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A new moment-modified polynomial dimensional decomposition (PDD) method is pre-
sented for stochastic multiscale fracture analysis of three-dimensional, particle-matrix,
functionally graded materials (FGMs) subject to arbitrary boundary conditions. The
method involves Fourier-polynomial expansions of component functions by orthonormal
polynomial bases, an additive control variate in conjunction with Monte Carlo simulation
for calculating the expansion coefficients, and a moment-modified random output to
account for the effects of particle locations and geometry. A numerical verification con-
ducted on a two-dimensional FGM reveals that the new method, notably the univariate
PDD method, produces the same crude Monte Carlo results with a five-fold reduction in
the computational effort. The numerical results from a three-dimensional, edge-cracked,
FGM specimen under a mixed-mode deformation demonstrate that the statistical
moments or probability distributions of crack-driving forces and the conditional probabil-
ity of fracture initiation can be efficiently generated by the univariate PDD method. There
exist significant variations in the probabilistic characteristics of the stress-intensity factors
and fracture-initiation probability along the crack front. Furthermore, the results are insen-
sitive to the subdomain size from concurrent multiscale analysis, which, if selected
judiciously, leads to computationally efficient estimates of the probabilistic solutions.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In functionally graded materials (FGMs), the introduction of gradual changes in material compositions and microstruc-
tures at the macroscale removes large-scale, interface-induced stress singularities that can otherwise lead to delamination
failure [1]. However, due to formation of cracks during processing or service life, fracture remains an important failure
mechanism. There are two major challenges in conducting fracture analyses of FGMs. First, an FGM is a multiphase,
heterogeneous material with multiscale features, which, depending on the crack-tip location and microstructure, can
have markedly different crack-driving forces. Second, the microstructure of an FGM is inherently stochastic, which can
be modeled as a random field, describing random distributions of sizes, shapes, and orientations of constituent phases.
Therefore, stochastic multiscale models are ultimately necessary to provide a realistic computational framework for
determining mechanical performance of a crack, real or postulated, in an FGM.

Past computational works on FGM fracture are primarily driven by deterministic macroscopic models and entail mostly
two-dimensional [2–4] and a few three-dimensional [5–7] media for calculating the stress-intensity factors (SIFs) from
. All rights reserved.

(S. Rahman).

http://dx.doi.org/10.1016/j.engfracmech.2010.09.006
mailto:rahman@engineering.uiowa.edu
http://dx.doi.org/10.1016/j.engfracmech.2010.09.006
http://www.sciencedirect.com/science/journal/00137944
http://www.elsevier.com/locate/engfracmech


28 S. Rahman, A. Chakraborty / Engineering Fracture Mechanics 78 (2011) 27–46
spatially varying elastic properties. In contrast, models of random microstructure or multiscale fracture analysis are few and
far between [8,9], and they mostly delve into two-dimensional FGMs. For instance, the authors recently developed a concur-
rent multiscale model, which includes a stochastic description of a two-dimensional FGM microstructure and constituent
material properties, a two-scale algorithm including microscale and macroscale analyses for determining crack-driving
forces, and crude Monte Carlo simulation for fracture reliability analysis [9]. Numerical results indicate that the concurrent
multiscale model is sufficiently accurate, gives fracture probability solutions very close to those generated from the micro-
scale (reference) model, and can reduce the computational effort of the latter model by a factor of more than two. However,
the stochastic analysis in both multiscale and microscale models was conducted using crude Monte Carlo simulation, requir-
ing tens of thousands of deterministic finite-element analyses (FEA) to estimate tail probabilities. In other words, the in-
creased computational speed gained by the multiscale model is due to more efficient FEA in each deterministic sample,
not stochastic analysis. Therefore, further research exploiting alternative stochastic methods – the principal objective of this
work – should pave the way for probabilistic fracture analysis in a computationally efficient way. Developing such alterna-
tive methods becomes indispensable when analyzing cracks in three-dimensional FGMs, as crude Monte Carlo simulation is
no longer a viable option due to increased computational demand from three-dimensional FEA.

This paper presents a new moment-modified polynomial dimensional decomposition (PDD) method for stochastic mul-
tiscale fracture analysis of three-dimensional, particle-matrix FGMs subject to arbitrary boundary conditions. The method is
based on (1) Fourier-polynomial expansions of component functions by orthonormal polynomial bases, (2) an additive con-
trol variate in conjunction with Monte Carlo simulation for efficient calculation of the expansion coefficients, and (3) a mo-
ment-modified random output to account for the effects of particle locations and geometry. Section 2 describes a generic,
stochastic FGM fracture problem, defines random input parameters, and discusses crack-driving forces. Section 3 presents
a concurrent multiscale model for fracture analysis. Section 4 explores PDD, presents an efficient method for calculating
the expansion coefficients, including a moment-modified random output, and discusses computational effort. The section
also includes numerical results from a two-dimensional FGM analysis, essentially verifying the PDD method. Section 5 illus-
trates the capability of the proposed method by solving a three-dimensional FGM fracture problem, leading to the statistical
moments and probability densities of crack-driving forces and the conditional probability of fracture initiation. Finally, the
conclusions are drawn in Section 6.
2. Stochastic fracture problem

Consider a two-phase, functionally graded, heterogeneous solid with a planar crack, domain D � R3, and a schematic
illustration of its microstructure, as shown in Fig. 1a. 1The microstructure includes two distinct material phases, phase p (green
or dark) and phase m (white or light), denoting particle and matrix constituents with subdomains Dp � D and Dm � D, respec-
tively, where Dp [Dm ¼ D and Dp \Dm ¼ ;. Both constituents represent isotropic and linear-elastic materials, and the elasticity
tensors of the particle and matrix, denoted by C(p) and C(m), respectively, are
1 For
CðiÞ :¼ miEi

ð1þ miÞð1� 2miÞ
1� 1þ Ei

ð1þ miÞ
I; i ¼ p;m; ð1Þ
where the symbol � denotes the tensor product; Ei and mi are the elastic modulus and Poisson’s ratio, respectively, of phase i;
and 1 and I are second- and fourth-rank identity tensors, respectively. The superscripts or subscripts i = p and i = m refer to
particle and matrix, respectively. At a spatial point x 2 D in the macroscopic length scale, let /p(x)and /m(x) denote the vol-
ume fractions of the particle and matrix, respectively. Each volume fraction is bounded between 0 and 1 and satisfies the
constraint /p(x) + /m(x) = 1. The crack faces are traction-free, and there is perfect bonding between the matrix and particles.
In addition, no porosities are included in the matrix or particle phases.

For a quasi-static, elastic problem with small displacements and strains, the variational or weak form of the equilibrium
equation and boundary conditions is
Z
D

ðCðxÞ : �Þ : d�dD�
Z
D

b � dudD�
Z

Ct

�t � dudC�
X

xK2Cu

f ðxKÞ � duðxKÞ �
X

xK2Cu

df ðxKÞ � uðxKÞ � �uðxKÞ½ � ¼ 0; ð2Þ
where u : D! R3 is the displacement vector; C(x) and � :¼ ð1=2Þð$þ $TÞu denote the spatially variant elasticity tensor
and strain tensor, respectively; Ct and Cu are two disjoint portions of the boundary C, where the traction vector �t and
displacement �u are prescribed, respectively; fT(xK) is the vector of reaction forces at a constrained node K on Cu; $T :¼
f@=@x1; @=@x2; @=@x3g is the vector of gradient operators; and symbols ‘‘.”, ‘‘:”, and d denote dot product, tensor contraction,
and variation operator, respectively. The discretization of the weak form, Eq. (2), depends on how the elasticity tensor C(x) is
defined, i.e., how the elastic properties of constituent material phases and their gradation characteristics are described.
Nonetheless, a numerical method, e.g., the finite-element method, is generally required to solve the discretized weak form,
providing various response fields of interest.
interpretation of color in Figs. 1 and 3–10, the reader is referred to the web version of this article.
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Fig. 1. Schematics of a two-phase, three-dimensional FGM fracture problem: (a) a planar crack subject to arbitrary boundary conditions; (b) a concurrent
multiscale model; and (c) a small, bounded subdomain of a crack tip. Note: D = domain of the entire solid, D = subdomain with explicit microstructure,
D� = small subdomain surrounding a crack tip on the crack front.
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2.1. Random input

Uncertainties in input to FGM fracture analysis leading to statistical characteristics of SIFs come from a variety of sources.
Two important sources considered in this work are: (1) random microstructure, including uncertainties in the volume frac-
tion, number, and locations of particles and (2) random elastic material properties of constituents. They are briefly described
as follows.

2.1.1. Random microstructure
2.1.1.1. Particle volume fraction. The particle volume fraction /p(x) can be modeled as an inhomogeneous (non-stationary), non-
Gaussian, random field, which has mean lp(x) and standard deviation rp(x) [10]. The standardized particle volume fraction
~/pðxÞ :¼
/pðxÞ � lpðxÞ

rpðxÞ
; ð3Þ
which has zero mean and unit variance, is at least a weakly homogeneous (stationary) random field with prescribed covariance
function C~/p

ðsÞ :¼ E ~/pðxÞ~/pðxþ sÞ
h i

, where E is the expectation operator, and with marginal cumulative distribution function
Fpð~/pÞ such that 0 6 /p(x) 6 1 with probability one. If the covariance function C~/p

ðsÞ is appropriately bounded, the standard-
ized phase volume fraction can be viewed as a translation random field ~/pðxÞ ¼ Gp½apðxÞ� :¼ F�1

p ½UðapðxÞÞ�, where Gp is a map-
ping of the Gaussian field on a non-Gaussian field, ap(x) is the Gaussian image field, and U(�) is the distribution function of a
standard Gaussian random variable. Subsequently, the Karhunen–Loéve approximation of the image field leads to [10]
~/pðxÞ ffi Gp

XM

k¼1

Zp;k

ffiffiffiffiffiffiffi
kp;k

p
Wp;kðxÞ

" #
; ð4Þ
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where kp,k and Wp,k(x) denote the kth eigenvalue and the kth eigenfunction, respectively, of the covariance function of ap(x),
and Zp,k is an independent copy of a standard Gaussian random variable. According to Eq. (4), the Karhunen–Loéve approx-
imation yields a parametric representation of the standardized phase volume fraction ~/pðxÞ and, hence, of /p(x) with M
Gaussian variables. The random field description of /p(x) allows the particle volume fraction to have random fluctuations
at a point x in the macroscopic length scale.

2.1.1.2. Particle number and locations. The random microstructure entailing particle locations can be described using the well-
known Poisson random field. However, since the FGM microstructure varies spatially, the Poisson field must be inhomoge-
neous. Consider an inhomogeneous Poisson field NðD0Þ with an intensity measure lD0 :¼

R
D0 kðxÞdx, where x 2 D0 � R3 is a

spatial coordinate, k(x) P 0 is a spatially variant intensity function, and D0 2 R3 is a bounded subset of R3 such that points
of N falling in R3 nD0 do not contribute to particles in D. The Poisson point field has the following properties: (1) the number
NðD0Þ of points in a bounded subset D0 has a Poisson distribution with intensity measure lD0 ; and (2) random variables
NðD01Þ; . . . ; NðD0KÞ for any integer K P 2 and disjoint sets D01; . . . ;D0K are statistically independent. The Poisson
field NðD0Þ gives the number of points in D0 and is characterized by the probability,
P NðD0Þ ¼ n½ � ¼
R
D0 kðxÞdx

� �n

n!
exp �

Z
D0

kðxÞdx
� �

; n ¼ 0;1;2; . . . ; ð5Þ
that n Poisson points exist in D0. An FGM with fully penetrable spherical particles that have the same deterministic size, as
assumed in this work, and a deterministic particle volume fraction up(x) has the intensity function [11]
kðxÞ ffi 1
Vp

ln
1

1�upðxÞ

" #
; x 2 D0; ð6Þ
where Vp is the common volume of the particles. When /p(x) is a random field, as treated in this work, up(x) can be viewed as
a sample function of /p(x). For more complex microstructures comprising random particle geometry, no such closed-form
relationships exist, but they can be formulated algorithmically [12].

2.1.1.3. Mosaic random field. A random point field, known as the mosaic random field [13] and employing an inhomogeneous
Poisson field, can be used to model particle-matrix FGMs. Once the intensity function has been determined, samples of syn-
thetic microstructures of two-phase FGMs are generated from the mosaic random field based on the following algorithm:

� Step 1: Define bounded subsets D and D0 of R3. The bounded subset D0 must be such that points of N falling in R3 nD0 do
not contribute to particles in D.
� Step 2: Generate a sample up(x) of the random particle volume fraction /p(x) using Eqs. (3) and (4). Calculate the corre-

sponding sample k(x) of the random intensity function from Eq. (6).
� Step 3: Generate a sample k* of the homogeneous Poisson random variable N	ðD0Þ, which has a constant intensity

k	 ¼maxx2R3 kðxÞ, where k(x) is a bounded intensity function in D0.
� Step 4: Generate k* independent samples of uniformly distributed points (ui,1,ui,2,ui,3) in D0. Denote these points by xi,

i = 1, . . . ,k*.
� Step 5: Perform thinning of the point set obtained in Step 4. In so doing, each point xi, independently of the other, is kept

with probability k(xi)/k*, which is equivalent to discarding the point with probability 1 � k(xi)/k*. The resulting point pat-
tern with the size k 6 k* follows the inhomogeneous Poisson field NðD0Þ with the intensity function k(x). Let these points
be denoted by Ci, i = 1, . . . ,k.
� Step 6: Place particles with their centroids coincident with the points Ci, i = 1, . . . ,k. The resultant subsets Dp and Dm of

the particle and matrix regions, respectively, of D produce a sample of a two-phase, statistically inhomogeneous
microstructure.

Independent samples of an FGM random microstructure are delivered by repeated application of the above algorithm.

2.1.2. Random constituent material properties
In addition to a spatially variant random volume fraction of particles leading to a random microstructure, the constituent

properties of material phases can also be stochastic. Let Ep and mp denote the elastic modulus and Poisson’s ratio, respectively,
of the particle, and Em and mm denote the elastic modulus and Poisson’s ratio, respectively, of the matrix. Therefore, the ran-
dom vector fEp; Em; mp; mmgT 2 R4 describes the stochastic elastic properties of both constituents. Unlike volume fractions,
however, the constituent properties are spatially invariant in the macroscopic length scale.

In summary, the input uncertainties include: (1) M random variables Zp,1, . . . ,Zp,M due to the discretization of the random
field /p(x); (2) a Poisson random variable N and resulting 3N random variables ðUi;1;Ui;2;Ui;3Þ; i ¼ 1; . . . ;N, representing
coordinates of the particle centroids in D0; and (3) four random constituent properties Ep, Em, mp, mm. In other words, an input
random vector R ¼ fZp;1; . . . ; Zp;M;N; ðU1;1;U1;2;U1;3Þ; . . . ; ðUN;1;UN;2;UN;3Þ; Ep; Em; mp; mmgT 2 RN characterizes uncertainties
from all sources in an FGM, where the dimension N ¼ M þ 3Nþ 5 is an integer-valued random variable and is completely
described by its joint probability density function (PDF) fR(r), where r is a realization of R.



S. Rahman, A. Chakraborty / Engineering Fracture Mechanics 78 (2011) 27–46 31
2.2. Crack-driving forces and reliability

A major objective of stochastic fracture-mechanics analysis is to find probabilistic characteristics of crack-driving forces,
such as SIFs KI(R), KII(R), and KIII(R) for modes I–III, respectively, due to random input R. For a given input sample, a standard
FEA solves the discretized weak form (Eq. (2)), leading to the calculation of SIFs by standard interaction integrals [14].

Let y(R) describe a generic crack-driving force or a relevant performance function involving SIFs for a given FGM fracture
problem of interest. Suppose that a failure is defined when the crack propagation is initiated at a crack tip on the crack front,
i.e., when the effective SIF Keff ðRÞ ¼ �hðKIðRÞ;KIIðRÞ;KIIIðRÞÞ > KIc , where �h depends on the selected mixed-mode fracture cri-
terion [15] and KIc is a relevant mode-I fracture toughness of the material measured in terms of SIF. This requirement cannot
be satisfied with certainty, since KI, KII, and KIII are all dependent on R, which is random, and KIc itself may be a random var-
iable or field. Hence, the fracture performance of an FGM should be evaluated by the conditional reliability or its comple-
ment, the conditional probability of fracture initiation PF(KIc), defined as the multifold integral
PFðKIcÞ :¼ P½yðRÞ < 0� :¼
Z

RN
IyðrÞfRðrÞdr; ð7Þ
where
yðRÞ ¼ KIc � �h KIðRÞ;KIIðRÞ;KIIIðRÞð Þ ð8Þ
is a multivariate performance function that depends on the random input R and IyðrÞ is an indicator function such that
IyðrÞ ¼ 1 if yðrÞ < 0 and IyðrÞ ¼ 0 if yðrÞ > 0. The evaluation of the multidimensional integral in Eq. (7), either analytically
or numerically, is not possible because the total number of random variables N is large, fR(r) is generally non-Gaussian,
and y(r) is a highly nonlinear function of r. Crude Monte Carlo simulation to estimate the fracture-initiation probability is
computationally burdensome, if not prohibitive; therefore, alternative stochastic methods are essential for providing both
accurate and efficient solutions.

The effort in conducting probabilistic fracture analysis of FGM is influenced by two primary sources: (1) deterministic
computing of SIFs, which requires expensive FEA for a given input sample and (2) stochastic computing of SIFs, which in-
volves uncertainty propagation in a high-dimensional stochastic system. A new moment-modified PDD method in conjunc-
tion with a concurrent multiscale fracture model developed in this work reduces computational demand from both sources.
3. Concurrent multiscale analysis

The FGM microstructure schematically illustrated in Fig. 1a contains discontinuities in material properties at the inter-
faces between the matrix and particles. At the crack-front region, discrete material property information derived from the
microstructure is required for calculating the crack-tip fields accurately. However, far away from the crack-front, where
the effect of the crack-tip singularity vanishes rapidly, individual constituent material properties may not be needed, and
an appropriately derived continuous, effective material property should suffice. Therefore, a concurrent multiscale analysis,
where the material representation is discrete at the crack-front region and continuous elsewhere, leading to a combined
micromechanical and macromechanical stress analysis should provide a more efficient solution of crack-tip fields than a
microscale analysis that is solely based on discrete material representation everywhere.

As depicted in Fig. 1b, consider an arbitrary, three-dimensional, bounded subdomain D#D surrounding the crack front.
The number of particles falling in D0 is N :¼NðD0Þ, where D0 � R3 is a bounded subset such that points of N falling in
R3 nD0 do not contribute to particles in D. The integer-valued random variable N also follows a Poisson distribution with
the same intensity function k(x) derived from Eq. (6). The subdomain D, once defined, is statistically filled with particles,
whereas the remaining subdomain D nD is assigned a continuously varying effective elasticity tensor CðxÞ, obtained from
a suitable micromechanical homogenization [16]. According to the concurrent multiscale model, Eq. (2) is discretized and
solved using
CðxÞ ffi
CðpÞ; if x 2 D and x 2 Dp

� �
;

CðmÞ; if x 2 D and x 2 Dm
� �

;

CðxÞ; if x 2 D nD;

8>><
>>: ð9Þ
where discontinuity in material properties at the interfaces between D and D nD and between Dp and Dm exist, rendering
calculation of SIF difficult. To overcome this problem, consider a small, bounded subdomain D� � D surrounding a crack tip
of interest with coordinate xtip, depicted in Fig. 1c, such that material properties of either the particle or the matrix phase are
assigned in D�. The result is a slight modification of the elasticity tensor, for instance,
CðxÞ ffi
CðpÞ; if x 2 D� and xtip 2 Dp

� �
or if x 2 D nD� and x 2 Dp

� �
;

CðmÞ; if x 2 D� and xtip 2 Dm
� �

or if x 2 D nD� and x 2 Dm
� �

;

CðxÞ; if x 2 D nD;

8>><
>>: ð10Þ
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yielding a locally homogeneous material representation, i.e., C(x) is either C(p) or C(m), but constant for x 2 D�. Consequently,
the mixed-mode SIFs at that crack tip ðxtip 2 D�Þ are readily calculated from [14,17]
Ki ffi
1
2 Mð1;iÞ

p E	p; if xtip 2 Dp;

1
2 Mð1;iÞ

m E	m; if xtip 2 Dm;

(
; i ¼ I; II; ð11Þ
and
KIII ffi
Mð1;IIIÞ

p lp; if xtip 2 Dp;

Mð1;IIIÞ
m lm; if xtip 2 Dm;

(
ð12Þ
where Mð1;iÞ
p and Mð1;iÞ

m are the associated interaction integrals for mode i (i = I, II, III), when CðxÞ ¼ CðpÞ; x 2 D� and
CðxÞ ¼ CðmÞ; x 2 D�, respectively, provided that their domains of integration lie within D�. For plane stress conditions,
E	j ¼ Ej, and for plane strain conditions or three-dimensional problems, E	j ¼ Ej=ð1� m2

j Þ, where Ej denotes the elastic modu-
lus, mj denotes the Poisson’s ratio, and lj = Ej/2(1 + mj) is the shear modulus. The subscripts j = p and j = m refer to particle and
matrix, respectively. Since the interaction integrals vary along the crack front, the SIFs also depend on the crack-tip location.
In Eq. (10), the size of D� should be comparable to the microstructural length scale but large enough for the interaction inte-
grals and SIFs to be calculated accurately. Further details of the concurrent multiscale model, including verification with a
full microscale model, are available in the authors’ prior work on two-dimensional FGMs [9].

The stochastic analysis employing the concurrent multiscale model has the random input vector R ¼ fZp;1; . . . ;

Zp;M ;N; ðU1;1;U1;2;U1;3Þ; . . . ; ðUN;1;UN;2;UN;3Þ; Ep; Em; mp; mmgT 2 RN , where N ¼ M þ 3Nþ 5. If D � D, then N <N, resulting
in a dimension reduction in stochastic multiscale analysis.
4. Moment-modified polynomial dimensional decomposition method

Let ðX;F; PÞ be a complete probability space, where X is a sample space, F is a r-field on X, and P : F! ½0;1� is a prob-
ability measure. With BN representing the Borel r-field on RN , consider an RN-valued independent random vector
fR ¼ fR1; . . . ;RNgT : ðX;FÞ ! ðRN ;BNÞg, which describes uncertain input from the FGM microstructure and constituent elas-
tic properties described in the preceding section. The probability law of R is completely defined by the joint PDF
fRðrÞ ¼ Pi¼N

i¼1 fiðriÞ, where fi(ri) is the PDF of Ri defined on the corresponding probability triple ðXi;Fi; PiÞ. Let L2ðXi;Fi; PiÞ
be a Hilbert space that is equipped with a set of complete orthonormal bases {wij(ri); j = 0,1, . . .}, which is consistent with
the probability measure of Ri. For example, classical orthonormal polynomials, including Hermite, Legendre, and Jacobi poly-
nomials, can be used when Ri follows Gaussian, uniform, and Beta probability distributions, respectively [18].

Let y(R), a real-valued, measurable transformation on ðX;FÞ, define a SIF or relevant performance function that depends
on the SIFs of a given FGM fracture problem. Using orthonormal polynomial bases and Fourier-polynomial expansions of
component functions, an S-variate (1 6 S 6 N) approximation from the PDD of y(R) is [18]
~ySðRÞ ffi y0 þ
XN

i¼1

Xm

j¼1

aijwijðRiÞ þ
XN

i1 ;i2¼1;i1<i2

Xm

j2¼1

Xm

j1¼1

bi1 i2 j1 j2
wi1 j1
ðRi1 Þwi2 j2

ðRi2 Þ þ � � � þ
XN

i1 ;...;iS¼1;i1<���<iS

Xm

jS¼1

� � �
Xm

j1¼1

Ci1 ���iS j1 ���jS



YS

s¼1

wis js
ðRis Þ; ð13Þ
where
y0 :¼
Z

RN
yðrÞfRðrÞdr ¼ E½yðRÞ�; ð14Þ

aij :¼
Z

RN
yðrÞwijðriÞfRðrÞdr ¼ E½yðRÞwijðRiÞ�; ð15Þ

bi1 i2 j1j2
:¼
Z

RN
yðrÞwi1 j1

ðri1 Þwi2 j2
ðri2 ÞfRðrÞdr ¼ E½yðRÞwi1 j1

ðRi1 Þwi2 j2
ðRi2 Þ�; ð16Þ

..

.

Ci1 ���iS j1 ���jS ¼
Z

RN
yðrÞ

YS

s¼1

wis js
ðris ÞfRðrÞdr ¼ E yðRÞ

YS

s¼1

wis js
ðRis Þ

" #
ð17Þ
are the expansion coefficients and 1 6m 61 is the largest order of orthogonal polynomials. The right side of Eq. (13), for
S = N, converges to y(R) in the mean square sense as m ?1. Once the embedded coefficients y0; aij; bi1 i2j1 j2

; . . . ; Ci1 ���iSj1 ���jS
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are calculated, as described in a forthcoming section, Eq. (13) furnishes an approximate but explicit map ~yS : RN ! R that can
be viewed as a surrogate of the exact map y : RN ! R, which describes the input-output relationship from the FGM fracture-
mechanics simulation. Therefore, any probabilistic characteristic of y(R), including its statistical moments and fracture-
initiation probabilities, can be easily estimated by performing Monte Carlo simulation of ~ySðRÞ rather than that of y(R).

4.1. Calculation of coefficients

4.1.1. Monte carlo simulation
Consider L independent samples rðlÞ ¼ rðlÞ1 ; . . . ; rðlÞN

n oT
2 RN; l ¼ 1; . . . ; L of the input vector R that can be generated to esti-

mate the coefficients
y0 ffi
1
L

XL

l¼1

y rðlÞ
� �

; ð18Þ

aij ffi
1
L

XL

l¼1

y rðlÞ
� �

wij rðlÞi

� �
; ð19Þ

bi1 i2 j1j2
ffi 1

L

XL

l¼1

y rðlÞ
� �

wi1 j1
rðlÞi1

� �
wi2 j2

rðlÞi2

� �
; ð20Þ

..

.

Ci1 ���iSj1 ���jS ffi
1
L

XL

l¼1

y rðlÞ
� �YS

s¼1
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Therefore, Eq. (13) becomes
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generating the univariate or bivariate approximation of y(R) by selecting S = 1 or S = 2, respectively.
The Monte Carlo integration to calculate the coefficients is approximate when L <1 and the standard errors in calculating

the coefficients are proportional to the standard deviations of the integrands given in Eqs. (14)–(17) divided by
ffiffiffi
L
p

[19].
Therefore, the error by Monte Carlo integration can be reduced by either increasing the sample size L or decreasing the var-
iance of the integrand. If random sampling of the integrand produces a large variance (e.g., when y has rapid changes in the
domain of interest, especially in sign), the error becomes unacceptably large. Therefore, depending on the nature of the func-
tion y, additional samples are required to achieve reduced error. Since an FGM fracture analysis requires expensive finite-
element calculations to obtain samples of y(R) for given samples of random input, increasing the sample size may render
the calculation of coefficients prohibitively expensive. Another way to improve the accuracy of Monte Carlo integration with
a relatively small number of samples is to reduce the variance of the integrand. In this work, an additive control variate
method [19,20] was utilized toward this end.

4.1.2. Control variate
Consider a multivariate integral for the determination of the coefficients in Eqs. (15)–(17). For example, using the additive

control variate technique, aij in Eq. (15) can be rewritten as
aij ¼
Z

RN
yðrÞ � hðrÞ½ �wijðriÞfRðrÞdr þ

Z
RN

hðrÞwijðriÞfRðrÞdr; ð23Þ
where h(r) is a control variate such that (1) y(r) and h(r) are similar over the entire domain of integration and (2) the integralR
RN hðrÞwijðriÞfRðrÞdr can be obtained analytically. The first term in Eq. (23) has a small variance when y(r) and h(r) are lin-

early related through
hðrÞ ¼ yðrÞ þ b; ð24Þ

where b is a constant. Assuming that the second term in Eq. (23) is known analytically, the variance in Eq. (23) comes only
from the first term. Since y(r) and h(r) are similar, i.e., b � 0, one can expect the variance of [y(R) � h(R)]wij(Ri) to be less than
the variance of y(R)wij(Ri). Using Monte Carlo integration to evaluate the first integration in Eq. (23) yields
aij ffi
1
L

XL

l¼1

y rðlÞ
� �

� h rðlÞ
� �	 


wij rðlÞi

� �
þ
Z
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hðrÞwijðriÞfRðrÞdr; ð25Þ
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which is expected to give better accuracy than that given by Eq. (19). However, for any arbitrary function y(r), there is no
general way to find an analytical expression for h(r), and it may even be impossible. Therefore, the use of Eq. (25) employing
an analytical expression for h(r) is often not practical, especially when y(r) is obtained implicitly from FEA.

An alternative approach is to exploit the PDD of y(r) to approximate h(r). In this regard, consider an S-variate approxima-
tion of y(r) to generate the qth approximation
hðqÞðr; NÞ ¼ y0 þ
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XN

i1 ;i2¼1;i1<i2

Xm

j2¼1

Xm

j1¼1

bðqÞi1 i2j1 j2
wi1 j1
ðri1 Þwi2 j2

ðri2 Þ þ � � �

þ
XN

i1 ;...;iS¼1;i1<���<iS

Xm

jS¼1

� � �
Xm

j1¼1

CðqÞi1 ���iSj1 ���jS

YS

s¼1

wis js
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of h(r), where the argument N of h(q) denotes the total number of random variables involved (upper limit of the outer sums)
and q = 0,1,2, . . .. Then, the estimated coefficients are
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With each new iteration in Eq. (26), jy(r) � h(r)j decreases as the coefficients are corrected based on the difference between

y(r) and h(r). When y(r) = h(r), the first terms in Eqs. (27)–(29) become zero for q > 0 and no further iteration is necessary.

Therefore, the iteration can be terminated by the conditions aðqÞij � aðq�1Þ
ij

��� ��� < �; bðqÞij � bðq�1Þ
ij

��� ��� < �; . . . ; CðqÞi1 ���iSj1 ���jS
�

���
Cðq�1Þ

i1 ���iSj1 ���jS
j < �, where � is a user-defined tolerance. Note that the same samples of y(R) are used in all iterations, requiring

no additional response calculations. Therefore, converged values of the expansion coefficients from Eqs. (27)–(29) are
obtained with little additional effort.

4.2. Moment modification

The stochastic fracture analysis employing the concurrent multiscale model involves the random input vector
R ¼ fZp;1; . . . ; Zp;M;N; ðU1;1;U1;2;U1;3Þ; . . . ; ðUN;1;UN;2;UN;3Þ; Ep; Em; mp; mmgT 2 RN , where finding the PDF for the particle loca-
tion coordinates fðUi;1;Ui;2;U1;3Þg; i ¼ 1; . . . ;N is not trivial. Therefore, a straightforward application of the PDD method is
very difficult, if not impossible, as the method requires orthonormal bases corresponding to the PDF of all input random vari-
ables involved. An alternative but approximate approach, referred to as the moment-modified polynomial dimensional decom-
position method, was developed to circumvent this problem, and is described as follows.

Recall that y(r) = y(r1, . . .,rN) represents either a SIF or a performance function that depends on SIFs. In general, the objec-
tive is to evaluate the probabilistic characteristics of a generic output response yðRÞ 2 R, when the probability distribution of
the random input R 2 RN is prescribed. The newly developed moment-modified PDD method for stochastic fracture analysis
of FGMs involves the following three-step algorithm:

� Step 1: Generate L samples y(r(l)), l = 1, . . .,L, of the random output y(R) by employing the concurrent multiscale fracture
model described in Section 3. The output samples y(r(l)), l = 1, . . .,L, contain effects of all random variables, including par-
ticle locations considered in the multiscale model.
� Step 2: Define R ¼ fZp;1; . . . ; Zp;M; Ep; Em; mp; mmgT 2 RN; N ¼ M þ 4 as the truncated input random vector, which excludes

variables describing particle locations. Using L samples of y(R) from Step 1 and a truncated control variate hðqÞð�r; NÞ in
Eq. (26), calculate the PDD coefficients from Eqs. (27)–(29) for i; i1; i2; i3; . . . ¼ 1; . . . ; N and j, j1, j2, j3, . . . = 1, . . ., m.
Therefore, the N-truncation of the S-variate polynomial decomposition becomes
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Since R is a subvector of R; �ySðRÞ cannot fully capture the effect of the variability from particle locations.
� Step 3: Estimate the mean-variance pairs
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of y(R) and �ySðRÞ, respectively, both calculated from the existing samples of y(R). Postulate that the sample properties of
ð~yS � lÞ=r and ð�yS � �lÞ=�r are the same, yielding yet another approximation,
~ySðRÞ ffi lþ r
�r

�ySðRÞ � ~l
	 


; ð33Þ
without requiring additional FEA.

Eq. (33) provides a heuristic, but convenient, approximation of ~ySðRÞ in Eq. (22) without having to include orthonormal
polynomial bases associated with random particle locations.

Since the material at a crack tip (xtip) on the crack front can either be that of the particle or the matrix with a possibly
significant mismatch between constituent properties, jumps (discontinuities) may occur in a relevant fracture response.
Therefore, two separate stochastic analyses, one with the crack tip in the particle phase and the other with the crack tip
in the matrix phase, are required for the moment-modified PDD method. Consider two variants of ~ySðRÞ; ~yS;pðRÞ and
~yS;mðRÞ, and their N-truncated S-variate approximations, �yS;pðRÞ and �yS;mðRÞ, that can be generated depending on whether
the crack tip is in the particle or in the matrix, respectively. Correspondingly, let lp;r2

p;lm;r2
m; �lp; �r2

p; and �lm; �r2
m be the

pairs of second-moment statistics of ~yS;pðRÞ; ~yS;mðRÞ; �yS;pðRÞ, and �yS;mðRÞ, respectively. Then, an S-variate approximation of
a discontinuous stochastic response from FGM fracture analysis becomes
~ySðRÞ ffi
lp þ

rp
�rp

�yS;pðRÞ � ~lp
	 


; if xtip 2 Dp;

lm þ rm
�rm

�yS;mðRÞ � ~lm
	 


; if xtip 2 Dm:

(
ð34Þ
By Monte Carlo sampling of ~ySðRÞ in Eq. (34), the probabilistic characteristics of SIFs, including the conditional probability of
fracture initiation, can be easily estimated. This sampling should not be confused with crude Monte Carlo simulation, which
requires finite-element calculation of y(r(l)) for any input sample r(l) and can, therefore, be expensive or even prohibitive,
particularly when the sample size needs to be very large for estimating small probabilities. In contrast, the Monte Carlo sim-
ulation embedded in the PDD method requires evaluations of simple analytical functions that stem from an S-variate approx-
imation ~ySðRÞ. Therefore, an arbitrarily large sample size can be accommodated in the PDD method.

4.3. Computational effort

The moment-modified PDD method using the additive control variate requires finite-element evaluations of L samples
y(r(l)); l = 1, . . ., L, of y(R) to determine the coefficients y0; aij; bi1 i2j1 j2

; . . ., for i; i1; i2; . . . ¼ 1; . . . ; N and j, j1, j2, . . . = 1, . . .,
m. The iterative scheme involving the additive control variate for estimating the expansion coefficients does not require
additional samples of y(R). Therefore, the computational effort required by the proposed method comes primarily from con-
ducting L FEA. However, due to the discrete nature of material property at a crack tip on the crack front, L samples or FEA are
required for each of two stochastic fracture analyses – one for the matrix material at the crack tip and other for the particle
material at the crack tip. Therefore, a total of 2L output samples or FEA are required by the proposed method.

For a generic stochastic problem, pre-selecting the sample size L is not easy. Therefore, progressively larger values of L
should be tried in order to determine the minimum value of L. Furthermore, L depends on S in the S-variate approximation.
From the authors’ experiences, L increases with S. Therefore, a larger sample size should be expected for the bivariate (S = 2)
approximation than for the univariate (S = 1) approximation.
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4.4. Verification

The moment-modified PDD method provides approximate solutions; therefore, an evaluation of its accuracy with respect
to a reference solution – for instance, the results from crude Monte Carlo simulation – is necessary. Since crude Monte Carlo
simulation is not practical for analyzing three-dimensional media, a two-dimensional FGM specimen, previously examined
by the authors [9], was selected to conduct the verification.

Consider a 16 cm 
 16 cm, two-phase, FGM specimen that contains randomly dispersed, fully penetrable, circular, silicon
carbide (SiC) particles with a common radius of 0.48 cm in an aluminum (Al) matrix, as shown in Fig. 2. The specimen con-
tains a horizontally placed, 8 cm long edge-crack with the crack tip location xtip = {8,8}T cm and is subjected to a far-field
tensile stress r1 = 1 kN/cm2 and a far-field shear stress s1 = 1 kN/cm2. A plane strain condition is assumed. The random in-
put vector R describing random microstructure and constituent elastic properties and their statistical characteristics are the
same as those defined in the previous study [9]. The objective here is to calculate the conditional probability of fracture ini-
tiation, PFðKIcÞ :¼ P½�hðKIðRÞ;KIIðRÞÞ > KIc�, where the effective SIF �hðKIðRÞ;KIIðRÞÞ is derived from the maximum circumferen-
tial stress criterion [15]. The probability of fracture initiation was calculated by two stochastic methods: (1) the proposed
moment-modified PDD method, including the univariate (S = 1) and bivariate (S = 2) versions, and (2) crude Monte Carlo
simulation. For the moment-modified PDD method, the fracture analysis was performed using the concurrent multiscale
model, where the subdomain D is a 16j cm 
 16j cm square with the center coinciding with the crack tip and two cases
of j = 0.25 and 0.5, corresponding to small and large subdomain sizes, respectively. The truncated input random vector R,
which contains eight standard Gaussian variables, Zp,1, . . ., Zp,8, and four lognormal variables, Ep, Em, mp, mm, was mapped into
uniform random variables U(0,1), and shifted third-order (m = 3) Legendre polynomials were used for the associated poly-
nomial basis functions. The sample sizes for estimating the expansion coefficients for each crack-tip condition are L = 1000
for the univariate method and L = 5000 for the bivariate method. Therefore, the total number of FEA is 2000 for the univariate
method and 10,000 for the bivariate method. The sample size for stochastic analyses by the moment-modified PDD method
and crude Monte Carlo simulation is 10,000. For crude Monte Carlo simulation, the fracture analysis was conducted using
both the concurrent multiscale and microscale models. The microscale model constitutes a brute-force approach that em-
ploys a discrete particle-matrix system in the entire domain D. Further details are available elsewhere [9].

Fig. 3a shows how the conditional probability of fracture initiation PF(KIc) of the FGM specimen varies as a function of the
fracture toughness KIc for the small subdomain (j = 0.25). The three plots (dashed line, dash-dot-dotted line, dash-dotted
line) in Fig. 3a were obtained from three different probabilistic methods – univariate PDD, bivariate PDD, and crude Monte
Carlo methods – each employing the concurrent multiscale model for fracture analysis. The results from the proposed uni-
variate and bivariate methods closely match the crude Monte Carlo results, even for small probabilities in the tail region.
These three plots are also reasonably close to the reference solution (solid line) obtained by crude Monte Carlo simulation
using the microscale model for fracture analysis. Fig. 3b, which depicts similar plots for the large subdomain (j = 0.5), reveals
excellent agreement between the PDD methods (univariate or bivariate) and the reference solution. The accuracy of the PDD
methods with respect to the reference solution improves when j increases from 0.25 to 0.5, as expected.

Comparing the computational efforts required by the probabilistic methods or fracture models involved in producing the
plots in Fig. 3a and b suggests that the univariate method, which requires 2000 FEA, is five time more efficient than crude
Monte Carlo simulation involving 10,000 FEA, both employing the concurrent multiscale model for fracture analysis. In con-
trast, the bivariate method requires 10,000 FEA, the same number of analyses involved in crude Monte Carlo simulation, and
Fig. 2. A two-dimensional, edge-cracked FGM specimen under a mixed-mode deformation.



(a)

(b)

Fig. 3. Conditional probability of fracture initiation of a two-dimensional FGM specimen by the PDD and crude Monte Carlo methods: (a) j = 0.25 and (b)
j = 0.5.
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therefore results in no computational savings. If the required sample size for crude Monte Carlo simulation is larger than
10,000 – for instance, when calculating probabilities lower than 10�3 – only then will a reduction in computational cost
be achieved, even with the bivariate approximation. Nonetheless, the univariate method, which is almost as accurate as
the bivariate method or crude Monte Carlo simulation, is significantly more economical than the two latter methods.

5. A numerical example

Consider a three-dimensional FGM specimen with domain D ¼ ð16 m
 16 cm
 4 cmÞ, which contains randomly dis-
persed, fully penetrable, spherical, SiC particles in an Al matrix, as shown in Fig. 4a. All particles have the same volume with
a common radius of 0.48 cm. The specimen contains a horizontally placed, 8 cm – long, 4 cm – deep, planar edge-crack and is
subjected to a far-field tensile stress r1 = 1 kN/cm2, an in-plane shear stress s1i ¼ 1 kN=cm2, and an out-of-plane shear
stress s1o ¼ 0:6 kN=cm2. A fixed boundary condition comprising zero displacements in all three directions is applied at
the bottom surface. The cuboid subdomains D0 ¼ ð16:96 cm
 16:96 cm
 4:96 cmÞ; D ¼ ð16j cm
 16j cm
 4 cmÞ, and
D0 ¼ ð16jþ 0:96 cm
 16jþ 0:96 cm
 4:96 cmÞ, where j = 0.2 or 0.4, all have centers coinciding with the center of the
specimen domain. The selected values of j are guided by the conditional failure probability curves in Fig. 3, which barely
change when increasing j from 0.25 to 0.5.

The particle volume fraction /p(x1), which varies only along the horizontal coordinate x1, is a one-dimensional, inhomo-
geneous, Beta random field with marginal PDF ½1=Bðq; tÞ�/q�1

p ð1� /pÞ
t�1, where q and t are distribution parameters,

CðsÞ :¼
R1

0 expð�gÞgs�1 dg is the Gamma function, and B(q, t): = C(q)C(t)/C(q + t) is the Beta function. It has mean
lpðx1Þ ¼ �x2

1 and standard deviation rpðx1Þ ¼ 0:1�x1ð1� �x1Þ, where �x1 ¼ x1=L, with L denoting the length of the specimen in
the x1 direction. The standardized volume fraction ~/pðx1Þ, a Beta random field with zero mean and unit variance, has covari-
ance function C~/p

ðsÞ ¼ expð�5jsjÞ. The Karhunen–Loéve approximation was employed to parameterize the Gaussian image
field ap(x1) of ~/pðx1Þ into eight (M = 8) standard Gaussian random variables Zp,1, . . ., Zp,8. The Karhunen–Loéve expansion was
truncated after eight terms, because the eighth eigenvalue is only 4.5% of the maximum eigenvalue. For a given sample
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Fig. 4. A three-dimensional, edge-cracked, SiC-Al FGM specimen: (a) specimen with a sample of microstructure under a mixed-mode deformation and (b)
assigning material property of D� .
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up(x1) of the random volume fraction /p(x1), the corresponding number of particles N in D0 is a Poisson variable and has the
intensity function k(x) that was obtained from Eq. (6). The sample values of N associated with the microstructural sample in
Fig. 4a are 133 for j = 0.2 and 223 for j = 0.4. Correspondingly, the total numbers of random variables are 411 and 681,
respectively, both representing high-dimensional stochastic systems. The material phases SiC and Al are both linear-elastic
and isotropic. However, the elastic moduli ESiC and EAl and the Poisson’s ratios mSiC and mAl, of SiC and Al, respectively, are
random variables; their means, standard deviations, and probability distributions are listed in Table 1. Each component of
the truncated input random vector R ¼ fZp;1; . . . ; Zp;8; Ep; Em; mp; mmgT 2 R12 was mapped into a uniform random variable
U(0,1), and third-order (m = 3) shifted Legendre polynomials were employed for the associated polynomial basis functions.
For the univariate PDD, L = 1000 random samples were used to calculate the corresponding coefficients with the control var-
iate truncated at the univariate approximation (Eq. (26)) and a tolerance (�) of 0.001 for the iterative scheme (Eqs. (26)–(29)).
Due to two distinct cases of crack-tip material properties, two sets of coefficients were estimated, requiring a total of 2000
FEA by the univariate PDD method. The sample size for stochastic analysis using the univariate PDD method is 10,000. There-
fore, the smallest value of the fracture-initiation probability calculated is limited to 10/10,000 = 10�3.

5.1. Finite element modeling

All finite-element analyses including mesh generation were conducted using the commercial code ABAQUS [17]. Figs. 5a
and b present two finite-element discretizations of a sample of the three-dimensional FGM specimen employed in
Table 1
Statistical properties of constituents in SiC-Al FGM.

Elastic propertya Mean Coefficient of variation, % Probability distribution

ESiC, GPa 419.2 15 Lognormal
EAl, GPa 69.7 10 Lognormal
mSiC 0.19 15 Lognormal
mAl 0.34 10 Lognormal

a Ep = ESiC; Em = EAl; mp = mSiC; mm = mAl.



Fig. 5. Finite element discretizations of a SiC-Al FGM sample specimen employing the concurrent multiscale model: (a) j = 0.2 (degrees of
freedom = 219,540) and (b) j = 0.4 (degrees of freedom = 864,573).
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conjunction with the concurrent multiscale model with j = 0.2 and j = 0.4, respectively. The figures displaying finite ele-
ments in D are produced by making a cut ‘‘Z–Z” from the meshed specimen along the x1–x2 plane at x3 = 2 cm. The mesh
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for the concurrent model with j = 0.2 has 1064 20-noded, non-singular, quadratic brick (hexahedral) elements in D nD;
25,622 10-noded, non-singular, quadratic tetrahedral elements in D nD�; and 1280 20-noded, non-singular, quadratic brick
elements and 160 20-noded, quarter-point (singular), collapsed quadratic brick elements in D� along the crack front. The
numbers of such elements are 1076, 117,412, 1280, and 160, respectively, for j = 0.4. The total degrees of freedom corre-
spondingly rise from 219,540 for j = 0.2 to 864,573 for j = 0.4. The rapid increase in the number of degrees of freedom
and, hence, the problem size with respect to j indicates a need for efficient stochastic multiscale analysis with a subdomain
that is as small as possible. Full 3 
 3 
 3 and four-point Gauss quadrature rules were employed for the hexahedral and tet-
rahedral elements, respectively, for numerical integration. The crack faces were defined as contact surfaces due to the pres-
ence of far-field out-of-plane shear stress. However, the effects of friction due to contact on modes-II and -III fracture
behaviors, if they exist, were not considered in this study.

5.2. Calculations of stress-intensity factors and reliability

The moment-modified univariate PDD method employing the concurrent multiscale fracture model was applied to cal-
culate the probabilistic characteristics of SIFs and the probability of fracture initiation at three distinct crack tips, which
are marked in Fig. 4a: crack-tip A, xtip = {8,8,0}T cm; crack tip B, xtip = {8,8,2}T cm; and crack tip C, xtip = {8,8,4}T cm. The
crack-tip subdomains ðD�Þ are 0.48 cm diameter cylinders with lengths of 0.4 cm for crack tip B and 0.2 cm for crack tip
A or C, and their axes are coincident with the crack front. During Monte Carlo simulation of PDD-generated random output
~ySðRÞ from Eq. (34), the material property of D� for a crack tip was selected by the following process (Fig. 4b): (1) define a
point set comprising 11 equidistant points on the portion of the crack front inside D�; (2) count the numbers of points from
the point set falling in Dp and Dm; and (3) assign a homogeneous material property of particle (matrix) if the number of
points falling in Dp ðDmÞ is larger than the number of points falling in Dm ðDpÞ. However, when calculating the expansion
coefficients of �yS;pðRÞ or �yS;mðRÞ, the subdomains for crack tips A, B, and C were all assigned the same material property of
either particle or matrix, and the remaining subdomains were assigned sample material properties, depending on the micro-
structural sample. This is justified because the particle volume fraction chosen varies only in the x1 direction.

Initiation of crack growth in a three-dimensional media is a complex phenomenon because of crack-front twisting result-
ing from the out-of-plane tearing mode (mode-III). There is no consensus yet on when and how a crack propagates under a
general mixed-mode deformation because the relation between the mode-III SIF and the tendency of the crack front to twist
is unknown [21]. Therefore, due to a present lack of understanding, initiation of crack propagation in a three-dimensional
configuration is generally evaluated at distinct crack tips on the crack front using two-dimensional mixed-mode (modes-I
and -II) criteria, where mode-III SIF and deformation are neglected [22]. In this study, the probability of fracture initiation,
defined in Eq. (7), was calculated at each crack tip using yðRÞ ¼ KIc � �hðKIðRÞ;KIIðRÞÞ, where the effective SIF �hðKIðRÞ;KIIðRÞÞ is
derived from the maximum circumferential stress criterion [15].

5.3. Results and discussions

Fig. 6a and b plot von Mises stress contours for two randomly selected FGM samples, generated using the concurrent mul-
tiscale fracture model with j = 0.2 and j = 0.4, respectively. The effective properties required by the multiscale model were
calculated using the Mori–Tanaka approximation [16]. The overall stress responses from both samples, indicated by the con-
tour patterns, are similar. However, there also exist differences in the local stress fields that may have profound implications
in determining SIFs and eventually in reliability predictions. The results pertaining to fracture response and reliability are
presented next.

5.3.1. Moments of crack-driving forces
Table 2 lists the means and coefficients of variation of KI, KII, and KIII by the univariate PDD method employing the con-

current multiscale fracture model with two different subdomain sizes (j = 0.2 and 0.4). The statistics are tabulated for three
crack tips A, B, and C. From Table 2, the univariate PDD method yields almost the same mean values of all three SIFs at a given
crack tip when j = 0.2 and 0.4. A slight uptick in the coefficients of variation of SIFs at a given crack tip, observed when j is
doubled, is due to a larger volume of the subdomain D, which captures explicit particle location information from a larger
region around the crack front, thereby incorporating more variability into SIFs. Nonetheless, the second-moment statistics of
SIFs obtained for j = 0.2 and 0.4 are reasonably close to each other, indicating the usefulness of the concurrent multiscale
model with the smaller subdomain for generating efficient stochastic solutions. It would be interesting to discover if the
same trend holds when comparing the sample properties or probability distributions of SIFs.

While the coefficients of variation of KI at all three crack tips are relatively uniform, KII and KIII exhibit larger coefficients of
variation at crack tip B than at crack tips A and C. This is because the modes-II and -III SIFs at crack tip B, which is surrounded
by more particles than crack tip A or C, are more sensitive to the variability of particle locations than the mode-I SIF.

5.3.2. Probability densities of crack-driving forces
While the second-moment statistics are important, a more meaningful stochastic response is the PDF of a SIF. Fig. 7a–c

present the predicted marginal probability densities of KI at three crack tips A–C, respectively, obtained by the univariate
PDD method and the concurrent multiscale model with j = 0.2 and 0.4. The PDFs of KI for all three crack tips reveal a bimodal



Fig. 6. von Mises stress contours for two SiC-Al FGM sample specimens employing the concurrent multiscale model: (a) j = 0.2 and (b) j = 0.4.

Table 2
Second-moment statistics of SIFs by the univariate PDD method.

KI KII KIII

Crack tip Mean (MPa
ffiffiffiffiffi
m
p

) COVa (%) Mean (MPa
ffiffiffiffiffi
m
p

) COVa (%) Mean (MPa
ffiffiffiffiffi
m
p

) COVa (%)

(a) j = 0.2
A 36.788 23.147 �5.834 23.388 4.240 17.147
B 25.124 18.845 1.960 52.235 5.123 28.098
C 9.173 25.853 9.259 14.892 4.721 22.832

(b) j = 0.4
A 38.153 24.958 �5.981 25.832 4.300 17.921
B 25.936 19.982 2.009 58.648 5.371 30.086
C 9.148 28.226 9.407 15.243 4.795 22.973

a The coefficient of variation (COV) is standard deviation divided by mean, when mean is not zero.
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shape, where the left and right parts of the density are due to major contributions from the matrix and particle phases,
respectively. The sample values of KI (horizontal co-ordinate) decrease in the positive x3 direction along the crack front,



(a)

(b)

(c)

Fig. 7. Marginal probability density of KI by the univariate PDD method at various crack tips on the crack front: (a) crack tip A; (b) crack tip B; and (c) crack
tip C.
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i.e., when moving from crack tip A to crack tip B to crack tip C. This is due to the far-field out-of-plane shear stress s1o creating
a bending moment about the x1 axis, which in turn tries to close the crack faces in the x2 direction. The tendency of closing
the crack faces increases along the positive x3 direction, lowering the SIF values at crack tip C relative to crack tip A. Corre-
spondingly, the mean value of KI also decreases when traversing along the crack front A–B–C, as shown in Table 2.

The marginal PDFs of KII and KIII, obtained by the univariate PDD method and organized similarly, are displayed in
Fig. 8a–c and Fig. 9a–c, respectively. Again, the probability densities are calculated at crack tips A–C and for both j = 0.2
and 0.4. The PDFs of KII at all three crack tips are unimodal, and therefore, different than those of KI. This is because the
mode-II fracture behavior is dominated more by the distribution of particles close to the crack front than by the explicit
presence of material phases enclosing the crack front. Furthermore, the PDFs reveal a sign change in KII when moving from



(a)

(b)

(c)

Fig. 8. Marginal probability density of KII by the univariate PDD method at various crack tips on the crack front: (a) crack tip A; (b) crack tip B; and (c) crack
tip C.
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crack tip A (all negative samples) to crack tip C (all positive samples), while crack tip B contains both positive and negative
sample values. This is due to s1o creating a twisting moment about the x2 axis, which in turn tries to rotate the crack faces in
the x1 � x3 plane. As a result, the mean value of KII also changes sign from negative to positive values at crack tips A and C,
respectively, as shown in Table 2.

In contrast, the PDFs of KIII have either unimodal or slightly bimodal shapes. The modality of the distribution of KIII de-
pends on the location of a crack tip inside the three-dimensional FGM specimen. Compared with the PDFs of KI (Fig. 7b),
the PDFs of KIII (Fig. 9b) at crack tip B, located at the middle of the crack front, are slightly bimodal, indicating less pro-
nounced effect due to individual contributions from the matrix and particle phases. As a consequence, the bimodal shape
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(b)
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Fig. 9. Marginal probability density of KIII by the univariate PDD method at various crack tips on the crack front: (a) crack tip A; (b) crack tip B; and (c) crack
tip C.
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is lost at crack tips A and C, as they are surrounded by fewer particles than crack tip B. Therefore, the distributions of KIII at
crack tips A and C are unimodal. However, the mean values of KIII remain nearly the same along the crack front, as shown in
Table 2.

The insensitivity of statistical moments of SIFs with respect to j discussed earlier also extends to the probability densities
of SIFs, regardless of the fracture mode or crack tip examined. Indeed, the PDFs in Figs. 7–9 are practically identical when j
increases from 0.2 to 0.4. Therefore, stochastic multiscale analysis can be efficiently conducted using a smaller subdomain, at
least in this example.



Fig. 10. Conditional probability of fracture initiation of a three-dimensional FGM specimen by the univariate PDD method.
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5.3.3. Fracture reliability
Fig. 10 presents the conditional probability of fracture initiation, PF(KIc): = P[y(R) < 0], of the three-dimensional FGM spec-

imen for a given fracture toughness KIc of the crack-tip material. The results are shown for three crack tips A–C. Two cases of
results were generated: j = 0.2 and j = 0.4, representing the small and large subdomains, respectively, of the concurrent
multiscale model. In both cases, the probability of fracture initiation for a given KIc at crack tip A is significantly larger than
at crack tip C, whereas the initiation probability at crack tip B assumes an intermediate value. This is caused by the out-of-
plane far-field shear stress ðs1o Þ creating a bending moment about the x1 axis, which in turn tries to close the crack faces in
the x2 direction. The crack-opening displacement decreases along the positive x3 direction, rendering progressively smaller
initiation probabilities when moving along the crack front A–B–C. Increasing the value of j from 0.2 to 0.4 does not alter the
fracture probability curves appreciably, even at the tail regions. This observation tallies with similar findings from analyzing
cracks in two-dimensional FGMs reported in a prequel [9].

Due to markedly different fracture-initiation probabilities along the crack front, crack propagation in a three-dimensional
FGM, if it occurs, is a highly complex phenomenon. The crack faces following fracture initiation are not expected to remain
planar; crack front splitting and/or branching are possible. It would be intriguing to study such heterogeneity-driven crack
growth phenomena within a stochastic framework. A multiscale probabilistic analysis of crack growth in a three-dimen-
sional FGM setting is beyond the scope of the current work.

5.3.4. Computational effort
For the moment-modified univariate PDD method, Monte Carlo simulation entailing 2000 samples was conducted

employing the concurrent multiscale model with j = 0.2 and 0.4. Half of these samples involved assigning particle property
at the subdomains of crack tips A–C, and the other half involved assigning matrix property at the same subdomains. There-
fore, 2000 deterministic FEA were required, leading to the conditional probability curves in Fig. 10. All analyses were per-
formed using an HP XW8400 workstation, a common desktop computer. The absolute CPU time required by concurrent
multiscale analysis of a typical deterministic sample, including all pre-processing efforts, was 270 s when j = 0.2 and
925 s when j = 0.4. This leads to a full stochastic analysis times of approximately 6.3 and 21.4 days for j = 0.2 and 0.4,
respectively. No probabilistic analysis using the proposed method entailing concurrent multiscale models with larger sub-
domains (0.4 < j < 1) or a full microscale model (j = 1) was performed. Due to high computational demand, crude Monte
Carlo simulation involving multiscale or microscale analysis is not feasible or required. Therefore, the univariate PDD meth-
od in conjunction with the concurrent multiscale model developed provides an efficient alternative to crude Monte Carlo
simulation for probabilistic fracture analysis of three-dimensional FGMs.
6. Conclusions

A new moment-modified PDD method was developed for stochastic multiscale fracture analysis of three-dimensional,
particle-matrix FGMs subject to arbitrary boundary conditions. The method is based on Fourier-polynomial expansions of
component functions by orthonormal polynomial bases, an additive control variate in conjunction with Monte Carlo simu-
lation for calculating the expansion coefficients, and a moment-modified random output to account for the effects of particle
locations and geometry. The analysis involves a statistically inhomogeneous random microstructure of FGMs, describing par-
ticle volume fractions, number, and locations, and random constituent properties, and a two-scale concurrent multiscale
algorithm including microscale and macroscale analyses for determining crack-driving forces. A verification study conducted
on a two-dimensional functionally graded specimen reveals that the univariate PDD method produces the same crude Monte
Carlo results with a five-fold reduction in the computational effort. In contrast, the bivariate PDD method requires the same
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computational effort as crude Monte Carlo simulation, yielding no such computational savings when calculating tail prob-
abilities equal to or larger than 10�3. Therefore, stochastic multiscale analysis can be efficiently conducted using the univar-
iate method.

To illustrate the usefulness of the proposed stochastic method, a two-phase, three-dimensional, edge-cracked, function-
ally graded specimen subject to mixed-mode deformation was analyzed to calculate the probabilistic characteristics of
crack-driving forces and the probability of failure. The results demonstrate that (1) the statistical moments or probability
distributions of crack-driving forces and the conditional probability of fracture initiation can be efficiently generated by
the univariate method; (2) the probability distributions of mode-I and mode-II SIFs are respectively bimodal and unimodal
at any crack tip but the distributions of mode-III SIFs change from unimodal to bimodal shapes, depending on the crack-tip
location along the crack front; and (3) there exist significant variations in the probabilistic characteristics of the SIFs and the
fracture-initiation probability along the crack front. Furthermore, the results are insensitive to the subdomain size from con-
current multiscale analysis, which, if selected judiciously, leads to computationally efficient estimates of the probabilistic
solutions.

A stochastic analysis employing the moment-modified PDD method requires fewer deterministic FEA than crude Monte
Carlo simulation. Since a single deterministic analysis of a three-dimensional configuration may come with a heavy compu-
tational price tag, the newly developed decomposition method should provide an efficient alternative to crude Monte Carlo
simulation for probabilistic multiscale analysis of FGMs.
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