , and to select values of these parameters that are optimal in
some sense.

Finally, Figures 4(a) and (b) demonstrate the versatility of the proposed random field model by
depicting FGM microstructures derived from the centrifugal and anticentrifugal intensity functions,
respectively. The values of intensity parameter c are 1 for the centrifugal variation and 300 for the
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(a) (b)

Figure 3. Samples of two-dimensional microstructures of functionally graded composites with a diagonally
varying intensity function �(x)=cx1x2: (a) c=0.1 and (b) c=0.5.
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(a) (b)

Figure 4. Samples of two-dimensional microstructures of functionally graded composites: (a) centrifugal
variation with c=1 and (b) anticentrifugal variation with c=300.
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anticentrifugal variation. In both variations, three levels a=0.1,1, and 10 have been employed to
create microstructures exhibiting several distinct features of the embedded particles. Again, these
microstructural features can be calibrated if statistical properties of Y are available.

4.2. Example 2

Consider a three-dimensional (d=3) specimen with the bounded domain D :=(0,10)×(0,10)×
(0,10)∈R3, where fully penetrable spherical or disk-shaped particles entailing random sizes
and/or orientations are embedded in the matrix of an FGM. A diagonally varying intensity
function

�(x)=cx1x2x3 (29)

characterizes the inhomogeneous Poisson fieldN(D′), whereD′ =(0,10.5)×(0,10.5)×(0,10.5),
x={x1, x2, x3}T∈D′ ⊂R3, and c is the intensity parameter. Two values of c, 0.0005 and
0.005, were selected to represent low and high intensities, respectively. For both magnitudes of
intensities,

h(n)=exp

(
−�21

�21
− �22

�22
− �23

�23

)
(30)

where n={�1,�2,�3}T∈R3, �1=�2=�3=0.3 for the spherical particles, and �1=�2=0.3, �3=
0.06 for the disk-shaped particles. The random variable Zi =10|Ui |, where Ui is a standard
Gaussian random variable with zero mean and unit variance. The rotation matrix Ri is defined by
Equation (26), where the Euler angles �i , �i , and �i are uniformly distributed in [0,2�], [0,�],
and [0,2�], respectively.

Figures 5(a)–(d) exhibit four samples of two-phase, functionally graded composites in R3

obtained by the level-cut filtered Poisson field Y (x) in Equation (17) with Z(x) in Equation (2)
for level a=0.01. The microstructures in Figures 5(a) and (b), which include spherical (�1=�2=
�3=0.3) particles, correspond to low (c=0.0005) and high (c=0.005) values, respectively, of
the Poisson intensity. The higher the value of the Poisson intensity, the higher the particle density,
resulting in frequent intersections among particles. The samples in Figures 5(c) and (d) contain
disk-shaped (�1=�2=0.3,�3=0.06) particles, also generated using the same two intensities. The
significant difference between particle properties in Figures 5(a)–(d) demonstrates once again
the capability of the proposed model in generating a broad range of two-phase inhomogeneous
microstructures.

4.3. Example 3

The objective of the final example is to illustrate the usefulness of the proposed random field
model in determining the statistical characteristics of FGM effective properties. Consider a two-
dimensional, 10cm×10cm, FGM specimen that contains fully penetrable, circular, silicon carbide
(SiC) particles with random sizes and number in an aluminum (Al) matrix. The material phases
SiC and Al are both linear elastic, and their deterministic elastic properties are listed in Table I.
The particles follow a horizontally varying Poisson intensity function

�(x)=c ln
10.5(1+�)

10.5(1+�)−x1
(31)
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Figure 5. Samples of three-dimensional microstructures of functionally graded composites
with a diagonally varying intensity function �(x)=cx1x2x3 and a=0.01: (a) spherical parti-
cles with c=0.0005; (b) spherical particles with c=0.005; (c) disk-shaped particles with

c=0.0005; and (d) disk-shaped particles with c=0.005.

Table I. Elastic properties of constituents of SiC–Al FGM.

Elastic properties Silicon carbide (SiC) Aluminum (Al)

Young’s modulus, GPa 419.2 69.7
The Poisson’s ratio 0.19 0.34

where x={x1, x2}T∈R2, 0�xi�10.5cm, i=1,2, �=10−6, and c is the intensity parameter. The
kernel function is given by Equation (28), where �1=�2=0.2cm. The random variable Zi =10 |Ui |,
where Ui is a standard Gaussian random variable with zero mean and unit variance. The rotation
matrix Ri is defined by Equation (25), where the rotation �i is uniformly distributed in [0,2�].
For the level-cut field, a=1.

Figure 6(a) shows a sample of the FGM microstructure employing the level-cut field Y (x) in
Equation (17) with Z(x) in Equation (2) and c=3cm−2. For comparison, the corresponding sample
generated using the approximate random field Ỹ (x) in Equation (23) is presented in Figure 6(b).
The microstructural features of both samples in Figures 6(a) and (b) that are relevant to stress
analysis are remarkably similar. Such similarity is observed, although to a lesser degree, even when
the intensity parameter is raised to a much larger value: c=30cm−2, the samples of which are
exhibited in Figures 6(c) and (d). Note that Ỹ (x) provides a simpler microstructural description
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(a) (b)

(c) (d)

Figure 6. A functionally graded composite with a horizontally varying intensity function: (a) sample of
Y (x) with c=3cm−2; (b) sample of Ỹ (x) with c=3cm−2; (c) sample of Y (x) with c=30cm−2; and

(d) sample of Ỹ (x) with c=30cm−2.

(Equation (24)) that entails defining random particle geometry at each Poisson point. Therefore,
a high-quality finite element mesh required for stress analysis can be easily generated using the
approximate random field Ỹ (x).

Using c=3/cm2 and the approximate field Ỹ (x), 25 samples (sample size) of the FGM
microstructure were generated. For each microstructural sample, a conforming finite element mesh
was created automatically and, therefore, with little effort. Figure 7 shows domain discretizations
for four randomly selected samples comprising six-noded, quadratic finite elements. The boundary
conditions, sketched in one mesh of Figure 7, include enforcing the simply supported condition at
the bottom edge and applying a vertical stress of 1kN/cm2 to the top edge of the FGM specimen.
Subsequently, linear-elastic finite element analyses were performed for all 25 samples, employing
the commercial code ABAQUS [21] and a plane stress condition. Figure 8 presents contour plots
of the von Mises stress for the aforementioned four samples. The contour plots demonstrate local
stress concentrations due to microstructural heterogeneity that vary spatially against the coordi-
nate x1, the direction of gradation. However, the stresses vary relatively smoothly on the left side
(x1=0) of the FGM specimen, where there is a dominant presence of the matrix (Al) phase.
Perhaps a more useful result is the effective mechanical property, the calculation of which involves
two steps. First, the local stresses and strains in each sample were homogenized to calculate
the effective stresses and strains on 10 non-overlapping 1cm×10cm strips that were uniformly
deployed in the x1 direction. Second, Hooke’s law relating effective stresses and strains in each of
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Figure 7. Finite element discretizations for four samples of a SiC–Al FGM.

these 10 strips was invoked to determine the effective elastic modulus and the effective Poisson’s
ratio. As the intensity function depends only on x1 and particles are circular, a resultant elastic
property of the composite should vary horizontally, but remain approximately isotropic.¶ From

¶Strictly speaking, a representative volume element should exist to perform such homogenization. Otherwise, a scale-
dependent homogenization may be required. They were not considered in this paper, because of their complexity.
The scale-dependent homogenization was not considered in this example.
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Figure 8. Contour plots of the von Mises stress for four samples of a SiC–Al FGM (unit: kN/cm2).

the Monte Carlo simulation with 25 samples, Figures 9(a) and (b) plot the means and standard
deviations of the effective elastic modulus and the effective Poisson’s ratio, respectively, of the
FGM as functions of x1. Such statistics provide useful information on the spatial variation of FGM
effective properties, given a random microstructure. Higher-order statistics, including correlation
functions, and probability distributions of effective properties can also be estimated by increasing
the sample size. Therefore, from the stochastic microstructure–property relationship, if it can be
developed, one should be able to design a microstructure to produce target effective properties
of FGMs.

5. LIMITATIONS AND FUTURE WORK

The random field model described by a single intensity function cannot possibly represent all statis-
tically inhomogeneous microstructures. However, the model can be readily expanded to mimic more
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Figure 9. Statistics of effective elastic properties of a SiC–Al FGM:
(a) elastic modulus and (b) the Poisson’s ratio.

complex morphologies, including percolative thresholds and cellular or non-particulate features.
For instance, a two-level cut of Z(x), employing a generalized indicator function I (z;a1,a2) :=1
when a1�z�a2 and zero otherwise, will permit a constituent phase remains connected down
to low volume fractions, commonly exhibited in porous rocks, polymer blends, and polystyrene
foams. In addition, from two independent, two level-cut Poisson random fields, the intersection
of the volumes of constituent phases will lead to open-cell microstructures of organic aerogels. In
contrast, the union of the volumes of constituent phases will produce closed-cell microstructures,
encountered in many foamed solids. In other words, a broad range of complex microstructures can
be derived from the proposed random field, and their developments are left as future efforts.

In addition, the current paper focuses on modeling the microstructure of the material, where
a new stochastic model is proposed. The next challenging problem is to predict the effective
properties, such as transport, thermal, mechanical properties, including fracture performance, from
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this microstructural information. Scale-dependent homogenization without relying on representative
volume element for predicting effective properties and multiscale fracture simulation properly
accounting for microstructural details should be pursued in the future.

6. CONCLUSIONS

A level-cut, inhomogeneous, filtered Poisson random field model was developed to represent two-
phase microstructures of FGMs with fully penetrable embedded particles. The model constitutes a
sum of deterministic kernel functions that are scaled by random variables and centered at random
points generated by an inhomogeneous Poisson field. The level-cut random fields, defined by
the cuts of the inhomogeneous, filtered Poisson random field above the specified levels, can be
employed to model random microstructures of statistically inhomogeneous media. The geometric
features of the microstructures generated by the model developed depend on the Poisson intensity,
level, kernel functions, random scaling variables, and random rotation matrices. The level-cut
Poisson field model developed provides an attractive alternative to the commonly employed level-
cut Gaussian field model, in which the problem related to the existence of the Gaussian field is
avoided. Furthermore, the level-cut Poisson field can be viewed as a generalized random field,
which degenerates to the level-cut Gaussian field when the Poisson intensity approaches infinity.

A reconstruction algorithm describing how to calibrate model parameters with available statis-
tical properties of actual microstructural features was developed. The calibration process facilitates
optimal evaluations of the model parameters by matching observed correlation functions of an
arbitrary order of the level-cut field. Once the model parameters have been determined, a Monte
Carlo simulation can be performed to generate samples of microstructures of statistically inhomo-
geneous media. However, the lack of uniqueness in reconstruction remains a formidable problem,
because the use of low-order statistics will always create a class of competing models with two
or more members.

Three numerical examples have been presented to illustrate the capability and the usefulness
of the level-cut Poisson field model. The results from the first two examples demonstrate that
the model developed can create a broad range of two- and three-dimensional microstructures of
functionally graded composites containing particles of various sizes, shapes, densities, gradations,
and orientations. The third example, involving finite element analyses of random microstruc-
tures, provides a means to evaluate statistical characteristics of effective mechanical properties of
functionally graded composites. Therefore, microstructures of graded composites can be tailored
to meet the desired mechanical properties.
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