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Abstract. This study proposes two new methods to estimate the energy release rate of a circumferentially cracked
pipe with an internal, constant-depth, finite-length surface flaw subjected to pure bending loads. The methods
are based on the deformation theory of plasticity, constitutive law characterized by Ramberg–Osgood model, and
an equivalence criterion incorporating reduced thickness analogy for simulating system compliance due to the
presence of a crack. Closed-form solutions were developed in terms of elementary functions for an approximate
evaluation of J-integral. They are general and can be applied in the complete range between elastic and fully
plastic conditions. Several numerical examples are presented to illustrate the proposed methods. The comparisons
with the results of elastic–plastic finite element analysis showed satisfactory prediction of J-integral by one of the
proposed methods.

Key words: elastic–plastic fracture mechanics, J-integral, surface crack, pipe, finite element method, energy
release rate.

1. Introduction

Aside from ideally brittle materials, any loading of a cracked engineering structure is accompa-
nied by inelastic deformation in the neighborhood of the crack tip due to stress concentration.
Consequently, the ultimate utility of linear-elastic fracture mechanics (LEFM) must necessar-
ily depend on the extent of inelastic deformation being small compared with the size of the
crack and any other characteristic length. For materials with high toughness and low strength,
it is virtually impossible to satisfy this condition due to extensive plastic deformation around a
crack tip. Cracked components made of these materials, which pose serious threat to structural
integrity, are reactor pressure vessels, steam generator vessels, pressurizer vessels, piping, and
steam generator tubes of a modern nuclear power plant. In much or all of the working tem-
perature regime of these structural components, the material is being typically stressed above
the brittle-to-ductile transition temperature where the fracture response is essentially ductile
and the material is capable of considerable inelastic deformation. These issues are not unique
to the nuclear industry. Identical conditions also prevail in others, notably in chemical and
fossil plants and aerospace and aircraft propulsion. As such, theories based on elastic–plastic
fracture mechanics (EPFM) are needed to obtain realistic measures of fracture behavior of
cracked structural systems.

Recent analytical and experimental studies on EPFM indicate that the energy release
rate (also known as the J-integral) and crack-tip opening displacement (CTOD) are the
most viable fracture parameters for characterizing initiation of crack growth, stable crack
growth, and subsequent instability in ductile materials (Rice, 1968; Hutchinson, 1982). This
clearly suggests that the fracture parameters like J and/or CTOD can be conveniently used to
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assess structural integrity for both leak-before-break and in-service flaw acceptance criteria
in degraded piping systems. It is, however, noted that the parameter J still possesses some
theoretical limitations. For example, the Hutchinson–Rice–Rosengren (HRR) singular field
(Rice and Rosengren, 1968; Hutchinson, 1968) may not be valid in the case of certain amount
of crack extension where J ceases to act as amplifier for this singular field. Nevertheless,
possible error is considered tolerable if the relative amount of crack extension stays within
a certain limit and if elastic unloading and non-proportional plastic loading zones around a
crack tip are surrounded by a much larger zone of nearly proportional loading controlled by
the HRR field. Under this condition of J-dominance, both the onset and limited amount of
crack growth can be correlated to the critical values of J and J-resistance curve, respectively
(Paris et al., 1979).

The evaluation of energy release rates in circumferentially cracked pipes is usually per-
formed by (1) numerical analysis and (2) estimation techniques. Traditionally, a comprehensive
numerical study has been based on elastic–plastic finite element method (FEM) for nonlinear
stress analysis. In general, the FEM provides accurate results for the fracture response, but
it can be expensive and time-consuming to be used routinely. On the other hand, simple
mathematical models, often referred to as J-estimation models, can also be used or developed
to predict J or other fracture parameters of interest from elastic–plastic fracture theories.
However, these models often require simpler representations of the material’s stress-strain
behavior, flaw shape, orientation, loading, and boundary conditions. If these assumptions are
acceptable, then the J-estimation method provides an alternative means for characterizing
fracture response with much less computational cost when compared with the FEM. Due to
approximations, however, the J-estimation methods, in general, are less accurate than the
FEM and hence, often requires validation with the latter method.

For circumferentially surface-cracked pipes, perhaps the GE/EPRI method (Kumar and
German, 1988) is the first J-estimation method developed to predict J-integral and other
fracture parameters. In this method, Kumar and German (1988) compiled a series of FEM
solutions for several crack sizes, pipe geometries, and material properties in a handbook
form. For example, dimensionless influence functions were developed using the line-spring
finite-element results for predicting J , the crack-opening displacement, and pipe rotations.
For any arbitrary new problem, the solution is usually achieved from multiple interpolation
(and extrapolation, if necessary) of the tabulated results. For surface-cracked pipe, the only
functions developed initially were those for 360-degree circumferential cracks under pure ten-
sile loading. For pure bending loads, the functions for finite-length cracks were subsequently
determined for a very limited number of cases. The primary limitation of this method involves
the errors introduced in the interpolation and extrapolation of limited tabulated influence func-
tions. In addition, no such functions were developed for deep surface-cracked pipes. Realizing
these limitations, Ahmad et al. (1989) developed an estimation scheme to predict J and
moment-rotation behavior under pure bending using the existing GE/EPRI functions for 360-
degree surface cracks under tensile loading. Tables of various dimensionless functions required
for the numerical calculations were developed by Ahmad et al. (1989) and incorporated into
two resulting computer codes, known as the SC.TNP and SC.TKP, for analyzing thin-walled
and thick-walled pipes, respectively (Scott and Ahmad, 1987). There are three limitations in
this method. First, this method involves a ‘disposable’ length parameter which represents the
distance from the plane of the crack to that cross-section where the stresses are assumed to be
uniform. This parameter is not well-defined and the results vary significantly with the choice
of this parameter. Second, the GE/EPRI functions for deeply cracked specimens are not avail-
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able. Third, the method is applicable only for pure bending loads. Combined loads cannot be
handled by this method. However, it must be noted that this was the only J-estimation scheme
available for finite-length surface-cracked pipes under pure bending loads. To evaluate the
accuracy of SC.TNP and SC.TKP methods, Krishnaswamy et al. (1995) conducted a compu-
tational study by comparing the predicted J-integral solutions with those from elastic–plastic
finite element analysis. The results showed that further refinements are necessary to improve
the predictions of SC.TNP and SC.TKP methods. In consequence, two research directions
were pursued. One study involved refinement of SC.TNP and SC.TKP methods by modifying
the length parameter so that it becomes an empirical function of wall thickness and material
hardening constant (Krishnaswamy et al., 1995). The other study involved development of a
new J-estimation method without having to depend on the GE/EPRI influence functions. This
paper presents the analytical developments and findings of the latter study.

In this study, two new methods were developed to predict the energy release rate of a
circumferentially cracked pipe with an internal, constant-depth, finite-length surface flaw
subjected to pure bending loads. The methods are based on (1) the deformation theory of
plasticity, (2) constitutive law characterized by Ramberg–Osgood power-law model, and
(3) an equivalence criterion incorporating reduced thickness analogy for simulating system
compliance due to the presence of a crack. Closed-form solutions were developed in terms of
elementary functions for an approximate evaluation of J-integral. The methods are general
in the sense that they may be applied in the complete range between elastic and fully plastic
conditions. Since they are based on J-tearing theory, they are subject to the usual limitations
imposed upon this theory, e.g., proportional loading, etc. This has the implication that the
crack growth must be small, although in practice, J-tearing methodology is used far beyond
the limits of its theoretical validity with acceptable results (Wilkowski et al., 1989; Schmidt et
al., 1991; Wilkowski et al., 1991–1994; Hopper et al., 1995). Several numerical examples are
presented to illustrate the proposed methods which were verified with the reference solutions
from elastic–plastic finite element analysis.

2. General background

The J-estimation methods developed in this study can be best described with the aid of
Figure 1. As shown in Figure 1(a), a circumferential constant-depth, internal, surface crack is
assumed to exist in the pipe that has mean radius,Rm, and wall thickness, t. The depth and total
angle of the surface crack are denoted by a and 2�, respectively. The crack is symmetrically
placed with respect to the bending plane of the pipe. The crack is located sufficiently far
from the pipe ends such that the end effects on crack-driving force are inconsequential. In
Figure 1(b), the pipe is subjected to a pure bending moment, M , applied at the remote ends
and the resulting rotation of one pipe end relative to the other end is denoted by �. In the
development of a J-estimation scheme, it is generally assumed that the load-point rotation
due to the presence of crack, �c, and the crack driving force, J , can be split into elastic and
plastic components

�c = �ce + �cp; (1)

J = Je + Jp; (2)

where the subscripts ‘e’ and ‘p’ refer to elastic and plastic contributions, respectively. In
the elastic range, �ce and M are uniquely related. In addition, if the deformation theory of
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Figure 1. Schematic of idealized surface-cracked pipe geometry and loading (a) Pipe cross-section containing a
surface crack, (b) Surface-cracked pipe under pure bending.

plasticity holds, a unique relationship also exists between �cp andM . Once these relationships
are determined, the elastic component, Je, and the plastic component, Jp, of the total energy
release rate, J , can be obtained readily.

3. The elastic solution

The elastic energy release rate, Je, at the point of maximum depth can be defined as

Je =
@UT

@A
=

@

@A
(U c + Unc) =

@U c

@A
; (3)

whereUT is the total internal strain energy,Unc is the strain energy which would exist if there
were no crack present, U c = UT � Unc is the additional strain energy in the pipe due to the
presence of a crack, and A = 2a�(Rm � t=2 + a=2) is the cracked area. For thin-walled pipe
with mode-I crack growth, Je at the point of maximum depth can be obtained as

Je =
K2

I

E0
; (4)
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where E0 = E=(1� �2) for plane strain condition with E and � representing elastic modulus
and Poisson’s ratio of the material, respectively, and KI is the mode-I stress intensity factor.
From the LEFM theory, KI at the deepest point of the crack is given by

KI =
M

�R2
mt

FB(a=t; �=�)
p
�a; (5)

in which FB(a=t; �=�) is a geometry function relating KI of a cracked pipe to that for the
same size (depth) of a through-wall crack in an infinite plate. In general, FB should be a
function of a=t; �=�, and Rm=t. But, according to Article IWB-3650 in Section XI of the
ASME Code1 (1992),

FB(a=t; �=�) = 1:1 +
a

t

"
�0:09967 + 5:0057

�
a

t

�

�

�0:565

� 2:8329
�
a

t

�

�

�#
: (6)

Clearly, FB represented by Equation 6 does not have an explicit functional dependency on the
Rm=t ratio of the pipe. Preliminary results from authors’ linear-elastic finite element analysis
suggest that this equation may not be satisfactory forRm=t > 20. Work is currently underway
at the University of Iowa and Battelle to critically evaluate the adequacy of Equation 6 and
develop new expressions for FB(a=t; �=�), if necessary. Nevertheless, Equation 6 was used
in the present study, because it was the only equation available at that time for representing
FB of constant-depth surface flaws in pipes. From Equations 3 to 5, U c can be integrated to
yield

U c =
M 2

�R4
mt

2E0
IB(a=t; �=�); (7)

where

IB(a=t; �=�) = 2�(Rm � 1
2t)

Z
aF 2

B(a=t; �=�)da + 2�
Z
a2F 2

B(a=t; �=�) da: (8)

Using Castigliano’s Theorem

�ce =
@U c

@M
; (9)

which when combined with Equation 7 gives

�ce =
2M

�R4
mt

2E0
IB(a=t; �=�); (10)

as a relationship between moment and elastic rotation. Equations 4 through 6 completely
specify the elastic energy release rate, Je, and hence the elastic solution is complete in closed
form. The integral in Equation 8 can be evaluated using the expression of FB(a=t; �=�) given
by Equation 6. Explicit functional form of IB(a=t; �=�) is given in Appendix A.

1 FB in Equation 6 was originally developed in 1989–1991 by Novetech Corporation for Electric Power
Research Institute during the compilation of Ductile Fracture Handbook (Volume 2). Equation 6 has been claimed
to be valid for 0:08 6 a=t 6 0:8; 0:05 6 �=� 6 0:5, and 5 6 Rm=t 6 10.
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4. The plastic solution

The plastic energy release rate, Jp, also at the point of maximum depth, can be defined as

Jp =

Z M

0

@�cp

@A
dM =

@

@A

Z M

0
�cp dM; (11)

the evaluation of which requires determination ofM��cp relationship. When this relationship
is obtained, Equation 11 can be used to find Jp and can then be added to Je to determine the
total J according to Equation 2.

A widely used univariate constitutive law describing material’s stress-strain (��") relation
is the well-known Ramberg–Osgood model given by

"

"0
=

�

�0
+ �

�
�

�0

�n
; (12)

where �0 is a reference stress, which can be arbitrary, but typically assumed to be the yield
stress, "0 = �0=E is the associated reference strain, and � and n are the parameters of
above power-law model usually chosen from a best fit of experimental data. In applying
the Ramberg–Osgood equation to the cracked pipe problem, it is necessary to relate the
stresses (or moments) with rotations. Ilyushin showed that the field solutions to the boundary
value problem involving a monotonically increasing load or displacement type parameter is
‘proportional’ (Ilyushin, 1946). Consequently, Equation 12 applies (minus the elastic term)
and the deformation theory plasticity is assumed to be valid. Thus

�cp �Mn; (13)

giving

�cp = ĈMn; (14)

where Ĉ is a proportionality constant which can be determined via FEM. In this study, an
alternative analytical formulation was developed to evaluate Ĉ and hence, estimate Jp.

4.1. EVALUATION OF Ĉ

Suppose that the actual pipe can be replaced by a pipe with reduced thickness, te, which extends
for a distance, â at the center as shown in Figure 2. Far from the crack plane, the rotation of the
pipe is not greatly influenced by whether a crack exists or some other discontinuity is present as
long as the discontinuity can approximate the effects of crack. The reduced thickness section,
which actually results in material discontinuity, is an attempt to simulate the reduced system
compliance due to the presence of crack. This equivalence approach was originally suggested
by Brust (1987) for analyzing through-wall-cracked pipes with base-metal cracks under pure
bending. Later Rahman and Brust successfully implemented the similar approach to evaluate
J for through-wall-cracked pipes with weld-metal cracks that can account for both base- and
weld-metal tensile properties (Rahman et al., 1991; Rahman and Brust, 1992; Rahman et
al., 1996). It is assumed here that the deformation theory of plasticity controls stress-strain
response and that the beam theory holds.
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Figure 2. Reduced section analogy by the SC.ENG1 and SC.ENG2 methods.

Consider the equivalent pipe with material discontinuity in Figure 2 which is subjected to
bending load,M at both ends. Using classical beam theory, the ordinary differential equations
governing displacement of beams with Ramberg–Osgood constitutive law (plastic part only)
can be easily derived. These equations, when supplemented by the appropriate boundary
and compatibility conditions, can be solved following elementary operations of calculus.
Details of algebra associated with these solutions are provided in Appendix B. The rotations
(dy=dx in Equations 60 and 63 of Appendix B) provide relationship between far-field plastic
rotation due to material discontinuity and the corresponding elastic rotations. According
to the equivalence method, the same relationship is assumed to hold between �cp and �ce. In
general, such a relationship would depend on geometry, material properties of pipe, equivalent
thickness, te, and also the spatial coordinate, x (see Figure 2). In particular, when the spatial
location is selected to be the point B (i.e., at x = â=2), the explicit relationship between �cp
and �ce becomes

�cp =

�
t

te

�n�1 � �

4K̂

�n
�

�
M

M0

�n�1

�ce; (15)

in which

M0 = �R2
mt�0; (16)

K̂ =

p
�

2

�
�

1 + 1
2n

�
�

�
3
2 + 1

2n

� ; (17)

with

�(u) =

Z
1

0
�u�1 exp(��) d�; (18)

representing the gamma function. Following the substitution of �ce from Equation 10 into
Equation 15, �cp becomes

�cp =

�
t

te

�n�1 � �

4K̂

�n
�

�
M

M0

�n�1 2M
�R4

mt
2E0

IB(a=t; �=�); (19)

frac4154.tex; 5/12/1997; 9:08; v.7; p.7



118 S. Rahman and F.W. Brust

which, when compared with Equation 14, yields

Ĉ =
�

Mn�1
0

�
�

4K̂

�n
H(a=t)n�1G(a=t); (20)

where

H(a=t) =
t

te
(21)

and

G(a=t) =
2

�R4
mt

2E0
IB(a=t; �=�): (22)

Following differentiation with respect to crack depth, a, the partial derivative of Ĉ is

@Ĉ

@a
=

�

tMn�1
0

�
�

4K̂

�n �
H(a=t)n�1 dG(a=t)

d(a=t)

+(n� 1)G(a=t)H(a=t)n�2 dH(a=t)

d(a=t)

�
; (23)

where

dG(a=t)

d(a=t)
=

2
�R4

mt
2E0

dIB(a=t; �=�)
d(a=t)

(24)

and

dIB(a=t; �=�)
d(a=t)

= at[2�(Rm � t=2) + 2�a]F 2
B(a=t; �=�): (25)

The explicit expressions for the functions H(a=t) and dH(a=t)=d(a=t) depend on the type of
limit-load solutions for surface-cracked pipes. They are discussed in the forthcoming sections.

4.2. ESTIMATION OF Jp

Having determined Ĉ and @Ĉ=@a, Equation 11 can be simplified further to evaluate Jp.
Following simple algebra, it can be shown that

Jp =
�(M=M0)

n+1(�=4K̂)n

2t�(Rm � t=2 + a)(n+ 1)

�
H(a=t)n�1 dG(a=t)

d(a=t)

+(n� 1)G(a=t)H(a=t)n�2 dH(a=t)

d(a=t)

�
: (26)

Equation 26 provides a simple closed-form solution of Jp.

5. The SC.ENG1 and SC.ENG2 methods

The evaluation of Jp in Equation 26 requires determination of H(a=t) and dH(a=t)=d(a=t).
According to the definition of H(a=t) (see Equation 21), this also requires estimation of

frac4154.tex; 5/12/1997; 9:08; v.7; p.8



Approximate methods for predictingJ-integral of a circumferentially surface-cracked pipe 119

equivalent thickness, te for the uncracked pipe. In the equivalence method proposed here te
can be determined by forcing the net-section-collapse moment of the equivalent uncracked pipe
to be equal to the net-section-collapse moment of the actual cracked pipe. For an uncracked
pipe with reduced thickness, te, the net-section-collapse moment, Md

L, is

Md
L = 4�fR

2
mte; (27)

where�f is the flow or collapse stress of the material. However, in determining the net-section-
collapse moment, M c

L, for circumferential surface-cracked pipe, there are several solutions
available in the current literature. In this study, two such equations, based on original and
Kurihara modifications, were used to determineH(a=t) and its derivative for the evaluation of
Jp. Accordingly, the expressions of Jp based on H(a=t) and dH(a=t)=d(a=t) obtained from
the original net-section-collapse equations (Kanninen et al., 1976) and Kurihara modification
to the net-section-collapse equations (Kurihara et al., 1988) are defined as the SC.ENG1 and
the SC.ENG2 methods, respectively. The explicit details for the evaluations of H(a=t) and
dH(a=t)=d(a=t) by these two methods are given in the next sections.

5.1. THE SC.ENG1 METHOD

The following are the original equations for the net-section-collapse moment, M c
L (Kanninen

et al., 1976) of a surface-cracked pipe under pure bending and the resulting expressions for
H(a=t) and dH(a=t)=d(a=t) used by the SC.ENG1 method. For � 6 � � �,

M c
L = 2R2

mt�f

�
2 sin � � a

t
sin �

�
; (28)

where

� =
� � �(a=t)

2
: (29)

When the limit loads from Equations 27 and 28 are made equal

H(a=t) =
2

2 sin ���(a=t)
2 � a

t sin �
(30)

and

dH(a=t)

d(a=t)
=

2
h
� cos ���(a=t)

2 + sin �
i

h
2 sin ���(a=t)

2 � a
t sin �

i2 : (31)

For � > � � �

M c
L = 2R2

mt�f

�
2� a

t

�
sin �; (32)

where

� =
�(1 � a=t)

2� a=t
: (33)
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When the limit loads from Equations 27 and 32 are made equal

H(a=t) =
2

(2� a=t) sin �(1�a=t)
2�a=t

(34)

and

dH(a=t)

d(a=t)
=

2�
2�a=t cos �(1�a=t)

2�a=t + 2 sin �(1�a=t)
2�a=th

(2� a=t) sin �(1�a=t)
2�a=t

i2 : (35)

5.2. THE SC.ENG2 METHOD

The following are the Kurihara modifications to the equations for the net-section-collapse
moment, M c

L (Kurihara et al., 1988) of a surface-cracked pipe under pure bending and the
resulting expressions for H(a=t) and dH(a=t)=d(a=t) used by the SC.ENG2 method. For
� 6 � � �

M c
L = 2R2

mt�f

�
2m sin � +

�
1� a

t
�m

�
sin �

�
; (36)

where

� = 1
2� +

�(1� a=t�m)

2m
: (37)

When the limit loads from Equations 27 and 36 are made equal

H(a=t) =
2

K1(a=t)
(38)

and

dH(a=t)

d(a=t)
= � 2

K1(a=t)2

dK1(a=t)

d(a=t)
; (39)

where

K1(a=t) = 2m sin
�

1
2� +

�(1� a=t�m)

2m

�
+ (1� a=t�m) sin � (40)

and

dK1(a=t)

d(a=t)
= � 1

m
cos

�
1
2� +

�(1� a=t�m)

2m

� �
m� + �(1� a=t)

@m

@(a=t)

�

+
2@m
@(a=t)

sin
�

1
2� +

�(1� a=t�m)

2m

�
�
�
1 +

@m

@(a=t)

�
sin �: (41)

For � > � � �

M c
L = 2R2

mt�f

�
1� a

t
+m

�
sin �; (42)
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where

� =
�(1� a=t)

1� a=t+m
: (43)

When the limit loads from Equations 27 and 42 are made equal

H(a=t) =
2

K2(a=t)
(44)

and

dH(a=t)

d(a=t)
= � 2

K2(a=t)2

dK2(a=t)

d(a=t)
; (45)

where

K2(a=t) = Q1(a=t) sin Q2(a=t); (46)

dK2(a=t)

d(a=t)
= Q1 cos Q2

dQ2

d(a=t)
+ sin Q2

dQ1

d(a=t)
; (47)

Q1(a=t) = 1� a

t
+m; (48)

Q2(a=t) =
�(1 � a=t)

Q1(a=t)
; (49)

dQ1

d(a=t)
= �1 +

@m

@(a=t)
(50)

and

dQ2

d(a=t)
= �

�Q1 + �(1� a=t) dQ1
d(a=t)

Q2
1

: (51)

In Equations 36 through 51, the functionsm(a=t; �=�) and @m(a=t; �=�)=@(a=t) are defined
as

m(a=t; �=�) = 1� (a=t)2(�=�)0:2; (52)

@m(a=t; �=�)

@(a=t)
= �2(a=t)(�=�)0:2; (53)

which are empirical functions developed by Kurihara et al. (1988). When the exponents in
the equation for m(a=t; �=�) are chosen to be 2 and 0.2 (see Equation 52), the predicted net-
section-collapse moments of pipes with both short and long deep flaws compare reasonably
well with the experimental data (Kurihara et al., 1988). When these exponents are assigned
large positive values, m approaches 1 and the resulting Kurihara modifications to the net-
section-collapse equations degenerate to the original equations. In that case, the difference
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Table 1. Geometric parameters and material properties for pipe fracture
analysis

Parameters Example set 1 Example set 2 Example set 3

Geometry:

D
(a)
0 , mm (inches) 404.2 (15.91) 554.7 (21.84) 170.5 (6.71)

t, mm (inches) 26.4 (1.04) 26.4 (1.04) 7.75 (0.305)
�=� 1

16 ;
1
4

1
4

1
4

a=t 1
2

1
2

1
2

Material Properties:(b)

�0, MPa (ksi) 241 (35) 241 (35) 345 (50)
E, GPa (ksi) 207 (30,000) 206 (29,900) 207 (30,000)
� 0.29 0.29 0.3
� 1 1 1
n 3, 10 2, 5, 10 2

(a) D0 = outer diameter of the pipe.
(b) The stress-strain (� � ") curve is represented by: "="0 = �=�0 +

�(�=�0)
n; "0 = �0=E.

between the SC.ENG1 and SC.ENG2 methods also vanishes. In this study, however, the
exponents suggested by Kurihara et al. (i.e., 2 and 0.2) were used for the development of
SC.ENG2 method. Further studies are needed to determine if the same exponents apply for
shallow cracks.

Equations 4 and 26 provide closed-form expressions of Je and Jp, respectively. This makes
the proposed estimation methods computationally feasible and attractive for the development
of probabilistic fracture-mechanics models. See Rahman (1996, 1997) for further details on
probabilistic analyses based on the SC.ENG2 method developed here.

6. Numerical examples

In this section, several numerical examples are presented to illustrate the SC.ENG1 and
the SC.ENG2 methods for predicting J-integral at the deepest point of the surface crack
subjected to pure bending load. In all cases, elastic–plastic finite-element results were used
to evaluate the accuracy of the proposed methods. Three example sets were considered. In
Example Set 1, the finite-element results were produced from a parallel study by the authors
(Krishnaswamy et al., 1995). Krishnaswamy (1995) has details of finite element modeling of
surface cracks by shell/line spring elements and three-dimensional solid elements. The results
of mesh refinement and validation of line-spring model by three-dimensional solid model are
also available in Krishnaswamy (1995). They will not be repeated here. In Example Sets 2
and 3, the finite-element solutions developed by researchers other than the authors were used
to verify the J-estimation results. The input parameters describing pipe geometry, crack size,
and material properties in these examples are defined in Table 1. The Ramberg–Osgood model
(Equation 12) was used for the material stress-strain curve.
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Figure 3. Comparisons of J-integral by various estimation methods with the finite-element results for surface-
cracked pipes under pure bending when �=� = 1=4 and n = 3.

6.1. EXAMPLE SET 1

In Example Set 1, a medium-size pipe with an outer diameter of 404.2 mm (13.91 inches)
which is subjected to pure bending was analyzed. The finite element results were generated by
the ABAQUS computer program (ABAQUS, 1993) and using the line-spring/shell elements.
The results from the line-spring/shell model were previously validated against those from the
full-scale three-dimensional solid model (Krishnaswamy, 1995). Hence, the line-spring FEM
results should be adequate in validating the J-estimation results. As shown in Table 1, four
pipe cases, involving two different crack lengths (e.g., �=� = 1

16 and 1
4) and two different

hardening exponents (e.g., n = 3 and 10), were considered. In all cases, the crack depth was
fixed to be 50 percent of the wall thickness.

Figures 3 through 6 show the plots of J versusM obtained by the SC.ENG1 and SC.ENG2
methods and the elastic–plastic FEM. The comparisons with the FEM results suggest that the
SC.ENG2 method provides reasonably accurate estimates of J-integral for various applied
loads for various combinations of crack length (�=�) and material constant (n). The agreement
between the SC.ENG2 and FEM solutions is excellent when �=� or n is larger. Figures 3
through 6 also show the corresponding results from the SC.ENG1 method which predicted
smaller J compared with both SC.ENG2 and finite-element solutions. Since, the Kurihara
modification in SC.ENG2 method lowers the net-section-collapse moment from the original
equations, the equivalent thickness, te is larger in SC.ENG1 method than that in SC.ENG2
method. Therefore, in the SC.ENG1 method, the values of H(a=t) and dH(a=t)=d(a=t)
functions (Note: H(a=t) = t=te) would be smaller resulting smaller Jp by the SC.ENG1
method as compared with that by the SC.ENG2 method (see Equation 26). Hence, the trend
shown in these figures is expected.

Figures 3 through 6 also show the results from the existing J-estimation methods, such
as the SC.TNP and SC.TKP methods, for the same pipe cases. The results by these methods
were produced to facilitate comparisons with the SC.ENG1 and SC.ENG2 methods and
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Figure 4. Comparisons of J-integral by various estimation methods with the finite-element results for surface-
cracked pipes under pure bending when �=� = 1=4 and n = 10.

Figure 5. Comparisons of J-integral by various estimation methods with the finite-element results for surface-
cracked pipes under pure bending when �=� = 1=16 and n = 3.

hence, to determine the level of technical improvements by this newly developed estimation
methods. From the above figures, it appears that the SC.ENG2 method provides more accurate
solutions of J-integral than either the SC.TNP or the SC.TKP methods for all of the pipe cases
considered in this study. However, more numerical studies with various pipe geometry (Rm=t
ratio) and crack size parameters (a=t and �=� ratios) need to be undertaken to make a generic
conclusion.
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Figure 6. Comparisons of J-integral by various estimation methods with the finite-element results for surface-
cracked pipes under pure bending when �=� = 1=16 and n = 10.

Figure 7. Comparisons of J-integral by the SC.ENG2 method with the finite-element results of Kumar and German
(1988) for surface-cracked pipes under pure bending.

6.2. EXAMPLE SET 2

In Example Set 2, a large 554.7-mm (21.84-inch) diameter (outer) pipe under pure bending was
analyzed. The finite element solutions were developed by Kumar and German (1988) using
the line-spring/shell elements and the ADINA computer code (ADINA, 1981). Three values
of material hardening exponent, n = 2; 5, and 10 were chosen to determine the sensitivity of
J . Other input details are given in Table 1.
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Figure 8. Comparisons of J-integral by the SC.ENG2 method with the finite-element results of Brickstad (1992)
and Kumar and German (1988) for surface-cracked pipes under pure bending.

Figure 7 shows the plots of J versus M obtained by the SC.ENG2 method and the finite
element analysis by Kumar and German (1988). The comparisons with FEM results suggest
that the SC.ENG2 method provides accurate estimates of J for all three values of n. The
agreement between SC.ENG2 and FEM solutions is excellent when n is greater. Similar
observation was also made in the comparisons of results using authors’ own FEM solutions.

6.3. EXAMPLE SET 3

In Example Set 3, a small-size pipe with an outer diameter of 170.5 mm (6.71 inches) also
under pure bending was analyzed by Brickstad (1992) using the ABAQUS computer program
(ABAQUS, 1993). For this example, elastic–plastic finite element results were also available
from the previous work of Kumar and German (1988) using the ADINA computer program
(ADINA, 1981). In both work, line-spring/shell models were used for the finite element
simulation. Table 1 gives the input parameters for this pipe.

The FEM results of J-integral from Brickstad (1992) are shown in Figure 8 as a function of
applied load. In this figure, the horizontal co-ordinate represents the applied bending moment
normalized with respect to the limit-moment of the uncracked pipe. Two sets of finite-element
results are presented and they correspond to the solutions by Brickstad (open points) and
Kumar and German (closed points). The ABAQUS solutions by Brickstad involved 8-noded
shell elements and 3-noded nonlinear line spring elements. The ADINA solutions by Kumar
and German involved influence functions which were developed using also the shell and
line spring elements. The J-integral values by the Kumar and German analysis are slightly
higher than those by Brickstad. Also, plotted in the same figure are the results of the SC.ENG2
method. The comparisons with the FEM results suggest that the SC.ENG2 method can provide
very accurate predictions of J for various applied moments. For this particular example, the
SC.ENG2 results appear to be closer to Brickstad’s ABAQUS solutions.
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7. Summary and conclusions

Two new methods, known as SC.ENG1 and SC.ENG2, were developed to estimate the energy
release rates of circumferentially surface-cracked pipes with finite-length internal flaws subject
to remote bending loads. They are based on the deformation theory of plasticity, constitutive
law characterized by Ramberg–Osgood model, and an equivalence criterion incorporating
reduced thickness analogy for simulating system compliance due to the presence of a crack.
For the equivalence criterion, the SC.ENG1 and SC.ENG2 methods are based on the use of
original net-section-collapse equations and Kurihara-modified net-section-collapse equations,
respectively. In either method, closed-form solutions were developed in terms of elementary
functions for an approximate evaluation of J-integral. The methods are general and can be
applied in the complete range between the elastic and fully plastic conditions.

Several numerical examples are presented to illustrate the proposed methods. To evalu-
ate their accuracy, J-integral solutions for several pipe diameters, crack sizes, and material
constants were obtained from a number of elastic–plastic finite-element analyses. The com-
parisons of results predicted by the new methods with those from the finite element method
showed that for a given applied moment the SC.ENG1 method would underpredictJ , while the
SC.ENG2 method would provide very good predictions of the energy release rates. It appears
that the SC.ENG2 method, which uses the Kurihara modifications to net-section-collapse
equations, is superior to the SC.ENG1 method, which uses the original net-section-collapse
equations. However, further studies are needed to validate the SC.ENG2 method by varying
pipe geometry and crack-size parameters.

The comparisons of results from the existing estimation methods showed that the SC.ENG2
method provides more accurate estimates of J-integral than either the SC.TNP or the SC.TKP
methods for the pipe cases considered in this study. However, more numerical studies are
needed to support this conclusion.
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Appendix A. The function IB(a=t; �=�)

According to the definition

IB(a=t; �=�) = 2�(Rm � t=2)
Z
aF 2

B(a=t; �=�) da+ 2�
Z
a2F 2

B(a=t; �=�) da

= 2�(Rm � t=2) IB1(a=t; �=�) + 2� IB2(a=t; �=�); (54)

where,

IB1(a=t; �=�) =

Z
aF 2

B(a=t; �=�) da (55)
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and

IB2(a=t; �=�) =

Z
a2F 2

B(a=t; �=�) da: (56)

Using FB(a=t; �=�) from Equation 6, the expressions of IB1(a=t; �=�) and IB2(a=t; �=�) can
be further reduced to

IB1(a=t; �=�) = t2[0:605(a=t)2 � 0:07309(a=t)3 + 3:08909(�=�)0:565(a=t)3:565

+f0:002484� 1:5581(�=t)g(a=t)4 � 0:21859(�=�)0:565(a=t)4:565

+0:112944(�=t)(a=t)5 + 4:884412(�=�)1:13(a=t)5:13

�5:09637(�=�)1:565(a=t)5:565 + 1:33755(�=�)2(a=t)6] (57)

and

IB2(a=t; �=�) = t3[0:40333(a=t)3 � 0:05482(a=t)4
+ 2:4124(�=�)0:565

(a=t)4:565

+f0:001987� 1:24648(�=�)g(a=t)5 � 0:1793064(�=�)0:565(a=t)5:565

+0:09412(�=�)(a=t)6 + 4:08924(�=�)1:13(a=t)6:13

�4:32008(�=�)1:565(a=t)6:565 + 1:14697(�=�)2(a=t)7]: (58)

Appendix B. Governing differential equations for power-law model

Using the classical beam theory for small deformations, the governing differential equations
for a pipe with a pure power law constitutive model (i.e., plastic part only) are as follows (see
Figure 2 for the definitions of symbols):

(1) Segment AB (â=2 6 x 6 L=2)

d2y

dx2 =
1
Rm

�
M

Mk

�n
; (59)

dy
dx

=
1
Rm

�
M

Mk

�n
x+ C1; (60)

y =
1
Rm

�
M

Mk

�n
1
2x

2 + C1x+ C2: (61)

(2) Segment BC (0 6 x 6 â=2)

d2y

dx2 =
1
Rm

�
M

Mk

�n � t

te

�n
; (62)

dy
dx

=
1
Rm

�
M

Mk

�n � t

te

�n
x+ C3; (63)

y =
1
Rm

�
M

Mk

�n � t

te

�n
1
2x

2 + C3x+ C4; (64)

frac4154.tex; 5/12/1997; 9:08; v.7; p.18



Approximate methods for predictingJ-integral of a circumferentially surface-cracked pipe 129

where

Mk =
4KIK̂

�Rm
; (65)

K =
�0

(�"0)
1=n

; (66)

and I � �R3
mt is the moment of inertia of an uncracked pipe cross-section. If the remote

ends of the pipe in Figure 2 are simply supported (hinged), the appropriate boundary and
compatibility conditions can be enforced to determine the constantsC1 to C4 as

C1 = � 1
Rm

�
M

Mk

�n â
2

�
1�

�
t

te

�n�
; (67)

C2 =
1
Rm

�
M

Mk

�n "
�L

2

8
+
Lâ

4

�
1�

�
t

te

�n�#
; (68)

C3 = 0; (69)

C4 =
1
Rm

�
M

Mk

�n "
�L

2

8
+
Lâ

4

�
1�

�
t

te

�n�
� â2

8

#
: (70)
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