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Abstract

This paper (Part II), which is the second in a series of two papers, presents new closed-form solutions
for net-section-collapse (NSC) analysis of circumferentially cracked pipes for several idealized crack
shapes subjected to combined bending and tension (pressure-induced) loads. They are based on further
simpli®cations of generalized NSC equations developed in a parallel study. Analytical solutions were
developed for cracks with constant-depth, parabolic, and elliptical shapes. For all three crack shapes,
separate equations were developed when the entire crack is subjected to tension and when part of the
crack is subjected to compression. For part of the crack subjected to compression, the proposed
equations can handle both tight (with crack-closure) and blunt (without crack-closure) cracks.
Currently, of the three crack shapes examined in this paper, previous analytical solutions exist only for
the constant-depth crack. Hence, they should be useful for pipe fracture analysis involving other crack
shapes, such as the elliptical and parabolic cracks. The analytical solutions were validated by numerical
analysis based on the generalized NSC equations. # 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Surface crack; Constant-depth crack; Elliptical crack; Parabolic crack; Pipe; Net-section collapse; Crack
closure; Pipe fracture

1. Introduction

The net-section-collapse (NSC) is a simple, but useful method when the fracture response of
a cracked structure is fully plastic [1, 2]. Current methods for NSC analysis of circumferentially
cracked pipes are based on an assumption that there is a constant crack depth over the entire
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crack length [3±5]. For cracks which do not satisfy this assumption, one needs a NSC method
to analyze pipes with arbitrary crack shapes. In response to this need, a generalized NSC
method was developed by the author in phase 1 of this study to predict pipe's moment-
carrying capacity under combined bending and pressure loads [6]. The method is capable of
calculating the NSC moment of a pipe with any arbitrary-shaped crack that has symmetry with
respect to the bending plane of the pipe. As non-destructive inspection and evaluation
techniques continue to improve, advantage can be taken by using this generalized method for
¯aw evaluation of actual crack shape in a pipe.
This is the second in a series of two papers generated from this study. In phase 2, the results

of which are presented in this paper, closed-form analytical solutions were developed for cracks
that include: (1) constant-depth crack; (2) parabolic crack; and (3) elliptical crack. These crack
shapes are typically used for pipe ¯aw evaluation in the power generation industry [5]. For all
three crack shapes, separate equations were developed when the entire crack is subjected to
tension and when part of the crack is subjected to compression. For part of the crack subjected
to compression, additional equations were derived to represent the behavior of both tight (with
crack-closure) and blunt (without crack-closure) cracks. Currently, of the three crack shapes
examined in this paper, previous closed-form solutions exist only for the constant-depth crack.
Hence, they should be useful for pipe fracture analysis involving other crack shapes, such as
the elliptical and parabolic cracks. The analytical solutions were validated by numerical
analysis based on the generalized NSC equations.

2. The generalized net-section-collapse equations

Consider a pipe with a variable-depth, internal, circumferential, surface crack as shown in
Fig. 1. The pipe has mean radius, Rm, inside radius, Ri, wall thickness, t, and is subject to an
externally applied bending moment about the x-axis and an internal pressure, p. Let 2y denote
the total angle of the surface crack and a(x) represent the crack depth as a function of an
angular coordinate x measured from the y-axis. The crack is assumed to be symmetrical about
the bending plane ( y-axis); otherwise, it can have any arbitrary shape. Figs. 1(a) and (b) show
the internal stress distribution in the pipe wall in the cracked section when the entire crack is in
tension and part of the crack is in compression, respectively.
Let b and M denote the stress-inversion angle and NSC moment of the pipe. Based on static

equilibrium of forces and moments, the generalized NSC equations are as follows. [6]

2.1. Case 1: entire crack in tension zone (yE pÿ b)

M � 2sfR
2
mt 2 sin bÿ 1

t

Z y

0

a�x�cos xdx
� �

; �1�

where

b � pÿ 1
t

R y
0 a�x� dx
2

ÿ pR2
i p

4sfRmt
: �2�
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Fig. 1. An arbitrary-shaped crack in a pipe and resulting stress distribution under net-section collapse.
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2.2. Case 2: part of crack in compression zone (ye pÿ b)

2.2.1. With crack-closure

M � 2sfR
2
mt 2 sin bÿ 1

t

Z pÿb

0

a�x�cos x dx
� �

; �3�

where

pÿ 2bÿ 1

t

Z pÿb

0

a�x� dx � pR2
i p

2sfRmt
: �4�

2.2.2. Without crack-closure

M � 2sfR
2
mt 2 sin bÿ 2

t

Z pÿb

0

a�x�cos x dx� 1

t

Z y

0

a�x�cos xdx
� �

; �5�

where

pÿ 2bÿ 2

t

Z pÿb

0

a�x� dx� 1

t

Z y

0

a�x� dx � pR2
i p

2sfRmt
: �6�

Eqs. (1)±(6) are applicable for combined bending and tension (pressure-induced) loads. See
Rahman and Wilkowski [6] for further details.
Note that for case 1 (entire crack in tension zone), the solution of b can be derived explicitly

as shown in eq (2). However, for case 2 (part of crack in compression zone), no such explicit
expression exists for a generic crack shape, but b can be determined by solving either Eq. (4)
or (6) depending on crack-closure or non-crack-closure, respectively.

3. Analytical solutions for idealized cracks

For idealized cracks, consider several crack shapes illustrated by Fig. 2. They represent: (1)
constant-depth crack; (2) elliptical crack; and (3) parabolic crack, all of which are
circumferentially oriented in the pipe. The analytical solutions for the NSC moments for these
cracks are described in the following subsections.

3.1. Constant-depth crack

For a constant-depth crack [see Fig. 2(a)], the crack depth function, a(x), is represented by

a�x� � a0; �7�
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Fig. 2. Various idealized crack shapes typically used in pipe fracture analysis.
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where a0 is the uniform crack depth. Using eq (7),Z y

0

a�x� dx � a0y; �8�

Z pÿb

0

a�x� dx � a0�pÿ b�; �9�

Z y

0

a�x�cos x dx � a0 sin y; �10�

and Z pÿb

0

a�x�cos x dx � a0 sin b: �11�

By replacing these expressions of integrals in Eqs. (1)±(6), the generalized NSC equations
degenerate to the following closed-form solutions.

3.1.1. Case 1: entire crack in tension zone (yE pÿ b)

M � 2sfR
2
mt 2 sin bÿ a0

t
sin y

h i
; �12�

where

b � pÿ a0
t y

2
ÿ pR2

i p

4sfRmt
: �13�

3.1.2. Case 2: part of crack in compression zone (ye pÿ b)
(a) With crack-closure

M � 2sfR
2
mt 2ÿ a0

t

h i
sin b; �14�

where

b � p
2ÿ a0

t

1ÿ a0
t
ÿ R2

i p

2sfRmt

� �
: �15�

(b) Without crack-closure

M � 2sfR
2
mt 2ÿ 2a0

t

� �
sinb� a0

t
sin y

� �
; �16�
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where

b � p
2 1ÿ a0

t

ÿ � 1ÿ 2a0
t
� a0

t

y
p
ÿ R2

i p

2sfRmt

� �
: �17�

Eqs. (12)±(17) are identical to the NSC equations originally developed by Kanninen et al. [1].

3.2. Elliptical crack

For an elliptical crack [see Fig. 2(b)], the crack depth function, a(x), is represented by

a�x� � a0

���������������������
1ÿ �x=y�2

q
; �18�

where a0 is the crack depth at the crack centerline (i.e. along y-axis) in which it is also the
maximum depth. Using eq (18), the following integrals can be evaluated as1Z

a�x� dx � a0
y

x

���������������
y2 ÿ x2

p
2

� y2

2
sinÿ1

x
y

" #
�19�

and following in®nite series expansion of cos x,Z
a�x�cos x dx � a0

y

X1
k�0

�ÿ1�k
�2k�!

Z
x2k

���������������
y2 ÿ x2

q
dx: �20�

They can be further simpli®ed when appropriate limits are placed, yieldingZ y

0

a�x� dx � a0py
4

�21�

and

Z pÿb

0

a�x� dx � a0
y

�pÿ b�
���������������������������
y2 ÿ �pÿ b�2

q
2

� y2

2
sinÿ1

pÿ b
y

24 35: �22�

For the integral involving cos x, it can be shown that [7, 8]Z y

0

a�x�cos x dx � a0
y

X1
k�0

�ÿ1�k
�2k�!

1

2
y2k�2

G 2k�1
2

ÿ �
G 3

2

ÿ �
G�k� 2� �23�

where G(u) is a gamma function de®ned as

G�u� �
Z 1
0

zuÿ1 exp�ÿz� dz �24�

1 No constants of integration are used here since these integrals appear as de®nite integrals in Eqs. (1)±(6).
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for u>0, andZ pÿb

0

a�x�cos x dx � a0
y

X1
k�0

�ÿ1�k
�2k�! Ik; �25�

where

Ik �
�pÿ b�

���������������������������
y2 ÿ �pÿ b�2

q
2

� y2

2
sinÿ1

pÿ b
y

; k � 0

ÿ �pÿ b�2kÿ1�y2 ÿ �pÿ b�2�3=2
2k� 2

� 2kÿ 1

2k� 1
y2Ikÿ1; k � 1:

8>>>><>>>>: �26�

Using these integrals, Eqs. (1)±(6) reduce to the following NSC equations.

3.2.1. Case 1: entire crack in tension zone (yE pÿ b)

M � 2sfR
2
mt 2 sin bÿ a0

t

1

y

X1
k�0

�ÿ1�k
�2k�!

y2k�2

2

G 2k�1
2

ÿ �
G 3

2

ÿ �
G�k� 2�

" #
; �27�

where

b � p
2
ÿ a0

t

py
8
ÿ pR2

i p

4sfRmt
: �28�

3.2.2. Case 2: part of crack in compression zone (ye pÿ b)
(a) With crack-closure

M � 2sfR
2
mt 2 sin bÿ a0

t

1

y

X1
k�0

�ÿ1�k
�2k�! Ik

" #
; �29�

where

pÿ 2bÿ a0y
2t

pÿ b
y

����������������������������
1ÿ pÿ b

y

� �2
s

� sinÿ1
pÿ b
y

24 35 � pR2
i p

2sfRmt
: �30�

(b) Without crack-closure

M � 2sfR
2
mt 2 sin bÿ 2a0

t

1

y

X1
k�0

�ÿ1�k
�2k�! Ik �

a0
t

1

y

X1
k�0

�ÿ1�k
�2k�!

y2k�2

2

G 2k�1
2

ÿ �
G 3

2

ÿ �
G�k� 2�

" #
; �31�

where

pÿ 2bÿ a0y
t

pÿ b
y

����������������������������
1ÿ pÿ b

y

� �2
s

� sinÿ1
pÿ b
y

24 35� a0
t

py
4
� pR2

i p

2sfRmt
: �32�
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Note, Eqs. (30) and (32) contain complicated nonlinear functions of b and hence, it is di�cult

(if not impossible) to obtain the exact solution of b. However, these equations can be easily

solved using standard numerical methods, such as the Newton±Raphson and Bisection

methods [9].

As an alternative to the numerical solution of b, Eq. (30) or (32) can also be solved by

replacing them with approximate nonlinear equations that support an easy analytical solution.

For example, if

g��pÿ b�=y� � pÿ b
y

������������������������������������������������������
1ÿ pÿ b

y

� �2

�sinÿ1 pÿ b
y

s
�33�

denotes the parenthetical term of Eq. (30) or (32), then following least-squares curve ®t by a

cubic polynomial, shown in Fig. 3, it can be approximated by

g��pÿ b�=y�11:947
pÿ b
y

� �
� 0:254

pÿ b
y

� �2

ÿ0:617 pÿ b
y

� �3

: �34�

Using this g-function [eq (34)], both Eqs. (30) and (32) simplify to a cubic equation of the form

pÿ b
y

� �3

�A1
pÿ b
y

� �2

�A2
pÿ b
y

� �
� A3 � 0; �35�

Fig. 3. g((pÿ b)/y) vs (pÿ b)/y.
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where

A1 � ÿ0:412; �36�

A2 �
6:483

a0=t
ÿ 3:156; with crack-closure

3:242

a0=t
ÿ 3:156; without crack-closure

;

8>><>>: �37�

and

A3 �
ÿ p� pR2

i
p

2sfRmt

0:3085�a0=t�y ; with crack-closure;

ÿ pÿ a0
t

py
4 �

pR2
i
p

2sfRmt

0:617�a0=t�y ; without crack-closure:

8>>>>><>>>>>:
�38�

Eq. (35) can be easily solved for (pÿ b)/y and hence, b in closed-form. The appendix describes
the solution of a generic cubic equation.

3.3. Parabolic crack

For a parabolic crack [see Fig. 2(c)], the crack depth function, a(x), is represented by

a�x� � a0�1ÿ x=y�2 �39�
where a0 is the crack depth at the crack centerline (i.e. along the y-axis) in which it is also the
maximum depth. Using eq (39)Z y

0

a�x� dx � a0y
3
; �40�

Z pÿb

0

a�x� dx � a0

3y2
�y3 ÿ �yÿ p� b�3�; �41�

Z y

0

a�x�cos x dx � 2a0

y2
�yÿ sin y�; �42�

and Z pÿb

0

a�x�cos x dx � a0

y2
�f�yÿ p� b�2 ÿ 2gsinb� 2�yÿ p� b�cos b� 2y�: �43�

By replacing these expressions of integrals in Eqs. (1)±(6), the generalized NSC equations
degenerate to the following closed-form solutions.
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3.3.1. Case 1: entire crack in tension zone (yE pÿ b)

M � 2sfR
2
mt 2 sin bÿ 2a0

t

1

y2
�yÿ sin y�

� �
; �44�

where

b � pÿ a0
t

y
3

2
ÿ pR2

i p

4sfRmt
: �45�

3.3.2. Case 2: part of crack in compression zone (ye pÿ b)
(a) With crack-closure

M � 2sfR
2
mt 2 sin bÿ a0

t

1

y2
�f�yÿ p� b�2 ÿ 2gsinb� 2�yÿ p� b�cos b� 2y�

� �
; �46�

where

pÿ 2bÿ a0
t

1

3y2
�y3 ÿ �yÿ p� b�2� � pR2

i p

2sfRmt
: �47�

(b) Without crack-closure

M � 2sfR
2
mt

2 sinbÿ 2a0
t

1
y2
�f�yÿ p� b�2 ÿ 2gsin b� 2�yÿ p� b�cos b� 2y�

� 2a0
t

1
y2
�yÿ sin y�

24 35; �48�

where

pÿ 2bÿ 2a0
t

1

3y2
�y3 ÿ �yÿ p� b�3� � a0

t

y
3
� pR2

i p

2sfRmt
: �49�

On further simpli®cations, both Eqs. (47) and (49) can be rewritten as a cubic equation given
by

pÿ b
y

� �3

�B1
pÿ b
y

� �2

�B2
pÿ b
y

� �
� B3 � 0; �50�

where

B1 � ÿ3; �51�

B2 �
ÿ 6

a0=t
� 3; with crack-closure

ÿ 3

a0=t
� 3; without crack-closure;

8>><>>: �52�
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and

B3 �

p� pR2
i
p

2sfRmt

0:3333�a0=t�y with crack-closure

pÿ a0
t

y
3�

pR2
i
p

2sfRmt

0:6666�a0=t�y ; without crack-closure:

8>>>>><>>>>>:
�53�

Note that the cubic equation represented by eq (50) is exact for parabolic cracks, whereas, eq
(35), which also represents a cubic equation, is approximate for elliptical cracks. Eq. (50) can
be solved for (pÿ b)/y and hence, b in closed-form following the same procedure described in
the appendix.

4. A numerical example

Consider a pipe with mean radius, Rm=254 mm (10 inches) and wall thickness, t=25.4 mm
(1 inch). The pipe is subjected to a combined bending moment and constant internal pressure,
p=15.51 MPa (2250 psi). The material ¯ow stress is assumed to be 300 MPa (43,514 psi).
For each of the three crack shapes considered in this paper, extensive NSC analyses were
conducted for various combinations of crack size parameters of this pipe. Only pressure-
induced axial tension was considered in the analyses.
Two distinct methods were used to perform all NSC analyses. First, the generalized

equations, originally presented in the ®rst paper [6] and brie¯y described here in this second
paper [see Eqs. (1)±(6)], were used to predict the NSC moment. Discrete values of a vs x were
prescribed for each crack shape and the resultant crack shape integrals were evaluated by
numerical quadratures, i.e.Z

a�x� dx1
X
i

a�xi�Dx; �54�

Z
a�x�cos x dx1

X
i

a�xi�cos xiDx; �55�

where x i is the ith discrete value of angular coordinate x, a(x i) is the crack depth at x= x i,
and Dx is a small interval size compared with the crack angle y. The value of Dx was chosen to
be su�ciently small to ensure convergence of the values of these numerical integrals. In
addition, b was calculated by the Bisection method [9] when applicable. This method will be
denoted as the numerical method in this paper.
Second, the closed-form analytical solutions developed in this paper were also used to

predict the NSC moments for all three crack shapes. These equations are exact for constant-
depth and parabolic cracks. For the elliptical crack, the cubic approximation proposed in eq
(35) was used to solve for b. No numerical integrations were needed or performed. Hence, this
method will be denoted as the analytical method in this paper.
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Fig. 4 shows the plots of normalized NSC moment, M/M0 of constant-depth cracks as a
function of normalized crack angle, y/p, for values of normalized maximum crack depth,
a0/t=0.1, 0.3, 0.5, 0.7, and 1. The calculations were made with and without crack-closure and
the corresponding plots are shown in Figs. 4(a) and (b), respectively. The normalizing moment,
M0, is de®ned as the NSC moment of the uncracked pipe, i.e. when y=0. Setting y=0 in
Eqs. (1) and (2), M0 was calculated to be 1.836 MN-m (16,251 kip-inch) for this pipe. In
Figs. 4(a) and (b), the continuous lines and solid points represent the analytical and numerical
predictions, respectively. The results of both methods match extremely well. Both methods
predict that the moment-carrying capacity of the pipe will decrease with increases in either
crack angle or crack depth as expected. The analyses without crack-closure produced slightly
reduced moments when the cracks are long [see Fig. 4(b)]. This trend is consistent with the
experimental observation [6].
Figs. 5(a) and (b) show similar plots of M/M0 vs y/p for elliptical cracks with and

without crack-closure, respectively. As before, the analytical method makes excellent
predictions of NSC moments when compared with the numerical results. The analytical
predictions for long cracks (i.e. when ye pÿ b) based on the proposed cubic approximation
[see eq (35)] are very good. For any given value of a0/t and y/p, the NSC moments
for the elliptical cracks are higher than those for the constant-depth cracks. The e�ect of
crack-closure is small, because the cracked area below the plastic neutral axis (N.A.) in an
elliptical crack is small and does not contribute much to the moment-carrying capacity of
pipes.
Finally, Figs. 6(a) and (b) show the plots of M/M0 vs y/p for parabolic cracks with and

without crack-closure, respectively. Once again, the agreement between the analytical and
numerical results is excellent. The NSC moments of pipes with parabolic cracks are
much higher than those with either constant-depth or elliptical cracks. This is because of the
much smaller cracked area of a parabolic crack when compared with the areas of the two
other crack shapes. For the same reason, the crack-closure did not signi®cantly a�ect the NSC
moments.

5. Conclusions

Closed-form analytical solutions were developed for NSC analysis of circumferentially-
cracked pipes with constant-depth, parabolic, and elliptical crack shapes. For all three crack
shapes, separate equations were developed when the entire crack is subjected to tension and
when part of the crack is subjected to compression. For part of the crack subjected to
compression, the proposed equations can account for both tight (with crack-closure) and blunt
(without crack-closure) cracks. The NSC equations are exact for constant-depth and parabolic
cracks. For the elliptical crack, the NSC equations are approximate, because of the cubic
polynomial approximation needed to calculate the stress-inversion angle. The results from a
numerical example suggest that:

1. The analytical predictions of NSC moment compare extremely well with the numerical
solutions.
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Fig. 4. M/M0 vs y/p for constant-depth cracks (lines=analytical; points=numerical).
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Fig. 5. M/M0 vs y/p for elliptical cracks (lines=analytical; points=numerical).
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Fig. 6. M/M0 vs y/p for parabolic cracks (lines=analytical; points=numerical).
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2. The NSC moments for the constant-depth crack are lower than those for either elliptical or
parabolic cracks. This is simply because of the larger cracked area of a constant-depth crack
when compared with the area of an elliptical or a parabolic crack.

3. In general, when the crack-closure is not included, the NSC moment of a pipe containing
long cracks can be reduced. However, this reduction is very small for elliptical and
parabolic cracks. This is because the cracked area below the plastic neutral axis in an
elliptical or a parabolic crack is small and does not contribute much to the moment-
carrying capacity of pipes.

Currently, of the three crack shapes examined in this paper, previous analytical solutions exist
only for the constant-depth crack. Hence, the proposed equations should be useful for pipe
fracture analysis involving other crack shapes, such as the elliptical and parabolic cracks.
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Appendix A

A.1. Solution of a cubic equation

Consider a cubic equation of the form

x3 � a1x
2 � a2x� a3 � 0; �A1�

where a1, a2, and a3 are real coe�cients. The discriminant, D, of this cubic equation is

D � Q3 � R2; �A2�
where

Q � 3a2 ÿ a21
9

�A3�

R � 9a1a2 ÿ 27a3 ÿ 2a31
54

: �A4�

If D>0, there is one real and two complex conjugate roots, and are given by [10]

x �
S� Tÿ 1

3 a1

ÿ 1
2 �S� T� ÿ 1

3 a1 � 1
2 i

���
3
p �Sÿ T�;

ÿ 1
2 �S� T� ÿ 1

3 a1 ÿ 1
2 i

���
3
p �Sÿ T�

8>><>>: �A5�
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in which

S � �R�
����
D
p
�1=3; �A6�

T � �Rÿ
����
D
p
�1=3; �A7�

and i � �������ÿ1p
. Note, only the real root given above is applicable to this present study. If DE0,

all roots are real and are given by [10]

x �

2
��������ÿQp

cos
j
3

� �
ÿ 1

3
a1

2
��������ÿQp

cos
j
3
� 2p

3

� �
ÿ 1

3
a1;

2
��������ÿQp

cos
j
3
� 4p

3

� �
ÿ 1

3
a1

8>>>>>>><>>>>>>>:
�A8�

where

j � cosÿ1
R����������
ÿQ3

p : �A9�

At least, two of these roots are equal if D=0, otherwise all three roots are unequal for D<0.
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