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Stochastic dynamic systems with complex-valued eigensolutions
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SUMMARY

A dimensional decomposition method is presented for calculating the probabilistic characteristics of
complex-valued eigenvalues and eigenvectors of linear, stochastic, dynamic systems. The method
involves a function decomposition allowing lower-dimensional approximations of eigensolutions,
Lagrange interpolation of lower-dimensional component functions, and Monte Carlo simulation. Compared
with the commonly used perturbation method, neither the assumption of small input variability nor the
calculation of the derivatives of eigensolutions is required by the method developed. Results of numerical
examples from linear stochastic dynamics indicate that the decomposition method provides excellent
estimates of the moments and/or probability densities of eigenvalues and eigenvectors for various cases
including large statistical variations of input. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mathematical modelling and simulation to characterize dynamic systems and forecast their
evolution in time often lead to large-scale linear or non-linear eigenvalue problems. Generally,
the coefficient matrices or operators in these eigenvalue problems are not precisely known be-
cause of insufficient information, limited understanding of the underlying phenomena, and inherent
randomness. Eigenvalue problems defined for such random matrix, differential, or integral
operators are referred to as random eigenvalue problems and are commonly solved by stochastic
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964 S. RAHMAN

methods that determine statistical moments, probability law, and other relevant properties of
eigensolutions.

Over the years, many approximate stochastic methods have been developed or examined for
solving random eigenvalue problems associated with undamped or proportionally damped stochas-
tic systems. Of these methods, the perturbation methods have dominated the current literature [1–3]
because of their ease of implementation and computational efficiency. However, these methods
have two major limitations: both the uncertainty of random input and the non-linearity of the
random eigenvalue or eigenvector with respect to random input must be small. Methods other than
the perturbation methods include the iteration method [1], the Ritz method [4], the crossing theory
[5], the stochastic reduced basis [6], the asymptotic method [7], the polynomial chaos expansion
[8], and the recently developed dimensional decomposition method [9]. However, most if not all,
of these past studies focus strictly on undamped or proportionally damped systems. Although
conditions for proportional damping were derived by Caughey and O’Kelly [10], proportional
damping is a mathematical construct that allows invoking classical normal modes. If the damping
is not proportional, as identified from practical modal testing, linear systems may possess com-
plex modes instead of classical real modes. Complex modes may also appear for undamped or
proportionally damped systems with unsymmetric stiffness matrices, for example, when there are
frictional springs. However, the consideration of complex modes in stochastic systems has not been
widespread. Only recently have non-proportionally damped stochastic systems been examined; in
2004, Adhikari employed the first-order perturbation method to derive the second-moment statis-
tics of complex mode shapes and natural frequencies of simple dynamic systems [11]. However,
the perturbation methods require expensive calculation of derivatives of eigensolutions, and more
importantly, are limited to small non-linearity of input–output mapping or small input uncertainties.
Hence, new stochastic methods for characterizing complex-valued eigensolutions that can manage
arbitrarily large non-linearity of input–output mapping and arbitrarily large uncertainties of input
are highly desirable.

This paper presents a dimensional decomposition method for predicting the statistical moments
and probability density functions of complex-valued eigensolutions of linear stochastic systems.
The method can be viewed as an extension of the author’s previously developed dimensional
decomposition method for analysing stochastic systems with real modes [9]. Section 2 formally
defines the random eigenvalue problem involving matrix operators. Section 3 gives a brief exposition
of a function decomposition that facilitates lower-dimensional approximations of real and imaginary
parts of complex eigensolutions. Section 4 describes the proposed decomposition method and
the associated computational effort for calculating the probabilistic characteristics of complex
eigenvalues and eigenvectors. In Section 5, three numerical examples from structural dynamics
illustrate the method developed. Comparisons have been made with direct Monte Carlo simulation
to evaluate the accuracy and computational efficiency of the new method. Finally, Section 6
provides conclusions from this work.

2. RANDOM EIGENVALUE PROBLEM

Let (�,F, P) be a probability space, where � is the sample space, F is the �-algebra of subsets
of �, and P is the probability measure; RN and CN be N -dimensional real and complex vector
spaces, respectively; and RN×N be a set of all N × N , real-valued matrices. Defined on the
probability space endowed with the expectation operator E, consider a real-valued N -dimensional
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STOCHASTIC DYNAMIC SYSTEMS 965

random vector X={X1, . . . , XN }T ∈ RN with the mean vector lX ≡ E[X] ∈ RN , the covariance
matrix RX ≡ E[(X − lX)(X − lX)T] ∈ RN×N , and the joint probability density function fX(x) :
RN �→ R.

Consider a family of L × L , real-valued, random coefficient matrices A j (X) ∈ RL×L ; j =
1, . . . , J (J>0) and a general non-linear function f . A non-trivial solution of

f (�(X);A1(X), . . . ,AJ (X))/(X)= 0 (1)

if it exists, defines the random eigenvalue �(X) ∈ R or C and the random eigenvector /(X) ∈ RL

or CL of a general non-linear eigenvalue problem. For example, in stochastic dynamics, the
equation of motion describing the free vibration of a linear, L-degree-of-freedom, discrete
system is

M(X)ÿ(t) + C(X)ẏ(t) + K(X)y(t)= 0 (2)

where the coefficient matrices are the random mass matrix M(X) ∈ RL×L , the random damping
matrix C(X) ∈ RL×L , and the random stiffness matrix K(X) ∈ RL×L ; y(t)∈ RL is a vector of
generalized co-ordinates; and t ∈ R+ is the time, yielding a quadratic eigenvalue problem

[�2(X)M(X) + �(X)C(X) + K(X)]/(X) = 0 (3)

The probabilistic characteristics of random matrices M(X), C(X), and K(X) can be derived
from the probability law of X. In the present work focused on stochastic dynamics, the fol-
lowing assumptions were made for the properties of coefficient matrices: (1) M(X) is symmet-
ric and positive semi-definite; (2) C(X) is not necessarily proportional, i.e. it may in general
not be expressed by a linear combination of M(X) and K(X); and (3) K(X) is not neces-
sarily symmetric. The matrix properties allowed by assumptions (2) and/or (3) may generate
complex-valued eigensolutions, where complex random eigenvalues �(X)= �R(X) ± √−1�I (X)

and complex random eigenvectors /(X) =/R(X) ± √−1/I (X) occur in conjugate pairs, and
subscripts R and I denote their real and imaginary parts, respectively. Both real and imaginary
parts of eigensolutions depend on the random input X via solution of the matrix characteristic
equation

det[�2(X)M(X) + �(X)C(X) + K(X)] = 0 (4)

and subsequent solution of Equation (3). A major objective in solving a complex-valued ran-
dom eigenvalue problem is to find the probabilistic characteristics of eigenpairs {�(i)

R (X) ±√−1�(i)
I (X),/(i)

R (X) ± √−1/(i)
I (X)}; i = 1, . . . , L when the probability law of X is arbitrarily

prescribed.

3. MULTIVARIATE FUNCTION DECOMPOSITION

Consider the real or imaginary part �m(x) : RN �→ R of a complex eigenvalue and the real or imag-
inary part /m(x) : RN �→ RL of a complex eigenvector that depends on x={x1, . . . , xN }T ∈ RN ,
where subscript m = R (real) or I (imaginary). A dimensional decomposition of �m(x) and /m(x),
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966 S. RAHMAN

described by [12–20]

�m(x) = �m,0 +
N∑
i=1

�m,i (xi )︸ ︷︷ ︸
=�̂m,1(x)

+
N∑

i1,i2=1
i1<i2

�m,i1i2(xi1, xi2)

︸ ︷︷ ︸
=�̂m,2(x)

+ · · · +
N∑

i1,...,iS=1
i1<···<iS

�m,i1···iS (xi1, . . . , xiS )

︸ ︷︷ ︸
=�̂m,S(x)

+ · · · + �m,12···N (x1, . . . , xN ) (5)

and

/m(x) =/m,0 +
N∑
i=1
/m,i (xi )︸ ︷︷ ︸

=/̂m,1(x)

+
N∑

i1,i2=1
i1<i2

/m,i1i2(xi1, xi2)

︸ ︷︷ ︸
=/̂m,2(x)

+ · · · +
N∑

i1,...,iS=1
i1<···<iS

/m,i1···iS (xi1, . . . , xiS )

︸ ︷︷ ︸
=/̂m,S(x)

+ · · · + /m,12···N (x1, . . . , xN ) (6)

can be viewed as a finite hierarchical expansion of an output function in terms of its input variables
with increasing dimensions, where �m,0 and /m,0 are constants; �m,i (xi ) : R �→ R and /m,i (xi ) :
R �→ RL are univariate component functions representing individual contribution to �m(x) and
/m(x) by input variable xi acting alone; �m,i1i2(xi1, xi2) : R2 �→ R and /m,i1i2(xi1, xi2) : R2 �→ RL

are bivariate component functions describing the cooperative influence of two input variables
xi1 and xi2 ; �m,i1···iS (xi1, . . . , xiS ) : RS �→ R and /m,i1···iS (xi1, . . . , xiS ) : RS �→ RL are S-variate
component functions quantifying the cooperative effects of S input variables xi1, . . . , xiS ; and so
on. If

�̂m,S(x)= �m,0 +
N∑
i=1

�m,i (xi ) +
N∑

i1,i2=1
i1<i2

�m,i1i2(xi1, xi2) + · · · +
N∑

i1,...,iS=1
i1<···<iS

�m,i1···iS (xi1, . . . , xiS ) (7)

and

/̂m,S(x)=/m,0+
N∑
i=1
/m,i (xi )+

N∑
i1,i2=1
i1<i2

/m,i1i2(xi1, xi2)+ · · · +
N∑

i1,...,iS=1
i1<···<iS

/m,i1···iS (xi1, . . . , xiS ) (8)

represent general S-variate approximations of �m(x) and /m(x), respectively, the univariate (S = 1)
approximations �̂m,1(x) and /̂m,1(x) and the bivariate (S = 2) approximations �̂m,2(x) and /̂m,2(x)
provide two- and three-term approximants, respectively, of the finite decomposition in Equations (7)
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and (8). Similarly, trivariate, quadrivariate, and other higher-variate approximations can be derived
by appropriately selecting the value of S. The fundamental conjecture underlying this work is that
component functions arising in the eigenvalue function decomposition will exhibit insignificant
S-variate effects cooperatively when S → N , leading to useful lower-variate approximations of
�m(x) and /m(x). In the limit, when S = N , �̂m,S(x) and /̂m,S(x) converge to the exact functions
�m(x) and /m(x), respectively. In other words, Equations (7) and (8) generate a hierarchical and
convergent sequence of approximations of eigensolutions.

The decomposition presented in Equations (5) or (6) can be traced to the work of Hoeffding
[14] in the 1940s, and is well known in the statistics literature under the name analysis of variance
(ANOVA) [15]. This decomposition, coined later as the high-dimensional model representation
(HDMR) by Rabitz, has been further refined that led to notable contributions in function approxi-
mation, including ANOVA-HDMR [16], cut-HDMR [17], and random-sampling (RS)-HDMR [18].
Further generalizations to multi-cut HDMR [19] and monomial preconditioning (mp)-cut-HDMR
[20] have also appeared. Recently, the author’s group exploited this decomposition technique
in calculating statistical moments of response [12] and reliability [13] of uncertain mechanical
systems.

4. DIMENSIONAL DECOMPOSITION METHOD

4.1. Lower-dimensional approximations

For 1�S�N , consider S-variate approximations of �m(x) and /m(x), respectively, defined by

�̂m,S(x) ≡
S∑

k=0
(−1)k

(
N − S + k − 1

k

)
N∑

i1,...,iS−k=1
i1<···<iS−k

�m(c1, . . . , ci1−1, xi1,

ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN ) (9)

and

/̂m,S(x) ≡
S∑

k=0
(−1)k

(
N − S + k − 1

k

)
N∑

i1,...,iS−k=1
i1<···<iS−k

/m(c1, . . . , ci1−1, xi1,

ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN ) (10)

where c={c1, . . . , cN }T is a reference point, �m(c1, . . . , ci1−1, xi1, ci1+1, . . . , ciS−k−1, xiS−k ,

ciS−k+1, . . . , cN ) and /m(c1, . . . , ci1−1, xi1, ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN ) are
(S−k)th-dimensional component functions representing (S−k)th-dimensional cooperation among
input variables xi1, . . . , xiS−k , where S = 1, . . . , N and k = 0, . . . , S. Based on the author’s past
experience, the mean point of random input defines a suitable reference point. Using a multivariate
function theorem developed by Xu and Rahman [12], it can be shown that �̂m,S(x) and /̂m,S(x)
consist of all terms of the Taylor series of �m(x) and /m(x), respectively, that have less than or
equal to S variables. The expanded form of Equation (9) or (10), when compared with the Taylor
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968 S. RAHMAN

expansion of �m(x) or /m(x), indicates that the residual error in the S-variate approximation
includes terms of dimensions S+1 and higher. When S = 1 and 2, Equation (9) or (10) degenerates
to univariate or bivariate approximations, respectively. These univariate or bivariate approximations,
which include all higher-order univariate or bivariate terms of �m(x) and /m(x), should therefore
generally provide higher-order representations of eigenvalues than those provided by commonly
employed first- or second-order perturbation methods.

The S-variate approximation described by Equations (9) or (10), when expanded and further
simplified, can be shown to be equivalent to a cut-HDMR. However, if the input is random, the
associated component functions are also random. Therefore, further approximation of various com-
ponent functions in the S-variate approximation or cut-HDMR is required for efficient stochastic
computation, described as follows.

4.2. Lagrange interpolation

Consider (S − k)-variate component functions �m(c1, . . . , ci1−1, xi1, ci1+1, . . . , ciS−k−1, xiS−k ,

ciS−k+1, . . . , cN ) and/m(c1, . . . , ci1−1, xi1, ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN ) in Equations

(9) and (10), respectively. If for sample points xi1 = x ( j1)
i1

, . . . , xiS−k = x ( jS−k)

iS−k
, nS−k function values

�m(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ciS−k−1, x
( jS−k)

iS−k
, ciS−k+1, . . . , cN ); j1, jS−k = 1, . . . , n and nS−k

function values /m(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ciS−k−1, x
( jS−k)

iS−k
, ciS−k+1, . . . , cN ); j1, jS−k =

1, . . . , n are numerically evaluated, the function values for an arbitrary point (xi1, . . . , xiS−k )

can be interpolated by

�m(c1, . . . , ci1−1, xi1, ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN )

=
n∑

jS−k=1
· · ·

n∑
j1=1

� j1(xi1) · · · � jS−k
(xiS−k )�m(c1, . . . , ci1−1, x

( j1)
i1

,

ci1+1, . . . , ciS−k−1, x
( jS−k)

iS−k
, ciS−k+1, . . . , cN ) (11)

and

/m(c1, . . . , ci1−1, xi1, ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN )

=
n∑

jS−k=1
· · ·

n∑
j1=1

� j1(xi1) · · · � jS−k
(xiS−k )/m(c1, . . . , ci1−1, x

( j1)
i1

,

ci1+1, . . . , ciS−k−1, x
( jS−k)

iS−k
, ciS−k+1, . . . , cN ) (12)

where

� j (xi ) =
∏n

l=1,l �= j (xi − x (l)
i )∏n

l=1,l �= j (x
( j)
i − x (l)

i )
(13)
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is the n-point Lagrange shape function. The combination of Equations (9)–(13) leads to general
S-variate approximations of eigensolutions, given by

�̂m,S(X) ∼=
S∑

k=0
(−1)k

(
N − S + k − 1

k

)
N∑

i1,...,iS−k=1
i1<···<iS−k

n∑
jS−k=1

· · ·
n∑

j1=1
� j1(Xi1) · · · � jS−k

(XiS−k )

×�m(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ciS−k−1, x
( jS−k)

iS−k
, ciS−k+1, . . . , cN ) (14)

and

/̂m,S(X) ∼=
S∑

k=0
(−1)k

(
N − S + k − 1

k

)
N∑

i1,...,iS−k=1
i1<···<iS−k

n∑
jS−k=1

· · ·
n∑

j1=1
� j1(Xi1) · · · � jS−k

(XiS−k )

×/m(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ciS−k−1, x
( jS−k)

iS−k
, ciS−k+1, . . . , cN ) (15)

which can be employed to generate a convergent sequence of lower-variate approximations of
�m(X) or /m(X). For example, when S = 1, the univariate approximations are

�̂m,1(X) ∼=
N∑
i=1

n∑
j=1

� j (Xi )�m(c1, . . . , ci−1, x
( j)
i , ci+1, . . . , cN ) − (N − 1)�m(c) (16)

and

/̂m,1(X) ∼=
N∑
i=1

n∑
j=1

� j (Xi )/m(c1, . . . , ci−1, x
( j)
i , ci+1, . . . , cN ) − (N − 1)/m(c) (17)

whereas the selection of S = 2 yields the bivariate approximations

�̂m,2(X) ∼=
N∑

i1,i2=1
i1<i2

n∑
j2=1

n∑
j1=1

� j1(Xi1)� j2(Xi2)

× �m(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ci2−1, x
( j2)
i2

, ci2+1, . . . , cN )

− (N − 2)
N∑
i=1

n∑
j=1

� j (Xi )�m(c1, . . . , ci−1, x
( j)
i , ci+1, . . . , cN )

+ (N − 1)(N − 2)

2
�m(c) (18)

and

/̂m,2(X) ∼=
N∑

i1,i2=1
i1<i2

n∑
j2=1

n∑
j1=1

� j1(Xi1)� j2(Xi2)
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×/m(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ci2−1, x
( j2)
i2

, ci2+1, . . . , cN )

−(N − 2)
N∑
i=1

n∑
j=1

� j (Xi )/m(c1, . . . , ci−1, x
( j)
i , ci+1, . . . , cN )

+ (N − 1)(N − 2)

2
/m(c) (19)

Trivariate and other higher-variate approximations can be generated in a similar manner, but due
to their higher cost, only univariate and bivariate approximations are considered in this paper.

The sample points required by Lagrange interpolations can be selected based on the mean and
standard deviation of the random input. For example, if n sample points are uniformly deployed
in the direction of Xi , which has mean �i and standard deviation �i , the sample points for the
univariate approximation are: (. . . , �i − 2�i , �i − �i , �i , �i + �i , �i + 2�i , . . .). Other selections
entailing a sparser uniform spacing or a non-uniform spacing can be envisioned. Nonetheless,
the number and location of sample points should be selected in such a way that the resulting
approximation is insensitive to further refinement. From the author’s past experience, a uniform
spacing with five sample points works well unless the input uncertainty or the non-linearity of
the component function is overly large, in which case a larger number of sample points may
be required. The appropriateness of selected sample points will be numerically evaluated in a
forthcoming section.

4.3. Monte Carlo simulation

Once the Lagrange shape functions � j1(xi1), . . . ,� jS−k
(xiS−k ), eigenvalue coefficients �m(c1, . . . ,

ci1−1, x
( j1)
i1

, ci1+1, . . . , ciS−k−1, x
( jS−k)

iS−k
, ciS−k+1, . . . , cN ), and eigenvector coefficients /m(c1, . . . ,

ci1−1, x
( j1)
i1

, ci1+1, . . . , ciS−k−1, x
( jS−k)

iS−k
, ciS−k+1, . . . , cN ); S = 1, . . . , N ; k = 0, . . . , S; j1, jS−k = 1,

. . . , n, are generated, Equations (14)–(19) provide explicit approximations of random eigensolu-
tions {�(i)

R (X) ± √−1�(i)
I (X),/(i)

R (X) ± √−1/(i)
I (X)}; i = 1, . . . , L , in terms of random input

X. Therefore, any probabilistic characteristic of eigensolutions, including their moments and
probability density functions, can be easily evaluated by performing Monte Carlo simulation on
Equations (14)–(19). Since Equations (14)–(19) do not require solving additional matrix equations,
the embedded Monte Carlo simulation can be efficiently conducted for any sample size. Further-
more, statistical moments obtained from Equations (14)–(19) can be employed in reconstructing
probability density function using the maximum entropy approach [21].

The proposed methods involving univariate (Equations (16) and (17)) or bivariate (Equations (18)
and (19)) approximations, n-point Lagrange interpolation, and associated Monte Carlo simulation
are defined as the univariate or bivariate decomposition methods in this paper. No expensive
calculation of partial derivatives of eigensolutions is required.

4.4. Computational effort

In reference to Equations (16) and (18), the univariate and bivariate decomposition methods
require evaluations of deterministic coefficients �m(c), �m(c1, . . . , ci−1, x

( j)
i , ci+1, . . . , cN ), and

�m(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ci2−1, x
( j2)
i2

, ci2+1, . . . , cN ) for m = R or I ; i, i1, i2 = 1, . . . , N ;
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and j, j1, j2 = 1, . . . , n. Hence, the computational effort to obtain these coefficients can be viewed
as numerically solving the associated deterministic characteristic equations

det[�2(c)M(c) + �(c)C(c) + K(c)]= 0 (20)

det[�2(c1, . . . , ci−1, x
( j)
i , ci+1, . . . , cN )M(c1, . . . , ci−1, x

( j)
i , ci+1, . . . , cN )

+ �(c1, . . . , ci−1, x
( j)
i , ci+1, . . . , cN )C(c1, . . . , ci−1, x

( j)
i , ci+1, . . . , cN )

+K(c1, . . . , ci−1, x
( j)
i , ci+1, . . . , cN )] = 0, i = 1, . . . , N , j = 1, . . . , n (21)

and

det[�2(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ci2−1, x
( j2)
i2

, ci2+1, . . . , cN )

×M(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ci2−1, x
( j2)
i2

, ci2+1, . . . , cN )

+ �(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ci2−1, x
( j2)
i2

, ci2+1, . . . , cN )

×C(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ci2−1, x
( j2)
i2

, ci2+1, . . . , cN )

+K(c1, . . . , ci1−1, x
( j1)
i1

, ci1+1, . . . , ci2−1, x
( j2)
i2

, ci2+1, . . . , cN )] = 0

i1, i2 = 1, . . . , N , j1, j2 = 1, . . . , n (22)

at several deterministic input defined by user-selected sample points. Therefore, the total cost
for the univariate method entails a maximum of nN + 1 solutions of the matrix characteristic
equation, and a maximum of N (N − 1)n2/2 + nN + 1 solutions of the matrix characteristic
equation are required for the bivariate method. If the sample points include a common point in each
co-ordinate xi (see Example section), the numbers of such solutions reduce to (n − 1)N + 1 and
N (N − 1)(n − 1)2/2 + (n − 1)N + 1 for the univariate and bivariate methods, respectively.
Equations (9)–(22) are the result of a generalization of author’s previous work on real eigenvalue

problems [9]. Equations (9)–(22) will be employed in obtaining stochastic solutions of complex-
valued eigenproblems in dynamic systems, including solving a large-scale eigenvalue problem
from the automotive industry.

5. NUMERICAL EXAMPLES

Three numerical examples involving linear dynamics of a spring–mass–damper system, a cantilever
beam, and an automotive disc brake system are presented to illustrate the decomposition method.
Comparisons have been made with the direct Monte Carlo simulation to evaluate the accuracy and
efficiency of the proposed method. For the first two examples, the eigenvalues were calculated by
an IMSL subroutine, which employs the state-space approach [22] and a hybrid double-shifted LR-
QR algorithm [23]. A subspace projection algorithm embedded in the commercial finite element
code ABAQUS (Version 6.5) [24] was employed to obtain eigenvalues for the third example.
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Figure 1. A three-degree-of-freedom spring–mass–damper system.

In all three examples, the univariate and/or bivariate decompositions were formulated in the
Gaussian image (u space) of the original space (x space) of random input. The reference point c
was fixed at the mean input in the u space. A 5-point (n = 5) Lagrange interpolation involving five
sample points (c1, . . . , ci−1, u

( j)
i , ci+1, . . . , cN ) and (c1, . . . , ci1−1, u

( j1)
i1

, ci1+1, . . . , ci2−1, u
( j2)
i2

,

ci2+1, . . . , cN ) in the u space were chosen with ci = 0 and uniformly distributed points u( j)
i or u( j1)

i1

or u( j2)
i2

= −2,−1, 0, 1, 2. Hence, for both moment and probability density analyses, (n− 1)N + 1

and (n − 1)2N (N − 1)/2+(n−1)N+1 solutions of the matrix characteristic equation are involved
in the univariate and bivariate methods, respectively.

5.1. Example 1—dynamics of a three-degree-of-freedom spring–mass–damper system

As shown in Figure 1, consider a three-degree-of-freedom, non-proportionally damped, spring–
mass–damper system with random mass, damping, and stiffness matrices

M(X) =

⎡
⎢⎢⎣
M(X) 0 0

0 M(X) 0

0 0 M(X)

⎤
⎥⎥⎦ ∈ R3×3, C(X) =

⎡
⎢⎢⎣
0 0 0

0 C(X) 0

0 0 0

⎤
⎥⎥⎦ ∈ R3×3 (23)

and

K(X)=

⎡
⎢⎢⎣
2K (X) −K (X) 0

−K (X) 2K (X) −K (X)

0 −K (X) 2K (X)

⎤
⎥⎥⎦ ∈ R3×3 (24)

respectively, where M(X)= �M X1 is the random mass, C(X) = �C X2 is the random linear
viscous damping coefficient, K (X) = �K X3 is the random linear spring stiffness, �M = 1 kg,
�C = 0.3N s/m, and �K = 1N/m. The random input X={X1, X2, X3}T ∈ R3 is an independent,
trivariate, lognormal random vector with mean lX ≡ E[X] = 1∈ R3, covariance matrix RX ≡ E[(X−
lX)(X−lX)T] = v2I∈ R3×3, and coefficient of variation v = 0.25 or 0.5. Two cases involving mod-
erate (v = 0.25) and large (v = 0.5) input uncertainties were studied. The sample size for the direct
Monte Carlo simulation and the decomposition method was 10 000. The purpose of this example
is to predict second-moment properties of eigenvalues by the proposed decomposition method and
compare results with those obtained from the direct Monte Carlo simulation.

Due to non-proportional damping, the spring–mass–damper system possesses complex
modes with six complex eigenvalues denoted by {�(i)

R (X) ± √−1�(i)
I (X)}; i = 1, . . . , 3. Let
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Y={�(1)
R , �(2)

R , �(3)
R , �(1)

I , �(2)
I , �(3)

I }T ∈ R6 define a response vector comprising all three real and all
three imaginary parts of eigenvalues. Table I presents the mean vector (lY) and the covariance
matrix (RY) of Y for both magnitudes of input uncertainties, calculated by the univariate and
bivariate decomposition methods entailing only 13 and 61 solutions of the matrix characteristic
equation, respectively. A direct Monte Carlo simulation by repeatedly solving the matrix character-
istic equation was also performed to generate corresponding benchmark results, which are listed in
Table I. The second rows of lY and RY contain zero elements, because the third and fourth eigen-
values associated with the second mode are purely imaginary (i.e. �(2)

R (X) = 0). From the results of
Table I, the univariate and bivariate decomposition methods provide almost the same benchmark
estimates of means for both magnitudes of input uncertainties. When comparing covariance prop-
erties for moderate input uncertainties (v = 0.25), the maximum errors in approximate variances
measured with respect to the direct Monte Carlo estimates are about 10% by the univariate method
and 0% by the bivariate method. The 0% error by the bivariate method is due to five significant
digits retained in comparing numerical values. Nonetheless, both versions of the decomposition
method provide satisfactory estimates of the second-moment properties of eigenvalues for moderate
input uncertainties in this particular example. However, when there are large input uncertainties
(v = 0.5), the maximum error by the univariate method rises to 37% and is no longer acceptable.
In contrast, the bivariate method yields significantly improved results with errors less than 5%. The
error can be further reduced by invoking a higher-variate decomposition method if desired. This
improvement is possible due to the hierarchical sequence of approximations in the dimensional
decomposition method. Nevertheless, bivariate or higher-variate decomposition methods may be
required to account for large uncertainties of input. It is worth noting that the commonly employed
perturbation methods are not expected to provide acceptable results for both magnitudes of input
uncertainties considered in this example [1–3]. An input coefficient of variation, as low as 10%,
was required to yield satisfactory second-moment estimates of complex-valued eigensolutions by
perturbation methods [11].

The statistics of Y predicted by the decomposition method were recalculated for a different
and new selection of sample points: u( j)

i or u( j1)
i1

or u( j2)
i2

= −3, −0.5, 0, 0.5, 3.§ The statistics
obtained using the new sample points are almost the same as listed in Table I. For example, the
maximum difference in the variances calculated using new and old sample points by univariate
or bivariate methods is only 0.3%. Such a comparison of results, although presented here for a
specific problem, shows that the final result is not so sensitive to the selection of sample points.

5.2. Example 2—flexural vibration of a free-standing beam

For the next example, the vibration of a tall, free-standing beam [22] shown in Figure 2(a) was
studied. Figure 2(b) represents a lumped-parameter model of the beam, which comprises seven
rigid, massless links hinged together. The mass of the beam is represented by seven random point
masses M located at the centre of each link. No damping was assumed except at the bottom
joint, where the random, rotational, viscous damping coefficient due to the foundation pad is C .
The random rotational stiffness at the bottom of the beam, controlled by the lower half of the
bottom link and the flexibility of the foundation pad, is K . The independent random variables
M , C , and K are lognormally distributed with respective means 3000 kg, 2× 107 Nm s/rad, and

§The new sample points, suggested by an anonymous reviewer, were used to evaluate the sensitivity of the method.
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Figure 2. Vibration of a free-standing beam: (a) continuous representation; and
(b) seven-degree-of-freedom discrete model.

2× 109 Nm/rad and have a 20% coefficient of variation. The flexural rigidity of the beam is
represented by six rotational springs between links with stiffnesses ki ≡ k(xi ); i = 1, . . . , 6, where
xi = il; i = 1, . . . , 6, and l = 6m. The spatially varying spring stiffness k(x) = c� exp[�(x)] is an
independent, homogeneous, lognormal random field with mean �k = 2× 109 Nm/rad; variance

�2k = 2× 109v2k N
2 m2/rad2; and coefficient of variation vk = 0.2; where c� = �k/

√
1 + v2k and

�(x) is a zero-mean, homogeneous, Gaussian random field with variance �2� = ln(1 + v2k ) and
covariance function ��(u) ≡ E[�(x)�(x +u)] = �2� exp(−|u|/ l). A discretization of �(x) yields the
zero-mean Gaussian random vector a≡{�1, . . . , �6}T ≡ {�(l), . . . , �(6l)}T ∈ R6 with the covariance
matrix R� =[E(�p�q)]; p, q = 1, . . . , 6, where E(�p�q) = E(�(pl)�(ql))= ��((q − p)l), leading
to complete statistical characterization of spring stiffnesses ki = c� exp[�i ]. Therefore, the input
random vector X={M,C, K , �1, . . . , �6}T ∈ R9 includes nine random variables in this example.

Rotational equilibrium of various links about their appropriate hinges, depicted in Figure 2(b),
leads to the standard linear equation of motion (Equation (2)), where y={y1, . . . , y7}T ∈ R7 is the
vector of displacements. The 7× 7 random mass, random damping, and random stiffness matrices
are defined in Appendix A.

Due to non-proportional damping, the discrete beam model yields 14 complex eigenvalues
�(i)(X) = �(i)

R (X) ± √−1�(i)
I (X); i = 1, . . . , 7. Figures 3(a) and (b) plot predicted means and
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Figure 3. Second-moment properties of eigenvalues of beam: (a) real part; and (b) imaginary part.

standard deviations of real parts �(i)
R (X); i = 1, . . . , 7 and imaginary parts �(i)

I (X); i = 1, . . . , 7,
respectively, as a function of mode i , obtained by the univariate and bivariate decomposition meth-
ods and the direct Monte Carlo simulation. The sample size for the direct Monte Carlo simulation
and the decomposition method was 100 000. Compared with the direct Monte Carlo simulation,
both versions of the decomposition method provide excellent estimates of second-moment prop-
erties of eigenvalues. The marginal probability densities of seven real and seven imaginary parts
of eigenvalues, respectively, plotted in Figures 4 and 5, also indicate a good agreement between
results from the decomposition and direct Monte Carlo methods. As expected, the bivariate method
is more accurate than the univariate method.

Corresponding to 14 eigenvalues, there are also 14 complex eigenvectors in conjugate pairs,
denoted by /(i)(X) =/(i)

R (X) ± √−1/(i)
I (X); i = 1, . . . , 7. Each eigenvector has 14 elements.

Consider the real part /(i)
R (X)≡{�(i)

R,1, . . . ,�
(i)
R,7, �

(i)
R,8, . . . , �

(i)
R,14}T, where the first seven elements

define the relative displacements of co-ordinates y1, . . . , y7 and the second seven define the relative
velocities of the same co-ordinates ẏ1, . . . , ẏ7. Figures 6(a) and (b) show the mean and standard
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Figure 4. Marginal probability densities of real parts of eigenvalues of beam.

deviation, respectively, of {�(i)
R,1, . . . ,�

(i)
R,7}T for the first three modes. The agreement between

decomposition methods and direct Monte Carlo estimates is again excellent.
The univariate and bivariate decomposition methods require 37 and 613 solutions, respectively,

of the matrix characteristic equation, whereas 100 000 such solutions (sample size) are involved
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Figure 5. Marginal probability densities of imaginary parts of eigenvalues of beam.

in the direct Monte Carlo simulation. However, these differences, although significant, are less
meaningful given that the random matrices are only 7× 7. An example where such difference has
a major practical significance is demonstrated next.
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Figure 6. Second-moment properties of real parts of first three eigenvectors of beam: (a) mean; and
(b) standard deviation (line=Monte Carlo, open triangle= univariate, open circle= bivariate).

5.3. Example 3—brake squeal analysis

The final example of this paper illustrates dynamics of an industrial-scale disc brake system,
which defines an eigenvalue problem heavily studied in the automotive industry for understanding
brake squeal performance [25]. The probabilistic model developed was applied to evaluate how
uncertainties in material properties and frictional coefficient impact brake squeal performance. The
brake system consists of a rotor surrounded by two pads on both sides, as shown in Figure 7.
The rotor has a diameter of 288mm, a thickness of 20mm, and is made of isotropic cast iron
with random elastic modulus Ec = 125X1 GPa. The pads are made of an anisotropic, organic, fric-
tional material with non-zero random moduli D1111 = D2222 = 5.94X2 GPa, D1122 = 0.76X2 GPa,
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Figure 7. A finite element model of disc brake system with various components.

D1133 = D2233 = 0.98X2 GPa, D3333 = 2.27X2 GPa, D1212 = 2.59X2 GPa, and D1313 = D2323 =
1.18X2 GPa. Two back plates and insulators, positioned behinds the pads, are made of isotropic
steel with random modulus Es = 207X3 GPa. The mass density of the rotor material is �c =
7.2× 10−6X4 kg/mm3 and the frictional coefficient between rotor and pad is fr = X5. Table II
defines the statistical properties of X={X1, . . . , X5}T ∈ R5. The lognormal distribution of X was
defined based on expert judgment. The remaining deterministic parameters are as follows: mass
density of steel= 7.82× 10−6 kg/mm3; mass density of pad= 2.51× 10−6 kg/mm3; and Poisson
ratios of the back plate, insulator, and rotor= 0.28, 0.29, and 0.24, respectively. No damping was
included (C= 0) in the present analysis. A finite element model of the disc brake system involving
27,481 C3D6 and C3D8I elements from the ABAQUS commercial code is shown in Figure 7. The
total number of degrees of freedom is 881 460.
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Table II. Statistical properties of random input for brake squeal analysis.

Random variable∗ Mean Coefficient of variation Probability distribution

X1 1 0.1 Lognormal
X2 1 0.1 Lognormal
X3 1 0.15 Lognormal
X4 1 0.15 Lognormal
X5 Varies† 0.2 Lognormal

∗All random variables are statistically independent.
†Varies as 0.5, 0.3, and 0.1.

The disc brake analysis was conducted in three steps. First, a contact between the rotor and
the pads was established by applying pressure to the external surface of the insulators. Second,
a rotational velocity of 5 rad/s, representative of braking at low speed, was imposed to create
a steady-state motion. The resulting equation of motion, described by Equation (2), involves an
effective stiffness matrix K(X) − Kf(X), where the addition of the friction-induced component
Kf(X) destroys the symmetry, leading to complex modes even when there is no damping. Third, the
subspace projection technique embedded in the ABAQUS code was employed to extract complex
eigenvalues in the steady-state condition.

In calculating eigenvalues, both deterministic and stochastic analyses were performed. For
the deterministic eigenvalue analysis, all previously defined random input except the frictional
coefficient were fixed at their mean values. Two separate eigensolutions, one without friction
( fr = 0) and the other with friction ( fr = 0.5), were obtained. When fr = 0, the stiffness matrix is
symmetric and the system possesses only real modes. In the absence of friction, the 6th and 7th
mode shapes, displayed in Figure 8(a), have frequencies of 1945.6 and 1957.2Hz, respectively.
These two, closely spaced, neighbouring modes merge when the friction is raised to fr = 0.5,
leading to the mode shapes (real part) in Figure 8(b) with a common frequency of 1953.8Hz.
More importantly, a complex eigenvalue associated with the 7th mode, one of the two merged
modes, has a positive real part, which makes the mode unstable. Similar instabilities occur at
higher frequencies of 3040.5, 8026.0, and 8997.6Hz when fr = 0.5. All of these instabilities can
be identified by plotting the real part versus the imaginary part (frequency) of the eigenvalues,
as presented in Figure 9 for the first 55 eigenvalues evaluated here. These unstable modes are
frequently attributed to the dynamic instability of a disc brake system, creating unwanted noise,
commonly known as brake squeal.

For the random input X with its statistical properties listed in Table II and E[ fr] = E[X5] = 0.5,
the univariate method was employed to evaluate probabilistic characteristics of eigensolutions.
The calculation of eigenvalues for a given input is equivalent to performing a large-scale finite
element analysis (ABAQUS). Therefore, computational efficiency is a major practical requirement
in solving the disc brake random eigenvalue problem. Figures 10(a) and (b) present marginal
probability densities of the real and imaginary (frequency) parts, respectively, of the first unstable
mode. These probability densities quantify the effect of random input on the variability of important
modal properties of a disc brake system. Marginal densities of remaining unstable frequencies can
be developed similarly.
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Figure 8. Effect of friction on 6th and 7th modal properties of disc brake system: (a) closely spaced
modes ( fr = 0); and (b) merged modes ( fr = 0.5).

For a disc brake system possessing Nu unstable complex modes comprising complex eigenvalues
�(i)
u (X); i = 1, . . . , Nu, consider a stochastic instability index U (X), defined as U (X) ≡∑Nu

i=1 −
2Re[�(i)

u (X)]/|Im[�(i)
u (X)]|. The instability index, which is non-positive, represents a cumulative

measure of damping ratios associated with all unstable modes. The magnitude of the instabil-
ity index signifies brake squeal tendency. Using samples generated from the univariate method,
Figure 11 plots distribution functions ofU (X) for three different values of E[ fr] = E[X5] = 0.1, 0.3,
and 0.5. The trend in these distribution functions suggests that the probability of brake squeal can
be significantly reduced by lowering the mean frictional coefficient, however, with increasing the
brake pressure. A similar stabilization process can be developed by modifying the geometry and
material properties of the brake components.
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For computational effort involving N = n = 5, only 21 finite element analyses were required by
the univariate method. Since the decomposition method yields an explicit eigenvalue approximation,
an arbitrarily large sample size, 100 000 in this example, was selected to perform the embedded
Monte Carlo analysis. Due to the computational expense inherent to ABAQUS analysis, no direct
Monte Carlo analysis was feasible for this problem.

6. CONCLUSION

A dimensional decomposition method was developed for calculating the probabilistic characteristics
of complex-valued eigenvalues and eigenvectors of linear, stochastic, dynamic systems. The method
is based on: (1) a finite, hierarchical decomposition allowing lower-dimensional approximations
of eigensolutions; (2) Lagrange interpolation of lower-dimensional component functions; and (3)
Monte Carlo simulation. The effort in finding the probabilistic characteristics of eigensolutions
can be viewed as performing eigenvalue analyses at selected deterministic input defined by sample
points. Compared with the commonly used perturbation method, neither the assumption of small
input variability nor the calculation of the derivatives of eigensolutions is required by the method
developed. Hence, the method can be easily adapted for solving random eigenvalue problems
involving third-party, commercial, finite-element codes. The proposed method was applied to a non-
proportionally damped spring–mass–damper system, a non-proportionally damped cantilever beam,
and an industrial-scale disc brake system with an unsymmetric stiffness matrix. Results indicate
that the decomposition method provides excellent estimates of the moments and/or probability
densities of eigenvalues and eigenvectors for various cases including large statistical variations of
input. The computational efforts required by the univariate and bivariate decomposition method
are linear and quadratic, respectively, with regard to the number of random variables involved.
Therefore, the method developed is also computationally efficient when compared with the direct
Monte Carlo simulation.
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APPENDIX A

For the discrete model of the beam, the 7× 7 mass, damping, and stiffness matrices are

M(X) = M(X)l

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 1

0 0 0 0 1 4 3

0 0 0 1 4 8 5

0 0 1 4 8 12 7

0 1 4 8 12 16 9

1 4 8 12 16 20 11

4 8 12 16 20 24 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C(X) = C(X)

l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

and

K(X) = M(X)g

2

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 k6 −2k6 + 1 k6 − 1

0 0 0 k5 −2k5 + 3 k5 − 2 −1

0 0 k4 −2k4 + 5 k4 − 2 −2 −1

0 k3 −2k3 + 7 k3 − 2 −2 −2 −1

k2 −2k2 + 9 k2 − 2 −2 −2 −2 −1

−2k1 + 11 k1 − 2 −2 −2 −2 −2 −1

K − 2 −2 −2 −2 −2 −2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

respectively, where ki (X) = 2ki (X)/(M(X)gl), K (X)= 2K (X)/(M(X)gl), and g is the accelera-
tion due to the gravity.
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