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Abstract

This paper presents new elastic and elastic±plastic ®nite element solutions of the J-integral for a pipe containing
o�-center through-wall cracks under pure bending. The analysis is based on a three-dimensional nonlinear ®nite
element method and small-strain theory. One hundred and ®ve analyses were performed using the ABAQUS

commercial code for a wide variety of crack sizes, o�-center crack angles, and material hardening exponents. The
results from these analyses show that the J-integral values at the two crack fronts of an o�-center crack are unequal
due to the loss of symmetry with respect to the bending plane of the pipe. In addition, the J-integral is larger, and

hence, critical at the crack front which is farther away from the bending axis of the pipe. This is because, at that
crack front, the tensile stress is larger and the component of the applied bending moment about the crack centerline
has a further crack-opening e�ect. Also at this crack front, the J values can be lower or slightly higher than those of

a symmetrically centered crack, depending on the crack size and o�-centered angle. For the crack front that is closer
to the bending axis, the J values are always lower than those of a symmetrically centered crack. This implies that
the load-carrying capacity of a pipe is usually larger for an o�-center crack than that for a symmetrically centered
crack. Finally, based on these ®nite element solutions, new analytical expressions of J-integral were developed for

fracture analysis of pipes containing o�-center cracks. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: J-integral; Elastic±plastic fracture mechanics; O�-center crack; Pipe; Through-wall crack; Leak-before-break; J-esti-

mation method

1. Introduction

Fracture analysis of pipes with circumferential cracks is an important task for leak-before-break
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(LBB) [1,2] and pipe ¯aw evaluations [3]. Fig. 1 shows the cross-sectional geometry of three idealized
circumferential cracks, which illustrate a simple through-wall crack (TWC), an internal surface crack,
and a complex crack in a pipe. These cracks are frequently used to evaluate structural integrity and
reliability of degraded piping systems. To evaluate its integrity under bending or combined bending and
tension (pressure-induced) loads, the fracture response characteristics, such as crack-opening
displacement and J-integral, are typically evaluated by assuming that these ¯aws are symmetrically
placed with respect to the bending plane of the pipe (see Fig. 1). This is usually justi®ed with the
reasoning that the tensile stress due to bending is largest at the center of this symmetric crack. However,
in real life, fabrication imperfections occur randomly around the pipe circumference. Additionally,
during the normal operating condition of a power plant, the stress component due to pressure is far
more signi®cant than that due to bending. As such, the postulated ¯aw in LBB analysis may be o�-
centered and can thus be located anywhere around the pipe circumference. The likelihood of a crack
being o�-centered can be further emphasized in light of the argument that a symmetric bending plane
under normal operating stress may become very di�erent under normal and safe-shutdown earthquake
stress, due to the uncertainty in the seismic ground motion [4±6].

Analytical and computational methods for fracture analysis of symmetrically±centered,
circumferential, TWC pipes subjected to pure bending, pure tension, and combined bending and tension
are well-developed. During the U.S. Nuclear Regulatory Commission's Short Cracks in Piping and
Piping Welds Program [7], the currently available methods were evaluated by extensive comparisons with
the experimental data. Two major technical reports, published by Brust et al. [8] and Rahman et al. [4],
describe these methods and associated results involving various pipe geometries, crack sizes, and
material properties. Although much has been learned about the behavior of symmetrically centered
cracks, the current methods are incapable of predicting fracture response and crack growth behavior of
o�-center cracks, even though o�-center cracks may be a concern of practical interest for both LBB and
pipe ¯aw evaluations [9]. Hence, a fracture-mechanics study of o�-center cracks is an exciting research
area for improved evaluation of piping and pressure vessel integrity.

In the past, Rahman and coworkers investigated the crack-opening behavior of TWC pipes with both
symmetrically centered [10±12] and o�-center [5,6,12] cracks subject to pure bending loads. One of these
studies developed a computational framework for analyzing o�-center cracks based on the linear-elastic
®nite element method (FEM) [5,6]. Pipe-speci®c ®nite element calculations showed that the reduced
crack-opening area (COA) for a pipe with an o�-center crack can be determined by normal analysis
procedures for a symmetrically centered crack via resolution of applied moment and assuming an
elliptical crack-opening pro®le. This was an important ®nding for the leak-rate analysis part of LBB,
since accuracy in the prediction of COA is more important than that of the entire crack-opening shape.
Furthermore, the results indicated that due to reduced COA, a postulated crack size for LBB analysis
will be larger (depending on the o�-center angle) for the o�-center cracks than that for the
symmetrically centered cracks. However, it can also be argued that when a crack is o�-centered, the
crack-driving force, be it stress-intensity factor in linear-elastic fracture or J-integral in elastic±plastic
fracture, will be lower than that for a symmetrically centered crack. Hence, an o�-centered crack may
increase the length of the postulated leaking ¯aw due to reduced crack-opening and cause a detrimental
e�ect, but it can also have a bene®cial e�ect on the maximum load-carrying capacity of pipes. In the
previous work of Rahman et al. [5,6], only the crack-opening aspect of o�-center cracks has been
addressed. No methods have been developed or fracture analyses have been reported yet to predict
crack-driving force and, hence, load-carrying capacity of pipes containing o�-center cracks.

This paper presents new results from elastic and elastic±plastic fracture analyses of circumferential
TWC pipes with o�-center cracks subject to pure bending loads. The analyses are based on a three-
dimensional nonlinear FEM and small-strain theory. The analyses were performed for a pipe with a
radius-to-thickness ratio of 10 and a wide variety of crack size, o�-center angles, and material hardening
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Fig. 1. Examples of symmetrically centered cracks in pipes: (a) simple through-wall crack, (b) internal part-through surface crack,

and (c) complex crack.
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characteristics. The ®nite element solutions were studied to evaluate the e�ects of o�-centered cracks on
the J-integral. Subsequently, these FEM results were used to develop new analytical expressions of
in¯uence functions for fracture analysis of pipes containing o�-center cracks.

2. A TWC pipe with an o�-center crack

Consider a TWC pipe with mean radius, Rm, wall thickness, t, and a TWC angle, 2y: The crack is o�-
centered by an angle, c: The pipe is subjected to a pure bending moment, M, without any internal

Fig. 2. An o�-center through-wall crack in a pipe under pure bending.
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pressure. This loading can be simulated by a four-point bend test as shown in Fig. 2. In this ®gure, S is
the inner span, L is the outer span, and P is the total applied load. The geometric parameters of this
o�-center crack in the cracked section are also de®ned in Fig. 2.

In order to perform elastic±plastic analysis, the material model needs to be de®ned. In this study, it
was assumed that the constitutive law characterizing the material's uniaxial stress±strain �s±e� response
can be represented by the well-known Ramberg±Osgood model, which is

e
e0
� s

s0
� a

�
s
s0

�n

�1�

where s0 is the reference stress which can be arbitrary, but is usually assumed to be the yield stress, E is
the modulus of elasticity, e0 � s0=E is the associated reference strain, and a and n are the model
parameters usually chosen from a best ®t of actual laboratory data. Although this representation of the
stress±strain curve is not necessary for the ®nite element analysis (FEA), it is needed for most J-
estimation methods, which are formulated based on power-law idealization.

3. Elastic±plastic fracture mechanics

The J-integral fracture parameter proposed by Rice [13] has been extensively used in assessing fracture
integrity of cracked engineering structures, which undergo large plastic deformation at the crack tip. For
elastic±plastic problems, its interpretation as the strength of the asymptotic crack-tip ®elds by
Hutchinson [14] and Rice and Rosengren [15] represents the crux of the basis for ``J-controlled'' crack
growth behavior. For a cracked body with an arbitrary counter-clockwise path, G around the crack tip,
a formal de®nition of J-integral under mode-I condition is

J �def
�
G

ÿ
Wn1 ÿ Tiui, 1

�
dG �2�

where W� � sij deij is the strain energy density with sij and eij representing components of stress and
strain tensors, respectively, ui and Ti � sijnj are the ith components of displacement and traction
vectors, nj is the jth component of unit outward normal to integration path, dG is the di�erential length
along contour G, and ui; 1� @ui=@x1 is the di�erentiation of displacement with respect to x1: Here, the
summation convention is adopted for repeated indices.

4. Finite element simulation

The FEM in this study assumed the elastic±plastic constitutive relation given by Eq. (1) and small
strains. It was based on proportional loading in the crack-tip plastic zone. Hence, the use of
deformation theory of plasticity and Eq. (1) is entirely appropriate. The plastic deformation was
assumed to be incompressible and independent of hydrostatic stress, 1

3sii: An isotropic hardening rule
was assumed. Under these conditions, the generalized multiaxial stress±strain relation becomes

eij � 1� n
E

Sij � 1ÿ 2n
3E

slldij � 3

2
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�
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s0

�nÿ1Sij

s0
�3�

where n is Poisson's ratio, dij is the Kronecker delta, Sij � sij ÿ 1
3skkdij is the deviatoric stress, and s2e �

�32SijSij � is the square of the von Mises equivalent stress. While the analysis is for small strains,
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nonlinearity enters through Eq. (1) or Eq. (3). Note, Eq. (3) reduces to Eq. (1) for a uniaxial state of
stress.

4.1. Finite element implementation of J

For numerical calculation of J, the energy domain integral methodology [16,17] was used in the FEA.
This methodology is versatile, as it can be applied to both quasi-static and dynamic fracture problems
with elastic, plastic, or viscoplastic material response, as well as thermal loading. In addition, the
domain integral formulation is relatively simple to implement numerically in a ®nite element code.

Using the divergence theorem, the contour integral de®ned in Eq. (2) can be expanded into a volume
integral in three-dimensions over a ®nite domain surrounding the crack tip or crack front. For a linear
or nonlinear elastic material under a quasi-static condition, in the absence of body forces, thermal
strains, and crack-face tractions, Eq. (2) for a three-dimensional pipe problem reduces to

J �
�
V �

�
sij
@uj
@x1
ÿWd1i

�
@q

@xi
dV �4�

where q is an arbitrary but smooth weighting function and V � is the volume enclosed by the inner
surface S0 and outer surface S1 as shown in Fig. 3. The discrete form of this domain integral is [18]

J �
X
V �

Xm
l�1

���
sij
@uj
@x1
ÿWd1i

�
@q

@xi

�
@xj

@xk

�
l

wl �5�

where m is the number of Gauss points per element, xk is the parametric coordinate, and wl is the
weighting factor. Further details on ®nite element implementation of J are given by Anderson [18].

The domain integral method described above is implemented into the ABAQUS commercial ®nite
element code (Version 5.6) [19]. The method is quite robust in the sense that accurate estimates of the J-
integral are usually obtained even with coarse meshes. This is because the integral is evaluated over a

Fig. 3. Inner and outer surfaces enclosing V �:
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domain of elements surrounding the crack front, so that the errors in local solution parameters have a
lesser e�ect on the calculated value.

4.2. Matrix of analysis and ®nite element models

For calculating the J-integral for o�-center cracks, 105 elastic±plastic FEAs were conducted for the
pipe in Fig. 2 with Rm � 50:8 mm (2 in.) and t = 5.08 mm (0.2 in.). A matrix of such analyses is
de®ned in Table 1 for various combinations of the crack size, crack orientation, and material strain
hardening exponent: y=p, c, and n. It involves 21 di�erent ®nite element meshes with y=p � 1=16, 1/8,
and 1/4 and c � 0, 15, 30, 45, 60, 75, and 908. In this paper, a crack will be denoted as small,
intermediate, and large, when y=p � 1=16, 1/8, and 1/4, respectively. For each mesh, ®ve analyses were
performed using ®ve di�erent hardening exponents (see Table 1). For the material properties, the
following values were used: E = 207 GPa, n � 0:3, s0 � 344:8 MPa, and a � 0 for n = 1 and a � 1 for
n > 1: These values, in addition to the ones given in Table 1, provide complete characterization of the
pipe material properties according to Eqs. (1) and (3).

Fig. 4(a) and (b) show two ®nite element meshes for pipes with a symmetrically centered crack and an
o�-centered crack �c � 458), respectively. These meshes were developed for a small crack �y=p � 1=16�
using the MSC/PATRAN (Version 7.0) solid modeler [20]. Since the symmetry is broken with respect to
the crack geometry (except when c � 0), these meshes involved a half model to take advantage of the
remaining symmetry with respect to the crack plane. Twenty-noded isoparametric solid elements were
used with focused elements at the crack tip. Fig. 5 shows the ampli®ed view of the mesh illustrating
these focused elements. In the crack-tip region, a ring of 12 wedge-shaped elements was used. These

Table 1

Matrix of ®nite element analyses for o�-center cracks (®ve runs per model)

FEM model no. y=p c (deg)a nb

1 1/16 0 1, 3, 5, 7, and 10

2 1/16 15 1, 3, 5, 7, and 10

3 1/16 30 1, 3, 5, 7, and 10

4 1/16 45 1, 3, 5, 7, and 10

5 1/16 60 1, 3, 5, 7, and 10

6 1/16 75 1, 3, 5, 7, and 10

7 1/16 90 1, 3, 5, 7, and 10

8 1/8 0 1, 3, 5, 7, and 10

9 1/8 15 1, 3, 5, 7, and 10

10 1/8 30 1, 3, 5, 7, and 10

11 1/8 45 1, 3, 5, 7, and 10

12 1/8 60 1, 3, 5, 7, and 10

13 1/8 75 1, 3, 5, 7, and 10

14 1/8 90 1, 3, 5, 7, and 10

15 1/4 0 1, 3, 5, 7, and 10

16 1/4 15 1, 3, 5, 7, and 10

17 1/4 30 1, 3, 5, 7, and 10

18 1/4 45 1, 3, 5, 7, and 10

19 1/4 60 1, 3, 5, 7, and 10

20 1/4 75 1, 3, 5, 7, and 10

21 1/4 90 1, 3, 5, 7, and 10

a c � 0 implies symmetrically centered crack.
b n � 1 implies linear-elastic analysis when a � 0 (see Eq. (1) or Eq. (3)).
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wedge-shaped elements were constructed by collapsing the appropriate nodes of 20-noded solid elements
to produce a 1/r strain singularity. Although this singularity is strictly valid for a fully plastic crack-tip
®eld in a non-hardening material �n41), it is in practice adequate for work-hardening materials with a
su�ciently re®ned crack-tip mesh [21±29]. In the ®nite element meshes shown in Fig. 4 or Fig. 5, the
smallest crack-tip element size in the circumferential direction is about 8% of the crack length.

Each FEA was performed in a single load step, which consisted of increasing the bending load, P/2
(see Fig. 2) in 10 increments. In all analyses, the algorithm of deformation theory of plasticity was used.
A reduced 2� 2� 2 Gaussian quadrature rule was used for the numerical integration. All analyses were
performed using the commercial ®nite element code ABAQUS [19].

4.3. Veri®cation with existing solutions

First, a selected number of FEAs were performed to validate the results of the J-integral of TWC
pipes by comparing with existing solutions in the literature. Since there are no data or results available
for o�-center cracks, this validation was limited to symmetrically centered cracks in pipes only. Both
elastic and elastic±plastic analyses were performed.

Fig. 6 shows the plots of J-integral of a symmetrically centered crack in a TWC pipe as a function of
applied bending moment for ``small'' �y=p � 1=16), ``intermediate'' �y=p � 1=8), and ``large'' �y=p � 1=4�
cracks. The results were obtained from elastic �a � 0, n � 1� analysis of a pipe under pure bending load.
In Fig. 6, the plots involve three sets of results Ð one is from the present FEA, and the other two are

Fig. 4. Finite element meshes for symmetrically centered and o�-centered cracks in pipes: (a) a symmetrically centered crack

�y=p � 1=16, c � 08� and (b) an o�-centered crack �y=p � 1=16, c � 458).
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based on the well-known GE/EPRI J-estimation formula using the elastic in¯uence functions of Kumar
et al. [30,31] and Brust et al. [32,33].1 The analyses were continued until M was considerably larger than
the reference moment, M0, of the pipe, de®ned by Kumar et al. [30,31].2 As seen in Fig. 6, the three sets
of results are in close agreement with each other for all crack sizes considered in this study.

In addition to this elastic validation of J, similar comparisons were also made for an elastic±plastic
case with a speci®c value of n = 5. As before, the analyses were conducted for three crack sizes with
y=p � 1=16, 1/8, and 1/4. The comparisons of results from this study with the GE/EPRI solutions are
presented in Fig. 7. The elastic±plastic FEM results match very well with the existing solutions. This
veri®cation gave con®dence in our ®nite element calculations.

4.4. Results and discussions

According to Table 1, 21 ®nite element meshes similar to the ones in Fig. 4 or Fig. 5, were developed
[35,36]. For each mesh, ®ve analyses were performed for n = 1, 3, 5, 7, and 10. For brevity, only the
results of the elastic analysis (n = 1) and elastic±plastic (n = 5) analysis will be discussed in this paper.
Detailed results are available in Ref. [35].

4.4.1. Elastic analysis
Fig. 8(a) and (b) show the results of J vs. M plots from purely elastic (n = 1) analyses of small cracks

Fig. 5. Crack-tip mesh re®nement �y=p � 1=16).

1 In both studies by Kumar et al. [30,31] and Brust et al. [32,33], the in¯uence functions de®ned by the GE/EPRI method were

derived from FEAs. The analysis by Kumar et al. involved the ADINA code [34] using nine-noded shell elements. The analysis by

Brust et al. involved the ABAQUS code [19] using 20-noded solid elements.
2 According to the GE/EPRI J-estimation formula given by Kumar et al. [30,31], M0�4s0R2

mt�cos y
2 ÿ 1

2 sin y�:

R. Firmature, S. Rahman / Engineering Fracture Mechanics 66 (2000) 15±39 23



Fig. 6. Comparisons of predicted J from elastic analysis of symmetric cracks with existing solutions.
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Fig. 7. Comparisons of predicted J from elastic±plastic analysis of symmetric cracks with existing solutions.
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�y=p � 1=16� for the two crack fronts AB and CD (see Fig. 2), respectively. The analyses involved
various o�-center crack angles with c � 0, 15, 30, 45, 60, 75, and 908. The results in Fig. 8(a) and (b)
represent the average values of J over the wall thickness. They indicate that the J-integral for a
symmetrically centered crack is larger than that for an o�-centered crack. This is due to the fact that the
tensile stress due to bending is largest at the center of a symmetric crack. Except for c � 0, which
represents a symmetrically centered crack, Fig. 8(a) and (b) also show that the J values for o�-center
cracks are larger at crack front AB than at crack front CD. This is because: (1) the tensile stress at
crack front AB is larger than that at crack front CD and (2) the moment component, M sin c, has a
crack-opening e�ect on crack front AB, while it has a crack-closing e�ect on crack front CD.

Fig. 9 and Fig. 10 show similar results of J for the intermediate �y=p � 1=8� and large �y=p � 1=4�
crack sizes, respectively. With the exception of the 158 o�set angle, the intermediate and large crack

Fig. 8. J-integral vs. bending moment from elastic analysis of a small crack �y=p � 1=16): (a) crack front AB and (b) crack front

CD.
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sizes display a behavior similar to the small crack. For these larger cracks with a small o�set, it was
observed that the J values were actually slightly higher than those for the centered crack case at crack
front AB. This can be explained by noting that for an incremental increase in the o�set angle from the
centered position, crack front AB will be placed into a higher stress region which can lead to the
increased J values as observed in this study. Extending this argument even further, it is postulated that
for any crack size, there will exist a threshold of o�set angle below which the J values at crack front AB
exceed those of the centered crack. Unfortunately, this trend was not captured for the smaller cracks in
this study due to the fact that for computational e�ciency, the mesh was only designed for a 158

Fig. 9. J-integral vs. bending moment from elastic analysis of a medium crack �y=p � 1=8): (a) crack front AB and (b) crack front

CD.
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increment of the o�set angle. This threshold o�set angle will increase as the crack size increases. Further
investigations should be undertaken to determine this threshold of o�set angle.3

4.4.2. Elastic±plastic analysis
Elastic±plastic analyses were also performed for a speci®c case of n = 5 to investigate the fracture

behavior of o�-center cracks in the presence of crack-tip plasticity. The results of these analyses are
shown in Figs. 11, 12 and 13 in terms of J vs. M plots for small, intermediate, and large cracks,
respectively. As before, the J-integral values are presented for both crack fronts AB and CD and various

Fig. 10. J-integral vs. bending moment from elastic analysis of a large crack �y=p � 1=4): (a) crack front AB and (b) crack front

CD.

3 Upon further investigation, this particular o�set angle threshold was less than 158 for y=p � 1=16:
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o�-center crack angles. The results suggest that due to plastic deformation, the J-integral values from
elastic±plastic analysis are much higher than those from purely elastic analysis for a given applied
moment. Otherwise, the trends in the elastic±plastic behavior of o�-center cracks are very similar to
those from purely elastic analysis.

The ®nite element results developed in this study, some of which are presented here, should be useful
in quantifying the J-integral of o�-center cracks in pipes, so that their load-carrying capacity can be
predicted. In most cases, the J values for o�-center cracks are smaller than those for symmetric cracks,
except when the o�-center angle is small. In the case of small o�-center angles, the J-integral for o�-
center cracks at one crack front can be higher than that for symmetric cracks, but their di�erence is also
small. When the o�-center angle is large, the J values for o�-center cracks can be reduced signi®cantly,
resulting in increased load-carrying capacity of pipes. It would be interesting to see how this increase in

Fig. 11. J-integral vs. bending moment from elastic±plastic analysis of a small crack �y=p � 1=16): (a) crack front AB and (b) crack

front CD.

R. Firmature, S. Rahman / Engineering Fracture Mechanics 66 (2000) 15±39 29



load-carrying capacity counters the reduced crack-opening for LBB applications. These FEM results can
be used to develop analytical expressions of in¯uence functions and J-integral for fracture analysis of
pipes containing o�-center cracks. These analytical expressions will allow both deterministic and
probabilistic pipe fracture evaluations without any need to perform a full-scale nonlinear FEA. They are
described in the next section.

5. A new J-estimation method

Under elastic±plastic conditions and applying the deformation theory of plasticity when the stress±
strain curve is modeled by Eq. (1), the total crack driving force, J, for an o�-centered crack of angle c

Fig. 12. J-integral vs. bending moment from elastic±plastic analysis of a medium crack �y=p � 1=8): (a) crack front AB and (b)

crack front CD.
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can be obtained by adding the elastic component, Je, c, and the plastic component, Jp, c, i.e.,

J � Je, c � Jp, c: �6�

Closed-form equations already exist for the elastic and plastic components of a symmetrically centered
crack [30±33]. It is proposed to use these equations along with simple o�-center-angle correction factors
for the calculation of Je, c and Jp, c: Hence, Eq. (6) can be re-written as

J � Je, 0Ke, c � Jp, 0Kp, c �7�

Fig. 13. J-integral vs. bending moment from elastic±plastic analysis of a large crack �y=p � 1=4): crack front AB and (b) crack

front CD.
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where

Je, 0 � y
p
F�y=p, Rm=t�2 M2

ER3
mt

2
�8�

and

Jp, 0 � as20
E

Rmy

�
1ÿ y

p

�
h1�y=p, n, Rm=t�

�
M

M0

�n�1
�9�

are the well-known GE/EPRI equations4 [30±33] for elastic and plastic components of J, respectively,
for a symmetrically centered crack, i.e., when c � 0, F�y=p, Rm=t� and h1�y=p, n, Rm=t� are elastic and
plastic in¯uence functions for symmetrically centered cracks, M0 is a reference moment, and Ke, c and
Kp, c are constant elastic and plastic correction factors for o�-center cracks, respectively. Note, an
e�ective crack length using plastic-zone-size correction was used in the original GE/EPRI equations [30].
In this study, the actual crack length was used in Eqs. (6)±(9) since the plastic component of the J-
integral is explicitly accounted for in Eq. (6). See Ref. [4,8] for justi®cation of using actual crack length
over e�ective crack length. The evaluations of F�y=p, Rm=t� and h1�y=p, n, Rm=t� are described in
Appendix A.

By comparing Eqs. (6) and (7), it is easy to show that

Ke, c � Je, c

Je, 0
�10�

Kp, c � Jp, c

Jp, 0
: �11�

With this new proposed method, i.e., Eq. (7), the J-integral for o�-center cracks can be easily calculated
when these two correction factors are prescribed for a given o�-center angle, c:

5.1. Calculation of correction factors

From Eqs. (10) and (11), it can be seen that the proposed correction factors are simply a ratio of the
J values for the o�-centered crack to those of the symmetrically centered crack. Based on these
equations and FEM solutions described in the previous sections, Table 2 shows the results of Ke, c and
Kp, c at cracks fronts AB and CD for a pipe with Rm=t � 10 and various combinations of y=p, c, and n.
For an o�-center angle of 0, the correction factors should have a value of 1, as is shown in Table 2. For
the intermediate �y=p � 1=8� and large �y=p � 1=4� cracks, it is shown that at the 158 o�set the
correction factor values are sometimes greater than unity for crack front AB. This agrees with the trend
discussed earlier in which J values at crack front AB with small o�set angle are larger than the values
obtained for a symmetrically centered crack. For all other cases, the correction factors are less than 1
re¯ecting the fact that most of the time the symmetrically centered crack is more critical than the o�-
centered crack. Correction factors close to 0 were also found for o�set angles that move the crack front
CD below the bending axis and, therefore, may cause it to be closed.

4 Note, the well-known GE/EPRI method, which constitutes Eqs. (8) and (9), is one of the many J-estimation methods currently

available for analyzing pipes with symmetrically centered cracks. See Refs. [4,8] for other J-estimation methods.
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5.2. Response surface approximation of correction factors

In order to eliminate the interpolation that is usually necessary when using tabulated data, it was
decided to ®t the correction factors listed in Table 2 with an analytical equation. The data in Table 2
show almost linear variation with respect to the crack length, but their variation with respect to the
o�set angle is slightly more complex. Accordingly, a response surface equation given by

Table 2

Elastic and plastic correction factors for Rm=t � 10a

n c � 08
(0 rad)

c � 158 �p=12 rad) c � 308 �p=6 rad) c � 458 �p=4 rad) c � 608 �p=3 rad) c � 758 �5p=12 rad) c � 908 �p=2 rad)

(a) Crack front AB �y=p � 1=16)
1 1 0.974 0.807 0.552 0.287 0.087 0.004

3 1 0.979 0.862 0.668 0.430 0.196 0.021

5 1 0.980 0.870 0.685 0.455 0.222 0.027

7 1 0.980 0.872 0.688 0.458 0.229 0.03

10 1 0.980 0.867 0.677 0.447 0.224 0.03

(b) Crack front AB �y=p � 1=8)
1 1 1.016 0.882 0.640 0.364 0.125 0.020

3 1 1.002 0.898 0.708 0.472 0.203 0.047

5 1 0.993 0.882 0.689 0.458 0.198 0.048

7 1 0.984 0.858 0.654 0.424 0.179 0.042

10 1 0.973 0.821 0.596 0.366 0.145 0.032

(c) Crack front AB �y=p � 1=4)
1 1 1.079 0.998 0.784 0.418 0.190 0.068

3 1 1.033 0.930 0.729 0.374 0.173 0.070

5 1 1.014 0.872 0.639 0.291 0.124 0.048

7 1 0.994 0.805 0.537 0.206 0.080 0.029

10 1 0.970 0.724 0.431 0.138 0.048 0.016

(d) Crack front CD �y=p � 1=16)
1 1 0.875 0.641 0.370 0.141 0.015 ±

3 1 0.920 0.752 0.525 0.278 0.071 ±

5 1 0.929 0.775 0.557 0.312 0.094 ±

7 1 0.934 0.783 0.568 0.323 0.108 ±

10 1 0.936 0.783 0.564 0.322 0.117 ±

(e) Crack front CD �y=p � 1=8)
1 1 0.837 0.581 0.309 0.099 ± ±

3 1 0.892 0.695 0.449 0.207 ± ±

5 1 0.896 0.703 0.460 0.222 ± ±

7 1 0.892 0.691 0.445 0.215 ± ±

10 1 0.880 0.661 0.407 0.197 ± ±

(f) Crack front CD �y=p � 1=4)
1 1 0.787 0.505 0.236 ± ± ±

3 1 0.833 0.582 0.322 ± ± ±

5 1 0.825 0.559 0.298 ± ± ±

7 1 0.812 0.520 0.258 ± ± ±

10 1 0.791 0.474 0.216 ± ± ±

a c � 0 implies symmetrically centered crack; n = 1 implies linear-elastic analysis �a � 0); ± crack front closed.
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��
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�
�
a6�n� � a7�n�

�
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p

��
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is proposed, where KI, c is either Ke, c or Kp, c (i.e., the elastic or plastic correction factor for an o�-
centered crack), and ai�n�, i � 0, 1, . . . ,7, are surface ®t coe�cients that depend on the material
hardening parameter, n, for a pipe with a given Rm=t: The coe�cients, ai�n�, can be further
approximated by a fourth-order polynomial equation represented by

ai�n� �
X4
j�0

Dijn
j �13�

in which Dij �i � 0, 1, . . . ,7 and j � 0, 1, . . . ,4� are the polynomial coe�cients that solely depend on the
Rm=t ratio of the pipe. Following least-squares curve-®t of data in Table 2, Dij were estimated and are
given in Appendix B for a pipe with Rm=t � 10: Using these values of Dij, Fig. 14(a) and (b) show the
plots of Ke, c �n � 1� and Kp, c �n � 5�, respectively, as a function of y=p and c for a pipe with Rm=t �
10: From these plots, it appears that Eqs. (12) and (13) can accurately represent the data in Table 2. In
fact, the square of correlation coe�cient (R-squared statistic) between the surface ®t equations and the
®nite element data was at least 99% for all cases considered in this study.

Note, the analytical approximation of KI, c, represented by Eqs. (12) and (13), allows closed-from
evaluation of J-integral for o�-center cracks. This would signi®cantly reduce the computational e�ort in
performing any future probabilistic and crack-growth studies [37,38].

5.3. Limitations of response surface approximation

Even with a very good agreement between the calculated correction factors and their surface ®ts, two
very important limitations still exist. First, because the ®nite element meshes were only designed for 158
increments, it is unknown how well the surface ®ts actually describe the behavior of crack front AB for
o�set angles lower than 158. It was found that a threshold o�set angle would exist below 158 for each of
the three crack lengths in this research; however, these threshold values were not determined in this
study. It is expected that a small error will exist in this region due to lack of data. For these reasons, it
is recommended that the surface ®t equations for crack front AB only be used for o�set angles ranging
from 15 to 908 and only for crack lengths between 1/16 and 1/4 of the pipe circumference.

The second limitation is also related to the 158 increment of the o�set angle. Due to the set increment
values and the varying crack lengths, the ®nal data point for the two smaller cracks correspond to o�set
angles well before closure of crack front CD. Because of this, the behavior of crack front CD is
unknown from the last data point until closure for the two smaller cracks. However, for y=p � 1=4, the
®nal data point may fall at the largest o�set for which front CD is not closed and, hence, a
discontinuity may occur at this point. Hence, the smaller cracks are expected to behave similarly in the
same con®guration. Due to this fact, the surface ®t equations for crack front CD give reasonable
approximations up to crack closure since they show the correct trend of a discontinuity at crack closure.
However, since there are no data for the two smaller cracks at the point of crack closure, a region of
extrapolation is needed between the ®nal nonzero data points and the closure line [35]. The crack
closure line is simply a straight line de®ning one edge of the extrapolation region in the y=p±c plane.
The crack is closed when c� y > 908: If crack front CD is closed, then a value of zero should be used
for the correction factor. Otherwise, correction factor data in this area should be used with caution since
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it is in an area of extrapolation. It is also recommended that the surface ®t equations for crack front
CD be used only for crack lengths between 1/16 and 1/4 of the circumference.

6. Summary and conclusions

New elastic and elastic±plastic ®nite element solutions of J-integral are presented for o�-center, TWCs
in pipes under pure bending. The analyses involved a three-dimensional nonlinear FEM and small-strain
theory. Using the ABAQUS commercial code, 105 analyses were performed for a pipe with a radius-to-
thickness ratio of 10 and a wide variety of crack sizes, o�-center angles, and material hardening
exponents. The results show that:

Fig. 14. Elastic and plastic correction factors for Rm=t � 10: (a) elastic correction factors for crack fronts AB and CD (n = 1) and

(b) plastic correction factors for crack fronts AB and CD (n = 5).
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. The J-integrals of pipes with symmetrically centered TWCs, calculated by the present three-
dimensional FEA, compare very well with the existing GE/EPRI solutions.

. For TWCs in pipes, the J-integral for an o�-center crack is smaller than that for a symmetrically
centered crack for most o�set angles. This implies that the load-carrying capacity of a pipe containing
an o�-center crack can be higher than that of a pipe containing a symmetrically centered crack.

. A threshold of o�-center angle exists below which the J values of an o�-center crack at the crack
front farther away from the bending axis of the pipe may exceed those of a symmetrically centered
crack. The threshold o�-center angles found in this study were small, as was their e�ect on the J
values.

. The J-integrals at the two crack fronts of an o�-center crack are unequal due to the loss of symmetry
with respect to the bending plane of the pipe. In general, the J-integral is larger, and hence, critical at
the crack front which is farther away from the bending axis of the pipe. This is because, at that crack
front, the tensile stress is larger and the component of applied moment about the crack centerline has
a further crack-opening e�ect.

Finally, the FEM solutions generated in this study were used to develop new analytical expressions of
in¯uence functions and J-integral for fracture analysis of pipes containing o�-center cracks. This would
signi®cantly reduce the computational e�ort in performing any future probabilistic and crack-growth
studies.
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Appendix A. In¯uence functions for symmetric cracks

In Eq. (8), F�y=p, Rm=t� is a dimensionless elastic in¯uence function that depends on pipe and crack
geometry. According to Rahman [38],

F�y=p, Rm=t� � 1� �A1 A2 A3

	8<: �y=p�
1:5

�y=p�2:5
�y=p�3:5

9=;�B1 B2 B3 B4

	8>><>>:
1
�Rm=t�
�Rm=t�2
�Rm=t�3

9>>=>>; �14�

where Ai (i = 1±3) and Bi (i = 1±4) are constant coe�cients. Let A � fA1 A2 A3 gT and B �
fB1 B2 B3 B4 gT be two real vectors with the coe�cients, Ai and Bi as their components,
respectively. Using best ®t of ®nite element results, A and B are given by [38]:

A � � 0:006215 0:013304 ÿ0:01838 	T �15�

B � � 175:577 91:69105 ÿ5:53806 0:15116
	T
: �16�

In Eq. (9), h1�y=p, n, Rm=t� is a dimensionless plastic in¯uence function that depends on pipe geometry,
crack geometry, and material hardening exponent. According to Rahman [38],
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h1�y=p, n, Rm=t� �
�
1 �y=p� �y=p�2 �y=p�3

	2664
C00 C10 C20 C30

C01 C11 C21 C31

C02 C12 C22 C32

C03 C13 C23 C33

3775
8>><>>:
1
n
n2

n3

9>>=>>; �17�

where Cij �i, j � 0±3� are coe�cients which depend on Rm=t and can also be calculated from best ®t of
®nite element results [38]. Let C � �Cij �, i, j � 0±3, be a real matrix with the coe�cients, Cij as its
components. According to Rahman [38], C is given by:

For Rm=t � 5,

C �

2664
3:74009 1:43304 ÿ0:10216 0:0023
ÿ 0:19759 ÿ10:19727 ÿ0:45312 0:04989
36:42507 17:03413 3:36981 ÿ0:21056
ÿ70:4846 ÿ14:69269 ÿ2:90231 0:15165

3775 �18�

For Rm=t � 10,

C �

2664
3:39797 1:31474 ÿ 0:07898 0:00287
ÿ 3:07265 4:34242 ÿ 2:48397 0:11476
131:7381 ÿ79:02833 16:18829 ÿ0:66912
ÿ234:6221 117:0509 ÿ20:30173 0:79506

3775 �19�

For Rm=t � 20,

C �

2664
4:07828 ÿ 1:55095 0:67206 ÿ 0:0442

ÿ 18:21195 69:92277 ÿ18:41884 1:11308
357:4929 ÿ453:1582 108:0204 ÿ 6:56651
ÿ602:7576 617:9074 ÿ144:9435 8:9022

3775: �20�

See Ref. [38] for further explanations on how these coe�cients were calculated.

Appendix B. Coe�cients Dij

Let D � �Dij �, i � 0, 1, . . . ,7 and j � 0, 1, . . ., 4, be a real matrix with the coe�cients, Dij, as its
components. Following least-squares curve-®t, D for Rm=t � 10 is given by:

At crack front AB,
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D �

266666666664

0:3528 ÿ0:2522 0:0631 ÿ0:0074 0:0003
2:7962 ÿ1:0617 0:2940 ÿ0:0266 0:0008
ÿ2:9981 1:6897 ÿ0:4233 0:0496 ÿ0:0021
3:7670 ÿ2:0229 0:3196 ÿ0:0762 0:0047
2:0620 ÿ1:4627 0:3823 ÿ0:0467 0:0020
ÿ7:1406 2:5393 ÿ0:5405 0:1119 ÿ0:0064
ÿ0:3596 0:3150 ÿ0:0885 0:0115 ÿ0:0005
2:3539 ÿ0:5121 0:1318 ÿ0:0327 0:0019

377777777775
�21�

At crack front CD,

D �

266666666664

0:1444 ÿ0:2620 0:0651 ÿ0:0064 0:0002
ÿ3:1782 2:5246 ÿ0:6779 0:0734 ÿ0:0029
ÿ3:3451 2:3779 ÿ0:5637 0:0583 ÿ0:0022
4:2744 ÿ8:1376 1:9887 ÿ0:2243 0:0094
2:9435 ÿ2:6898 0:6399 ÿ0:0670 0:0026
ÿ0:6972 6:2504 ÿ1:4695 0:1750 ÿ0:0077
ÿ0:7191 0:8152 ÿ0:1955 0:0207 ÿ0:0008
ÿ0:4701 ÿ1:3246 0:3025 ÿ0:0393 0:0019

377777777775
: �22�
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