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A B S T R A C T This paper presents a method for evaluating constraint effects on probabilistic elastic–
plastic analysis of cracks in ductile solids. It is based on fracture parameters J and Q,
correlation between Q and J–resistance curve of the material, and J-tearing theory for
predicting fracture initiation and instability in cracked structures. Based on experimental
data from small-scale fracture specimens, correlation equations were developed for
fracture toughness at crack initiation and the slope of the J–resistance curve as a
function of constraint condition. The random parameters may involve crack geometry,
tensile and fracture toughness properties of the material, and applied loads. Standard
reliability methods were applied to predict probabilistic fracture response and reliability
of cracked structures. The results suggest that crack-tip constraints have little effect on
the probability of crack initiation. However, the probability of fracture instability can
be significantly reduced when constraint effects are taken into account. Hence, for a
structure where some amount of stable crack-growth can be tolerated, crack-tip
constraints should be considered for probabilistic fracture-mechanics analysis.

Keywords crack; crack-tip constraint; elastic–plastic fracture mechanics; probabilistic
fracture mechanics; J-integral; Q parameter; J–resistance curve; J–Q analysis; single-
edged-notched bend specimens.

N O M E N C L A T U R E a=crack size; crack depth of single-edged-notched bend specimen
B=thickness of single-edged-notched bend specimen

C(Q)=constraint-based slope of J–resistance curve
C̃(Q)=normalized slope of J–resistance curve

Dij, Eij , Fij , Gij, Hij=constant coefficients
D, E, F, G, H=matrices involving coefficients, Dij, Eij , Fij , Gij , Hij

E=Young’s modulus
fX(x)= joint probability density function of X

h1=dimensionless plastic influence function
J=J-integral

Je=elastic component of J
Jp=plastic component of J

JR(Da)=J-resistance curve
JR(Da, Q)=constraint-dependent J–resistance curve

JIc (Q)=constraint-based mode-I plane-strain fracture toughness at
initiation

J̃Ic(Q)=normalized mode-I plane-strain fracture toughness at initiation
J(X )=J-integral as a function of random vector, X
kinit=probability ratio for fracture initiation
kins=probability ratio for fracture instability
KI=mode-I stress-intensity factor
n=Ramberg–Osgood exponent
nj= jth component of unit outward normal to integration path, dC
N=number of input random variables
P=load; load on single-edged-notched bend specimen
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Pi=initiation load
Pinit=probability of fracture initiation
Pins=probability of fracture instability

Pmax=maximum load
P0=reference load
Pr=probability operator
Q=constraint parameter

Q(X)=constraint parameter as a function of random vector, X
r, h=polar coordinates

S=span of single-edged-notched bend specimen
Ti= ith component of traction vector

ui,1=derivative of displacement, ui with respect to x1

W=width of single-edged-notched bend specimen
x=realization of X
X=an N-dimensional random vector
a=Ramberg–Osgood coefficient
C=counterclockwise contour
dij=Kronecker delta
Da=extension of crack length

e=uniaxial strain
e0=reference strain
n=Poisson’s ratio
s=uniaxial stress

sij=stress field
sij,SSY=reference stress field (small-scale yielding solution)

s0=reference stress
shh,SSY=circumferential reference stress (small-scale yielding solution)

shh=circumferential stress
E=expectation (mean) operator
W=strain energy density
m=intersection of two events

I N T R O D U C T I O N
constraint effects on fracture-mechanics evaluation of
cracked structures.Current elastic–plastic fracture-mechanics analysis of

cracks typically involves fracture toughness properties of It is now well known in the fracture-mechanics com-
munity that a single fracture parameter, e.g. thematerials measured using high-constraint specimen geo-

metries, e.g. deeply cracked three-point bend specimens. J-integral, alone may not be adequate to describe crack-
tip conditions under general large-scale yielding inQuestions arise if the fracture toughness curves, e.g.

J–resistance (J–R) curves, measured from these speci- solids.1 To address this problem, there has been a recent
surge of interest in crack-growth behaviour under con-mens can be applied to structural applications with low-

constraint crack geometries (Fig. 1). A reverse problem ditions of low crack-tip stress triaxiality. A primary
impetus to this activity has been a set of efforts aimedoccurs when the fracture toughness data are obtained on

relatively low-constraint specimens and then used in at developing two-parameter descriptions of crack-tip
fields. Retaining consistency with traditional approaches,high-constraint applications. In this case, the material

J–R curve is obtained from a specimen of standard the first parameter reflects the scale of crack-tip defor-
mation (e.g. J). A second parameter is used to identifythickness (e.g. 25 mm or lower), but the application is

much larger, e.g. a reactor pressure vessel with thickness a particular member of a family of crack-tip fields of
varying stress triaxiality. There are several approaches towell over 200 mm. Hence, both conservative and non-

conservative predictions of fracture behaviour and this second parameter characterization. Of these, the
characterizations based on the normalized T-stress2,3 andreliability can occur even if stringent ASTM require-

ments are met for calculating J–R curves of a material. on the local triaxiality perturbation (Q)4,5 appear to be
promising for the evaluation of constraint effects onThis raises a fundamental question on how to incorporate
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Fig. 1 Transferability of fracture toughness
data from small-scale specimens.

material toughness. An excellent review comparing sev- example, a stochastic model, based on an engineering
approximation of the J-integral and first- and second-eral features of both T-stress and Q-formalisms has been

performed by Parks.3 Although these two approaches order reliability methods (FORM/SORM), has been
developed by Rahman6,7 for fracture analysis of crackedand parameters have much in common, there are differ-

ences which can have significant practical implications.3 tubular structures. Based on this model, the probability
of crack-growth initiation and subsequent fracture insta-Under well-contained yielding, the T-stress is appro-

priate and is a much simpler constraint theory to apply bility under quasi-static external loads can be predicted.
This model has been subsequently enhanced by a morecompared with the Q-formalism. Actually, under such

conditions, these two approaches and parameters are general model8,9 in which the values of the J-integral
needed by FORM/SORM are calculated by elastic–uniquely related. However, for large-scale plasticity, the

T-stress approach, which is based on surrounding elastic plastic finite element analysis. However, all existing
models are based on the single J-integral fracture param-singularity, becomes invalid. In such a case, the constraint

theory based on Q is more appropriate than T-stress. eter. Hence, there is a clear need to develop probabilistic
methods that can account for constraint effects on frac-This is a major reason why constraint evaluation based

on the Q parameter has received far more attention than ture. To the best knowledge of the authors, no such
methods or studies exist in the current literature. Thisthat based on T-stress.

Most (if not all) constraint evaluations performed to is the major motivation for the present study described
in this paper.date are purely deterministic. This gives an incomplete

picture of the constraint effects on fracture due to This paper presents a probabilistic methodology to
account for constraint effects on fracture in ductileuncertainties in loads, material properties and crack size.

Probabilistic fracture mechanics, which blends the prob- solids. The methodology involves: (i) elastic–plastic frac-
ture mechanics for calculating fracture parameters, J andability theory with the principles of fracture mechanics,

provides a more realistic evaluation of cracked structures. Q; (ii) correlation between fracture toughness properties
of the material and constraint parameter, Q; andWhile development is still ongoing, probabilistic fracture

models, based on elastic–plastic analysis and J-integral- (iii) J-tearing theory for predicting fracture initiation
and instability in cracked structures. The random param-based ductile tearing theory, have appeared already. For
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eters involve crack geometry, tensile and fracture tough- calculated by the finite element method using Eqs (2)
and (4), respectively.ness properties of the material, and applied loads.

Standard reliability methods were applied to predict the
probabilistic fracture response and reliability of cracked T H E J – R E S I S T A N C E C U R V E
structures.

If J is a valid fracture parameter, the fracture resistance
of a material can be described by the J–resistance curve,

J – Q A N A L Y S I S JR(Da), where the fracture toughness, JR , depends on
the crack extension, Da, but not on the absolute crackConsider a two-dimensional cracked body in a state of
length. However, for large-scale yielding in finite bodies,plane-strain condition. Assume that the constitutive law
the relationship between J and near-tip fields losescharacterizing the material’s stress–strain (s–e) response
uniqueness. This lack of uniqueness, often termed ascan be represented by the well-known Ramberg–Osgood
loss of constraint, increases the fracture toughness of themodel, which is given by
material observed for many tension and bend specimens.
Indeed, the mismatch of constraint conditions at thee

e0
=

s

s0
+a A s

s0Bn

(1)
crack tip plays a significant role on the transferability
(or lack thereof ) of fracture behaviour of small-scale

where s0 is the reference stress which is usually assumed fracture specimens to the behaviour of large-scale
to be the yield stress, E is the modulus of elasticity, e0= structures.1
s0/E is the associated reference strain, and a and n are However, with the introduction of Q as a constraint
the model parameters usually chosen from best fit of parameter, one can correlate Q with the J–resistance
actual laboratory data. For an arbitrary counterclockwise curve of the material. For example, assume that the J–R
path, C around the crack tip, a formal definition of J curve can be modelled by a linear equation, given by
under mode-I condition is:10–12

JR(Da, Q)=JIc(Q)+C(Q)Da (5)
J=

def PC (Wn1−Tiui,1) dC (2) where JIc (Q) is mode-I plane-strain fracture toughness
at crack initiation and C(Q) is the slope of the J–R curve,

where, W is the strain energy density, ui and Ti are the both of which depend on Q. By varying Q in small-scale
ith component of displacement and traction vectors, fracture specimens, JIc (Q) and C(Q) can be easily esti-
respectively, nj is the jth component of unit outward mated for a given material and temperature. Figure 2
normal to integration path, dC is the differential length shows schematically how Q affects the J–R curve of
along contour C, and ui,1 is the differentiation of dis- a material.
placement, ui with respect to x1. For this material, the For convenience, define two normalized fracture
stress state in the vicinity (r�0) of a stationary crack tip toughness parameters, as follows
can be expressed by:4,5

J̃Ic(Q)=
JIc(Q)
JIc(0)

(6)sij (r, h)=sij,SSY(r, h)+Qs0dij (3)

where r and h are polar coordinates with their origin at
the crack tip, sij(r, h) is the stress field, sij,SSY(r, h) is the
reference stress field representing small-scale yielding
solution and thus directly connected to J, dij is the
Kronecker delta, and Q is a constraint parameter quan-
tifying the deviation in hydrostatic stress from the small-
scale yielding solution, scaled by s0. By setting h=0 in
Eq. (3) and examining the shh stress component, Q can
be defined as

Q=
shh(r, 0)−shh,SSY(r, 0)

s0
(4)

Because the non-singular term is not constant but rather
a slowly varying field, Eq. (4) needs to be applied for a
specific value of r. In this study, it was assumed that r=
2J/s0. Given a cracked body with known load, material

Fig. 2 Effects of Q on fracture toughness curve of a material.
and geometry, the fracture parameters, J and Q, can be
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and ductile materials with an attendant higher applied load
level at fracture. The onset of fracture instability is
defined when J and ∂J/∂a exceed JR and dJR/da simul-C̃(Q)=

C(Q)
C(0)

(7)
taneously, as also expressed by Eq. (9). The correspond-
ing crack-instability load is either equal to or higher

which represent the ratios of constraint-dependent frac- than the crack-initiation load. The difference between
ture toughness parameters to their high-constraint these two failure loads can be significant, if the structural
values. Using Eqs (6) and (7), one can now estimate the geometry and material permit appreciable amount of
J–R curve of a material for any constraint condition, stable crack growth. Otherwise, the fracture criterion
provided the expressions for J̃Ic(Q) and C̃(Q) and their based on the initiation of crack growth provides a
high-constraint (Q=0) values are known. conservative estimate of structural integrity. Figure 3

summarizes the fracture assessment procedure using the
P R O B A B I L I S T I C F R A C T U R E M E C H A N I C S J–Q-based fracture criteria described in this paper.

J–Q-based failure criteria
Random parameters and fracture response

For any monotonically loaded cracked structure, regard-
Consider a cracked structure with uncertain mechanicalless of geometry, equal values of J and Q mean equal
and geometric characteristics that is subject to randomcrack-tip conditions. Thus, the philosophy of using J
loads. Denote by X an N-dimensional random vectorand Q to characterize initiation and instability of crack
with components X1, X2, . . . , XN characterizing allgrowth may be mathematically stated as13

uncertainty in the system and load parameters. Let J(X)
Crack initiation: J=JIc(Q) (8) and Q(X) be two relevant fracture response parameters

that can be calculated from elastic–plastic finite element
analysis. Suppose that the structure fails when the crack-

Crack instability: G J=JR(Da, Q)

∂J
∂a

=
dJR

da
(Da, Q)

(9) driving force exceeds the fracture resistance of the
material. For example, consider the failure criterion:
J(X)>JIc(Q). This requirement cannot be satisfied with

respectively. The left sides of Eqs (8) and (9) represent certainty, because both J and Q depend on input vector
the crack driving force and its rate, while JIc (Q) and X which is random, and JIc(Q) itself is a random variable.
JR(Da,Q), representing fracture toughness at crack Hence, the performance of the cracked structure should
initiation and at crack growth, Da, respectively, are the be evaluated by the associated probability of failure, PF.
constraint-dependent crack resistance properties of the More specifically, consider the failure probability, Pinit ,
material. If one can calculate J and Q for a given which represents the probability of initiation of crack
structure, fracture initiation and instability can be pre- growth [see Eq. (8)]. Mathematically,
dicted from the constraint-dependent J–R curve of the
material.

Pinit=
def

Pr[J(X)>JIc(Q)]= PJ(x)>JIc

fX(x) dx (10)The initiation of crack growth in a structure contain-
ing flaws can be characterized when the crack-driving

where fX(x) is the joint probability density function offorce (J) exceeds the material fracture toughness (JIc).
X. For more realistic performance evaluation, considerEquation (8) represents this failure criterion. This is a
another failure probability, Pins , representing the prob-good definition of failure when the uncracked ligament
ability of crack instability [see Eq. (9)]. Mathematically,is small (e.g. part-through surface cracks in pipes or
it can be defined asthrough-wall cracks in small-diameter pipes) or the

amount of subsequent stable crack growth is limited (e.g.
cracks in brittle materials). The initiation-based failure Pins=

def
PrC{J(X)>JR(Da, Q)}mG∂J(X)

∂a
>

dJR

da
(Da, Q)HDcriterion is commonly used in piping and pressure vessel

analysis.14

=PrC{J(X)>JR(Da, Q)} K G∂J(X)
∂a

>
dJR

da
(Da, Q)HDIn elastic–plastic fracture mechanics theory, the stable

crack growth, if it occurs in a structure, can also be
characterized by the J-integral parameter with some

×PrC∂J(X)
∂a

>
dJR

da
(Da, Q)D (11)limitations. In this regard, the J-tearing theory is a very

prominent concept to quantify the stable crack growth.
It is based on the fact that fracture instability can occur As mentioned before, Eq. (10) represents the probability

of initiation of crack growth, which provides a conserva-after some amount of stable crack growth in tough and
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Fig. 3 Fracture assessment based on J–Q
analysis.

tive estimate of structural performance. A less conserva- to compute these multidimensional integrals, and hence,
the failure probabilities. In FORM/SORM, the failuretive evaluation requires calculation of failure probability

based on crack-instability criterion. The latter prob- probabilities are calculated based on linear and quadratic
approximations, respectively, of the performance (limit-ability, shown in Eq. (11), is more difficult to compute

because it must be obtained by incorporating crack- state) function at the design point (also known as most
probable point, beta point, etc.). The determination ofgrowth simulation in a non-linear finite element analy-

sis. However, if suitable approximations of J can be the design point involves non-linear constrained optimiz-
ation and is performed in the standard Gaussian imagedeveloped analytically, it can be easily calculated as

well.6,7 of the original space. The Monte Carlo simulation
involves repeated deterministic evaluations of the per-
formance function due to independently generated reali-

Structural reliability analysis
zations of random input. Details of FORM/SORM and
simulation are readily available in the current litera-The generic expression for the probabilities in Eqs (10)

and (11) involves multidimensional probability inte- ture.15–19 They are not described here for brevity. It is
worthwhile to note that these methods have been suc-gration for their evaluations. This is explicitly shown in

Eq. (10). Similar integral expressions can also be devel- cessfully applied to probabilistic fracture-mechanics
analysis of cracked structures based on the singleoped for both probabilities on the right-hand side of

Eq. (11). Standard reliability methods, e.g. FORM/ J-integral fracture parameter. See past work of Rahman
and others6–9 for further details.SORM,15–18 and Monte Carlo simulation,19 can be used
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P R O BA B I L I S T I C A N A LYS I S O F C R AC K S I N D U C T I L E S O L I D S 885

Table 1 Fracture toughness for various crack-tip constraints20

a/W JIc, kJ/m2 C, kJ/m3 Q*

0.29 211.8 140 683 −0.36
0.26 225.6 145 529 −0.43
0.19 217.2 152 725 −0.60
0.39 216.0 114 397 −0.24
0.55 195.2 105 880 −0.15
0.55 169.2 104 411 −0.10
0.13 219.3 160 655 −0.70
0.14 215.1 172 403 −0.70
0.14 183.0 146 851 −0.67
0.13 196.5 159 627 −0.68
0.61 189.5 80 768 −0.10
0.83 162.9 108 229 −0.25
0.78 145.6 115 572 −0.22Fig. 4 Single-edge-notched bend specimen.
0.70 172.6 82 383 −0.15

*Q was calculated at J=JIc.
A P P L I C A T I O N S

The single-edge-notched bend structure

Consider a two-dimensional cracked structure subjected
to three-point bend loads as shown in Fig. 4. The
material is HY80 steel. The load, P, crack depth, a,
width, W , thickness, B and bend span, S are shown.
Assume that the plane-strain condition exists for this
structure. The objective of this example is to demonstrate
how constraint affects the failure probability of this
cracked structure. In this study, all probabilistic calcu-
lations were performed based on the second-order
reliability method.

Constraint-dependent J–R curve

Recently, Joyce and Link20 developed experimental data
on quasi-static fracture toughness properties of HY80
steel at room temperature. The tests were performed
using 1T single-edge-notched bend [SE(B)] specimens
according to ASTM E1737-96.21 A total of 14 specimens
were loaded in three-point bending with a bend span of
203 mm, a span-to-width (S/W ) ratio of 4, and a thick-
ness-to-width (B/W ) ratio of 0.5. The crack depth-to-
width ratio (a/W ) varied from 0.13 to 0.83 to simulate
various constraint conditions. The measured values of
JIc and C varied from 145.6 to 225.6 kJ/m2 and 80 768 Fig. 5 Non-dimensional toughness parameters for various Q:

(a) J̃Ic versus Q; (b) C̃ versus Q.to 172 403 kJ/m3, respectively. Correspondingly, Q varied
from −0.1 to −0.7 at the crack-driving force of JIc.
Table 1 shows the values of JIc , C and Q for various

anda/W, obtained by Joyce and Link.20 Using the data in
Table 1, Fig. 5 shows the plots of measured J̃Ic(Q) and C̃(Q)=1−3.573Q−2.22Q2 (13)
C̃(Q) for various values of Q. Following linear regression Using Eqs (12) and (13), one can now estimate the J–R
analysis by least-squares, J̃Ic(Q) and C̃(Q) can be

curve of a material for any constraint condition, provided
expressed by

the high-constraint toughness parameters, JIc(0) and
C(0), are known.J̃Ic(Q)=1−0.307Q (12)
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Table 2 Statistical properties of random input variables

Probability
Random variable Mean COV* distribution

Elastic modulus (E ) 228.8 GPa 0.05 Gaussian
Ramberg–Osgood 1 0.15 Lognormal

coefficient (a)
Ramberg–Osgood 10 0.15 Lognormal

exponent (n)
High-constraint initiation 173.86 kJ/m2 0.2 Lognormal

toughness [JIc(0)]
High-constraint toughness 66 540 kJ/m3 0.1 Lognormal

slope [C(0)]
Normalized crack length Variable 0.1 Gaussian

(a/W )
Load (P) Variable 0.1 Gaussian

*Coefficient of variation (COV)=standard deviation/mean.

Input parameters

For this numerical example, consider the following
random parameters: E, a, n, JIc(0), C(0), a/W and P.
Table 2 shows the means, coefficients of variation, and
probability distributions of these parameters. Note, the
statistics and distribution properties of the random input Fig. 6 Effects of Q on probability density of loads: (a) initiation
were defined quite arbitrarily and were used only to load; (b) maximum load.
illustrate the numerical example.

For other deterministic input, the following param-
eters were used: S=2.032 m (80 inches), W=0.508 m (E[a/W ]=0.1), intermediate (E[a/W ]=0.3) and deep

(E[a/W ]=0.6) cracks considered in this example. Two(20 inches), B=1 m (39.4 inches), s0=445.6 MPa
(64 630 psi), and n=0.3. sets of results—one based on single fracture parameter

J (i.e. ignoring constraint) and the other based on dual
fracture parameters, J and Q (i.e. considering con-

Results and discussion straint)—are shown in these figures. The following
trends can be observed. First, the probability densitiesFor the calculation of failure probabilities (probability

of crack initiation or instability), the crack-driving forces of both Pi and Pmax predicted by J and J–Q analyses can
be different for shallow cracks. This is due to significantJ and Q must be calculated for a given structure. In

general, one needs to perform elastic–plastic finite loss of constraint for shallow cracks and resultant higher
fracture toughness of the material. In Fig. 6(a) and (b),element analysis to predict J and Q. However, for the

three-point bend structure considered in this example the probability densities from J–Q analysis shift towards
the right indicating larger failure loads for shallow and(see Fig. 4), closed-form solutions of J and Q can be

developed. See Appendices A and B, which describe the intermediate cracks with low crack-tip constraints.
Second, the constraint effects are much smaller on theprocedures for calculating J and Q, respectively, for

SE(B) specimen. Hence, for a SE(B) specimen with probability density of Pi than that of Pmax. This is
because of weak dependency of JIc on Q, exhibited byknown geometry, loads and material properties, the

values of J and Q can be calculated readily. Fig. 5(a) or Eq. (12). Deterministic observation consist-
ent with the above probabilistic trend has been reportedBecause this SE(B) example problem involves only

one load parameter, let Pi and Pmax denote the initiation by some researchers in the past.1,20 Third, when the
crack length increases, the density functions of Pi orload (i.e. the load when crack-growth initiates) and

maximum load (i.e. the load when crack-growth becomes Pmax from J and J–Q analyses become close to each
other. This is due to Q-values approaching zero (high-unstable), respectively. Note, due to uncertain input,

both Pi and Pmax are random variables. Accordingly, constraint value) that translates to an insignificant
increase in the fracture toughness of the material. Hence,Fig. 6(a) and (b) shows the calculated probability density

functions of Pi and Pmax, respectively, for shallow analysis of deep cracks in actual structures can be based

© 2000 Blackwell Science Ltd. Fatigue Fract Engng Mater Struct 23, 879–890
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on single fracture parameter (e.g. J) and high-constraint only 2.02 (1/kinit) for this SE(B) example problem when
constraint effects are taken into account. This is not atoughness properties of the material.

Perhaps, a more meaningful result is to determine significantly large number when comparing small failure
probabilities described earlier. Furthermore, no majorhow the constraint affects the probability of failure in a

cracked structure for a given applied load. Let kinit= constraint effects were found on the probability of
fracture initiation for intermediate and deep cracks asPinit(Q)/Pinit(0) and kins=Pins(Q)/Pins(0) denote two

probability ratios, where Pinit(0) and Pins(0) are prob- shown in Fig. 7(a).
However, according to Fig. 7(b), the probability ofabilities of fracture initiation and instability, respectively,

from J-analysis, and Pinit(Q) and Pins(Q) are probabilities fracture instability can be significantly decreased by
constraint loss in fracture toughness properties, particu-of fracture initiation and instability, respectively, from

J–Q analysis. The ratios, kinit and kins, which depend on larly for shallow cracks. This is due to more significant
increase in the slope of the J–R curves, shown in Fig. 5(b)crack-tip constraint, can be used to determine if failure

probability estimates based on J-integral analysis alone or Eq. (13), for low-constraint crack geometries. For
example, in Fig. 7(b), when the E[P]=45 MN, Pins(0)=underestimate or overestimate failure probabilities from

J–Q analysis. Figure 7(a) and (b) shows the plots of kinit 1.24×10−7 and Pins(Q)=1.08×10−10, and hence,
kins=8.7×10−4 for the shallow crack (E[a/W ]=0.1).and kins, respectively, as a function of mean applied load,

E[P]. As before, three sets of results are presented for Consequently, when constraint effects are taken into
account, the probability of fracture instability of SE(B)various crack lengths (E[a/W ]=0.1, 0.3, and 0.6), and

hence, for various magnitudes of constraint. According specimen for the shallow crack can be reduced by a
factor of 1149 (1/kins), which is significantly larger thanto Fig. 7(a), no major constraint effects were found on

the probability of fracture initiation. For example, when the factor associated with the probability of fracture
initiation. Hence, for a structure where some stable crackthe mean applied load is 20 MN, the probabilities of

fracture initiation for the shallow crack (E[a/W ]=0.1) growth can be tolerated, crack-tip constraints should be
considered for probabilistic fracture-mechanics analysis.are 2.19×10−8 and 1.08×10−8 from J and J–Q analy-

ses, respectively. Correspondingly, kinit=0.494 [see However, further studies with more realistic cracked
structures and geometry other than that considered inFig. 7(a)] and hence, the probability of fracture initiation

for the shallow crack can be decreased by a factor of this paper need to be undertaken to make a generic
conclusion.

Note, the crack instability criterion used in this paper
is based on J–Q theory for stationary crack. Hence, it
cannot reflect the increase of crack-tip constraint, if any,
due to ductile crack growth. If this constraint is raised
significantly, the proposed approach may overestimate
the increase of the slope of the fracture–toughness
curves. This issue was not explored in the current paper.

C O N C L U S I O N S

A probabilistic methodology was developed for elastic–
plastic fracture-mechanics analysis of cracks in the pres-
ence of constraint effects. The methodology involves
calculating fracture parameters J and Q, establishing
correlation between constraint parameter Q and fracture
toughness properties of the material, and using J-tearing
theory for predicting fracture initiation and instability
in cracked structures. Based on experimental data from
small-scale fracture specimens, correlation equations
were developed for fracture toughness at crack initiation
and the slope of the J–resistance curve as a function of
Q. For probabilistic analysis, the random parameters
may involve crack geometry, tensile and fracture tough-
ness properties of the material, and applied loads.
Standard reliability methods were applied to predict

Fig. 7 Probability ratio versus mean applied load: (a) kinit ; (b) kins . probabilistic fracture response and reliability of cracked
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A1, the values of h1(a/W , n) calculated from Eq. (A6)
are quite accurate. Hence, both the elastic and plastic
components of J can be predicted analytically using Eqs
(A2) and (A4), respectively.

A P P E N D I X B : J – Q A N A L Y S I S F O R S E ( B )
S P E C I M E N S

Consider a SE(B) specimen with its geometry, crack size
and loads defined earlier. Assuming plane-strain con-
dition and varying a/W , n and E/s0, Gullerud and
Dodds24 conducted extensive non-linear finite element
analysis to generate J–Q results. This suggests that for
simple structures, e.g. SE(B), response surface equations
can be developed correlating Q with J. For a fixed E/s0,
consider the following approximation of Q, given byFig. A1 Surface plot of h1(a/W, n).

Q( J/min(a, b)s0 , a/W, n)
is the mode-I stress-intensity factor, and n is the
Poisson’s ratio. = ∑

3

i=0
∑
3

j=1
Eij(n)(a/W )i ( J/min(a, b)s0)j (B1)

where, b=W−a, andPlastic solution
Eij(n)=Fij+Gijn+Hijn2 (B2)The plastic J can be calculated from23

with Fij , Gij and Hij , i=0, 1, 2, 3; and j=1, 2, 3, are
coefficients that may depend only on E/s0. Let F=[Fij],Jp=

as2
0

E
(W−a)h1(a/W, n) A P

P0Bn+1

(A4)
G=[Gij] and H=[Hij], i=0, 1, 2, 3; and j=1, 2, 3, be
4×3 real matrices. Following regression analysis of J–Qwhere
results for E/s0=500,24 it was determined that,

P0=
1.455(W−a)2Bs0

S
(A5)

is the reference load, and h1(a/W, n) is a dimension- F=C −26.35 −2578.81 121 245
−297.63 62 155.60 −2 101 770
1665.14 −251 662.00 7 941 150

−1663.03 239 361.00 −7 431 860D (B3)
less plastic influence function that depends on crack
geometry and material hardening exponent. Assume that
h1(a/W , n) can be expressed by

h1(a/W, n)= ∑
3

i=0
∑
5

j=1
Dijn

i(a/W )j (A6) G=C −6.69 432.16 −12 720.90
53.39 −5889.46 196 497.00

−203.17 24 868.90 −795 823.00
202.16 −25 376.70 791 575.00D (B4)

where Dij , i=0, 1, 2, 3, and j=1, 2, 3, 4, 5, are constant
coefficients. Let D=[Dij], i=0, 1, 2, 3, and j=

and1, 2, 3, 4, 5, be a 4×5 real matrix. Following least-
squares analysis of h1(a/W, n) data calculated by finite
element method23 for various a/W and n, D can be
estimated as H=C 0.23 −16.23 511.42

−1.84 230.53 −8082.77
7.89 −1030.58 33 684.10

−8.33 1084.07 −34 116.90D (B5)

D=C 12.592 −47.842 92.090 −86.553 31.712
−0.801 2.119 −3.762 2.269 0.230
−0.009 0.285 −0.911 1.229 −0.610

0.001 −0.013 0.040 −0.052 0.024D Figure B1 shows the plots of Q from Eq. (B1) (lines) as
a function of J/min(a, b)s0 and a/W , for n=5, 10 and
15. Also plotted in the same figure are the corresponding

(A7) finite element results (points) of Gullerud and Dodds.24

The agreement between these two sets of results isUsing Eq. (A6), Fig. A1 shows the surface plots of h1 as
a function of a/W and n. When compared with the excellent. Hence, Eq. (B1) can be used to calculate Q for

E/s0=500, when J, a/W and n are prescribed.tabulated values of Kumar et al.,23 also shown in Fig.
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Fig. B1 Plots of Q for n=5, 10 and 15.
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