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Abstract

This article presents three multiscale models, including sequential, invasive, and concurrent models, for fracture analysis
of a crack in a two-phase, functionally graded composite. The models involve stochastic description of the particle volume
fractions, particle locations, and constituent material properties; a two-scale algorithm including microscale and macro-
scale analyses for determining crack-driving forces; and two stochastic methods for fracture reliability analysis. The par-
ticle volume fractions, defined by a generic inhomogeneous random field, are related to the intensity function of an
inhomogeneous Poisson field, which describes the statistically inhomogeneous microstructure of a functionally graded
composite. Two stochastic methods, the dimensional decomposition method and direct Monte Carlo simulation, have been
employed for obtaining the probabilistic characteristics of crack-driving forces and reliability analysis. Numerical results
indicate that the sequential and invasive multiscale models are the most computationally inexpensive models available, but
they may not produce acceptable probabilistic characteristics of stress-intensity factors or accurate probability of fracture
initiation. The concurrent multiscale model is sufficiently accurate, gives probabilistic solutions very close to those gener-
ated from the microscale model, and can reduce the computational effort of the latter model by more than a factor of two.
In addition, the concurrent multiscale model predicts crack trajectory as accurately as the microscale model.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A functionally graded material (FGM) is an engineered composite medium in which the composition of
constituent material phases and hence the microstructure varies spatially to produce a desired functional
performance. An FGM derived from an optimized compositional variation and microstructure rather than
traditional designs can lead to improved fatigue durability and thermal performance of a mechanical system
[1]. However, the extent to which an FGM can be tailored to produce target mechanical performance depends
on a sound theoretical understanding of the fracture behavior and reliability of FGMs.
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During the last few decades, various theoretical [2–4] and computational [5–8] studies have been con-
ducted on fracture behavior of FGMs. A significant part of these studies involves developing new or refined
methods for accurately calculating stress-intensity factors (SIFs) in isotropic [5–7] or orthotropic [8]
media. It is typically assumed that the effective material properties of FGM, required for calculating
crack-driving forces, are smoothly varying and can be calculated from various rules of mixture or classical
micromechanical homogenization [9,10]. The application of the resultant effective properties to study FGM
fracture processes, while generally useful for characterizing a global response, poses at least two problems.
First, FGM is a multiphase material with distinct properties of individual material phases. A crack in a two-
phase FGM may have significantly different energetics, depending on whether the crack tip is located at
phase 1 or phase 2 of the FGM. Therefore, assuming homogenized properties, which is an approximation
at best, may provide inaccurate or inadequate measures of crack-driving forces. Due to sharp discontinuities
in the material properties at the microstructural length scale, a multiscale analysis is desirable and may be
required to determine if, indeed, effective properties can be employed for describing behavior near a crack
tip [11]. Second, an FGM microstructure is inherently stochastic and can, in fact, be viewed as a statistically
inhomogeneous random field [12,13], which describes randomness in the density, location, size, and shape
characteristics of embedded particles in a matrix. Furthermore, the phase volume fractions and constituent
material properties may also be stochastic. Clearly, an FGM fracture analysis is a stochastic-mechanics
problem, which, therefore, calls for examining the adequacy of FGM effective properties based on the prob-
abilistic characteristics of relevant crack-driving forces. Unfortunately, research in stochastic modeling of
FGMs has not been widespread and is only now gaining attention [14,15]. For example, the authors have
recently developed a stochastic micromechanical model for obtaining probabilistic descriptors of effective
FGM properties, given the statistical characteristics of constituents and their respective volume fractions
[15]. While such works are encouraging and constitute a step in the right direction, more general probabi-
listic models are required that are capable of uncovering multiscale fracture behavior of FGMs. Indeed, sto-
chastic multiscale fracture is a rich and relatively unexplored subject area, and further research is required
to provide a clear picture of how and/or if effective properties can be exploited to evaluate crack-driving
forces and reliability of FGMs.

This paper presents three stochastic multiscale models for fracture analysis of a crack in a two-phase, func-
tionally graded, particle–matrix composite. The models involve: (1) stochastic description of the particle vol-
ume fractions, particle locations, and constituent material properties, (2) a two-scale algorithm including
microscale and macroscale analyses for determining crack-driving forces, and (3) two stochastic methods
for uncertainty propagation and fracture reliability analysis. Section 2 describes a generic fracture problem,
defines random input parameters, and discusses crack-driving forces and fracture reliability. Section 3 presents
three distinct multiscale models, including sequential, invasive, and concurrent algorithms, for calculating var-
ious response characteristics of interest. A full microscale model is also presented to evaluate the multiscale
models. Section 4 describes the dimensional decomposition and direct Monte Carlo methods for calculating
statistical moments and probability densities of crack-driving forces, leading to the probability of fracture ini-
tiation. A numerical example employing various multiscale and microscale models is presented in Section 5.
Finally, Section 6 provides conclusions from this work.
2. Stochastic fracture problem

2.1. Problem statement

Consider a two-phase, functionally graded, heterogeneous solid with a rectilinear crack and domain
D � R2 and a schematic illustration of its microstructure, as shown in Fig. 1. The microstructure includes
two distinct material phases, phase p (green or dark)1 and phase m (white or light), denoting particle and
matrix constituents, respectively. Both constituents represent isotropic and linear-elastic materials, and the
elasticity tensors of the particle and matrix, denoted by C(p) and C(m), respectively, are
1 For interpretation of color in Fig. 1, the reader is referred to the web version of this article.



Fig. 1. A crack in a two-phase, particle–matrix, functionally graded composite.
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C ðiÞ :¼ miEi

ð1þ miÞð1� 2miÞ
1� 1þ Ei

ð1þ miÞ
I ; i ¼ p;m; ð1Þ
where the symbol � denotes the tensor product; Ei and mi are the elastic modulus and Poisson’s ratio, respec-
tively, of phase i; and 1 and I are second- and fourth-rank identity tensors, respectively. The superscripts or
subscripts i = p and i = m refer to particle and matrix, respectively. At a spatial point x 2 D in the macro-
scopic length scale, let /p(x) and /m(x) denote the volume fractions of particle and matrix, respectively. Each
volume fraction is bounded between 0 and 1 and satisfies the constraint /p(x) + /m(x) = 1. The crack faces are
traction-free, and there is perfect bonding between matrix and particles. In addition, no porosities are included
in the matrix or particle phases.

Consider a linear-elastic solid with small displacements and strains. The equilibrium equation and bound-
ary conditions for the quasi-static problem are
$ � rþ b ¼ 0 in D and ð2Þ
r � n ¼ �t on Ct ðnatural boundary conditionsÞ
u ¼ �u on Cu ðessential boundary conditionsÞ

; ð3Þ
respectively, where u : D! R2 is the displacement vector; r = C(x) : � is the Cauchy stress tensor with C(x)
and �: = (1/2)($ + $T)u denoting the spatially variant elasticity tensor and strain tensor, respectively; n is a
unit outward normal to the boundary C of the solid; Ct and Cu are two disjoint portions of the boundary
C, where the traction vector �t and displacement �u are prescribed; $T := {o/ox1,o/ox2} is the vector of gradient
operators; and symbols ‘‘.” and ‘‘:” denote dot product and tensor contraction, respectively.

The variational or weak form of Eqs. (2) and (3) is
Z
D

ðCðxÞ : �Þ : d�dD�
Z
D

b �dudD�
Z

X

�t �dudC�
X

xK2Cu

f ðxKÞ �duðxKÞ�
X

xK2Cu

df ðxKÞ � ½uðxKÞ��uðxKÞ�¼ 0;

ð4Þ
where f T(xK) is the vector of reaction forces at a constrained node K on Cu, and d denotes the variation oper-
ator. The discretization of the weak form, Eq. (4), depends on how the elasticity tensor C(x) is defined, i.e., how
the elastic properties of constituent material phases and their gradation characteristics are described. In the fol-
lowing section, various multiscale and uniscale models are presented to approximate C(x). Nonetheless, a
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numerical method, e.g., the finite-element method (FEM), is generally required to solve the discretized weak
form, providing various response fields of interest.

2.2. Statistical models of random input

Uncertainties in FGM fracture can come from a variety of sources – for instance, the FGM microstructure,
constituent material properties, boundary conditions, crack geometry, and structural geometry. Microstruc-
tural uncertainty includes randomness in particle volume fractions, spatial arrangements of particles, and size,
shape, and orientation properties of particles. In this work, however, the sources of uncertainties are limited to
particle volume fractions, particle locations, and constituent material properties and are described as follows.

2.2.1. Particle volume fraction

Let (X,F,P) be a probability space, where X is the sample space, F is the r-algebra of subsets of X, and P

is the probability measure. Defined on the probability triple (X,F,P) and endowed with the expectation oper-
ator E, the particle volume fraction /p(x) can be modeled as an inhomogeneous (non-stationary), non-Gauss-
ian, random field, which has mean lp(x) and standard deviation rp(x) [15]. The standardized particle volume
fraction
~/pðxÞ :¼
/pðxÞ � lpðxÞ

rpðxÞ
; ð5Þ
which has zero mean and unit variance, is at least a weakly homogeneous (stationary) random field with a
prescribed covariance function C ~/p

ðsÞ :¼ E½~/pðxÞ~/pðxþ sÞ� and a marginal cumulative distribution function
F pð~/pÞ such that 0 6 /p(x) 6 1 with probability one. If the covariance function C ~/p

ðsÞ is appropriately
bounded, the standardized phase volume fraction can be viewed as a translation random field
~/pðxÞ ¼ Gp½apðxÞ� :¼ F �1

p ½UðapðxÞÞ�, where Gp is a mapping of the Gaussian field on a non-Gaussian field,
ap(x) is the Gaussian image field and U(�) is the distribution function of a standard Gaussian random variable.
Subsequently, the Karhunen–Loève approximation of the image field leads to [15]
~/pðxÞ ffi Gp

XM

k¼1

Zp;k

ffiffiffiffiffiffiffi
kp;k

p
Wp;kðxÞ

" #
; ð6Þ
where kp,k and Wp,k(x) denote the kth eigenvalue and kth eigenfunction, respectively, of the covariance func-
tion of ap(x), and Zp,k is an independent copy of a standard Gaussian random variable. According to Eq. (6),
the Karhunen–Loève approximation yields a parametric representation of the standardized phase volume
fraction ~/pðxÞ and, hence, of /p(x) with M Gaussian variables. The random field description of /p(x) allows
a volume fraction to have random fluctuation at a point x in the macroscopic length scale. Further details are
available in the authors’ previous work [15].

2.2.2. Particle location

The random microstructure entailing particle locations can be described using the well-known Poisson ran-
dom field. However, since the FGM microstructure varies spatially, the Poisson field must be inhomogeneous.
Therefore, consider an inhomogeneous Poisson field NðD0Þ with an intensity measure lD0 :¼

R
D0 kðxÞdx,

where k(x) P 0 is a spatially variant intensity function and D0 2 BðR2Þ is a bounded Borel set. The Poisson
point field has the following properties: (1) the number NðD0Þ of points in a bounded subset D0 has the Pois-
son distribution with intensity measure lD0 ; and (2) random variables NðD01Þ; . . . ;NðD0KÞ for any integer
K P 2 and disjoint sets D01; . . . ;D0K are statistically independent. The Poisson field NðD0Þ gives the number
of points in D0 and is characterized by the probability
P ½NðD0Þ ¼ k� ¼
R
D0 kðxÞdx

� �k

k!
exp �

Z
D0

kðxÞdx

� �
; k ¼ 0; 1; 2; . . . ð7Þ
that k Poisson points exist in D0. The mean E½NðD0Þ� and variance Var½NðD0Þ� of NðD0Þ are both equal to
lD0 :¼

R
D0 kðxÞdx. Both D and D0 are bounded subsets of R2 such that points of N falling in the set difference
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R2 nD0 do not contribute to particles in D. The intensity function is related to the particle volume fraction of
the FGM. If the particle volume fraction is a random field, so is the intensity function. An inhomogeneous
Poisson field with a random intensity function is known as the doubly stochastic Poisson field. For special
cases of particle geometry, explicit forms of the relationship can be derived. For instance, an FGM with fully
penetrable circular or spherical particles that have the same deterministic size, as assumed in this work, and a
deterministic particle volume fraction up(x) has the intensity function [16]
kðxÞ ffi 1

Ap
ln

1

1� upðxÞ

" #
; x 2 D; ð8Þ
where Ap is the common cross-sectional area of the particles. When /p(x) is a random field, as treated in this
work, up(x) can be viewed as a sample function of /p(x). For more complex microstructures comprising ran-
dom particle geometry, no such closed-form relationships exist, but they can be formulated algorithmically
[13].

Once the intensity function has been determined, samples of synthetic microstructures of two-phase FGMs
can be generated based on the following algorithm:

� Step 1: Define bounded subsets D and D0 of R2. The bounded subset D0 must be such that points of N
falling in R2 nD0 do not contribute to particles in D.
� Step 2: Generate a sample up(x) of the random particle volume fraction /p(x) using Eqs. (5) and (6). Cal-

culate the corresponding sample k(x) of the random intensity function from Eq. (8).
� Step 3: Generate a sample k* of the homogeneous Poisson random variable N 	ðD0Þ, which has a constant

intensity k	 ¼ maxx2R2kðxÞ, where k(x) is a bounded intensity function in D0.
� Step 4: Generate k* independent samples of uniformly distributed points (ui,1, ui,2) in D0. Denote these

points by xi, i = 1, . . . ,k*.
� Step 5: Perform thinning of the point set obtained in Step 4. In so doing, each point xi, independently of the

other, is kept with probability k(xi)/k*, which is equivalent to discarding the point with probability
1 � k(xi)/k*. The resulting point pattern with the size k 6 k* follows the inhomogeneous Poisson field
NðD0Þ with the intensity function k(x). Let these points be denoted by Ci, i = 1, . . . ,k.
� Step 6: Place particles with their centroids coincident with the points Ci, i = 1, . . . ,k. The resultant subsets

of particle and matrix regions in D produce a sample of a two-phase statistically inhomogeneous
microstructure.

Independent samples of random microstructure are delivered by repeated application of the above
algorithm.

2.2.3. Constituent material properties

In addition to a spatially variant random volume fraction of particles leading to a random microstructure,
the constituent properties of material phases can be stochastic. Defined on the same probability space
(X,F,P), let Ep and mp denote the elastic modulus and Poisson’s ratio, respectively, of the particle and Em

and mm denote the elastic modulus and Poisson’s ratio, respectively, of the matrix. Therefore, the random vec-
tor fEp;Em; mp; mmgT 2 R4 describes the stochastic elastic properties of both constituents. Unlike volume frac-
tions, however, the constituent properties are spatially invariant in the macroscopic length scale.

In summary, the random variables may include: (1) M random variables {Zp,1, . . . ,Zp,M} due to the discret-
ization of the random field /p(x); (2) a Poisson random variable N and resulting 2N random variables
fðU i;1;U i;2Þg; i ¼ 1; . . . ; N representing coordinates of the centroids of the particles in D0; and (3) four ran-
dom constituent properties {Ep, Em, mp, mm}. Depending on the multiscale model employed, some or all of these
random variables can be accounted for in a stochastic analysis. Nevertheless, the maximum value of the total
number of random variables N is M þ 2Nþ 5. In other words, an input random vector R ¼
fZp;1; . . . ; Zp;M ;N; ðU 1;1;U 1;2Þ; . . . ; ðUN;1;UN;2Þ;Ep;Em; mp; mmgT 2 RN characterizes uncertainties from all
sources in an FGM and is completely described by its known joint probability density function (PDF)
fR(r), where r is a realization of R.
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2.3. Crack-driving forces and reliability

2.3.1. Crack-driving forces

A major objective of stochastic fracture-mechanics analysis is to find probabilistic characteristics of
crack-driving forces, such as SIFs KI(R) and KII(R) for modes I and II, respectively, the J-integral, and
other fracture integrals, due to uncertain input R. For a given input, the standard FEM can be employed
to solve the discretized weak form (Eq. (4)), leading to the calculation of SIFs and other crack-driving
forces. Let y(R) describe a generic crack-driving force or a relevant performance function involving
crack-driving forces for a given fracture problem of interest. In general, the multivariate function
y : RN ! R is implicit, is not analytically available, and can only be viewed as a high-dimensional
input–output mapping, where the evaluation of the output function y for a given input r requires expen-
sive finite-element analysis. Therefore, methods employed in stochastic analysis must be capable of gener-
ating accurate probabilistic characteristics of y(R) with an acceptably small number of output function
evaluations.

2.3.2. Reliability

Suppose that failure is defined when the crack propagation is initiated at a crack tip, i.e., when
Keff(R) = h(KI(R), KII(R)) > KIc, where Keff is an effective SIF with h depending on a selected mixed-mode
theory, and KIc is a relevant mode-I fracture toughness of the material measured in terms of SIF. This
requirement cannot be satisfied with certainty, since KI and KII are both dependent on R, which is ran-
dom, and KIc itself may be a random variable or field. Hence, the performance of a cracked FGM should
be evaluated by the reliability or its complement, the probability of failure PF, defined as the multifold
integral
P FðKIcÞ :¼ P ½yðRÞ < 0� :¼
Z

RN
IyðrÞfRðrÞdr; ð9Þ
where
yðRÞ ¼ KIc � hðKIðRÞ;KIIðRÞÞ ð10Þ

is a multivariate performance function that depends on the random input R and
IyðrÞ ¼
1; if yðrÞ < 0

0; if yðrÞ > 0

�
ð11Þ
is an indicator function. For example, if the maximum circumferential stress theory is invoked to describe a
mixed-mode fracture initiation [17], the associated performance function is
yðRÞ ¼ KIc � KIðRÞ cos2 HðRÞ
2
� 3

2
KIIðRÞ sin HðRÞ

� 	
cos

HðRÞ
2

ð12Þ
with
HðRÞ ¼
2 tan�1 KIðRÞ

4KIIðRÞ �
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I
ðRÞ

K2
II
ðRÞ þ 8

r� �
; if KIIðRÞ > 0

2 tan�1 KIðRÞ
4KIIðRÞ þ

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I
ðRÞ

K2
II
ðRÞ þ 8

r� �
; if KIIðRÞ < 0

8>>><>>>: ð13Þ
denoting the angle of crack propagation. Any other mixed-mode theory can be easily incorporated in the
probabilistic framework developed, leading to similar performance functions.

The evaluation of the multidimensional integral in Eq. (9), either analytically or numerically, is not possible
because the total number of random variables N is large, fR(r) is generally non-Gaussian, and y(r) is a highly
nonlinear function of r. In this work, the dimensional decomposition method and direct Monte Carlo simu-
lation were employed for calculating the probabilistic characteristics of crack-driving forces and the probabil-
ity of fracture initiation. Further explanation of these stochastic methods is given in Section 4.
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3. Multiscale and microscale analyses

The FGM microstructure schematically illustrated in Fig. 1 contains discontinuities in material properties
at the interfaces between the matrix and particles. However, it is unclear how such discontinuities will affect
the calculation of a SIF. In addition, a mathematically sharp crack tip, which has no geometric dimensions, is
located in either the matrix or the particle phase. Employing an effective elastic modulus, commonly used for
deriving the energy release rate of a cracked solid, may yield inadequate estimates of the resultant SIFs, par-
ticularly if there exists a significant mismatch between the matrix and particle properties. Furthermore, the
calculation of effective properties requires a representative volume element, which loses its meaning for a
region close to the crack tip due to high stress and strain gradients. However, far away from the crack tip,
where the effect of the crack-tip singularity dies off rapidly, individual constituent material properties may
not be needed, and an appropriately derived effective material property should suffice.

From the above discussion, there exist two major approaches with respect to defining the material property
for fracture analysis of an FGM cracked structure. One approach involves stress analysis using effective mate-
rial property in the domain of the solid. This approach is referred to as macroscale analysis. The other
approach, referred to as microscale analysis, entails stress analysis that is solely based on the exact material
property information derived from the knowledge of explicit particle location and geometry or volume frac-
tion. A multiscale analysis is a hybrid approach, where both macroscale and microscale analysis are employed.
In this work, one microscale and three multiscale models were examined.

3.1. Multiscale analyses

The multiscale analysis can be conducted in several ways, depending on how the information derived from
the lower scale (microscale) transfers to or interacts with the analysis in the higher scale (macroscale). How-
ever, the mechanics and stochastics involved vary depending on the multiscale model selected and are
described in the following subsections.

All multiscale models presented here require continuously varying effective properties, defined either com-
pletely or partially in the domain of the solid. Typically, a micromechanical analysis is performed to predict
response fields of interest in the microscale, followed by a homogenization to produce the continuously vary-
ing effective properties. Let CðxÞ denote the continuously varying effective elasticity tensor of the FGM at a
point x 2 D; expressed by
CðxÞ ¼ �mðxÞEðxÞ
½1þ �mðxÞ�½1� 2�mðxÞ� 1� 1þ EðxÞ

½1þ �mðxÞ� I ; ð14Þ
where the effective elastic modulus EðxÞ and effective Poisson’s ratio �mðxÞ both depend on x 2 D. Using clas-
sical micromechanics-for instance, the self-consistent model, the Mori–Tanaka model, the mean-field theory,
and others [9,10] -the effective elasticity tensor CðxÞ can be readily calculated.

3.1.1. Sequential multiscale model

The sequential or hierarchical multiscale model adopted in the present work includes a three-step serial pro-
cess. First, the effective tensor CðxÞ is calculated using micromechanics based homogenization. Second, a mac-
romechanical stress analysis based on the effective elasticity tensor is conducted to generate the field solutions.
In this step, the weak form, described by Eq. (4), is discretized using
CðxÞ ffi CðxÞ; x 2 D ð15Þ

and then solved by the FEM or other numerical methods, leading to stress, strain, and displacement fields in
the macroscopic length scale.

Third, a macromechanical fracture-mechanics analysis using an interaction integral for inhomogeneous

materials yields the mixed-mode SIFs [5]. Let eM ð1;2Þ denotes the interaction integral for a crack tip in an inho-
mogeneous material where state 1 represents the actual state associated with the given boundary conditions
(i.e., the given problem); state 2 represents a known auxiliary state, which can be either mode-I or mode-II
near-tip displacement and stress fields. The individual SIFs for the actual state can be obtained by judiciously



A. Chakraborty, S. Rahman / Engineering Fracture Mechanics 75 (2008) 2062–2086 2069
choosing the auxiliary state (state 2). For example, if state 2 is chosen to be state I (state II), i.e., the mode-I
(mode-II) near-tip displacement and stress fields are chosen as the auxiliary state,
Ki ffi
1

2
eM ð1;iÞE	tip; i ¼ I; II; ð16Þ
where E	tip, equal to EðxtipÞ for the plane stress and EðxtipÞ=½1� �m2ðxtipÞ�: for the plane strain conditions, is the
effective generalized modulus of the FGM at the crack tip xtip, and eM ð1;IÞ and eM ð1;IIÞ are two interaction inte-
grals for modes I and II, respectively. Further details about the interaction integral method for inhomoge-
neous materials is available elsewhere [5].

Dolbow and Nadeau [11] proposed a slight variant of the sequential model, referred to as the weighted
sequential model in this paper. In both the original and weighted sequential models, the first two steps and
the part of the last step that calculates the interaction integrals eM ð1;IÞ and eM ð1;IIÞ are identical. However, in
the last step of the weighted sequential model, the mixed-mode SIFs are calculated from the interaction inte-
grals with E	tip replaced by a weighted sum of E	p and E	m, yielding
Ki ffi
1

2
eM ð1;iÞ /pðxtipÞE	p þ 1� /pðxtipÞ


 �
E	m

h i
; i ¼ I; II; ð17Þ
where E	j ¼ Ej for the plane stress, E	j ¼ Ej=½1� m2
j �. for the plane strain conditions, and j = p,m. The weighted

sum that appears inside the square parenthesis of Eq. (17) represents the expected (mean) value of the general-
ized modulus at the crack tip, where the volume fractions of material phases act as weights. Therefore, both
the original and weighted sequential models involve an averaged elastic modulus, although their results may
vary depending on which micromechanical model is employed to determine E	tip. Nonetheless, the explicit effect
of particles in the crack-tip region and their stochastics discussed in Section 2.2.2 cannot be accounted for in
either version of the sequential model.

For stochastic analysis, the sequential and weighted sequential multiscale models account for statistical
uncertainties only in the particle volume fraction /p(x) and constituent material properties {Ep,Em,mp,mm}T.
Therefore, the input vector R ¼ fZp;1; . . . ; Zp;M ;Ep;Em; mp; mmgT 2 RN , where the total number of random vari-
ables N = M + 4.
3.1.2. Invasive multiscale model

The invasive multiscale model also involves a three-step serial process: (1) a micromechanical analysis to
predict response fields of interest in the microscale, followed by a homogenization to produce smoothly vary-
ing effective properties in the macroscale; (2) a micro–macromechanical stress analysis based on locally homo-
geneous material properties to generate the field solutions; and (3) a macromechanical fracture analysis based
on locally homogeneous material properties to calculate the mixed-mode SIFs.

In the invasive multiscale model, the effective elasticity tensor is also calculated from a micromechanical
homogenization, as in the sequential and weighted sequential models. However, the weak form, Eq. (4), is dis-
cretized and then solved using
CðxÞ ffi
C ðpÞ; if x 2 D� and xtip 2 Dp

C ðmÞ; if x 2 D� and xtip 2 Dm;

CðxÞ; if x 2 D nD�

8><>: ð18Þ
where D� � D is a small bounded subdomain surrounding the crack tip, and Dp � D and Dm � D are particle
and matrix subdomains, respectively. According to Eq. (18), discrete material properties of either the particle
(C(p)) or the matrix (C(m)) are assigned to a small subdomain surrounding the crack tip and continuously vary-
ing effective material properties (CðxÞ) are defined on elsewhere, as shown in Fig. 2b. Therefore, discontinu-
ities in material properties exist at the boundary of D�.

Since the material representation is locally homogeneous, i.e., C(x) is either C(p) or C(m), but constant for
x 2 D�, the mixed-mode SIFs can be calculated from the interaction integral applicable to homogeneous mate-
rials. If the crack-tip contour is restricted to lie inside D�, the interaction integral for a locally homogeneous
material [5], M(1,2), can be easily calculated. The interaction integral M(1,2) is different when



Fig. 2. Schematics of various models: (a) sequential multiscale; (b) invasive multiscale; (c) concurrent multiscale; (d) microscale. Note:
D ¼ domain of the entire solid, D ¼ subdomain with explicit particle information, D� ¼ small subdomain surrounding crack tip.
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CðxÞ ¼ C ðpÞ; x 2 D�, e.g., M ð1;2Þ
p and when CðxÞ ¼ C ðmÞ; x 2 D�, e.g., M ð1;2Þ

m . Then, the SIFs can be calculated
from
Ki ffi
1
2
M ð1;iÞ

p E	p; if xtip 2 Dp

1
2
M ð1;iÞ

m E	m; if xtip 2 Dm

(
; i ¼ I; II: ð19Þ
Compared with the sequential (Eq. (16)) and weighted sequential (Eq. (17)) models, the invasive model (Eq.
(19)) utilizes more accurate crack-tip conditions and hence should provide improved estimates of SIFs over the
two former models. However, it is unclear whether the improvements in the invasive model are adequate for
calculating the failure probability of an FGM.

Two separate stochastic analyses, one with the crack tip in the particle phase and the other with the crack
tip in the matrix phase, are required in the invasive model. In each stochastic analysis, N = M + 4 random
variables are involved and, therefore, and correspondingly, R ¼ fZp;1; . . . ; Zp;M ;Ep;Em; mp; mmgT 2 RN . The
probabilistic results from both stochastic analyses are weighted based on the particle volume fraction at the
crack tip, leading to statistical properties of SIFs.
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3.1.3. Concurrent multiscale model

The concurrent model includes both continuous and discrete material representations and requires a com-
bined micromechanical and macromechanical stress analysis. Depicted in Fig. 2c, consider an arbitrary
bounded subdomain D 
 D, which contains a finite number of particles embedded in the matrix. The number
of particles falling in D0 is N :¼NðD0Þ, where D0 � R2 is a bounded subset such that points of N falling in
R2 nD0 do not contribute to particles in D. The integer-valued random variable N also follows a Poisson dis-
tribution with the same intensity function k(x) derived from Eq. (8). The subdomain D, once defined, is sta-
tistically filled with particles in the matrix, and the remaining subdomain D nD is assigned a continuously
varying effective elasticity tensor CðxÞ, derived from a suitable micromechanical homogenization as in previ-
ous multiscale models. According to the concurrent model, Eq. (4) is discretized and solved using
CðxÞ ffi
C ðpÞ; if x 2 D and x 2 Dp

C ðmÞ; if x 2 D and x 2 Dm

CðxÞ; if x 2 D nD

8><>: : ð20Þ
Therefore, discontinuities in material properties exist at the interfaces between D and D nD and between Dp

and Dm.
Since the material representation in D is discrete, the calculation of the resulting SIFs in the concurrent

model is not straightforward. The interaction integral eM or M, conveniently exploited in the former multiscale
models, requires either continuously varying or constant material properties inside the domain of a crack-tip
contour. However, if the idea of the small subdomain D� � D 
 D, introduced in Section 3.1.2, is borrowed in
slightly modifying the elasticity tensor, for instance
CðxÞ ffi
C ðpÞ; if ðx 2 D� and xtip 2 DpÞ or if ðx 2 D nD� and x 2 DpÞ
C ðmÞ; if ðx 2 D� and xtip 2 DmÞ or if ðx 2 D nD� and x 2 DmÞ;
CðxÞ; if x 2 D nD

8><>: ð21Þ
the material representation in the concurrent model remains locally homogeneous, rendering the interaction
integral method applicable. Applying Eq. (21) in solving the discretized weak form yields the M-integrals,
M ð1;2Þ

p and M ð1;2Þ
m , when CðxÞ ¼ C ðpÞ; x 2 D� and CðxÞ ¼ C ðmÞ; x 2 D�, respectively. The SIFs are subsequently

calculated using Eq. (19). Although the same fracture-mechanics equations are used, the SIFs obtained from
the concurrent model should be different than those from the invasive model. This is because the M-integrals
resulting from Eq. (21) (concurrent model) are different than those calculated from Eq. (18) (invasive model).
The discrete particles in D, if they produce any effect, should influence the M-integrals obtained in the con-
current model. No such effect is accounted for in the invasive model. The magnitude of the effect, however,
depends on the relative size of D. If the size of D is shrunk to approach the size of D�, the concurrent model
degenerates to the invasive model. If the size of D is expanded to approach the size of D, the model no longer
remains a multiscale model, but becomes a uniscale model, which is explained in the next subsection.

The stochastic analysis employing the concurrent multiscale model has the random input vector
R ¼ fZp;1; . . . ; Zp;M ;N; ðU 1;1;U 1;2Þ; . . . ; ðUN;1;UN;2Þ;Ep;Em; mp; mmgT 2 RN , where N ¼ M þ 2Nþ 5. It is
worth noting that the number of Poisson points N and, hence, the dimension N are integer-valued random
variables.
3.2. Microscale analysis

The microscale model is a straightforward uniscale model, where N discrete particles are dispersed in the
matrix, as shown in Fig. 2d. The number of particles falling in D0 is NðD0Þ, where D0 � R2 is a bounded subset
such that the points of N falling in R2 nD0 do not contribute to the particles in D. The integer-valued random
variable N follows a Poisson distribution with the intensity function k(x) derived from Eq. (8). The domain D
is statistically filled with particles in the matrix according to the steps outlined in Section 2.2.2. For the par-
ticle–matrix composite system, a microscale stress analysis is performed, where the elasticity tensor
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CðxÞ ffi
C ðpÞ; if x 2 Dp

C ðmÞ; if x 2 Dm

(
ð22Þ
is piecewise constant at x 2 Dp and x 2 Dm, but discontinuous at the interfaces between Dp and Dm. In con-
trast with the multiscale models, no effective properties are included or required.

The fracture-mechanics calculation of SIFs employing Eq. (22) and the interaction integral method poses
the same problem encountered in the concurrent multiscale model. However, by introducing a small subdo-
main D� � D, as done in the concurrent model, the modified elasticity tensor
CðxÞ ffi
C ðpÞ; if ðx 2 D� and xtip 2 DpÞ or if ðx 2 D nD� and x 2 DpÞ
C ðmÞ; if ðx 2 D� and xtip 2 DmÞ or if ðx 2 D nD� and x 2 DmÞ

(
ð23Þ
also leads to a local homogenization; therefore, the M-integrals can be readily calculated. Subsequently, the
SIFs are calculated by invoking Eq. (19). The effect of discrete particles in the entire domain D is propagated
to the M-integrals obtained in the microscale model. Such effect is also accounted for in the concurrent mul-
tiscale model, but only from particles embedded in the subdomain D.

The stochastic analysis employing the microscale model has the random input vector
R ¼ fZp;1; . . . ; Zp;M ;N; ðU 1;1;U 1;2Þ; . . . ; ðUN;1;UN;2Þ;Ep;Em; mp; mmgT 2 RN , where N ¼ M þ 2Nþ 5. Also,
the number of Poisson points N and, hence, the dimension N are integer-valued random variables.

In summary, three multiscale models and a microscale model have been presented to solve the stochastic
fracture-mechanics problem described in Section 2. The multiscale models employ effective material properties
whenever possible and include further assumptions or approximations to help solve the problem economically.
In contrast, the microscale model constitutes a brute-force approach that employs a discrete particle–matrix
system to solve the problem as accurately as possible, considered in the present work. Therefore, the micro-
scale model is the most expensive model studied, but it is required to evaluate the accuracy and efficiency of the
multiscale models.

4. Stochastic analysis

Recall that y(r) = y(r1, . . . , rN) represents either a crack-driving force or a performance function that
depends on crack-driving forces. The number of input random variables N, the dimension of the stochastic
problem, and the input–output mapping y : RN ! R depends on the multiscale or microscale method selected.
Nonetheless, the objective is to evaluate the probabilistic characteristics of a generic output response
yðRÞ 2 RN , when the probability distribution of the random input R 2 RN is prescribed.

4.1. Dimensional decomposition method

Consider a continuous, differentiable, real-valued, multivariate function y(r) that depends on
r ¼ fr1; . . . ; rNgT 2 RN . A dimensional decomposition of y(r), described by [18,19]
yðrÞ ¼ y0 þ
XN

i¼1

yiðriÞ þ
XN

i1;i2¼1;i1<i2

yi1i2ðri1 ; ri2Þ þ � � � þ
XN

i1;...;iS¼1;i1<���<iS

yi1���iS ðri1 ; . . . ; risÞ þ � � �

þ y12���N ðr1; . . . ; rN Þ; ð24Þ
can be viewed as a finite hierarchical expansion of an output function in terms of its input variables with
increasing dimensions, where y0 is a constant, yi(ri) is a univariate component function representing individual
contribution to y(r) by input variable ri acting alone, yi1i2ðri1 ; ri2Þ is a bivariate component function describing
the cooperative influence of two input variables ri1 and ri2 , yi1���iS ðri1 ; . . . ; riS Þ is an S-variate component func-
tion quantifying cooperative effects of S input variables ri1 ; . . . ; riS , and so on. If
ŷSðrÞ ¼ y0 þ
XN

i¼1

yiðriÞ þ
XN

i1;i2¼1;i1<i2

yi1i2
ðri1 ; ri2Þ þ � � � þ

XN

i1;...;iS¼1;i1<���<iS

yi1���iS ðri1 ; . . . ; risÞ ð25Þ
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represents a general S-variate approximation of y(r), the univariate (S = 1) and bivariate (S = 2) approxima-
tions ŷ1ðrÞ and ŷ2ðrÞ, respectively, provide two- and three-term approximants of the finite decomposition in
Eq. (24). When S = N, ŷSðrÞ converges to the exact function y(r), i.e., Eq. (25) generates a hierarchical and
convergent sequence of approximations of y(r).
4.1.1. Lower-variate approximations

Consider the univariate and bivariate approximations of y(r), defined by
ŷ1ðrÞ :¼ ŷ1ðr1; . . . ; rNÞ :¼
XN

i¼1

yðc1; . . . ; ci�1; ri; ciþ1; . . . ; cNÞ � ðN � 1ÞyðcÞ ð26Þ
and
ŷ2ðrÞ :¼ ŷ2ðr1; . . . ; rNÞ :¼
XN

i1;i2¼1;i1<i2

yðc1; . . . ; ci1�1; ri1 ; ci1þ1; . . . ; ci2�1; ri2 ; ci2þ1; . . . ; cN Þ

þ
XN

i¼1

�ðN � 2Þyðc1; . . . ; ci�1; ri; ciþ1; . . . ; cN Þ þ
ðN � 1ÞðN � 2Þ

2
yðcÞ; ð27Þ
respectively, where c = {c1, . . . ,cN}T is the mean point of R, y(c) :¼ y(c1, . . . ,cN) is a constant, and
yi(ri) :¼ y(c1, . . . ,ci�1, ri,ci+1, . . . ,cN) and yi1i2ðri1 ; ri2Þ :¼ yðc1; . . . ; ci1�1; ri1 ; ci1þ1; . . . ; ci2�1; ri2 ; ci2 þ 1; . . . ; cNÞ are
univariate and bivariate component functions, respectively. All higher-order univariate or bivariate terms
of y(r) are included in Eqs. (26) or (27), which should, therefore, generally provide a higher-order approxima-
tion of a multivariate function than equations derived from first- or second-order Taylor expansions.
4.1.2. Lagrange interpolations

Since yi(ri) and yi1i2ðri1 ; ri2Þ are lower-variate functions, they can be further approximated by n-point
Lagrange interpolations, leading to
yiðriÞ ¼
Xn

j¼1

fjðriÞyðc1; . . . ; ci�1; r
ðjÞ
i ; ciþ1; . . . ; cN Þ ð28Þ
and
yi1i2ðri1 ; ri2Þ ¼
Xn

j2¼1

Xn

j1¼1

fj1
ðri1Þfj2

ðri2Þy c1; . . . ; ci1�1; r
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; r

ðj2Þ
i2 ; ci2þ1; . . . ; cN

� 

; ð29Þ
where fjðriÞ :¼
Qn

k¼1;k 6¼jðri � rðkÞi Þ=
Qn

k¼1;k 6¼jðr
ðjÞ
i � rðkÞi Þ is the Lagrange shape function and rðjÞi is the jth sample

point of ri. The procedure is repeated for all univariate and bivariate component functions, i.e., for all yi(ri),
i = 1, . . . ,N and for all yi1i2ðri1 ; ri2Þ; i1; i2 ¼ 1; . . . ; N , leading to the univariate approximation
ŷ1ðRÞ ¼
XN

i¼1

Xn

j¼1

fjðRiÞyðc1; . . . ; ci�1; r
ðjÞ
i ; ciþ1; . . . ; cNÞ � ðN � 1ÞyðcÞ; ð30Þ
and to the bivariate approximation
ŷ2ðRÞ ¼
XN

i1;i2¼1;i1<i2

Xn

j2¼1

Xn

j1¼1

fj1
ðRi1Þfj2

ðRi2Þ � yðc1; . . . ; ci1�1; r
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; r

ðj2Þ
i2 ; ci2þ1; . . . ; cN Þ

� ðN � 2Þ
XN

i¼1

Xn

j¼1

fjðRiÞyðc1; . . . ; ci�1; r
ðjÞ
i ; ciþ1; . . . ; cN Þ þ

ðN � 1ÞðN � 2Þ
2

yðcÞ: ð31Þ
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4.1.3. Monte carlo simulation

Once the Lagrange shape functions and coefficients y(c), yðc1; . . . ; ci�1; r
ðjÞ
i ; ciþ1; . . . ; cN Þ, and

yðc1; . . . ; ci1�1; r
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; r

ðj2Þ
i2 ; ci2þ1; . . . ; cN Þ are deterministically generated, Eqs. (30) and (31) provide

explicit approximations of a crack-driving force or a performance function (y(R)) in terms of the random
input R. Therefore, many probabilistic characteristics of y(R), including its statistical moments and probabil-
ity density function, can be easily evaluated by performing Monte Carlo simulation on Eqs. (30) and (31).
Since Eqs. (30) and (31) do not require performing additional finite-element analysis, the embedded Monte
Carlo simulation can be efficiently conducted for any sample size. The stochastic methods involving the uni-
variate (Eq. (30)) or bivariate (Eq. (31)) approximations and associated Monte Carlo simulation are defined as
the univariate or bivariate decomposition methods in this paper.
4.2. Direct monte carlo simulation

Consider a generic N-dimensional random vector R = {R1, . . . ,RN}T, which characterizes uncertainty in all
input parameters under consideration with its known joint PDF fR(r). Suppose that r(1), . . . , r(L) are L realiza-
tions of the input vector R, which can be generated independently. Let y(r(1)), . . . ,y(r(L)) be the output samples
of a relevant crack-driving force or performance function y(R) that correspond to the input r(1), . . ., r(L), which
can be obtained from repeated deterministic fracture-mechanics evaluations of y. The direct Monte Carlo esti-
mate PF,MCS of the failure probability is [20]
P F;MCSðKIcÞ ¼ lim
L!1

1

L

XL

i¼1

IyðrðiÞÞ; ð32Þ
where IyðrðiÞÞ denotes the ith realization of the indicator function defined in Eq. (11).
The direct Monte Carlo simulation in Eq. (32) should not be confused with the Monte Carlo simulation in

the decomposition method. The direct Monte Carlo simulation, which requires finite-element calculations of
y(r(i)) for any input sample r(i), can be expensive or even prohibitive, particularly when the sample size L needs
to be very large for estimating small failure probabilities. In contrast, the Monte Carlo simulation embedded
in the decomposition method requires evaluations of simple analytical functions that stem from either the uni-
variate ðŷ1ðrðiÞÞÞ or bivariate ðŷ2ðrðiÞÞÞ approximations of y(r(i)). Therefore, an arbitrarily large sample size can
be accommodated in the decomposition method.

Both the decomposition and direct Monte Carlo simulation methods are required for solving the stochastic
fracture problem examined in this work. The sequential and invasive multiscale models have a total number of
random variables N = M + 4, which is deterministic, and do not require discrete particle distributions in the
matrix. Therefore, the dimensional decomposition method can be applied to the associated stochastic analysis.
In contrast, the concurrent multiscale model and the microscale model have a random number of random
variables (e.g., N ¼ M þ 2Nþ 5 or N ¼ M þ 2Nþ 5). More importantly, the models require stress analyses
involving discrete particle–matrix systems where the location of any particle is uniformly distributed over D0

or D0. Therefore, calculating the coefficient y(c), a response at mean input, involves fracture analysis, where all
particle locations coincide at the center of D0 or D0: Similar problems occur when calculating the remaining
coefficients of the decomposition method. Consequently, for the two latter models, the decomposition method
in the current form can not propagate the uncertainty due to discrete particle locations to crack-driving forces.
Hence, the direct Monte Carlo simulation was employed for stochastic analyses associated with the concurrent
multiscale and microscale models.
5. A numerical example

5.1. Problem definition

Consider a 16 cm � 16 cm, two-dimensional, square, FGM specimen, which contains randomly dispersed,
fully penetrable, circular, silicon carbide (SiC) particles in an aluminum (Al) matrix, as shown in Fig. 3. All
particles have the same size with a common radius of 0.48 cm. The specimen contains a horizontally placed,
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Fig. 3. An FGM specimen with an edge crack under a mixed-mode deformation.
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8-cm – long edge crack with the initial crack tip location xtip = {xtip,1, xtip,2}T = {8,8}T cm and is subjected to
a far-field tensile stress r1 = 1 kN/cm2 and a far-field shear stress s1 = 1 kN/cm2. The subdomain D0 is a
16.96 cm � 16.96 cm square with the center coinciding with that of D: The subdomain D� is a circle with
radius of 0.24 cm and the center at the crack tip. The subdomain D is a 16j cm � 16j cm2 with the center
coinciding with the crack tip, where j represents the ratio of the areas of D and D. The subdomain D0 is a
16j + 0.96 cm � 16j+0.96 cm2 with the center coinciding with that of D. In the present work two values
of j were used: i.e., j = 0.25 or 0.5. A plane strain condition was assumed.

The particle volume fraction /p(x1), which varies along the horizontal coordinate, is a one-dimensional,
inhomogeneous, Beta random field. It has a marginal PDF ½1=Bðq; tÞ�/q�1

p ð1� /pÞ
t�1, where B(q, t) :¼ C(q)

C(t)/C(q + t) is the Beta function and CðsÞ :¼
R1

0
expð�gÞgs�1 dg is the Gamma function. The random field

/p(x1) has mean lpðx1Þ ¼ �x1 and standard deviation rpðx1Þ ¼ 0:1�x1ð1� �x1Þ, where �x1 ¼ x1=W . The standard-
ized volume fraction ~/pðx1Þ, a Beta random field with zero mean and unit variance, has covariance function
C~/p
ðsÞ ¼ expð�5jsjÞ. The Karhunen–Loève approximation was employed to parameterize the Gaussian image

field a(x1) of ~/pðx1Þ into eight (M = 8) standard Gaussian random variables Zp,1, . . . ,Zp,8. The Karhunen–
Loève expansion was truncated after eight terms, because the eighth eigenvalue is only 4.5% of the maximum
eigenvalue.

For a given sample up(x1) of the random volume fraction /p(x1), the corresponding numbers of particles N
and N in D0 and D0, respectively, are both Poisson variables and have the same intensity function k(x1) that
was obtained from Eq. (8). The sets of uniformly distributed random variables (U 1;1;U 1;2Þ; . . . ; ðUN;1;UN;2Þ
and (U 1;1;U 1;2Þ; . . . ; ðUN;1;UN;2Þ describe random particle locations in D and D, respectively. Finally, the
material phases SiC and Al are both linear-elastic and isotropic. However, the elastic moduli ESiC and EAl

and the Poisson’s ratios mSiC and mAl, of SiC and Al, respectively, are random variables; their means, standard
deviations, and probability distributions are listed in Table 1. For stochastic analysis by the dimensional
Table 1
Statistical properties of constituents in SiC–Al FGM

Elastic propertya Mean Coefficient of variation, % Probability distribution

ESiC, GPa 419.2 15 Lognormal
EAl, GPa 69.7 10 Lognormal
mSiC 0.19 15 Lognormal
mAl 0.34 10 Lognormal

a Ep = ESiC; Em = EAl; mp = mSiC; mm = mAl.
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decomposition method, N = 12 and n = 5. The sample size for both the decomposition and direct Monte Car-
lo simulation was 10,000.

5.2. Results and discussion

Figs. 4a–d present four finite-element discretizations of a sample of the FGM specimen employed in con-
junction with the sequential or weighted sequential, invasive, concurrent, and microscale models, respectively.
For the sequential or weighted sequential model, the finite-element mesh for D involves 1328 eight-noded,
non-singular, quadrilateral elements and 48 six-noded, quarter-point (singular), triangular elements at the
crack tip. The mesh for the invasive model comprises 1560 eight-noded, non-singular, quadrilateral elements
and 8 six-noded, non-singular, triangular elements in D nD�, and 72 eight-noded, non-singular, quadrilateral
elements and 8 eight-noded, quarter-point (singular), collapsed quadrilateral elements in D�. The mesh for the
concurrent model has 1762 eight-noded, non-singular, quadrilateral elements in D nD and 3584 six-noded,
non-singular, triangular elements in D nD�, and 72 eight-noded, non-singular, quadrilateral elements and 8
eight-noded, quarter-point (singular), collapsed quadrilateral elements in D�. Finally, the mesh for the micro-
scale model includes 17,456 six-noded, non-singular, triangular elements in D nD� and 72 eight-noded, non-
singular, quadrilateral elements and 8 eight-noded, quarter-point (singular), collapsed quadrilateral elements
in D�. All finite-element meshes are conforming and were developed using an in-house computer code for the
sequential or weighted sequential model, or the commercial code ABAQUS [21] for the remaining models.
Full 3 � 3 and 3-point Gauss quadrature rules were employed for the quadrilateral and triangular elements,
respectively, for the numerical integration.

Figs. 5a–d plot von Mises stress contours for the same FGM sample, generated from the sequential or
weighted sequential, invasive, concurrent, and microscale models, respectively. The effective properties
required by all multiscale models were calculated using the Mori–Tanaka approximation. The overall stress
responses from all multiscale and microscale models, indicated by the contour patterns, are similar. However,
there are also differences in the local stress fields that may have significant implications in determining crack-
driving forces and eventually in reliability predictions by various models. The results pertaining to fracture
response and reliability are presented next.

5.2.1. Verification of the decomposition methods

Of the two stochastic methods employed, the dimensional decomposition method is significantly more com-
putationally inexpensive than the direct Monte Carlo simulation, but the former method provides approxi-
mate results. Therefore, any probabilistic result from the decomposition method requires a verification,
which Fig. 6a delivers in comparing the marginal PDFs of KI and KII by the decomposition and direct Monte
Carlo methods employing the sequential multiscale model. The probability densities obtained by the univar-
iate and bivariate decomposition methods are in close agreement with the histograms generated by the direct
Monte Carlo simulation employing the sequential multiscale model. The bivariate method is slightly more
accurate than the univariate method. Computationally, the univariate and bivariate methods, using N = 12
and n = 5, require only 49 and 1105 finite-element analyses, respectively, whereas 10,000 finite-element anal-
yses were conducted in the direct Monte Carlo method. Therefore, the decomposition methods are not only
accurate, but also computationally inexpensive. The probability densities of KI and KII obtained using the
weighted sequential multiscale model, exhibited in Fig. 6b, support the same conclusion in terms of both
the accuracy and the efficiency of the decomposition methods. A similar comparison entailing the invasive
model was also made, but it is not reported here for brevity. However, the decomposition method in its current
form cannot solve the stochastic fracture problem using either the concurrent model or the microscale model.
Hence, the direct Monte Carlo simulation is needed and was employed in the latter two models. All forthcom-
ing probabilistic results are based on the bivariate decomposition method for the sequential, weighted sequen-
tial, and invasive models, and the direct Monte Carlo simulation for the concurrent and microscale models.

5.2.2. Crack-driving forces

Table 2 lists the second-moment statistics of KI and KII by various multiscale and microscale models exam-
ined in this work. Among various models, the statistics from the microscale model, which requires the fewest



Fig. 4. Finite-element discretizations for a sample specimen: (a) sequential or weighted sequential multiscale: (b) invasive multiscale; (c)
concurrent multiscale; (d) microscale.
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Fig. 5. von Mises stress contours for a sample specimen: (a) sequential or weighted sequential multiscale; (b) invasive multiscale; (c)
concurrent multiscale; (d) microscale.
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approximations, were treated as the reference solutions. From Table 2, the sequential, weighted sequential,
and invasive models show reasonably good agreement when comparing the mean values of KI and KII with
those of the reference model, except for the mean value of KII employing the weighted sequential model.

The concurrent model with j = 0.25 or j = 0.5 provides better estimates of the means of SIFs than any
other multiscale models. The superior accuracy of the concurrent model extends to evaluating the standard
deviations of SIFs, which are significantly underpredicted by all other multiscale models except the invasive
model, which predicts the standard deviation of KI accurately. The accuracy of the concurrent models slightly
improves when j is larger, e.g., j = 0.5, as expected.

While the second-moment statistics are useful, a more meaningful stochastic response is the PDF of a SIF.
Figs. 7a and b present predicted probability densities of KI, obtained from two groups of models: the sequen-
tial, weighted sequential, and invasive models; and the concurrent models with j = 0.25 or j = 0.5, respec-
tively. In each group, the probability density of KI from the microscale model was employed to evaluate
the PDFs from the multiscale models. The PDF of KI from the microscale model reveals a bimodal shape,
where the left and right parts of the density are due to major contributions from the matrix and particle
phases, respectively. From Fig. 7a, the sequential and weighted sequential models produce unimodal PDFs,
and hence both models fail to capture the essential bimodal character. The invasive model, due to an explicit
introduction of the particle or matrix phases in D� locally, picks up the bimodal shape, but the results are still
not close to the PDF generated by the microscale model. A lack of particles and their location variability,
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Fig. 6. Verification of the decomposition method for calculating PDFs of KI and KII: (a) sequential; (b) weighted sequential.

Table 2
Second-moment statistics of stress-intensity factors by various models

Model KI;MPa
ffiffiffiffi
m
p

KII;MPa
ffiffiffiffi
m
p

Mean Standard deviation Mean Standard deviation

Sequentiala 28.604 1.609 2.770 0.263
Weighted sequentiala 38.338 1.191 3.705 0.199
Invasivea 29.887 13.280 2.487 0.939
Concurrent (j = 0.25)b 30.095 13.083 2.200 2.250
Concurrent (j = 0.5)b 30.961 13.469 2.232 2.306
Microscaleb 32.213 13.998 2.191 2.391

a Using bivariate decomposition method; N = 12; n = 5; L = 10,000.
b Using direct Monte Carlo simulation; L = 10,000.
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except at the crack tip, is the major reason for the disparity of results between the invasive and the microscale
models. In contrast, the concurrent models, using either j = 0.25 or j = 0.5, in Fig. 7b provide markedly
improved estimates of the PDF compared with any other multiscale model. This is because the explicit pres-
ence of particle or matrix phases at the crack-tip and particle distributions in the crack-tip region have been
adequately accounted for in the concurrent models.

The probability densities of KII, obtained by various models and organized similarly, are displayed in Figs.
8a and b. The PDF of KII from the microscale model is unimodal and, therefore, different than that of KI.
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Fig. 7. PDFs of KI by various models: (a) simpler multiscale models; (b) concurrent model.
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Since the problem studied here is dominated by mode-I and the mean value of KII is relatively closer to zero,
the particle distribution at the crack-tip region allows KII to take on both positive and negative values. In
other words, the crack faces can turn in either downward or upward direction depending on the value of
KII. The sequential and weighted sequential models, on the other hand, predict strictly positive values of
KII, resulting in a crack-face sliding only in one direction. This is mainly because of the use of effective prop-
erties in these simpler multiscale models, which fail to capture local variations in stresses due to particle dis-
tribution. The invasive model also predicts strictly positive values of KII due to its failure to capture local stress
variations, but also yields a bimodal PDF. This is due to a stronger effect of the explicit presence of material
phases at the crack tip. The concurrent models, regardless of j, again provide excellent estimates of the PDF
of KII, including both positive and negative values of KII.
5.2.3. Fracture initiation

The conditional probability of fracture initiation PF(KIc) :¼ P [y(R) < 0] of the FGM specimen, where y(R)
is based on the maximum circumferential theory and defined by Eqs. (12) and (13), was calculated by different
multiscale models. Fig. 9 plots how PF(KIc) varies as a function of the fracture toughness KIc of the FGM by
the multiscale models, including the reference solution from the microscale model. The results indicate that the
sequential and weighted sequential models not only fail to capture the effect of material property at the crack
tip, but also give misleading information about the failure probability curve. For PF(KIc) < 0.5, both models
significantly underpredict the probability of fracture initiation and are, therefore, unconservative. The invasive
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Fig. 8. PDFs of KII by various models: (a) simpler multiscale models; (b) concurrent model.
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model gives a better estimate of the failure probability curve than those two aforementioned models but still
underpredicts failure probabilities less than 0.5. If further accuracy is desired, the concurrent model, which
provides more accurate prediction of the probability of fracture initiation than all other multiscale models,
can be employed. The accuracy of the concurrent model improves when j is increased from 0.25 to 0.5, as
expected.
5.2.4. Crack propagation

Fig. 10 presents the cumulative distribution function, P[H < h], of the initial crack-propagation angle H(R)
defined by Eq. (13). A comparison of results from different multiscale models indicates once again that the
concurrent model provides the best approximation of the distribution function of H(R). Since H strongly
depends on KI/KII, the sign of KII will have an impact on the direction of crack propagation. Only the con-
current model captures the complete range of H comprising positive and negative values, also exhibited by the
microscale model.

For simulating crack-propagation, two deterministic samples of the FGM specimen in conjunction with the
concurrent model (j = 0.5) and the microscale model were examined. The deterministic boundary conditions
are the same as before. For both samples, the crack trajectories were determined based on the maximum cir-
cumferential stress theory. In addition, the toughness properties of particles and matrix are both lower than
crack-driving forces. Fig. 11a shows the crack propagation paths in one sample generated from the concurrent
multiscale and microscale models, where the initial propagation direction is downward. For the other sample,
where the initial propagation direction is upward, the propagation paths are presented in Fig. 11b, again
obtained from both models. It is observed that the concurrent multiscale model (j = 0.5) gives almost iden-
tical crack propagation paths compared with the microscale model. Further effort should be undertaken to
determine if the same conclusion holds for stochastic crack-propagation analysis.
5.3. Further discussion on probabilistic results

The mean results of SIFs listed in Table 2 by all multiscale and microscale models considered in this work
are fairly close to each other. For example, the mean values of KI and KII, calculated by the invasive multiscale
model, are within 7.2% and 13.5%, respectively, of the microscale model predictions. These differences are not
overly large – a finding also reported by Dolbow and Nadeau [11] using their version of the weighted sequen-
tial multiscale model. Therefore, one may conclude that simpler multiscale models, such as the invasive model
in this work, the weighted sequential model in Dolbow and Nadeau’s work [11], and perhaps others, are ade-
quate for calculating crack-driving forces in FGMs. Such conclusion derived from the mean response alone,
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Fig. 11. Simulation of crack propagation: (a) sample 1; (b) sample 2.
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which is a common practice in deterministic fracture-mechanics analyses, can be erroneous. For instance, if
one examines higher-order moments of fracture response or reliability of FGM, a completely different picture
emerges. From Table 2, when comparing the standard deviation (second moment) of SIFs, the predictions
from both versions of the sequential model are lower than the microscale solution by an order of magnitude.
Therefore, either version of the sequential model is unacceptable. It is interesting to note that the standard
deviation of SIF from the invasive model is still accurate, particularly for mode I deformation. When compar-
ing the probability of fracture-initiation curves displayed in Fig. 9, the invasive and sequential model results
are lower than those obtained from the microscale or concurrent multiscale model by several orders of mag-
nitude. Therefore, the sequential and invasive models are both unacceptable. The significant discrepancies in
results generated from the sequential or invasive model become evident when comparing the tails of the prob-
ability distributions. The discrepancy is expected to grow even larger for lower failure probabilities not exam-
ined in this work. Therefore, the statistics in Table 2 and, in particular, the probability curves in Fig. 9 are
required to determine the accuracy of various multiscale models developed in this work.

The probability curves in Fig. 9 are plotted against any deterministic value of the fracture toughness (KIc) of
FGM. In other words, PF(KIc) provides a conditional probability of fracture initiation, given a value of KIc. In
reality, the fracture toughness of an FGM depends on the microstructure (phase volume fraction), varies spa-
tially, and is a random variable or field. In the simplest case, let KIc,p and KIc,m represent the deterministic frac-
ture toughness properties of the particle and matrix phases, respectively. Therefore, the unconditional failure
probability can be obtained from the weighted average: P F ¼ P FðKIc;pÞ/pðxtipÞ þ P FðKIc;mÞ½1� /pðxtipÞ�. If



Table 3
Computational efforts by various models

Model Relative CPU (single sample) Relative CPU (full stochastic analysis)

Sequentiala 0.180 0.020
Weighted sequentiala 0.180 0.020
Invasivea 0.193 0.044
Concurrent (j = 0.25)b 0.255 0.255
Concurrent (j = 0.5)a 0.419 0.419
Microscalea 1.0 1.0

a Using bivariate decomposition method; N = 12; n = 5; L = 10,000.
b Using direct Monte Carlo simulation; L = 10,000.
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KIc,p and KIc,m are random and follow marginal probability densities, fp(KIc,p) and fm(KIc,m), of the particle and
matrix phases, respectively, the unconditional probability of fracture initiation can then be obtained from the
deconditioning: P F ¼

R1
0

P FðKIcÞf ðKIcÞdKIc, where f(KIc) = fp(KIc)/p(xtip) + fm(KIc)[1 � /p(xtip)] is the
weighted probability density of KIc of FGM at the crack tip. In either case, the results of Fig. 9 are required
and should lead to unconditional fracture-initiation probabilities.

5.4. Computational effort

The fracture analysis involving all multiscale and microscale models were performed in an HP XW4300
workstation. The absolute CPU time required by a single microscale analysis, including all pre-processing
efforts, was 120 s. Table 3 lists the relative computational effort by the different multiscale and microscale
models examined in this work. The relative CPU time associated with a particular model is defined as the
absolute CPU time required by that model divided by the absolute CPU time required by the microscale
model. The second column of Table 3 displays the relative CPU time required for a single sample calculation
that involves one deterministic finite-element analysis including all pre-processing efforts. The third column of
Table 3 describes the relative CPU time for a complete stochastic fracture analysis that leads to the conditional
failure probability curve in Fig. 9. For a single sample calculation (second column), the microscale model is the
most expensive but also the most accurate. The sequential and weighted sequential models are the most com-
putationally inexpensive models, but they do not produce acceptable results. The invasive model, which gives
mixed results, exhibits a similar computational efficiency to that of the previous two multiscale models. The
concurrent multiscale model, which produces sufficiently accurate results, is more expensive than other mul-
tiscale models but is still less expensive than the microscale model.

For stochastic fracture calculation (third column), the sequential, weighted sequential, and invasive models
are substantially more computationally inexpensive than the concurrent multiscale or microscale models. This
is due to the lesser CPU time of each deterministic analysis and, more importantly, due to the lower demand of
function evaluations in the decomposition method implemented in these multiscale models. Because the con-
current and microscale models employ the direct Monte Carlo simulation with the same sample size, their rel-
ative CPU times for a single sample and stochastic analyses remain the same. Nevertheless, the concurrent
multiscale model, for either a single sample or stochastic analysis, is always less expensive than the microscale
model. For instance, the relative CPU time by the concurrent multiscale model varies from 0.255 to 0.419
when j = 0.25 or j = 0.5, respectively. Therefore, the computational effort by the microscale model can be
reduced by more than half when using a concurrent multiscale model. It is worth noting that the absolute
CPU time required by the concurrent model can be further reduced by employing faster simulation methods,
such as importance sampling [22] instead of using the direct Monte Carlo simulation. Furthermore, a decom-
position method without a reference point, if it can be developed, will also solve the stochastic fracture prob-
lem efficiently in terms of computational cost.

6. Conclusions

Three multiscale models, comprising sequential, invasive, and concurrent models, were developed for
fracture analysis of a crack in a two-phase, functionally graded composite. The models involve stochastic
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description of the particle volume fractions, particle locations, and constituent material properties; a two-scale
algorithm including microscale and macroscale analyses for determining crack-driving forces; and two sto-
chastic methods for uncertainty propagation and fracture reliability analysis. The particle volume fractions,
defined by a generic inhomogeneous random field, is related to the intensity function of an inhomogeneous
Poisson field, which describes the statistically inhomogeneous microstructure of a functionally graded com-
posite. The sequential and invasive multiscale models comprise hierarchically linked microscale and macro-
scale analyses. The concurrent multiscale model involves simultaneously performed microscale and
macroscale analyses. All multiscale models presented were evaluated by the microscale model, which furnishes
the reference solutions.

Two stochastic methods, referred to as the dimensional decomposition method and direct Monte Carlo
simulation, were applied to obtain the probabilistic characteristics of crack-driving forces and predict the
probability of fracture initiation. The dimensional decomposition method involves lower-variate approxima-
tions of a crack-driving force, Lagrange interpolations, and Monte Carlo simulation. The decomposition
method was used for facilitating a computationally inexpensive stochastic analysis involving either the sequen-
tial or invasive multiscale models. However, the stochastic analyses involving the concurrent multiscale and
microscale models, so far non-trivially difficult to be handled by the decomposition method, were performed
by the direct Monte Carlo simulation.

A numerical example involving an edge-cracked, functionally graded specimen under a mixed-mode defor-
mation was analyzed by the various multiscale and microscale models examined in this work. The results dem-
onstrate that (1) the decomposition methods predict the probability density functions of stress-intensity
factors as accurately as direct Monte Carlo simulation but with a significantly lower computational effort;
(2) the simpler multiscale models, the sequential, weighted sequential and the invasive models, are the most
computationally inexpensive models available, but they do not produce acceptable probabilistic characteristics
of stress-intensity factors or accurate probability of fracture initiation; and (3) the concurrent model is suffi-
ciently accurate, gives probabilistic solutions very close to those generated from the microscale model, and can
reduce the computational effort of the latter model by more than a factor of two. Finally, a limited yet demon-
strative study on crack-propagation simulation indicates that the concurrent multiscale model can predict
crack trajectory accurately.
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