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Abstract

The objective of this study was to evaluate the adequacy of current J-estimation models commonly used in

probabilistic elastic±plastic analysis of ductile cracked structures. A newly developed probabilistic model based on

elastic±plastic ®nite element method was used to evaluate the J-estimation model. In both models, the analyses involve

elastic±plastic fracture mechanics for underlying deterministic calculations, statistical representation of uncertainties in

loads, crack size, and material properties involving both tensile and fracture toughness characteristics, and standard

computational methods of structural reliability theory. Numerical examples are presented for two- and three-dimen-

sional cracked structures. The results show that the probabilistic analysis based on J-estimation model provides ac-

curate estimates of failure probability when compared with those predicted by generally more accurate ®nite element

model. The uncertainty in the crack size, if exists, can have a signi®cant e�ect on the probability of failure, particularly

when the crack size has a large coe�cient of variation. A ®nite element-based probabilistic fracture-mechanics model is

useful in benchmarking approximate results of J-estimation analysis. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Probabilistic fracture mechanics; Elastic±plastic fracture mechanics; J-integral; Crack; First- and second-order reliability

methods; Failure probability; Fracture; J-estimation method

1. Introduction

In recent years, probabilistic fracture mechanics (PFM) is becoming increasingly popular for realistic
evaluation of fracture response and reliability of cracked structures. Using PFM, one can incorporate
statistical uncertainties in engineering design and evaluation ± a need, which has long been recognized. The
theory of fracture mechanics provides a mechanistic relationship between the maximum permissible load
acting on a structural component to the size and location of a crack ) either real or postulated ) in that
component. The theory of probability determines how the uncertainties in crack size, loads, and material
properties, if modeled accurately, a�ect the integrity of cracked structures. PFM, which blends these two
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theories, accounts for both mechanistic and statistical aspects of a fracture problem, and hence, provides a
more rational way of describing the actual behavior and reliability of structures than the traditional de-
terministic models.

The fracture analysis can be based on linear-elastic or more complex elastic±plastic (nonlinear) models.
It is now well established that the nonlinear fracture-mechanics methods provide more realistic measures of
fracture behavior of cracked structures with high toughness and low strength materials compared with the
elastic methods. Cracked components made of these materials in nuclear power plants, chemical and fossil
plants, automobiles, and aerospace and aircraft propulsion systems pose a serious threat to structural
integrity. In much or all of the working temperature regime of these components, the material is being
typically stressed above the brittle-to-ductile transition temperature where the fracture response is essen-
tially ductile and the material is capable of considerable inelastic deformation. As such, elastic±plastic
theories should be used for fracture analyses of these structural components. While the development is still
ongoing, signi®cant progress has been made in the deterministic modeling of both linear-elastic fracture
mechanics (LEFM) and elastic±plastic fracture mechanics (EPFM). Probabilistic models have also been
developed to estimate various response statistics and reliability [1]. Currently, there are many applications
of PFM in the ®eld of oil and gas, nuclear, automotive, naval, aerospace, and other industries. Nearly all of
these methods have been developed strictly based on LEFM models. On the other hand, the probabilistic
analysis based on EPFM models has received only a limited attention to date. Probabilistic analyses based
on EPFM models are just beginning to appear, particularly, for applications in pressure boundary com-
ponents [2±8].

In EPFM, the crack-driving force is frequently described in terms of J-integral. The J-integral is an
appropriate fracture parameter that describes the crack-tip stress and strain ®elds adequately when
there are no constraint e�ects. Similar to any deterministic EPFM problem, the evaluation of J-integral
for probabilistic analysis can be performed by (1) numerical method and (2) engineering estimation
method. Traditionally, a numerical study has been based on elastic±plastic ®nite element method (FEM).
Using FEM, one can calculate J for any crack geometry and load conditions. However, it is also useful
to have simpli®ed estimation methods for routine engineering calculations. Accordingly, the probabi-
listic EPFM analyses based on both methods have been reported. For example, in the US Nuclear
Regulatory CommissionÕs Short Cracks in Piping and Piping Welds Program [9], a probabilistic model
was developed for elastic±plastic analysis of circumferential through-wall cracks in pipes for leak-
before-break applications [6]. This model involves a J-estimation method, statistical representation of
uncertainties in loads, crack size, and material properties, and ®rst- and second-order reliability
methods (FORM/SORM). Shortly thereafter, similar probabilistic models based on other J-estimation
formulas have also been reported [2±5]. In these models, the estimation formulas typically consist of
closed-form equations of J as a function of load, crack size, and material properties of a structure and
hence, do not require any expensive nonlinear ®nite element calculations. Actually, this is a major
reason why the FORM/SORM algorithms have been successfully developed for probabilistic analysis
of elastic±plastic structures [2±6]. However, due to various approximations and/or limitations in the
J-estimation method, one needs to evaluate its accuracy by comparing with generally more accurate
FEM-based probabilistic analysis. To date, no such evaluations have been conducted or reported. It is
worth noting that a probabilistic model based on elastic±plastic FEM has already been developed by
some researchers [7,8].

This paper presents the results of comparisons of two probabilistic EPFM models based on J-estimation
and FEMs. In both models, the analyses involve (1) EPFM, (2) statistical models of loads, crack size, and
material properties including stress±strain and fracture toughness curves, and (3) standard reliability
methods. A major objective was to determine if a model based on J-estimation method is adequate for
probabilistic EPFM analysis. Two- and three-dimensional examples are presented to conduct the proba-
bilistic analysis.
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2. Elastic±plastic fracture mechanics

In order to perform elastic±plastic analysis, the material model needs to be de®ned. In this study, it was
assumed that the constitutive law characterizing the materialÕs stress±strain (r)e) response can be repre-
sented by the well-known Ramberg±Osgood model, which is given by

e
e0

� r
r0

� a
r
r0

� �n

�1�

where r0 is the reference stress which is usually assumed to be the yield stress, E is the modulus of elasticity,
e0 � r0=E is the associated reference strain, and a and n are the model parameters usually chosen from best
®t of actual laboratory data. Although this representation of the stress±strain curve is not necessary for the
®nite element analysis, it is needed for most, if not all, of the J-estimation methods, which are formulated
based on power-law idealization.

The J-integral parameter proposed by Rice [10] is extensively used in assessing fracture integrity of
cracked engineering structures, which undergo large plastic deformation at the crack tip. For elastic±plastic
problems, its interpretation as the strength of the asymptotic crack-tip ®elds by Hutchinson [11] and Rice
and Rosengren [12] represents the crux of the basis for ``J-controlled'' crack growth behavior. For a
cracked body with an arbitrary counter-clockwise path, C around the crack tip (see Fig. 1(a)), a formal
de®nition of J under mode-I condition is

J �def

Z
C
�Wn1 ÿ Tiui;1�dS �2�

where, W � R rij deij is the strain energy density with rij and eij representing components of stress and
strain tensors, respectively, ui and Ti � rijnj are the ith component of displacement and traction vectors, nj

is the jth component of unit outward normal to integration path, dS is the di�erential length along contour
C, and ui;1 � oui=ox1 is the di�erentiation of displacement with respect to x1. Here, the summation con-
vention is adopted for repeated indices.

The J-integral is theoretically valid for nonlinear elasticity or deformation theory of plasticity where no
or little unloading occurs. It is frequently used to characterize initiation of crack growth and a small
amount of crack propagation. A wealth of comparisons between predictions based on J-integral versus
experimental data now show that fairly accurate results can be obtained for monotonic loading to failure
even though the theoretical conditions for a valid J-based fracture theory are violated [13±16]. In this study,
the elastic±plastic analyses of cracks will focus only on the J-integral fracture parameter.

2.1. J-integral by ®nite element method

For numerical calculation of J, the energy domain integral methodology [17,18] was used in the ®nite
element analysis. Using the divergence theorem, the contour integral de®ned in Eq. (1) can be expanded
into an area integral in two dimensions, and volume integral in three-dimensions, over a ®nite domain
surrounding the crack tip or crack front. For a linear or nonlinear elastic material under quasi-static
condition, in the absence of body forces, thermal strains, and crack-face tractions, Eq. (1) for two-
dimensional problem reduces to

J �
Z

A�
rij

ouj

ox1

�
ÿWd1i

�
oq
oxi

dA �3�

where dij is Kronecker delta, q is an arbitrary but smooth weighting function that is equal to unity on C0

and zero on C1, and A� is the annular area enclosed by the inner contour C0 and outer contour C1 as shown
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Fig. 1. J-integral as an elastic±plastic fracture parameter: (a) arbitrary contour around a crack tip; (b) inner and outer contours en-

closing A� and (c) inner and outer surfaces enclosing V �.
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in Fig. 1(b). For three-dimensional problem, a similar expression of J involving volume integral can be
developed and is given by

J �
Z

V �
rij

ouj

ox1
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ÿWd1i

�
oq
oxi

dV �4�

where V � is the volume enclosed by the inner surface S0 and outer surface S1 as shown in Fig. 1(c). The
discrete form of these domain integrals is [19]
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where m is the number of Gauss points per element, nk is the parametric coordinate, and wl is the weighting
factor. Further details on ®nite element implementation of J are given by Anderson [19].

2.2. J-integral by engineering estimation method

Simple mathematical models, often referred to as the J-estimation methods, are based on assumptions
necessary to minimize the need for elaborate numerical analysis (e.g., FEM). Typically, such assumptions
lead to simpler representations of the materialÕs stress±strain behavior, ¯aw shape and orientation, loading,
and boundary conditions. If these assumptions are valid, one can perform fracture-mechanics evaluations
without having to conduct any full-scale elastic±plastic ®nite element analysis. In addition, if the defor-
mation theory of plasticity is valid, the J-integral can be split as

J � Je � Jp �6�
where Je and Jp are the elastic and plastic components of J. For simple cracked structures, closed-form
equations can be developed for Je and Jp, and hence, J. The estimation methods for double-edged-notched
tension (DENT) specimen (Fig. 2) and through-wall-cracked (TWC) pipe (Fig. 3) are brie¯y described in
Appendices A and B.

2.3. J-based failure criteria

If J is a valid fracture parameter, there are several de®nitions of such failure criteria. Two de®nitions,
commonly used in EPFM, are [13±16]: (1) initiation of crack growth and (2) unstable crack growth. They
can be described by:

Crack initiation J � JIc �7�

Crack instability
J � JR
oJ
oa � dJR

da

�
�8�

The initiation of crack growth in a structure containing ¯aws can be characterized when the crack-
driving force (J) exceeds the material fracture toughness (JIc). Eq. (7) represents this failure criterion. This is
a good de®nition of failure when the uncracked ligament is small (e.g., part-through surface cracks in pipes
or through-wall cracks in small-diameter pipes) or the amount of subsequent stable crack growth is limited
(e.g., cracks in brittle materials). The initiation-based failure criterion is commonly used in piping and
pressure vessel analysis [13±16].

In EPFM theory, the stable crack growth, if occurs in a structure, can also be characterized by the J-
integral parameter with some limitations. In this regard, the J-tearing theory is a very prominent concept to
quantify the stable crack growth. It is based on the fact that fracture instability can occur after some
amount of stable crack growth in tough and ductile materials with an attendant higher applied load level at
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fracture. The onset of fracture instability is de®ned when J and oJ=oa exceed JR and dJR=da simultaneously,
as also expressed by Eq. (8). The corresponding crack-instability load is either equal to or higher than the
crack-initiation load. The di�erence between these two failure loads can be signi®cant, if the structural
geometry and material permit appreciable amount of stable crack growth. Otherwise, the fracture criterion
based on the initiation of crack growth provides a conservative estimate of structural integrity. This ini-
tiation-based criterion was used in the current probabilistic fracture analysis that will be presented in the
forthcoming sections.

3. Probabilistic fracture mechanics and reliability

3.1. Random parameters and fracture response

Consider a cracked structure with uncertain mechanical and geometric characteristics that is subject to
random loads. Denote by X an N-dimensional random vector with components X1;X2; . . . ;XN character-
izing all uncertainty in the system and load parameters. Let J be a relevant crack-driving force that can be
calculated from elastic±plastic ®nite element analysis. If J is a valid fracture parameter, then it can be
applied to determine the failure probability of the cracked structure. Suppose that the structure fails when
J > JIc. This requirement cannot satis®ed with certainty, because J depends on input vector X which is

Fig. 2. A DENT specimen under far-®eld uniform tension.
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random and JIc itself is a random variable. Hence, the performance of the cracked structure should be
evaluated by the reliability PS or its complement, the probability of failure, PF (PS � 1ÿ PF) de®ned as

PF �def
Pr g�X�� < 0� �def

Z
g�x�<0

fX�x�dx �9�

where fX�x� is the joint probability density function of X, and g(X) is the performance function given by

g�X� � JIc ÿ J : �10�
Note that PF in Eq. (9) represents the probability of initiation of crack growth which provides a con-

servative estimate of structural performance. A less conservative evaluation requires calculation of failure
probability based on crack-instability criterion. The latter probability is more di�cult to compute, since it
must be obtained by incorporating crack-growth simulation in a nonlinear ®nite element analysis. How-
ever, if suitable approximations of J can be developed analytically (e.g., in J-estimation method), it can be
easily calculated as well [2].

3.2. Reliability analysis by ®rst- and second-order reliability methods

The generic expression for the failure probability in Eq. (9) involves multi-dimensional probability in-
tegration for its evaluation. In this study, standard reliability methods, such as FORM/SORM [20±28] were
used to compute these probabilities. They are brie¯y described here to compute the probability of failure PF

in Eq. (9) assuming a generic N-dimensional random vector X and the performance function g�x� de®ned
by Eq. (10).

Fig. 3. A TWC pipe subjected to pure bending moment.
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The FORM/SORM are based on linear (®rst-order) and quadratic (second-order) approximations of the
limit state surface g�x� � 0 tangent to the closest point of the surface to the origin of the space. The de-
termination of this point involves nonlinear constrained optimization and is usually performed in the
standard Gaussian image of the original space. The FORM/SORM algorithms involve several steps. First,
the space x of uncertain parameters X is transformed into a new N-dimensional space u consisting of in-
dependent standard Gaussian variables U. The original limit state g�x� � 0 then becomes mapped into the
new limit state gU �u� � 0 in the u space. Second, the point on the limit state gU �u� � 0 having the shortest
distance to the origin of the u space is determined by using an appropriate nonlinear optimization algo-
rithm. This point is referred to as the design point or beta point, and has a distance bHL (known as reli-
ability index) to the origin of the u space. Third, the limit state gU �u� � 0 is approximated by a surface
tangent to it at the design point. Let such limit states be gL�u� � 0 and gQ�u� � 0, which correspond to
approximating surfaces as hyperplane (linear or ®rst-order) and hyperparaboloid (quadratic or second-
order), respectively. The probability of failure PF Eq. (9) is thus approximated by Pr�gL�U� < 0� in FORM
and Pr�gQ�U� < 0� in SORM. These ®rst-order and second-order estimates PF;1 and PF;2 are given by [20±
28]

PF;1 � U� ÿ bHL� �11�

PF;2 � U� ÿ bHL�
YNÿ1

i�1

1
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/�ÿbHL�
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Z u
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exp
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2
n2

�
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are the probability density and cumulative distribution functions, respectively, of a standard Gaussian
random variable, and jiÕs are the principal curvatures of the limit state surface at the design point. Further
details of FORM/SORM equations are available elsewhere [20±28].

FORM/SORM are standard computational methods of structural reliability theory. In this study, a
modi®ed HL±RF algorithm, described in Appendix C, was used to solve the associated optimization
problem. The ®rst- and second-order sensitivities were calculated numerically by the ®nite di�erence
method.

4. Computer programs probabilistic fracture code and probabilistic leak-before-break analysis

Two computer codes titled probabilistic fracture code (PROFRACPROFRAC )) and probabilistic leak-before-break
analysis (PROLBBPROLBB)) were developed/re®ned to calculate the probability of failure of cracked structures. These
codes provide a computational framework for performing probabilistic fracture-mechanics analysis based
on J-integral evaluations of two- and three-dimensional cracked structures subject to quasi-static loads.
PROFRACPROFRAC is a FEM-based code, whereas PROLBBPROLBB is a J-estimation-based code. Further details are given
below.

The PROFRACPROFRAC program [8] involves (1) EPFM analysis by the nonlinear FEM, (2) statistical models of
uncertainty for random loads, crack size, and material properties, and (3) standard methods of structural
reliability theory. PROFRACPROFRAC has been enhanced to interface with several commercial ®nite-element codes
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including ABAQUSABAQUS (version 5.6) [29]. In PROFRACPROFRAC, one can model the relevant parameters in the input deck
of ABAQUSABAQUS as random variables. Both LEFM- and EPFM-based fracture theories are supported by
PROFRACPROFRAC. A number of ®nite element types can be chosen for probabilistic ®nite element analysis. The
probabilistic analysis is completely automated. However, the current version of PROFRACPROFRAC can only cal-
culate probability of failure based on initiation of crack growth. The calculation of failure probability based
on the instability of crack growth is more complicated and is beyond the current capability of PROFRACPROFRAC.
Also, the random crack size can be modeled only for two-dimensional problems. Work is currently un-
derway to incorporate fracture instability in the performance criteria and extend statistical models to in-
clude random crack geometry for three-dimensional structures.

The PROLBBPROLBB program [6] involves (1) EPFM analysis by the J-estimation methods, (2) statistical models
of uncertainty for random loads, crack size, and material properties, and (3) standard computational
methods of structural reliability theory. PROLBBPROLBB, which was originally developed in the Short Cracks in
Piping and Piping Welds Program [9], has been extended to include the GE/EPRI equations for J-integral
analysis [2]. Using PROLBBPROLBB, one can model any parameters of GE/EPRI equations as random variables. It
can calculate probability of failure based on both initiation and instability of ductile crack growth.

5. Numerical examples

In this paper, two numerical examples based on a two- and a three-dimensional structures are presented.
A major objective was to examine if the probabilistic analysis by J-estimation method (PROLBBPROLBB) is ade-
quate when compared with that by FEM (PROFRACPROFRAC). As mentioned before, the performance function for
the failure criterion is based on the initiation of crack growth only.

5.1. Example 1: a double-edged-notched tension specimen

Consider a DENT specimen (Fig. 2) with width, 2W � 1:016 m (40 in.), length, 2L � 5:08 m (200 in.),
and crack length, a � 0:254 m (10 in.). The specimen material is TP304 stainless steel and the operating
temperature is 288°C (550°F). It was assumed that both load and material properties are random. Table 1
shows the means, coe�cients of variation (COV), and probability distributions of these random para-
meters. Most of these values came from statistical characterization of actual material property data [6]. The
random variables were assumed to be statistically independent. The deterministic material parameters in-
volved: reference stress, r0 � 154:78 MPa (22,450 psi) and PoissonÕs ratio, m � 0:3.

Fig. 4(a) shows a ®nite element mesh for 1=4 model due to the symmetry of this problem. A total of 114
elements and 393 nodes were used in this mesh. Second-order elements from ABAQUSABAQUS element library were

Table 1

Statistical properties of random input for DENT specimen

Random variable Mean COVa Probability distribution Reference

Elastic modulus (E) 206.8 GPa 0.05 Gaussian )b

Ramberg±Osgood coe�cient (a) 8.073 0.439 Lognormal [6]

Ramberg±Osgood exponent (n) 3.8 0.146 Lognormal [6]

Initiation fracture toughness (JIc) 1242.6 kJ/m2 0.47 Lognormal [6]

Far-®eld tensile stress (r1 ) Variablec 0.1 Gaussian )b

a COV� standard deviation/mean.
b Arbitrarily assumed.
c Varies from 48.3 to 103.4 MPa (7000±15,000 psi).
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used. Both plane stress and plane strain conditions were studied. For plane stress, the element type was
CPS8R ) the reduced integration, eight-noded quadrilateral element. For plane strain, the element type
CPE8RH was used. This element is a mixed formulation element and is typically used to handle the in-

Fig. 4. Finite element meshes for DENT and TWC pipe: (a) a DENT specimen (1=4 model) and (b) a TWC pipe specimen (1=4 model).
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compressibility constraint for plane strain. Focused elements were used in the vicinity of crack tip. The
material model was the deformation theory, Ramberg±Osgood model de®ned by Eq. (1).

Fig. 5 shows the deterministic ®nite element results of J from the PROFRACPROFRAC (ABAQUSABAQUS) code as a function
of r1 for plane stress and plane strain conditions. The mean values of material properties, de®ned in Table
1, were used to generate the plots of Fig. 5. Also plotted in the same ®gure are the corresponding solutions
by the J-estimation method (i.e., Eqs. (A.1)±(A.5)) in the PROLBBPROLBB code. The results from J-estimation
method match very well with the ®nite element solutions for the load intensities and material constants
considered. In both methods, the crack driving force �J� is higher for plane stress than that for plane strain
as expected.

Following deterministic comparisons of J, several probabilistic analyses were performed by PROFRACPROFRAC to
calculate probability of failure, 2 PF, as a function of mean far-®eld tensile stress, E r1� �, where E��� is the
expectation (mean) operator. Fig. 6 shows such results in the form of PF vs. E r1� � plots for both plane
stress and plane strain conditions. The probability of failure was calculated by SORM (i.e., Eq. (12)), which
was validated by Monte Carlo with importance sampling in a previous study [8]. The failure probability
increases with the mean stress intensity as expected. Due to higher demand of J (see Fig. 5), the probability
of failure in plane stress is generally larger than that in plane strain regardless of the load intensity. Also
plotted in the same ®gure, are the corresponding probability estimates by PROLBBPROLBB. It appears that the J-
estimation method can provide accurate estimates of failure probability when compared with generally
more accurate ®nite element analysis. The probabilistic analysis by PROLBBPROLBB was also performed using
SORM.

The failure probabilities in Fig. 6 are valid for a deterministic crack size only. To evaluate the e�ects of
uncertainty in crack size, the following additional elastic analyses were performed. They involved modeling
normalized crack length, a=W , as a lognormal random variable with mean, la=W � 0:5 (keeping W � 0:508
m as deterministic) and coe�cient of variation, ma=W � 0%, 10%, 20%, and 40%. Using the J-estimation
method (PROLBBPROLBB), Fig. 7(a) and (b) show the plots of PF vs. E r1� � for plane stress and plane strain
conditions, respectively, for both deterministic (ma=W � 0) and random (ma=W � 10%, 20%, and 40%) crack
sizes. The results indicate that the failure probability increases with the COV (uncertainty) of a=W as

Fig. 5. Predicted J-integral for DENT specimen by J-estimation and FEMs.

2 The failure probability in this paper refers to probability of fracture initiation (see Eq. (9)).
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Fig. 6. Probability of failure for DENT specimen by J-estimation and FEMs.

Fig. 7. Probability of failure for DENT specimen for random crack size (elastic analysis): (a) plane stress and (b) plane strain.
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expected and can be much larger than the probabilities calculated for a deterministic crack size, particularly
when the uncertainty in a=W is large.

Also included in Fig. 7(a) and (b) are a few results of FEM-based probabilistic analysis (PROFRACPROFRAC) when
ma=W � 0% and 10%. The agreement between the FEM and J-estimation method is excellent. Work is
currently undergoing to predict these failure probabilities from elastic±plastic analysis involving random
crack size.

5.2. Example 2: a through-wall-cracked pipe specimen

Consider a TWC pipe (Fig. 3) subjected to remote bending moment, M. The pipe has mean radius,
Rm � 355:6 mm (14 in.), wall thickness, t � 35:6 mm (1.4 in.), and normalized crack angle, h=p � 0:125.
The pipe material is TP304 stainless steel with the temperature of 288°C (550°F). Table 2 shows the
means, coe�cients of variation, and probability distributions of tensile parameters �E; a; n�, fracture
toughness parameter (JIc), and bending moment (M). As mentioned before, the statistics of material
properties were obtained from actual TP304 stainless steel data at 288°C (550°F) [6]. However, the
probabilistic characteristics of M were chosen arbitrarily. For this example, r0 � 154:78 MPa (22,450 psi)
and m � 0:3.

A ®nite element mesh for the TWC pipe specimen is shown in Fig. 4(b). A quarter model was used to
take advantage of the symmetry. 20-Noded isoparametric solid elements (C3D20R) from the ABAQUSABAQUS li-
brary were used with focused elements at the crack tip. A total of 150 elements and 1098 nodes was used.
The stress±strain curve was model by Ramberg±Osgood equation (see Eq. (1)) in this example as well.

Fig. 8 shows the plots of PF vs. E�M � obtained by FEM and J-estimation models using PROFRACPROFRAC and
PROLBBPROLBB, respectively. In both analyses, the reliability analyses were performed by SORM and assuming a
deterministic crack size. The two sets of results from these analyses match extremely well. Once again, it
shows that a probabilistic analysis based on J-estimation model can provide excellent measures of failure
probability.

Fig. 9 shows the similar plots of failure probabilities by J-estimation method for random crack sizes. It
was assumed that the normalized crack angle, h=p has mean, lh=p � 0:125 and coe�cient of variation,
mh=p � 0%, 10%, 20%, and 40%, and follows the lognormal distribution. From Fig. 9, the uncertainty in
crack size appear to have a signi®cant e�ect on increasing the failure probability, particularly when the mh=p

is large. A similar observation was made when analyzing the DENT specimen.
Note, the probabilistic calculations for random crack size in TWC pipes could not be made by the

present FEM-based probabilistic model. This is because, for three-dimensional cracked structures, mod-
eling automatic crack-tip mesh as a function of random crack size is beyond the current capability of
PROFRACPROFRAC. Work is currently underway to include random crack size in PROFRACPROFRAC.

Table 2

Statistical properties of random input for TWC pipe specimen

Random variable Mean COVa Probability distribution Reference

Elastic modulus (E) 182.7 GPa 0.05 Gaussian )b

Ramberg±Osgood coe�cient (a) 8.073 0.439 Lognormal [6]

Ramberg±Osgood exponent (n) 3.8 0.146 Lognormal [6]

Initiation fracture toughness (JIc) 1242.6 kJ/m2 0.47 Lognormal [6]

Bending moment (M) Variablec 0.1 Gaussian )b

a COV� standard deviation/mean.
b Arbitrarily assumed.
c Varies from 1130 to 2260 kN m (10� 106±20� 106 lb in.).
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6. Summary and conclusions

A newly developed probabilistic model based on elastic±plastic ®nite element analysis was applied to
evaluate the adequacy of J-estimation models commonly used for fracture-mechanics analysis of ductile
cracked structures. In both models, the analyses involve (1) EPFM, (2) statistical models of loads, crack
size, and material properties and (3) standard computational reliability methods. Numerical examples are
presented to compare the failure probability estimates for a two-dimensional DENT specimen and a three-
dimensional TWC pipe specimen. The results show that:

· J-estimation analysis using Ramberg±Osgood model of stress±strain curve provides accurate estimates of
failure probability when compared with those predicted by generally more accurate ®nite element anal-
ysis;

Fig. 8. Probability of failure for TWC pipe by J-estimation and FEMs (deterministic crack size).

Fig. 9. Probability of failure for TWC pipe by J-estimation and FEMs (random crack size).
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· The uncertainty in the crack size, if exists, can have a signi®cant e�ect on increasing the probability of
failure, particularly when the crack size has a large COV; and

· A ®nite EPFM model is useful in benchmarking approximate results of J-estimation analysis. However,
more work is needed to enhance its current capabilities, e.g., by generating automatic crack-tip mesh as a
function of random crack size and by modeling automatic crack-growth simulation for predicting prob-
ability of crack-growth instability. These are subjects of current research by the author.
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Appendix A. J-estimation for DENT and TWC pipe specimens

A.1. A double-edged-notched tension specimen

Consider a DENT specimen subjected to quasi-static far-®eld tension stress, r1. The geometry of the
DENT specimen, shown in Fig. 2, has width, 2W, length, 2L, thickness, B, and crack length, a. The
equations for Je and Jp are given below.

Elastic solution [30]

Je � K2
I

E0
�A:1�

where

KI � r1
������
pa
p

1:12
h

� 0:2 a=W� � ÿ 1:2 a=W� �2 � 1:93 a=W� �3
i

�A:2�

is the mode-I stress-intensity factor,

E0 � E; plane stress
E

1ÿm2 ; plane strain

�
�A:3�

is the e�ective modulus of elasticity, and m is the PoissonÕs ratio.
Plastic solution [30]

Jp � ar2
0

E
W� ÿ a�h1 a=W ; n� � P

P0

� �n�1

�A:4�

where P � 2WBr1 is the far-®eld tensile load,

P0 �
4��
3
p r0 W ÿ a� �B; plane stress

0:72� 1:82 1ÿ a
W

ÿ �� �
r0WB; plane strain

(
�A:5�

is the reference load, and h1�a=W ; n� is a dimensionless plastic in¯uence function that depends on crack
geometry and material hardening exponent. The values of h1�a=W ; n� are tabulated in Ref. [30].
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A.2. A through-wall-cracked pipe specimen

Consider a TWC pipe under pure bending moment, M. As shown in Fig. 3, the pipe has mean radius,
Rm, wall thickness, t, and a symmetrically centered through-wall crack with mean length, 2a � 2Rmh, where
2h is the total crack angle. The equations for Je and Jp are given in the following subsections.

Elastic solution [2,31]

Je � h
p

F h=p;Rm=t� �2 M2

ER3
mt2

�A:6�

where F h=p;Rm=t� � is a dimensionless elastic in¯uence function that depends on pipe and crack geometry.
According to Rahman [2],

F h=p;Rm=t� � � 1� A1 A2 A3f g
h=p� �1:5
h=p� �2:5
h=p� �3:5

8<:
9=; B1 B2 B3 B4f g

1
Rm=t� �
Rm=t� �2
Rm=t� �3

8>><>>:
9>>=>>; �A:7�

where Ai (i � 1±3) and Bi (i � 1±4) are constant coe�cients which can be calculated from best ®t of ®nite
element results [2]. The values of these coe�cients are given in Appendix B.

Plastic solution [2,31]

Jp � ar2
0

E
Rmh 1

�
ÿ h

p

�
h1 h=p; n;Rm=t� � M

M0

� �n�1

�A:8�

where

M0 � 4r0R2
mt cos

h
2

�
ÿ 1

2
sinh

�
�A:9�

is the reference moment, and h1 h=p; n;Rm=t� � is a dimensionless plastic in¯uence function that depends on
pipe geometry, crack geometry, and material hardening exponent. According to Rahman [2],

h1 h=p; n;Rm=t� � � 1 h=p� � h=p� �2 h=p� �3
� 	 C00 C10 C20 C30

C01 C11 C21 C31

C02 C12 C22 C32

C03 C13 C23 C33

2664
3775

1
n
n2

n3

8>><>>:
9>>=>>; �A:10�

where Cij (i; j � 0±3) are coe�cients that depend on Rm=t and can also be calculated from best ®t of ®nite
element results [2]. The values of these coe�cients are given in Appendix B.

Eqs. (A.1)±(A.10) represent the well-known GE/EPRI method [30,31]. It is one of many J-estimation
methods currently available for analyzing cracked structures [16]. Due to limited scope, all J-estimation
analyses in this study were based on the GE/EPRI method alone.

Appendix B. Coe�cients Ai, Bi, and Cij

B.1. Coe�cients Ai and Bi

Let A � A1 A2 A3f gT
and B � B1 B2 B3 B4f gT

be two real vectors with the coe�cients, Ai and
Bi as their components, respectively. According to Rahman [2],

A � 0:006215 0:013304 ÿ0:01838f gT �B:1�
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B � 175:577 91:69105 ÿ5:53806 0:15116f gT
: �B:2�

B.2. Coe�cients Cij

Let C � Cij

� �
, i; j � 0±3, be a real matrix with the coe�cients, Cij as its components. According to

Rahman [2],

C �
3:74009 1:43304 ÿ0:10216 0:0023
ÿ0:19759 ÿ10:19727 ÿ0:45312 0:04989
36:42507 17:03413 3:36981 ÿ0:21056
ÿ70:4846 ÿ14:69269 ÿ2:90231 0:15165

2664
3775 �B:3�

For Rm=t � 10,

C �
3:39797 1:31474 ÿ0:07898 0:00287
ÿ3:07265 4:34242 ÿ2:48397 0:11476
131:7381 ÿ79:02833 16:18829 ÿ0:66912
ÿ234:6221 117:0509 ÿ20:30173 0:79506

2664
3775 �B:4�

For Rm=t � 20,

C �
4:07828 ÿ1:55095 0:67206 ÿ0:0442
ÿ18:21195 69:92277 ÿ18:41884 1:11308
357:4929 ÿ453:1582 108:0204 ÿ6:56651
ÿ602:7576 617:9074 ÿ144:9435 8:9022

2664
3775: �B:5�

See Ref. [2] for explanation on how these coe�cients were calculated from extensive elastic±plastic ®nite
element analyses.

Appendix C. A modi®ed HL±RF method

In FORM/SORM, the main e�ort is calculating the reliability index, bHL � u�k k by ®nding the design
point, u�, which can be formulated as a constrained optimization problem de®ned by

min
u2RN

uk k s:t: gU �u� � 0 �C:1�

where RN is an N-dimensional real vector space, u 2 RN is the space of standard Gaussian vector, U 2 RN ,
and gU �u� : RN 7!R is the transformed performance function in u-space, and

uk k�def

������������XN

i�i

u2
i

vuut �C:2�

is the Euclidean L2-norm of the N-dimensional vector, u. A modi®ed HL±RF method, originally proposed
by Hasofer and Lind [20] and later extended by Rackwitz and Fiessler [22] and modi®ed by Liu and
Kiureghian [32], is one of the most widely used and robust optimization methods to solve the reliability
problem in Eq. (C.1) [21,32]. The original HL±RF method involves an iterative algorithm given by the
following recursive formula:

uk�1 � 1

$gU�uk�k k2
$gU �uk�Tuk ÿ gU �uk�
h i

$gU �u� �C:3�
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where, uk is the vector at kth iteration, $ � o=ou1; o=ou2; . . . ; o=ouNf gT
is a vector of gradient operators,

and $gU �uk� is the gradient of scalar ®eld, gU�uk�. The algorithm proceeds iteratively until convergence is
achieved, i.e., when

uk�1
i

�� ÿ uk
i

��6 econ; for all i �C:4�
and

gU �u��j j � gU�uk�1��� ��6 econ �C:5�
where econ is a small control parameter assigned by the user. From the past experience of authors, a value of
econ � 10ÿ4±10ÿ3 usually yields satisfactory estimates of bHL.

To improve the robustness of Eq. (C.3), Liu and Kiureghian proposed a non-negative merit function,
m�uk�, which is de®ned as [32]

m�uk� � 1

2
uk

 ÿ $gU �uk�Tuk

$gU �uk�k k2
$gU �uk�


2

� 1

2
cgU�uk�2 �C:6�

where, c is some scalar positive constant. The merit function in Eq. (C.6) is a convenient guide for selecting
step size, since it is a function of quantities already known at the current iteration point, uk. This modi-
®cation greatly improves the convergence (although not strictly guaranteed) of the original HL±RF method
[32].
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