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Abstract. A new method is proposed for shape sensitivity analysis of a crack in a homogeneous, iso-
tropic, and nonlinearly elastic body subject to mode I loading conditions. The method involves the
material derivative concept of continuum mechanics, domain integral representation of the J-integral,
and direct differentiation. Unlike virtual crack extension techniques, no mesh perturbation is required
in the proposed method. Since the governing variational equation is differentiated before the pro-
cess of discretization, the resulting sensitivity equations are independent of any approximate numer-
ical techniques. Based on the continuum sensitivities, the first-order reliability method was employed
to perform probabilistic analysis. Numerical examples are presented to illustrate both the sensitivity
and reliability analyses. The maximum difference between the sensitivity of stress-intensity factors cal-
culated using the proposed method and the finite-difference method is less than four percent. Since
all gradients are calculated analytically, the reliability analysis of cracks can be performed efficiently.
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1. Introduction

In stochastic fracture mechanics, the derivatives of the J-integral or other fracture
parameters are often required to predict the probability of fracture initiation and/or
instability in cracked structures (Madsen et al., 1986; Provan, 1987; Besterfield et al.,
1990; Grigoriu et al., 1990; Besterfield et al., 1991; Rahman, 1995; Rahman and Kim,
2000; Rahman, 2001). The calculation of these derivatives with respect to load or
material parameters, which constitutes size-sensitivity analysis, is not unduly difficult.
However, the evaluation of derivatives with respect to crack size is a challenging task,
since it requires a shape sensitivity analysis. Using a brute-force type finite-difference
method to calculate shape sensitivities of crack-driving forces is often computation-
ally expensive, because numerous deterministic analyses by the finite element method
(FEM) may be required for a complete reliability analysis.1 Furthermore, if the finite-
difference perturbations are too large relative to FEM meshes, the approximations

1Here the finite-difference method refers to the calculation of derivatives of a performance function,
e.g., the J-integral, with respect to the crack size; the finite element method refers to the solution of
the boundary-value problem for a given crack size.
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can be inaccurate, whereas if the perturbations are too small, numerical truncation
errors may become significant. Therefore, for any deterministic or probabilistic frac-
ture analysis that significantly depends on shape sensitivities, it is important to evalu-
ate the derivatives of fracture parameters accurately and efficiently. In this paper, the
shape sensitivity analysis refers to the first-order derivative of a crack-driving force
with respect to the crack size.

In the linear-elastic fracture mechanics, some methods have already appeared to
predict the sensitivities of stress-intensity factors (SIFs) with respect to the crack size.
These methods entail two fundamental approaches: (1) the virtual crack extension
approach and (2) the continuum shape sensitivity approach. In the first approach,
Lin and Abel (1988) introduced a variational formulation in conjunction with a vir-
tual crack extension technique (delorenzi, 1982, 1985; Haber and Koh, 1985; Barbero
and Reddy, 1990) (primarily used for calculating SIFs indirectly) to calculate the first-
order derivative of SIF for a single crack. Later, Suo and Combescure (1992) devel-
oped a double virtual crack extension method to calculate the first-order sensitivity
of the energy release rate (ERR) with respect to the crack size. This method cleverly
avoids calculation of the second-order derivative of the stiffness matrix and is appli-
cable under combined loading conditions. Subsequently, Hwang et al. (1998) gener-
alized the virtual crack extension method to calculate both first- and second-order
derivatives of SIFs for linear structures involving multiple cracks, crack-face pressure,
and thermal loading. However, all of these methods in this approach require a mesh
perturbation, a fundamental drawback of all virtual crack extension techniques. For
higher-order derivatives, the number of elements affected by mesh perturbation sur-
rounding the crack tip has a significant effect on the solution accuracy (Hwang et al.,
1998).

Recently, alternative methods based on continuum shape sensitivity theory have
emerged to obtain derivatives of ERR with respect to the crack size for linear-elas-
tic structures (Keum and Kwak, 1992; Feijóo et al., 2000; Chen et al., 2001a, b;
2002).2 For example, Keum and Kwak (1992), and Feijóo et al. (2000) applied the
theory of shape sensitivity analysis to calculate the first-order derivative of the poten-
tial energy with respect to the crack size. Since ERR is the first-order derivative of
the potential energy, the ERR can be calculated by this second approach. Later on,
Taroco (2000) extended this approach to formulate the second-order sensitivity of
potential energy to predict the first-order derivative of ERR. This is, however, a for-
midable task since it involves calculation of second-order sensitivities of displacement
field. No numerical results were presented (Taroco, 2000). To overcome this prob-
lem, Chen et al. (2001a, b; 2002) invoked the domain integral representation of the
J-integral and an interaction integral and used the material derivative concept of con-
tinuum mechanics to obtain the first-order sensitivity of the J-integral and mixed-
mode SIFs for linear-elastic cracked structures. No mesh perturbation is necessary
in the latter approach involving continuum shape sensitivity analysis. However, shape
sensitivity methods available today (e.g., de Lorenzi, 1982, 1985; Haber and Koh,
1985; Barbero and Reddy, 1990; Keum and Kwak, 1992; Suo and Combescure, 1992;
Hwang et al., 1998; Feijóo et al., 2000; Taroco, 2000; Chen et al., 2001a, b; 2002) are
valid only for linear-elastic cracked structures. Since for some materials the nonlinear

2The nouns ‘derivative’ and ‘sensitivity’ are used synonymously in this paper.
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Figure 1. Variation of domain.

fracture-mechanics theory predicts more realistic fracture behavior than the linear-
elastic theory, there is a dire need to develop sensitivity equations for nonlinear-elas-
tic cracked structures. To the best knowledge of the authors, no sensitivity methods
for nonlinear fracture analysis of cracks are known to have been developed.

This paper presents a new method for predicting the first-order sensitivity of the
J-integral with respect to crack size in a nonlinearly elastic structure under mode I
loading conditions. The method involves the material derivative concept of contin-
uum mechanics, domain integral representation of the J-integral, and direct differen-
tiation. Numerical examples are presented to calculate the first-order derivative of the
J-integral using the proposed method. The results from this method are compared
with the finite-difference methods. Based on continuum sensitivities, the first-order
reliability method is formulated for predicting the stochastic response and reliability
of cracked structures. A fracture reliability problem is presented to illustrate the use-
fulness of the proposed sensitivity equations.

2. Shape sensitivity analysis

2.1. Velocity Field

Consider a three-dimensional body in its reference or initial configuration. Let � and
� denote the interior (domain) and the boundary in the initial configuration, respec-
tively. A material point is identified by its position vector x∈�. Consider the motion
of the body from its initial configuration into a perturbed configuration with domain
�τ and boundary �τ , as shown in Figure 1. This process can be expressed by

T : �̄→ �̄τ |xτ =T(x, τ ), (1)

where the overbar denotes set closure, τ is a real-valued, strictly monotonically
increasing function of ‘time.’ In this study, the parameter τ plays the role of shape-
change scalar parameter that defines the transformation T, and xτ ∈�τ is the map of
x ∈� under T. At the initial time τ = 0, the domain is �. The trajectory of a point
x ∈ �, beginning at τ = 0, can now be followed, as shown in Figure 1. The initial
point moves to xτ = T(x, τ ). Hence, a τ -velocity field, henceforth simply referred to
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as the velocity field, can be defined as

V(xτ , τ )≡ dxτ

dτ
= ∂T(x, τ )

∂τ
(2)

since the initial point x does not depend on τ . Assuming that T
−1

exists, i.e., x =
T

−1
(xτ , τ ), this velocity field can also be expressed in terms of xτ =T(x, τ ), which is

V(xτ , τ )≡ dxτ

dτ
= ∂T(T

−1
(xτ , τ ), τ )

∂τ
. (3)

Under common regularity hypothesis, T can be approximated by

T(x, τ )=T(x,0)+ τ
∂T(x,0)

∂τ
+O(τ 2)∼=x+ τV(x,0), (4)

where x = T(x,0). Henceforth, the velocity field V(x,0) will be simply denoted by
V(x).

2.2. Material derivative

Let � be a Ck-regular open set, i.e., its boundary � is a compact manifold of Ck in
R d(d = 2 or 3), so that the boundary � is closed and bounded in R d and can be
locally represented by a Ck function (Fleming, 1965). Let V(x)∈R d in Equation (4)
be a vector defined on a neighborhood U of the closure �̄ of � and let V(x) and its
derivatives up to order k�1 be continuous. With these commonly used hypotheses, it
can be shown that for small τ, T(x, τ ) is a homeomorphism (i.e., a one-to-one, con-
tinuous map with a continuous inverse) from U to Uτ ≡ T(U, τ); T(x, τ ), T

−1
(xτ , τ ),

and �τ are Ck regular (Zolesio, 1979).
Suppose that zτ , (xτ ) is the classical solution (displacement field) of the govern-

ing variational equation from nonlinear elasticity on the perturbed domain �τ (Haug
et al., 1986)

a�τ
(zτ , z̄τ )= l�τ

(z̄τ ), for all z̄τ ∈Zτ , (5)

where zτ , and z̄τ , are actual and virtual displacement fields of the structure,
respectively, Zτ ⊂ Hm(�τ ) is the space of kinematically admissible displacements
with Hm(�τ ) denoting Sobolev space of order m, zτ ∈ Zτ ⊂ Hm(�τ ), a�τ

(zτ , z̄τ ) ≡∫
�τ

σij (zτ )εij (z̄τ )d�τ and l�τ
(z̄τ ) ≡ ∫

�τ
Ti z̄iτ d�τ (assuming no body forces) are the

energy form and load linear form, respectively, σij (zτ ) and εij (z̄τ ) are the stress and
strain components, respectively, Ti is the ith component of the surface traction, and
z̄iτ is the ith component of z̄τ . The mapping zτ (xτ )≡zτ (x+τV(x)) in �τ depends on
τ in two ways. First, it is the solution of the boundary-value problem in �τ . Second,
it is evaluated at a point xτ ∈ �τ that moves with τ . Hence, the pointwise material
derivative at x∈� can be defined as (Haug et al., 1986)

ż= ż(x;�, V)≡ d
dτ

zτ (x+ τV(x))|τ=0 = lim
τ→0

[
zτ (x+ τV(x))−z(x)

τ

]
. (6)
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For zτ ∈Hm(�τ ), Adams (1975) has shown that for a Ck-regular open set �τ and for
k large enough, there exists an extension of zτ in a neighborhood Uτ of �̄τ

3, yield-
ing

ż(x;�, V)=z′(x;�, V)+∇zTV(x), (7)

where

z′(x;�, V)≡ lim
τ→0

[
zτ (x)−z(x)

τ

]
(8)

is the partial derivative of z, and ∇zTV= (∂zi/∂xj )Vj is the convective term with ∇=
{∂/∂x1, ∂/∂x2, ∂/∂x3}T representing a vector of gradient operator. One attractive fea-
ture of the partial derivative is that, given the smoothness assumption, it commutes
with the derivatives with respect to xi, i =1,2, and 3, since they are derivatives with
respect to independent variables, i.e.,(

∂z

∂xi

)′
= ∂

∂xi

(z′), i =1,2, and 3. (9)

Let �1 be a domain functional, defined as an integral over �τ , i.e.,

�1 =
∫

�τ

fτ (xτ )d�τ , (10)

where fτ (xτ ) is a regular function defined on �τ . If � is Ck regular, then the material
derivative of �1 at � is (Haug et al., 1986)

�̇1 =
∫

�

[f ′(x)+div (f (x)V(x))]d�, (11)

where f (x) is the image of fτ (xτ ) and Ck regular.

2.3. Shape Sensitivity of Response

Consider a general performance measure that can be written in the integral form

�2 =
∫

�τ

g(zτ ,∇zτ )d�τ . (12)

The material derivative of �2 at � using Equations (9) and (11) is (Haug et al., 1986)

�̇2 =
∫

�

[g,zi
żi −g,zi

(
zi,jVj

)+g,zi,j
żi,j −g,zi,j

(
zi,jVj

)
,j

+div (gV)]d� (13)

for which, a comma is used to denote partial differentiation, e.g., zi,j =∂zi/∂xj , żi,j =
∂żi/∂xj , g,zi

=∂g/∂zi, g,zi,j
=∂g/∂zi,j and Vj is the j th component of V. In Equation

(13), the material derivative ż is the solution of the sensitivity equation obtained by
taking the material derivative of Equation (5). Note that the expression of �̇2 involves

3The readers are referred to Adams (1975) for the exact condition on k to have an extension of zτ

in a neighborhood Uτ of �̄τ .
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field variables evaluated in the initial domain, when �2 is defined in the perturbed
domain (see Haug et al., 1986 for further details).

If no body force is involved, the governing variational equation in the initial
domain is

a�(z, z̄)≡
∫

�

σij (z)εij (z̄)d�= l�(z̄)≡
∫

�

Ti z̄id�, (14)

where σij (z) and εij (z̄) are the stress and strain tensors associated with the actual dis-
placement z and virtual displacement z̄, respectively, Ti is the ith component of the
surface traction, and z̄i is the ith component of z̄. In Equation (14), the energy form
a�(z, z̄) is nonlinear with respect to z and must be linearized for iterative solution of
z. If a∗

�(z;�z,z̄) denotes the linearized energy form with respect to state variable z

and its increment �z, the incremental form of Equation (14) is

a∗
�(zk

n;�zk+1
n , z̄)=��(z̄)−a�(zk

n, z̄), (15)

where the subscript n indicates the loading step counter and the superscript k indi-
cates the iteration counter within a loading step. Note, Equation (15) is linear with
respect to �zk+1

n , which can be easily solved (e.g., by solving linear FEM matrix
equation) to obtain the total displacement as

zk+1
n =zk

n +�zk+1
n . (16)

Equation (16) is solved recursively until the original nonlinear equation (Equation
(14)) is satisfied at a given loading step.

Taking material derivative on both sides of Equation (5) and using Equation (11)
leads to

a∗
�(z; ż, z̄)=�′

v(z̄)−a′
v(z, z̄), ∀z̄∈Z, (17)

where a∗
�(z; ż, z̄) is the linearized energy form that is linear with respect to both z

and ż, �′
v(z̄) and a′

v(z, z̄) are the structural fictitious load and external fictitious load,
respectively, and the subscript V indicates the dependency of the terms on the veloc-
ity field. Assuming that the state variable z is known as the solution to Equations
(15) and (16) at the final converged state of a given loading step, Equation (17) is the
linear variational equation of the material derivative ż. In Equation (17), the terms
a∗

�(z; ż, z̄), �′
v(z̄) and a′

v(z, z̄) can be further derived as

a∗
�(z; ż, z̄)=

∫
�

∂σij

∂εkl

εkl(ż)εij (z̄)d�, (18)

�′
v(z̄)=

∫
�

{−Ti

(
zi,jVj

)+ [
(Ti z̄i) ,j nj +κ� (Ti z̄i)

]
(Vini)

}
d�, (19)

a′
v(z, z̄)=−

∫
�

[
∂σij

∂εkl

(zk,mVm,l)εij (z̄)+σij (z)(z̄i,mVm,j )

−σij (z)εij (z̄)divV

]
d�, (20)

where, ni is the ith component of unit normal vector n, and κ� is the curvature of
the boundary, and zi,j =∂zi/∂xj , z̄i,j =∂z̄i/∂xj , and Vi,j =∂Vi/∂xj . In Equations (18)
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Figure 2. Arbitrary contour around a crack tip.

and (20), ∂σij /∂εkl can be obtained from the iterative solution at the final converged
state of a given loading step.

To perform sensitivity analysis, a numerical method is needed to solve Equation
(14) for z. In this study, standard nonlinear FEM was used to solve Equation (14).
However, the solution of ż, also required in sensitivity analysis, can be obtained effi-
ciently from Equation (17), since it is actually a linear system. Equation (17) can
be solved using the same FEM code or any standard linear equation solver without
any iteration. Since the sensitivity equation is always linear even for nonlinear sys-
tems, the continuum shape sensitivity method is more efficient than the finite differ-
ence method that requires solving at least two nonlinear systems of equations. In
this study, the ABAQUS finite element code (ABAQUS, 1999) was employed for all
numerical calculations to be presented in Section 5.

3. The J -integral and its sensitivity

3.1. The J -integral

A widely used constitutive equation for J2-deformation theory of plasticity (Chen
and Han, 1988), usually under small-displacement conditions, is based on the well-
known Ramberg-Osgood relation (Anderson, 1995), given by

εij = 1+ v
E

sij + 1−2v
3E

σkkδij + 3
2E

α

(
σe

σ0

)n−1

sij , (21)

where E is Young’s modulus, v is Poisson’s ratio, σ0 is a reference stress, α is a dimen-
sionless material constant, n is the strain hardening exponent, δij is the Kronecker
delta, sij = σij − 1/3σkkδij is the deviatoric stress, and σe = √

(3/2)sij sij is the von
Mises equivalent stress. The deformation theory assumes that the state of stress deter-
mines the state of strain uniquely as long as the plastic deformation continues. This
is identical to the nonlinearly elastic stress–strain relation as long as unloading does
not occur. This paper is concerned with the development of sensitivity equations for
the J-integral using only the deformation theory of plasticity (Chen and Han, 1988;
Anderson, 1993).

For a cracked body with an arbitrary counter-clockwise path � around the crack
tip, as shown in Figure 2, a formal definition of the J -integral is (Anderson, 1995)
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J ≡
∫

�

Wdx2 −Ti

∂zi

∂x1
ds, (22)

where Ti =σijnj is the ith component of traction vector, nj is the j th component of
unit outward normal to integration path, ds is the differential length along contour
� , and W = ∫

σij dεij is the strain energy density. For Ramberg–Osgood materials,
the strain energy density can be further derived as (Chen, 2001)

W = 1+ v
3E

σ 2
e + 1−2v

6E
σ 2

e + n

n+1
α

Eσn−1
0

σn+1
e , (23)

which provides a useful closed-form expression to be employed in forthcoming equa-
tions. For nonlinear-elastic cracked structures, the J -integral uniquely defines the
asymptotic crack-tip stress and strain fields, known as the Hutchinson–Rice–Rosen-
gren singularity field (Rice, 1968; Hutchinson, 1983).

3.2. Sensitivity of the J -integral

Under the quasi-static condition, in the absence of body forces, thermal strains, and
crack-face traction, the domain form of the J -integral for a two-dimensional crack
problem in the perturbed configuration is

J =
∫

Aτ

[(
σ11(zτ )

∂z1τ

∂x1
+σ12(zτ )

∂z2τ

∂x1

)
∂q

∂x1
+

(
σ21(zτ )

∂z1τ

∂x1
+σ22(zτ )

∂z2τ

∂x1

)
∂q

∂x2

−W(zτ )
∂q

∂x1

]
dAτ , (24)

where Aτ is the area inside an arbitrary contour, q is a weight function which is unity
at the outer boundary of Aτ and zero at the crack tip. The integrand of the domain
integral in Equation (24) can be split as

J =
∫

Aτ

(h1τ +h2τ +h3τ +h4τ −h5τ )dAτ , (25)

where

h1τ =σ11(zτ )
∂z1τ

∂x1

∂q

∂x1
, (26)

h2τ =σ12(zτ )
∂z2τ

∂x1

∂q

∂x1
, (27)

h3τ =σ21(zτ )
∂z1τ

∂x1

∂q

∂x2
, (28)

h4τ =σ22(zτ )
∂z2τ

∂x1

∂q

∂x2
(29)

and

h5τ =W(zτ )
∂q

∂x1
. (30)
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Note, each of the five component integrals in Equation (25) corresponds to the
performance measure represented by Equation (12). Assuming the crack length a to
be the variable of interest, a change in crack length in the x1 direction (i.e., mode I
loading) only, the velocity field becomes V(x)={V1(x),0}T. Hence, using the material
derivative formula of Equation (11), the sensitivity of J is given by

J̇ =
∫

A

(H1 +H2 +H3 +H4 −H5)dA, (31)

where

Hi =hi
′ + ∂(hiV1)

∂x1
, i =1, . . . ,5 (32)

with hi representing the image of hiτ . Furthermore, using the general sensitivity
formula of Equation (13), the explicit expressions of Hi, i = 1, . . . ,5, can be eas-
ily derived and are presented as Equations (A1)–(A5) in Appendix A. The expres-
sions of Hi, i = 1, . . . ,5 in Equations (A1)–(A5), when inserted in Equation (31),
yield the first-order sensitivity of J with respect to crack size under mode I load-
ing. All field variables required in calculating the sensitivity of J pertain to the
initial configuration. They are valid for both plane stress and plane strain condi-
tions and are applicable to any nonlinearly elastic materials. Further generalization to
account for mixed-mode loading and/or to analyze cracks in three-dimensional media
is straightforward, as the sensitivity formulation is valid for general three-dimensional
structures under arbitrary loads.

The integral in Equation (31) is independent of the domain size and can be calcu-
lated numerically using the standard Gaussian quadrature. A 2 × 2 or higher-order
integration rule is recommended for calculating J̇ . Note that when the velocity field
is unity at the crack tip, J̇ is identical to a ∂J/∂a. A flow diagram for calculating the
sensitivity of J is shown in Figure 3. In Figure 3, K(zn

k) and FR(zn
k) are the stiffness

matrix and load vector, respectively, for displacement zn
k at the kth iteration of the

nth loading step, K(z∗) is the stiffness matrix obtained from Equation (18), and the
fictitious load Ffictitious (z∗) is the right side of Equation (17), both evaluated at the
final converged state z∗ of the final loading step.

4. Stochastic fracture mechanics

4.1. Random parameters and fracture response

Consider a mode I loaded nonlinear cracked structure under uncertain mechanical
and geometric characteristics subject to random loads. Denote by Y an N -dimen-
sional random vector with components Y1, Y2, . . . , YN characterizing uncertainties in
the load, crack geometry, and material properties. For example, if the crack size a;
far-field applied stress magnitude σ∞; tensile properties E and α; and mode I frac-
ture toughness at crack initiation JIc, are modeled as input random variables, then
Y={a,E,α, σ∞, JIc}T. Let J be a relevant crack-driving force that can be calculated
using standard finite element analysis. Suppose that the structure fails when J >JIc.
This requirement cannot be satisfied with certainty, since J is dependent on the input
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Figure 3. A flowchart for continuum sensitivity analysis of crack size.

vector Y which is stochastic, and JIc itself is a statistical variable. Hence, the perfor-
mance of the cracked structure should be evaluated by the probability of failure PF,
defined as

PF ≡Pr[g(Y)<0]≡
∫

g(y)<0
fY(y)dy, (33)

where fY(y) is the joint probability density function of Y and

g(y)=JIc(y)−J (y) (34)

is the performance function. Note that PF in Equation (33) represents the probabil-
ity of initiation of crack growth, which provides a conservative estimate of structural
performance. A less conservative evaluation requires calculation of failure probability
based on crack-instability criterion. The latter probability is more difficult to com-
pute, since it must be obtained by incorporating crack-growth simulation in a finite
element analysis. However, if suitable approximations of J can be developed analyt-
ically, the crack instability-based failure probability can be easily calculated as well
(Rahman, 1995). Probabilistic analysis involving crack-instability criterion and shape
sensitivity calculations was not considered in this work.
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4.2. Reliability analysis by form

The generic expression of the failure probability in Equation (33) involves multi-
dimensional probability integration for evaluation. In this study, the first-order reli-
ability method (FORM) (Madsen et al., 1986) was used to compute this probability
and is briefly described here to compute the probability of failure PF in Equation
(33) assuming a generic N -dimensional random vector Y and the performance func-
tion g(y) defined by Equation (34).

The first-order reliability method is based on linear (first-order) approximation of
the transformed limit state surface (in the standard Gaussian space), which is tan-
gent to the closest point of the surface to the origin. The determination of this point
involves nonlinear constrained optimization and is usually performed in the standard
Gaussian image (u space) of the original space (y space). The FORM algorithm
involves several steps. First, the space y of uncertain parameters Y is transformed
into a new N -dimensional space u consisting of independent standard Gaussian vari-
ables U . The original limit state g(y) = 0 then becomes mapped into the new limit
state gU(u)=0 in the u space. Second, a point u∗ on the limit state gU(u) = 0 having
the shortest distance to the origin of the u space is determined by using an appro-
priate nonlinear optimization algorithm. This point is referred to as the design point
or most probable point, and has a distance

β = min
u∈RN

‖u‖
subject to gU(u)=0

=‖u∗‖, (35)

known as the reliability index, to the origin of the u space. Third, the limit state
gu(u)=0 is approximated by a hyperplane gL(u)=0, tangent to it at the design point.
Accordingly, the failure probability can be approximated by

PF
∼=Pr[gL(U)<0]=�(−β), (36)

where �(u) is the cumulative probability distribution function of a standard Gauss-
ian random variable. A modified Hasofer–Lind–Rackwitz–Fiessler algorithm (Liu
and Kiureghian, 1991) was used to solve the associated optimization problem in this
study. The first-order sensitivities were calculated analytically and are described in
Section 4.3.

4.3. Analytical gradients

In the u space, the objective function is quadratic; hence, calculation of its first-order
derivative with respect to uk, k = 1,2, . . . ,N is trivial. For the constraint function,
i.e., the performance function, one must also calculate its derivative with respect to
uk. Assume that a transformation of y ∈RN to u∈RN , given by

y =y(u), (37)

exists. The performance function in the u space can then be expressed as

gU(u)=g(y(u))=JIc(y(u))−J (y(u)). (38)
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Using the chain rule of differentiation, the first-order derivative of gU(u) with respect
to uk is

∂gU(u)

∂uk

=
N∑

j=1

∂g

∂yj

∂yj

∂uk

=
N∑

j=1

∂g

∂yj

Rjk, (39)

where Rjk =∂yj/∂uk can be obtained from the explicit form of Equation (37). In non-
linear fracture mechanics with Y ={a,E,α, σ∞, JIc}T the partial derivatives in the y

space are

∂g

∂a
=−∂J

∂a
, (40)

∂g

∂E
=− ∂J

∂E
= J

E
(since J ∝1/E), (41)

∂g

∂JIc

=1. (42)

For partial derivatives of the J -integral with respect to α and σ∞, it was assumed
that the plastic component of J was much larger than the elastic component of J .
This assumption is relevant when the elastic strains are much smaller than the plastic
strains, which is characteristic of moderate to high loads in a nonlinear-elastic mate-
rial. Accordingly,

∂g

∂α
=−∂J

∂α
≈−J

α
, (43)

∂g

∂σ∞ =− ∂J

∂σ∞ ≈−(n+1)J

σ∞ . (44)

When the above assumption is not valid, the partial derivatives of the J -integral with
respect to α and σ∞ can no longer be approximated using Equations (43) and (44).
In the latter case, size sensitivity analysis method must be performed. If required, the
derivative of the J -integral with respect to n can also be calculated by the size sen-
sitivity analysis. Size sensitivity analysis, which is simpler than the shape sensitivity
analysis developed herein, is not considered in this study.

Using the proposed shape sensitivity method, the partial derivative of J with
respect to crack size can be easily calculated. Hence, for a given u or y, all gradients
of gU(u) can be evaluated analytically, enabling FORM or any other gradient-based
reliability analysis to be performed efficiently.

4.4. Interface

Figure 4 illustrates a flowchart of the sensitivity-based FORM for fracture reliabil-
ity analysis. In solving the optimization problem in FORM, one must be able to cal-
culate g(y) for a given y. If an external code (e.g., commercial FEM code) is used
for finite element analysis, an interface must be developed between the FEM and
FORM modules. In addition, if the crack size is random, the crack-tip mesh must be
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Figure 4. A flowchart for continuum sensitivity-based fracture reliability analysis.

parameterized with respect to crack size parameters, which can be achieved by appro-
priately modifying the FEM pre-processor module or randomizing the input files of
FEM codes. Clearly, there is more than one way to perform such a parameteriza-
tion. Nevertheless, the crack-tip mesh must be functionally dependent on the crack
size such that the mesh quality remains adequate for any realization of crack size
and the mapping from crack size to mesh movement is sufficiently smooth so that the
performance function is differentiable. The gradients of g(y) at any given mesh can
be calculated using the sensitivity analysis module, as shown in Figure 4. For such
calculations, the sensitivity analysis must also be connected with the external FEM
code, as depicted in Figure 4.
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4.5. Limitations

The sensitivity and reliability analyses presented in this work are limited to nonlinear-
elastic fracture mechanics with small deformation. Under small-scale yielding condi-
tions (small plastic zone), a single fracture parameter, such J -integral, characterizes
crack-tip conditions and can be employed as a geometry-independent fracture crite-
rion. However, if there is large-scale plasticity (large plastic zone), single-parameter-
based fracture mechanics breaks down. Recall that J characterizes the amplitude of
the first and only singular term in a infinite series expansion consisting of several
higher-order terms that describe the stress field ahead of the crack tip. The contribu-
tion of higher-order terms depends on the distance from the crack tip, the geometry
and size of the specimen, and extent of crack-tip plasticity. Elastic–plastic solids with
non-proportional loading, unloading, or large-scale plasticity were not considered in
this work.

5. Numerical Examples

5.1. Example 1: Sensitivity analysis of M(T) and SE(T) specimens

Consider a middle-tension [M(T)] specimen and a single-edge-tension [SE(T)] speci-
men with width 2W = 1.016 m, length 2L = 5.08 m and a crack length 2a, subject
to far-field remote tensile stress σ∞ = 172.4 MPa. Two distinct crack sizes with nor-
malized crack lengths, a/W = 0.25 and 0.5 were considered for both M(T) and SE(T)
specimens. The material properties of both specimens are: reference stress σ0 =154.8
MPa; elastic modulus E = 207 GPa; Poisson’s ratio v = 0.3; and Ramberg–Osgood
parameters α =8.073 and n=3.8.

Figures 5 and 6 depict the geometry and loads of the M(T) and SE(T) specimens,
respectively. A finite element mesh for a half SE(T) specimen model (single-symme-
try) and quarter M(T) specimen model (double-symmetry) is shown in Figure 7. A
plane stress condition was assumed. Second-order elements from ABAQUS (Version
5.8) (ABAQUS, 1999) element library were used. The element type was CPS8R – the
reduced integration, eight-noded quadrilateral element. The number of elements and
nodes were 208 and 691, respectively, for the M(T) and SE(T) specimens. Focused
elements with collapsed nodes were employed in the vicinity of crack tip. A 2×2
Gaussian integration rule was employed.

Tables 1 and 2 present the numerical results of J and ∂J/∂a for the M(T)
and SE(T) problems, respectively. For each problem, two different crack sizes
were analyzed. Two sets of results are shown for ∂J/∂a. The first was computed
using the proposed shape sensitivity method; the other employed a finite-differ-
ence method. A one-percent perturbation was used in the finite-difference calcula-
tions. The results of Tables 1 and 2 show that the continuum sensitivity method
provides very accurate results of ∂J/∂a in comparison with the corresponding
results of the finite-difference method. Unlike virtual crack extension techniques, no
mesh perturbation is required in the developed method. The difference between the
results of the developed method and the finite-difference method is less than four
percent.
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Figure 5. Geometry and loads for M(T) specimen.

W

L

L

σ∞

σ∞

a

Crack

Figure 6. Geometry and loads for SE(T) specimen.
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Figure 7. Finite element mesh.

Table 1. Sensitivity of J for M(T) by the proposed and finite-difference
methods.

a/W J (kJ/m2) Sensitivity of J (dJ/da)(kJ/m3
) Difference (%)

Proposed method Finite difference

0.25 2.0×103 27.6×103 26.8×103 2.87
0.5 11.2×103 17.2×104 17.6×104 −2.73

Table 2. Sensitivity of J for SE(T) by the proposed and finite-difference
methods.

a/W J (kJ/m2) Sensitivity of J (dJ/da)(kJ/m3
) Difference(%)

Proposed method Finite difference

0.25 6.2×103 14.7×104 14.4×104 1.82
0.5 3.7×105 17.1×106 16.6×106 3.29

5.2. Example 2: Reliability analysis of DE(T) specimen

Consider a double-edge-tension [DE(T)] specimen with width 2W = 1.016 m, length
2L = 5.08 m, and random crack length a, subject to a far-field tensile stress σ∞, as
shown in Figure 8. The load σ∞, crack size a/W , and material properties E, α, and
JIc were treated as statistically independent random variables. Table 3 presents the
means, coefficients of variation (COV), and probability distributions of these random
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Crack

Figure 8. DE(T) specimen under mode I loading.

Table 3. Statistical properties of random input for DE(T) specimen.

Random variable Mean COV∗ Probability distribution

Normalized crack length (a/W) 0.5 Variable† Lognormal
Elastic modulus (E)(GPa) 207 0.05 Gaussian
Yield offset (α) 8.073 0.1439 Lognormal
Initiation fracture toughness (JIc)(kJ/m2) 1243 0.47 Lognormal

Far-field tensile stress (σ∞) Variable† 0.1 Gaussian

∗Coefficient of variation (COV) = standard deviation/mean.
†Arbitrarily varied.

parameters. The Poisson’s ratio ν = 0.3 and the Ramberg–Osgood exponent n = 3.8
were assumed to be deterministic.

The finite element mesh illustrated in Figure 7 was also applied for this DE(T)
specimen (at mean crack length). Only a quarter of the specimen was modeled due to
double-symmetry. A total of 208 elements and 691 nodes were used in the mesh. Sec-
ond-order elements from the ABAQUS element library were used. The element types
are the same as in Example 1. A plane stress condition was assumed. Focused elements
were used in the vicinity of crack tip. A 2×2 Gaussian integration rule was used.

Using continuum sensitivity analysis of J , a number of probabilistic analyses were
performed to calculate the probability of failure PF , as a function of mean far-field
tensile stress E[σ∞]. Figure 9 presents the results in the form of PF vs. E[σ∞] plots
for va/W = 10 % where va/W is the COV of the normalized crack length a/W . The
probability of failure was calculated using proposed sensitivity-based FORM and
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Figure 9. Failure probability of DE(T) specimen by sensitivity-based FORM and simulation.

Figure 10. Failure probability of DE(T) specimen for various uncertainties in crack size.

Monte Carlo simulation. For simulation, the sample size varied and was at least 10
times the inverse of the estimated failure probability. As can be seen Figure 9, the
probability of failure calculated using sensitivity-based FORM agrees very well with
the simulation results.

Figure 10 plots PF vs. E[σ∞] for deterministic (νa/W = 0) and stochastic (νa/W =
10 and 20%) crack sizes calculated using FORM. The results indicate that the fail-
ure probability increases with the COV (uncertainty) of a/W and can be much larger
than the probabilities calculated for a deterministic crack size, particularly when the
uncertainty of a/W is large. While this trend is expected, the proposed sensitivity for-
mulation allows quantitative evaluation of fracture response and reliability of non-
linear cracked structures. Since all gradients are calculated analytically, the reliability
analysis of cracks can be performed accurately and efficiently.

6. Conclusions

A new method was developed for continuum shape sensitivity analysis of a crack
in a homogeneous, isotropic, nonlinearly elastic body subject to mode I loading
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conditions. The method involves the material derivative concept of continuum
mechanics, domain integral representation of the J -integral, and direct differentia-
tion. Unlike virtual crack extension techniques, no mesh perturbation is required
in the proposed method. Since the governing variational equation is differentiated
before the process of discretization, the resulting sensitivity equations are inde-
pendent of any approximate numerical techniques. Numerical examples have been
presented to illustrate the proposed method. The results show that the maximum
difference between the sensitivity of stress-intensity factors calculated using the pro-
posed method and reference solutions obtained by the finite-difference method is
less than four percent. Based on the continuum sensitivities, the first-order reliabil-
ity method was formulated to perform probabilistic fracture-mechanics analysis. A
numerical example is presented to illustrate the usefulness of the proposed sensitiv-
ity equations for probabilistic analysis. Since all gradients are calculated analytically,
the reliability analysis of cracks can be performed accurately and efficiently.
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Appendix A. The H-functions

The explicit expressions Hi, i =1, . . . ,5, were derived as follows:

H1 =∂z1
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∂x1

[
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(
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∂ż1

∂x1
− ∂z1

∂x1

∂V1

∂x1

)
+ ∂σ12

∂ε12

(
∂ż2
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and
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