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Abstract

This paper presents a Galerkin-based meshless method for calculating stress-intensity factors (SIFs) for a stationary

crack in two-dimensional functionally graded materials of arbitrary geometry. The method involves an element-free

Galerkin method (EFGM), where the material properties are smooth functions of spatial coordinates and two newly

developed interaction integrals for mixed-mode fracture analysis. These integrals can also be implemented in con-

junction with other numerical methods, such as the finite element method (FEM). Five numerical examples including

both mode-I and mixed-mode problems are presented to evaluate the accuracy of SIFs calculated by the proposed

EFGM. Comparisons have been made between the SIFs predicted by EFGM and available reference solutions in the

literature, generated either analytically or by FEM using various other fracture integrals or analyses. A good agreement

is obtained between the results of the proposed meshless method and the reference solutions.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, functionally graded materials (FGMs) have been introduced and applied in the devel-
opment of structural components subject to non-uniform service requirements. FGMs, which possess
continuously varying microstructure and mechanical and/or thermal properties, are essentially two-phase
particulate composites, such as ceramic and metal alloy phases, synthesized such that the composition of
each constituent changes continuously in one direction, to yield a predetermined composition profile [1].
Even though the initial developmental emphasis of FGMs was to synthesize thermal barrier coating for
space applications [2], later investigations uncovered a wide variety of potential applications, including
nuclear fast breeder reactors [3], piezoelectric and thermoelectric devices [4–6], graded refractive index
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materials in audio–video disks [7], thermionic converters [8], dental and medical implants [9], and others
[10]. The absence of sharp interfaces in FGM largely reduces material property mismatch, which has been
found to improve resistance to interfacial delamination and fatigue crack propagation [11]. However, the
microstructure of FGM is generally heterogeneous, and the dominant type of failure in FGM is crack
initiation and growth from inclusions. The extent to which constituent material properties and micro-
structure can be tailored to guard against potential fracture and failure patterns is relatively unknown. Such
issues have motivated much of the current research into the numerical computation of crack-driving forces
and the simulation of crack growth in FGMs.
Analytical work on FGMs begins as early as 1960 when soil was modeled as a non-homogeneous ma-

terial by Gibson [12]. Due to the complexity, plane elasticity problems involving cracks in FGM are solved
assuming a functional form of the material property variation, usually a linear or exponential function.
Assuming an exponential spatial variation of the elastic modulus, Atkinson and List [13], Dhaliwal and
Singh [14], and Delale and Erdogan [15] solved crack problems for non-homogeneous materials subjected
to mechanical loads. Delale and Erdogan [15] showed that the asymptotic crack-tip stress field in FGMs
possesses the same square root singularity as in homogeneous materials. Eischen [16] studied mixed-mode
conditions in non-homogeneous materials using the finite element method (FEM). He also verified that the
leading term of the asymptotic expansion for stresses was square-root singular. This result was reconfirmed
by Jin and Noda [17] for materials with piecewise differentiable property variations. By further assuming
the exponential variation of thermal properties of the material, Jin and Noda [18] and Erdogan and Wu [19]
computed thermal stress-intensity factor (SIF) for non-homogeneous solids. Yang and Shih [20] considered
a semi-infinite crack in an interlayer between two dissimilar materials, and they obtained an approximate
solution from a known bimaterial solution. Gu and Asaro [21] considered a semi-infinite crack in a strip of
FGM under edge loading and obtained SIF relations for many commonly used fracture specimen con-
figurations. Erdogan [11] reviewed the elementary concepts of fracture mechanics of FGM and identified a
number of typical problems relating to FGM fracture. Crack deflection in FGM has been considered by Gu
and Asaro [22] who reported the strong influence of the material gradient on the crack kink angle when the
crack is in the middle of the gradient zone. Tohgo et al. [23] carried out a numerical analysis of particulate
FGM, and studied the influence of the material gradient on the size of a singular field by comparing the
FGM results with those obtained for a homogeneous medium. Gu et al. [24] presented a simplified method
for calculating the crack-tip field of FGMs using the equivalent domain integral technique. Anlas et al. [25]
evaluated SIFs in FGMs by the FEM where the material property variation was discretized by assigning
different homogeneous elastic properties to each element. Both Gu et al. [24] and Anlas et al. [25] considered
a mode-I crack where the crack is parallel to the material gradation, and used commercial FEM software in
their analyses. Marur and Tippur [26] considered a crack normal to the elastic gradient and performed
FEM analysis in conjunction with their experiments. Bao and Wang [27] studied multi-cracking in an FGM
coating. Bao and Cai [28] studied delamination cracking in a functionally graded ceramic/metal substrate.
Lee and Erdogan [29] evaluated residual thermal stresses in FGMs. Recently, Kim and Paulino [30]
evaluated the mixed-mode fracture parameters in FGMs using FEM analysis with three different ap-
proaches: the path-independent J �

k -integral method, the modified crack-closure integral method, and the
displacement correlation technique. Zou et al. [31] proposed a multiple isoparametric FEM to evaluate the
SIFs of cracks in FGMs. Thus, most of the analytical studies on FGM reviewed above have used FEM as
the numerical tool. FEM may present some limitations in solving solid mechanics problems characterized
by a continuous change in geometry of the domain under analysis. Crack propagation is a prime example in
which the use of FEM requires a large number of remeshings of the finite element model to represent
arbitrary and complex paths. The underlying structures of FEM and similar methods, which rely on a
mesh, is quite cumbersome in treating cracks that are not coincident with the original mesh geometry.
Consequently, the only viable option for dealing with moving cracks using FEM is to remesh during each
discrete step of model evolution so that the mesh lines remain coincident with the cracks throughout the
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analysis. This creates numerical difficulties, often leading to degradation of solution accuracy, complexity in
computer programming, and a computationally intensive environment.
In recent years, various Galerkin-based meshless or mesh-free methods have been developed or inves-

tigated to solve fracture-mechanics problems without the use of a structured grid [32–38]. These meshless
methods employ moving least-squares (MLS) approximation of a function that permits the resultant shape
functions to be constructed entirely in terms of arbitrarily placed nodes. Since no element connectivity data
is required, the burdensome meshing or remeshing characteristic of FEM is avoided. Since the mesh
generation of complex cracked structures can be a far more time-consuming and costly effort than the
solution of a discrete set of linear equations, the meshless method provides an attractive alternative to
FEM. However, to date most developments in meshless methods have focused on the fracture of homo-
geneous materials. Fracture analysis of cracks in FGMs using meshless methods has not been widespread
and is only currently gaining attention. As a result, there is considerable interest in developing meshless
methods for the evaluation of crack-driving force in FGMs.
This paper presents a meshless method for calculating the fracture parameters of a stationary crack in

FGM with arbitrary geometry. This method involves an element-free Galerkin method (EFGM), where the
material properties are smooth functions of spatial coordinates and two newly developed interaction in-
tegrals for mixed-mode fracture analysis. In conjunction with the proposed method, both mode-I and
mixed-mode two-dimensional problems have been solved. Five numerical examples are presented to
evaluate the accuracy of SIFs calculated by the proposed method. Comparisons have been made between
the SIFs predicted by the proposed method and the existing results available in the current literature.

2. Crack-tip fields in FGM

Consider a two-dimensional structure with a rectilinear crack of length 2a, subjected to external loads
S1; S2; . . . ; SM , as shown in Fig. 1. It is assumed that the material properties, such as the modulus of elas-
ticity E and the Poisson’s ratio m, vary according to

Fig. 1. A crack in a functionally graded material.
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E ¼ Eðx1; x2Þ ¼ EðxÞ; ð1Þ

m ¼ mðx1; x2Þ ¼ mðxÞ; ð2Þ

where x ¼ fx1; x2gT 2 R2, EðxÞP 0 and 	16 mðxÞ6 1=2 are continuous, bounded, and at least piecewise
differentiable functions on domain X, and the x1–x2 coordinate system is defined in Fig. 1. In reality, FGMs
are multi-phase materials with generally, locally discontinuous material properties. Hence, EðxÞ and mðxÞ in
Eqs. (1) and (2) should be viewed as smoothly varying ‘‘effective’’ material properties of FGMs. In this case,
FGMs can be modeled as non-homogeneous materials, for which the elastic constitutive equation is

eij ¼
1þ m�ðxÞ
E�ðxÞ rij þ

m�ðxÞ
E�ðxÞ rkkdij; ð3Þ

where eij and rij are the strain and stress components, respectively, and dij is the Kronecker delta. In Eq. (3),
E�ðxÞ and m�ðxÞ are given by EðxÞ and mðxÞ under plane stress condition and by EðxÞ=½1	 mðxÞ2� and
mðxÞ=½1	 mðxÞ� under plane strain condition, respectively. For non-homogeneous materials undergoing
plane stress or plane strain linear-elastic deformation, in the absence of body forces the Airy stress function
F ðx1; x2Þ satisfies [16]

r2 r2F
E�ðxÞ

� �
	 o2

ox22

1þ m�ðxÞ
E�ðxÞ

� �
o2F
ox21

	 o2

ox21

1þ m�ðxÞ
E�ðxÞ

� �
o2F
ox22

þ 2 o2

ox1ox2

1þ m�ðxÞ
E�ðxÞ

� �
o2F

ox1ox2
¼ 0; ð4Þ

where r2 ¼ o2=ox21 þ o2=ox22 is the two-dimensional Laplacian operator. Eischen [16] and later Jin and
Noda [17] showed that for piecewise differentiable material property variations, the elastic stress and dis-
placement fields in FGM can be derived using the stress function in variable separable form, identical to the
homogeneous case. Hence, the linear-elastic singular stress field near the crack tip can be obtained as [16]

r11 ¼
1ffiffiffiffiffiffiffi
2pr

p ½KIf I11ðhÞ þ KIIf II11ðhÞ�; ð5Þ

r22 ¼
1ffiffiffiffiffiffiffi
2pr

p ½KIf I22ðhÞ þ KIIf II22ðhÞ�; ð6Þ

r12 ¼
1ffiffiffiffiffiffiffi
2pr

p ½KIf I12ðhÞ þ KIIf II12ðhÞ�; ð7Þ

where KI and KII are the mode-I and mode-II SIFs, respectively, and f IijðhÞ and f IIij ðhÞ (i, j ¼ 1, 2) are the
standard angular functions for a crack in a homogeneous elastic medium. Similarly, the near tip dis-
placement field u ¼ fu1; u2gT can be obtained as [16]

u1 ¼
1

ltip

ffiffiffiffiffiffi
r
2p

r
½KIgI1ðhÞ þ KIIgII1 ðhÞ� ð8Þ

and

u2 ¼
1

ltip

ffiffiffiffiffiffi
r
2p

r
½KIgI2ðhÞ þ KIIgII2 ðhÞ�; ð9Þ

where ltip ¼ Etip=½2ð1þ mtipÞ� is the shear modulus, Etip is the elastic modulus, and mtip is the Poisson’s ratio,
all evaluated at the crack tip, and gIi ðhÞ and gIIi ðhÞ, i ¼ 1, 2 are standard angular functions for a crack in a
homogeneous elastic medium [39]. Even though the material gradient does not influence the square-root
singularity or the singular stress distribution, the material gradient does affect the SIFs. Hence, the fracture
parameters are functions of the material gradients, external loading, and geometry.
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3. The interaction integral method

The interaction integral method is an effective tool for calculating mixed-mode fracture parameters in
homogeneous materials [40,41]. In this section the interaction integral method for homogeneous materials
is first briefly summarized, then extended for cracks in FGM. In fact, the study of FGM would enhance the
understanding of a fracture in a generic material, since upon shrinking the gradient layer in FGM is ex-
pected to behave like a sharp interface, and upon expansion, the fracture behavior would be analogous to
that of a homogeneous material.

3.1. Homogeneous materials

The path independent J-integral for a homogeneous cracked body is given by [42]

J ¼
Z

C
W d1j

�
	 rij

oui
ox1

�
nj dC; ð10Þ

where W ¼
R

rij deij is the strain energy density and nj is the jth component of the outward unit vector
normal to an arbitrary contour C enclosing the crack tip. For linear elastic material models it can shown
that W ¼ rijeij=2 ¼ eijDijklekl=2, where Dijkl is a component of constitutive tensor. Applying the divergence
theorem, the contour integral in Eq. (10) can be converted into an equivalent domain form, given by [43]

J ¼
Z
A

rij
oui
ox1

�
	 W d1j

�
oq
oxj
dAþ

Z
A

o

oxj
rij

oui
ox1

�
	 W d1j

�
qdA; ð11Þ

where A is the area inside the contour and q is a weight function chosen such that it has a value of unity at
the crack tip, zero along the boundary of the domain, and arbitrary elsewhere. By expanding the second
integrand, Eq. (11) reduces to

J ¼
Z
A

rij
oui
ox1

�
	 W d1j

�
oq
oxj
dAþ

Z
A

orij

oxj

oui
ox1

�
þ rij

o2ui
oxjox1

	 rij
oeij
ox1

	 1
2
eij

oDijkl

ox1
ekl

�
qdA: ð12Þ

Using equilibrium (orij=oxj ¼ 0) and compatibility (eij ¼ oui=oxj) conditions and noting that oDijkl=ox1 ¼ 0
in homogeneous materials, the second integrand of Eq. (12) vanishes, yielding

J ¼
Z
A

rij
oui
ox1

�
	 W d1j

�
oq
oxj
dA; ð13Þ

which is the classical domain form of the J-integral in homogeneous materials.
Consider two independent equilibrium states of the cracked body. Let state 1 correspond to the actual

state for the given boundary conditions, and let state 2 correspond to an auxiliary state, which can be either
mode-I or mode-II near tip displacement and stress fields. Superposition of these two states leads to another
equilibrium state (state S) for which the domain form of the J-integral is

J ðSÞ ¼
Z
A

ðrð1Þ
ij

"
þ rð2Þ

ij Þ
oðuð1Þi þ uð2Þi Þ

ox1
	 W ðSÞd1j

#
oq
oxj
dA; ð14Þ

where superscript i ¼ 1, 2, and S indicate fields and quantities associated with state i and

W ðSÞ ¼ 1
2
ðrð1Þ

ij þ rð2Þ
ij Þðe

ð1Þ
ij þ eð2Þij Þ: ð15Þ

By expanding Eq. (14),

J ðSÞ ¼ J ð1Þ þ J ð2Þ þM ð1;2Þ; ð16Þ
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where

J ð1Þ ¼
Z
A

rð1Þ
ij

ouð1Þi

ox1

"
	 W ð1Þd1j

#
oq
oxj
dA ð17Þ

and

J ð2Þ ¼
Z
A

rð2Þ
ij

ouð2Þi

ox1

"
	 W ð2Þd1j

#
oq
oxj
dA ð18Þ

are the J-integrals for states 1 and 2, respectively, and

M ð1;2Þ ¼
Z
A

rð1Þ
ij

ouð2Þi

ox1

"
þ rð2Þ

ij
ouð1Þi

ox1
	 W ð1;2Þd1j

#
oq
oxj
dA ð19Þ

is an interaction integral. In Eqs. (17)–(19), W ð1Þ ¼ 1
2
rð1Þ
ij eð1Þij , W

ð2Þ ¼ 1
2
rð2Þ
ij eð2Þij , and W

ð1;2Þ ¼ 1
2
ðrð1Þ

ij eð2Þij þ rð2Þ
ij eð1Þij Þ

represent various strain energy densities, which satisfy

W ðSÞ ¼ W ð1Þ þ W ð2Þ þ W ð1;2Þ: ð20Þ

For linear-elastic solids under mixed-mode loading conditions, the J-integral is also equal to the energy
release rate and hence, the J-integral can be written as

J ¼ 1

E� ðK
2
I þ K2IIÞ: ð21Þ

Applying Eq. (21) to states 1, 2, and the superimposed state S gives

J ð1Þ ¼ 1

E� ðK
ð1Þ2
I þ Kð1Þ2

II Þ; ð22Þ

J ð2Þ ¼ 1

E� ðK
ð2Þ2
I þ Kð2Þ2

II Þ ð23Þ

and

J ðSÞ ¼ 1

E� ðKð1Þ
I

h
þ Kð2Þ

I Þ2 þ ðKð1Þ
II þ Kð2Þ

II Þ
2
i

¼ 1

E� ðKð1Þ2
I

h
þ Kð1Þ2

II Þ þ ðKð2Þ2
I þ Kð2Þ2

II Þ þ 2ðKð1Þ
I Kð2Þ

I þ Kð1Þ
II K

ð2Þ
II Þ
i

¼ J ð1Þ þ J ð2Þ þ 2

E� Kð1Þ
I Kð2Þ

I

�
þ Kð1Þ

II K
ð2Þ
II

�
: ð24Þ

Comparing Eqs. (16) and (24),

M ð1;2Þ ¼ 2

E� ðKð1Þ
I Kð2Þ

I

h
þ Kð1Þ

II K
ð2Þ
II Þ
i
: ð25Þ

The individual SIFs for the actual state can obtained by judiciously choosing the auxiliary state (state 2).
For example, if state 2 is chosen to be state I, i.e., the mode-I near tip displacement and stress field is chosen
as the auxiliary state, then Kð2Þ

I ¼ 1 and Kð2Þ
II ¼ 0. Hence, Eq. (25) can be reduced to

M ð1;IÞ ¼ 2K
ð1Þ
I

E� ; ð26Þ
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from which

Kð1Þ
I ¼ M ð1;IÞE�

2
: ð27Þ

Similarly, if state 2 is chosen to be state II, i.e., the mode-II near tip displacement and stress field is chosen
as the auxiliary state, then Kð2Þ

I ¼ 0 and Kð2Þ
II ¼ 1. Following similar considerations,

Kð1Þ
II ¼ M ð1;IIÞE�

2
: ð28Þ

The interaction integrals M ð1;IÞ and M ð1;IIÞ can be evaluated from Eq. (19). Eqs. (27) and (28) have been
successfully used for calculating SIFs under various mixed-mode loading conditions [32–38].

3.2. Functionally graded materials

For non-homogeneous materials, even though the equilibrium and compatibility conditions are satisfied,
the material gradient term of the second integrand of Eq. (12) does not vanish. So Eq. (12) reduces to a
more general integral, henceforth referred to as the eJJ -integral [24], which is

eJJ ¼
Z
A

rij
oui
ox1

�
	 W d1j

�
oq
oxj
dA	

Z
A

1

2
eij

oDijkl

ox1
eklqdA: ð29Þ

By comparing Eq. (29) to the classical J-integral (see Eq. (13)), the presence of material non-homogeneity
results in the addition of the second domain integral. Although this integral is negligible for a path very
close to the crack tip, it must be accounted for with relatively large integral domains, so that the eJJ -integral
can be accurately calculated.
The eJJ -integral in Eq. (29) is actually the first component of the J� ¼ fJ �

1 ; J
�
2 g
T
vector integral (i.e., J �

1 )
proposed by Eischen [16]. Hence, eJJ also represents the energy release rate of an elastic body. It is ele-
mentary to show that the eJJ -integral becomes zero for any closed contour in an uncracked homogeneous, as
well as in non-homogeneous bodies, and therefore remains path independent when used in conjunction with
cracks in FGM [16,44].
In order to derive interaction integral for FGMs, consider again actual (state 1), auxiliary (state 2), and

superimposed (state S) equilibrium states. For the actual state, Eq. (29) can be directly invoked to represent
the eJJ -integral. However, a more general form, such as Eq. (11), must be used for auxiliary and superim-
posed states. For example, the eJJ -integral for the superimposed state S can written as

eJJ ðSÞ ¼
Z
A

ðrð1Þ
ij

 
þ rð2Þ

ij Þ
oðuð1Þi þ uð2Þi Þ

ox1
	 W ðSÞd1j

!
oq
oxj
dAþ

Z
A

o

oxj
ðrð1Þ

ij

 
þ rð2Þ

ij Þ
oðuð1Þi þ uð2Þi Þ

ox1
	 W ðSÞd1j

!
qdA:

ð30Þ
Clearly, the evaluations of eJJ ðSÞ and the resulting interaction integral depend on how the auxiliary field is

defined. There are several options in choosing the auxiliary field. Two methods, developed in this study, are
described in the following.

3.2.1. Method I: homogeneous auxiliary field
The method I involves selecting the auxiliary stress and displacement fields given by Eqs. (5)–(9) and

calculating the auxiliary strain field from the symmetric gradient of the auxiliary displacement field. In this
approach, the auxiliary stress and strain fields are related through a constant constitutive tensor evaluated
at the crack tip. Hence, both equilibrium (orð2Þ

ij =oxj ¼ 0) and compatibility (e
ð2Þ
ij ¼ ouð2Þi =oxj) conditions are

satisfied in the auxiliary state. However, the non-homogeneous constitutive relation of FGM is not strictly
satisfied in the auxiliary state, which would introduce gradients of stress fields as extra terms in the in-
teraction integral.
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Using Eq. (20) and invoking both equilibrium and compatibility conditions, Eq. (30) can be further
simplified to

eJJ ðSÞ ¼
Z
A

ðrð1Þ
ij

 
þ rð2Þ

ij Þ
oðuð1Þi þ uð2Þi Þ

ox1
	 ðW ð1Þ þ W ð2Þ þ W ð1;2ÞÞd1j

!
oq
oxj
dA

þ
Z
A

1

2

"
	 eð1Þij

oDijkl

ox1
eð1Þkl þ rð1Þ

ij

oeð2Þij

ox1
	
orð2Þ

ij

ox1
eð1Þij þ r2ij

oeð1Þij

ox1
	
orð1Þ

ij

ox1
eð2Þij

#
qdA: ð31Þ

By expanding Eq. (31),

eJJ ðSÞ ¼ eJJ ð1Þ þ eJJ ð2Þ þ eMM ð1;2Þ; ð32Þ

where

eJJ ð1Þ ¼
Z
A

rð1Þ
ij

ouð1Þi

ox1

"
	 W ð1Þd1j

#
oq
oxj
dA	

Z
A

1

2
eð1Þij

oDijkl

ox1
eð1Þkl qdA; ð33Þ

eJJ ð2Þ ¼
Z
A

rð2Þ
ij

ouð2Þi

ox1

"
	 W ð2Þd1j

#
oq
oxj
dA ð34Þ

are the eJJ -integrals for states 1 and 2, respectively, and
eMM ð1;2Þ ¼

Z
A

rð1Þ
ij

ouð2Þi

ox1

"
þ rð2Þ

ij
ouð1Þi

ox1
	 W ð1;2Þd1j

#
oq
oxj
dAþ

Z
A

1

2
rð1Þ
ij

oeð2Þij

ox1

"
	
orð2Þ

ij

ox1
eð1Þij þ rð2Þ

ij

oeð1Þij

ox1
	
orð1Þ

ij

ox1
eð2Þij

#
qdA

ð35Þ

is the modified interaction integral for non-homogeneous materials.

3.2.2. Method II: non-homogeneous auxiliary field
The method II entails selecting the auxiliary stress and displacement fields given by Eqs. (5)–(9) and

calculating the auxiliary strain field using the same spatially varying constitutive tensor of FGM. In this

approach, the auxiliary stress field satisfies equilibrium (orð2Þ
ij =oxj ¼ 0); however, the auxiliary strain field is

not compatible with the auxiliary displacement field (eð2Þij 6¼ ouð2Þi =oxj). If the auxiliary fields are not com-
patible, extra terms that will arise due to lack of compatibility should be taken into account while evalu-
ating the interaction integral, even though they may not be sufficiently singular in the asymptotic limit to
contribute to the value of the integral [45–47]. Hence, this method also introduces additional terms to the
resulting interaction integral.
Following similar considerations, but using only equilibrium condition in the auxiliary state, Eq. (30) can

also be simplified to

eJJ ðSÞ ¼
Z
A

ðrð1Þ
ij

 
þ rð2Þ

ij Þ
oðuð1Þi þ uð2Þi Þ

ox1
	 ðW ð1Þ þ W ð2Þ þ W ð1;2ÞÞd1j

!
oq
oxj
dA

þ
Z
A

ðrð1Þ
ij

 
þ rð2Þ

ij Þ
o2uð2Þi

oxjox1

 
	
oeð2Þij

ox1

!
	 1
2
ðeð1Þij þ eð2Þij Þ

oDijkl

ox1
ðeð1Þkl þ eð2Þkl Þ

!
qdA: ð36Þ
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Comparing Eqs. (36) and (32),

eJJ ð1Þ ¼
Z
A

rð1Þ
ij

ouð1Þi

ox1

"
	 W ð1Þd1j

#
oq
oxj
dA	

Z
A

1

2
eð1Þij

oDijkl

ox1
eð1Þkl qdA; ð37Þ

eJJ ð2Þ ¼
Z
A

rð2Þ
ij

ouð2Þi

ox1

"
	 W ð2Þd1j

#
oq
oxj
dAþ

Z
A

rð2Þ
ij

o2uð2Þi

oxjox1

 "
	
oeð2Þij

ox1

!
	 1
2

eð2Þij
oDijkl

ox1
eð2Þkl

#
qdA ð38Þ

are the eJJ -integrals for states 1 and 2, respectively, and
eMM ð1;2Þ ¼

Z
A

rð1Þ
ij

ouð2Þi

ox1

"
þ rð2Þ

ij
ouð1Þi

ox1
	 W ð1;2Þd1j

#
oq
oxj
dAþ

Z
A

rð1Þ
ij

o2uð2Þi

oxjox1

 "
	
oeð2Þij

ox1

!
	 eð1Þij

oDijkl

ox1
eð2Þkl

#
qdA

ð39Þ

is another modified interaction integral for non-homogeneous materials. Recently, Dolbow and Gosz [48]
have also derived a path independent interaction integral which is the same as the one given by Eq. (39).

Note, for homogeneous materials, oDijkl=ox1 ¼ 0, eð2Þij ¼ ouð2Þi =oxj, rð1Þ
ij oe

ð2Þ
ij =ox1 ¼ orð2Þ

ij =ox1e
ð1Þ
ij and

rð2Þ
ij oe

ð1Þ
ij =ox1 ¼ orð1Þ

ij =ox1e
ð2Þ
ij , regardless of how the auxiliary field is defined. As a result, the eJJ ð1Þ, eJJ ð2Þ, andeMM ð1;2Þ integrals in methods I and II degenerate to their corresponding homogeneous solutions, as expected.

3.2.3. Stress-intensity factors
For linear-elastic solids, the eJJ -integral also represents the energy release rate and, hence,
eJJ ¼ 1

E�
tip

ðK2I þ K2IIÞ; ð40Þ

where E�
tip is evaluated at the crack tip. Regardless of how the auxiliary fields are defined, Eq. (40) applied to

states 1, 2, and S yields

eJJ ð1Þ ¼ 1

E�
tip

ðKð1Þ2
I þ Kð1Þ2

II Þ; ð41Þ

eJJ ð2Þ ¼ 1

E�
tip

ðKð2Þ2
I þ Kð2Þ2

II Þ ð42Þ

and

eJJ ðSÞ ¼ eJJ ð1Þ þ eJJ ð2Þ þ 2

E�
tip

ðKð1Þ
I Kð2Þ

I þ Kð1Þ
II K

ð2Þ
II Þ: ð43Þ

Comparing Eq. (32) with Eq. (43),

eMM ð1;2Þ ¼ 2

E�
tip

Kð1Þ
I Kð2Þ

I

h
þ Kð1Þ

II K
ð2Þ
II

i
: ð44Þ

Following a similar procedure and judiciously choosing the intensity of the auxiliary state as described
earlier, the SIFs for non-homogeneous materials can also be derived as

Kð1Þ
I ¼

eMM ð1;IÞE�
tip

2
ð45Þ
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and

Kð1Þ
II ¼

eMM ð1;IIÞE�
tip

2
; ð46Þ

where eMM ð1;IÞ and eMM ð1;IIÞ are two modified interaction integrals for modes I and II, respectively, and can be
evaluated using either Eq. (35) or Eq. (39). In contrast to existing methods, such as the J �

k -integral method
[16], there is no need to perform integration along the crack face of the discontinuity (e.g., in calculating J �

2 ).
Hence, the proposed methods are simpler than the J �

k -integral method. Both methods developed in this
study were used in performing numerical calculations, to be presented in a forthcoming section.
Note, Eqs. (45) and (46) are the result of a simple generalization of the interaction integral method for

calculating fracture parameters in linear-elastic non-homogeneous materials. When both the elastic mod-
ulus and the Poisson’s ratio have no spatial variation, eMM ð1;2Þ ¼ M ð1;2Þ. Consequently, Eqs. (45) and (46)
degenerate into Eqs. (27) and (28), as expected.

4. Element-free Galerkin method

4.1. Moving least squares and meshless shape function

Consider a function uðxÞ over a domain X � R2. Let Xx � X denote a sub-domain describing the
neighborhood of a point x 2 RK located in X. According to the MLS [49] method, the approximation uhðxÞ
of uðxÞ is

uhðxÞ ¼
Xm
i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð47Þ

where pTðxÞ ¼ fp1ðxÞ; p2ðxÞ; . . . ; pmðxÞg is a vector of complete basis functions of order m and
aðxÞ ¼ fa1ðxÞ; a2ðxÞ; . . . ; amðxÞg is a vector of unknown parameters that depend on x. For example, in the
x1–x2 coordinate system,

pTðxÞ ¼ f1; x1; x2g; m ¼ 3 ð48Þ
and

pTðxÞ ¼ f1; x1; x2; x21; x1x2; x22g; m ¼ 6 ð49Þ
are linear and quadratic basis functions, respectively, and are commonly used in solid mechanics. The basis
functions are not required to be polynomials. When solving problems involving cracks, a convenient way of
capturing 1=

ffiffi
r

p
stress-singularity in linear-elastic fracture mechanics (LEFM) is by using [32,37]

pTðxÞ ¼ 1; x1; x2;
ffiffi
r

p
cosðh=2Þ;

ffiffi
r

p
sinðh=2Þ;

ffiffi
r

p
sinðh=2Þ sin h;

ffiffi
r

p
cosðh=2Þ sin h

� �
; m ¼ 7; ð50Þ

where r and h are polar coordinates with the crack tip as the origin.
In Eq. (47), the coefficient vector aðxÞ is determined by minimizing a weighted discreteL2 norm, defined

as

JðxÞ ¼
Xn
I¼1

wIðxÞ½pTðxIÞaðxÞ 	 dI �2 ¼ ½PaðxÞ 	 d�TW ½PaðxÞ 	 d�; ð51Þ

where xI denotes the coordinates of node I , d
T ¼ fd1; d2; . . . ; dng with dI representing the nodal parameter

for node I ,W ¼ diag½w1ðxÞ;w2ðxÞ; . . . ;wnðxÞ� with wIðxÞ being the weight function associated with node I,
such that wIðxÞ > 0 for all x in the support Xx of wIðxÞ and zero otherwise, n is the number of nodes in Xx

for which wIðxÞ > 0, and
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P ¼

pTðx1Þ
pTðx2Þ

..

.

pTðxnÞ

26664
37775 2 LðRn � RmÞ: ð52Þ

A number of weight functions are available in the literature [32–38]. In this study, a weight function
proposed by Rao and Rahman [32] was used, and is expressed as

wIðxÞ ¼
1þ b2

z2I
z2mI

� �	ð1þbÞ=2

	 ð1þ b2Þ	ð1þbÞ=2

1	 ð1þ b2Þ	ð1þbÞ=2 zI 6 zmI ;

0 zI > zmI ;

8>>><>>>: ð53Þ

where b is a parameter controlling the shape of the weight function, zI ¼ kx	 xIk is the distance from a
sample point x to a node xI , and zmI is the domain of influence of node I. The stationarity of JðxÞ with
respect to aðxÞ yields

AðxÞaðxÞ ¼ CðxÞd; ð54Þ
where

AðxÞ ¼
Xn
I¼1

wIðxÞpðxIÞpTðxIÞ ¼ PTWP; ð55Þ

CðxÞ ¼ ½w1ðxÞpðx1Þ; . . . ;wnðxÞpðxnÞ� ¼ PTW : ð56Þ
Solving for aðxÞ in Eq. (54) and then substituting into Eq. (47) yields

uhðxÞ ¼
Xn
I¼1

UIðxÞdI ¼ UTðxÞd; ð57Þ

where

UTðxÞ ¼ fU1ðxÞ;U2ðxÞ; . . . ;UnðxÞg ¼ pTðxÞA	1ðxÞCðxÞ ð58Þ
is a vector with its Ith component,

UIðxÞ ¼
Xm
j¼1

pjðxÞ½A	1ðxÞCðxÞ�jI ; ð59Þ

representing the shape function of the MLS approximation corresponding to node I. The partial derivatives
of UIðxÞ can also be obtained as

UI ;iðxÞ ¼
Xm
j¼1

fpj;iðA	1CÞjI þ pjðA	1
;i C þ A	1C ;iÞjIg; ð60Þ

where A	1
;i ¼ 	A	1A;iA

	1 and ð Þ;i ¼
oð Þ
oxi
.

Note that the MLS/meshless shape function UIðxÞ strongly depends on the type of basis functions used.
For problem involving cracks, the enriched basis function, such as the one in Eq. (50), is required to
produce stress singularity at the crack tip. However, this singularity field is only local to the crack tip.
Therefore, it is unnecessary to use an enriched basis for the entire domain. In that case, a hybrid approach
involving an enriched basis close to the crack tip and a regular basis far away from the crack tip can be
used. For example, if Ur

IðxÞ and Ue
I ðxÞ denote two resulting shape functions using regular (e.g., Eqs. (48) or
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(49)) and enriched (e.g., Eq. (50)) basis functions, respectively, the effective shape function due to coupling
can be expressed by [32,37]

UIðxÞ ¼ RUe
I ðxÞ þ ð1	 RÞUr

IðxÞ; ð61Þ

where R is an appropriate ramp function that is equal to unity on the enriched boundary of the coupling
region and zero on the regular side of the coupling region.

4.2. Variational formulation and discretization

For small displacements in two-dimensional, isotropic, and linear-elastic solids, the equilibrium equa-
tions and boundary conditions are

$ � r þ b ¼ 0 in X ð62Þ

and

r � n ¼ �tt on Ct ðnatural boundary conditionsÞ;
u ¼ �uu on Cu ðessential boundary conditionsÞ; ð63Þ

respectively, where r ¼ DðxÞ� is the stress vector, DðxÞ is the material property matrix, � ¼ $su is the strain
vector, u is the displacement vector, b is the body force vector, �tt and �uu are the vectors of prescribed surface
tractions and displacements, respectively, n is a unit normal to the domain, X, Ct and Cu are the portions of
boundary C where tractions and displacements are prescribed, $T ¼ fo=ox1; o=ox2g is the vector of gradient
operators, and $su is the symmetric part of $u. The variational or weak form of Eqs. (62) and (63) isZ

X
rT d�dX 	

Z
X
bT dudX 	

Z
X

�ttT dudC þ
X
xK2Cu

f TðxKÞduðxKÞ þ
X
xK2Cu

df TðxKÞ½uðxKÞ 	 �uuðxKÞ� ¼ 0;

ð64Þ

where f TðxKÞ is the vector of reaction forces at the constrained node K on Cu and d denotes the variation
operator. From Eq. (57), the MLS approximation of uðxÞ ¼ fu1ðxÞ; u2ðxÞgT in two dimensions is

uhðxÞ ¼ UTd; ð65Þ

where

UTðxÞ ¼ U1ðxÞ 0 U2ðxÞ 0 � � � UN ðxÞ 0
0 U1ðxÞ 0 U2ðxÞ � � � 0 UN ðxÞ

� �
; ð66Þ

d ¼

d11
d21
d12
d22
..
.

d1N
d2N

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð67Þ

is the vector of nodal parameters or generalized displacements, and N is the total number of nodal points in
X. Applying Eqs. (65)–(67) to the discretization of Eq. (64) yields
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k G
GT 0

� �
d
f R

" #
¼ f ext

g

" #
; ð68Þ

where

k ¼

k11 k12 � � � k1N
k21 k22 � � � k2N
..
. ..

. ..
. ..

.

kN1 kN2 � � � kNN

26664
37775 2 LðR2N � R2N Þ ð69Þ

is the stiffness matrix with

kIJ ¼
Z

X
BTI DBJ dX 2 LðR2 � R2Þ; ð70Þ

GT ¼

U1ðx1Þ 0 U1ðx2Þ 0 � � � U1ðxN Þ 0

0 U1ðx1Þ 0 U1ðx2Þ � � � 0 U1ðxN Þ
U2ðx1Þ 0 U2ðx2Þ 0 � � � U2ðxN Þ 0

� � � U2ðx1Þ 0 U2ðx2Þ � � � 0 U2ðxN Þ
..
. ..

. ..
. ..

. ..
. ..

. ..
.

ULðx1Þ 0 ULðx2Þ 0 � � � ULðxN Þ 0

0 ULðx1Þ 0 ULðx2Þ � � � 0 ULðxN Þ

26666666666664

37777777777775
2 LðR2L � R2N Þ ð71Þ

is a matrix comprising shape function values of nodes at which the displacement boundary conditions are
prescribed, L is the total number of nodes on Cu,

f R ¼

f ðxK1Þ
f ðxK2Þ

..

.

f ðxKLÞ

8>>>><>>>>:

9>>>>=>>>>; 2 R2L ð72Þ

is the vector of reaction forces on Cu,

f ext ¼
Z

X
UTbdX þ

Z
Ct

UT�ttdC 2 R2N ð73Þ

is the force vector, and

g ¼

�uuðxK1Þ
�uuðxK2Þ

..

.

�uuðxKLÞ

8>>><>>>:
9>>>=>>>; 2 R2L ð74Þ

is the vector of prescribed displacements on Cu. In Eq. (70),
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BI ¼
UI ;1 0

0 UI ;2

UI ;2 UI ;1

264
375 ð75Þ

and

DðxÞ ¼

EðxÞ
1	 mðxÞ2

1 mðxÞ 0

mðxÞ 1 0

0 0
1	 mðxÞ
2

26664
37775 for plane stress;

EðxÞ
1þ mðxÞ½ � 1	 2mðxÞ½ �

1	 mðxÞ mðxÞ 0

mðxÞ 1	 mðxÞ 0

0 0
1	 2mðxÞ

2

26664
37775 for plane strain

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð76Þ

is the elasticity matrix.
In order to perform numerical integration in Eqs. (70) and (73), a background mesh is required, which

can be independent of the arrangement of meshless nodes. However, in this study, the nodes of
the background mesh were assumed to coincide with the meshless nodes. Standard Gaussian quadrature
was used to evaluate the integrals for assembling the stiffness matrix and force vector. In FGM, the
elasticity matrix DðxÞ is spatially dependent because of functionally distributed EðxÞ and/or mðxÞ. There are
two approaches to incorporate the material gradation effects on k. In the first approach, meshless shape
functions and nodal values of material properties can approximate the values of material properties
at Gauss points. In the second approach, the values of material properties at Gauss points can be evalu-
ated directly using Eqs. (1) and (2). In this study, the second approach was adopted for generating
the stiffness matrix and force vector. In general, a 4� 4 quadrature rule is adequate, except in the
cells surrounding a high stress gradient (e.g., near a crack tip), where an 8� 8 quadrature rule is sug-
gested.
In solving for d, the essential boundary conditions must be enforced. The lack of Kronecker delta

properties in meshless shape functions presents some difficulty in imposing essential boundary conditions in
EFGM. Nevertheless, several methods are currently available for enforcing essential boundary conditions.
In this study, a full transformation method [32,50] was used to evaluate the SIFs in FGM.
It should be noted that the generalized displacement vector d represents the nodal parameters, and not

the actual displacements at the meshless nodes. Let

d̂d ¼

uhðx1Þ
uhðx2Þ

..

.

uhðxN Þ

8>>>><>>>>:

9>>>>=>>>>; ¼

uh1ðx1Þ
uh2ðx1Þ
uh1ðx2Þ
uh2ðx2Þ

..

.

uh1ðxN Þ
uh2ðxN Þ

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
2 R2N ; ð77Þ

represent the vector of nodal displacements. From Eq. (65),

d̂d ¼ Kd; ð78Þ
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where

K ¼

UTðx1Þ
UTðx2Þ

..

.

UTðxNÞ

26664
37775 2 L R2N$

� R2N% ð79Þ

is the transformation matrix. Hence, d̂d can be easily calculated when d is known.

5. Numerical examples

EFGM with the newly modified interaction integrals (methods I and II) developed in this study was
applied to evaluate the SIFs of cracks in FGMs. Both single-(mode-I) and mixed-mode (modes I and II)
conditions were considered and five examples are presented here. In all five examples, the elastic modulus
was assumed to vary spatially, while the Poisson’s ratio was held constant. This is a reasonable assumption,
since variation of the Poisson’s ratio is usually small compared to that of the elastic modulus. The values of
k ¼ 1 and b ¼ 4 were used for meshless analysis in all examples. A fully enriched basis function was used in
the first four examples. In the last example a hybrid enrichment of the basis function was adopted using a
fully enriched basis function for a small region close to the two crack tip regions, and by using a linear basis
function for the rest of the domain. For numerical integration, an 8� 8 Gauss quadrature rule was used in
all examples for all cells of the background mesh.

5.1. Example 1: edge-cracked plate under mode-I

Consider an edge-cracked plate with length L ¼ 8 units, width W ¼ 1 unit, and crack length a, as shown
in Fig. 2(a). Three loading conditions including the uniform fixed grip loading (constant strain), the
membrane loading (constant tensile stress), and pure bending (linear stress) were considered. Fig. 2(a)–(c)
shows the schematics of the three loading conditions. The elastic modulus was assumed to follow an ex-
ponential function, given by

Eðx1Þ ¼ E1 expðgx1Þ; 06 x16W ; ð80Þ
where E1 ¼ Eð0Þ, E2 ¼ EðW Þ, and g ¼ lnðE2=E1Þ. In Eq. (80), E1 and g are two independent material pa-
rameters that characterize the elastic modulus variation. The following numerical values were used: E1 ¼ 1
unit, E2=E1 ¼ expðgÞ ¼ 0:1, 0.2, 5, and 10, and a=W ¼ 0:2, 0.3, 0.4, 0.5 and 0.6. The Poisson’s ratio was
held constant with m ¼ 0:3. A plane strain condition was assumed. Erdogan and Wu [51], who originally
studied this example, also provided a theoretical solution.
Due to the symmetry of geometry and load, only half of the plate, as shown in Fig. 2(d), was analyzed by

EFGM. The EFGM model consists of a total of 368 nodes, which includes 341 regularly distributed nodes
and 27 nodes in three rings around the crack tip. A typical nodal distribution for the case in which
a=W ¼ 0:5 is shown in Fig. 2(e). An enlarged view of nodal refinement around the crack tip is depicted in
Fig. 2(f). The domain of the plate was divided by 30� 10 rectangular cells with their nodes coincident with
341 regularly distributed meshless nodes, used solely for numerical integration. The proposed method I
with a domain size 2b� b (b ¼ 0:10 units), shown in Fig. 2(d), was used for evaluating the eMM ð1;2Þ-integral.
Tables 1–3 show normalized mode-I SIFs KI=r0

ffiffiffiffiffiffi
pa

p
, KI=rt

ffiffiffiffiffiffi
pa

p
, and KI=rb

ffiffiffiffiffiffi
pa

p
for fixed grip, membrane

loading, and bending, respectively, where r0 ¼ E1e0=ð1	 m2Þ, e0 ¼ 1, rt ¼ rb ¼ 1 unit. The results show that
the predicted SIF obtained by the proposed EFGM (method I) agree very well with the analytical results of
Erdogan and Wu [51], for all three types of loading and for various combinations of E2=E1 and a=W ratios.
In addition, Tables 1–3 include some numerical results by Kim and Paulino [30] and/or Chen et al. [52].
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The present EFGM results correlate satisfactorily with the FEM results by Kim and Paulino [30], which are
only reported for membrane loading and bending. The EFGM results of Chen et al. [52], which are re-

Fig. 2. Edge-cracked plate under mode-I loading: (a) geometry and loads for fixed grip loading; (b) membrane loading; (c) bending;

(d) half model; (e) meshless discretization of half model (368 nodes) and extra nodal refinements around crack tip; and (f) extra nodal

refinements around crack tip.
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ported for fixed grip and membrane loading, also agree reasonably well with the present EFGM results. It is
worth noting that the EFGM results of Chen et al. [52] are based on a linear basis function and the classical
J-integral for homogeneous materials.

5.2. Example 2: three-point bend specimen under mode-I

Consider a three-point bend specimen with length L ¼ 54 units, depth 2H ¼ 10 units, and thickness t ¼ 1
unit, as shown in Fig. 3(a). A concentrated load P ¼ 1 unit was applied at the middle of the beam of span

Table 1

Normalized mode-I SIF for an edge-cracked plate under fixed grip loading

Method E2=E1 KI
r0

ffiffiffiffiffiffi
pa

p

a=W ¼ 0:2 a=W ¼ 0:3 a=W ¼ 0:4 a=W ¼ 0:5 a=W ¼ 0:6
Proposed method-I ½ eMM ð1;2Þ� 0.1 1.3118 1.5191 1.8241 2.2800 3.0100

0.2 1.3186 1.5460 1.8837 2.3966 3.2274

5 1.4835 1.9161 2.5819 3.6698 5.5708

10 1.5557 2.0724 2.8789 4.2234 6.6266

Erdogan and Wu [51] 0.1 1.2963 1.5083 1.8246 2.3140 3.1544

0.2 1.3058 1.5330 1.8751 2.4031 3.2981

5 1.4946 1.9118 2.5730 3.6573 5.5704

10 1.5740 2.0723 2.8736 4.2140 6.6319

Chen et al. [52] 0.1 1.2961 1.4919 1.7962 2.2594 3.0544

0.2 1.3145 1.5283 1.8659 2.3877 3.2910

5 1.5414 1.9499 2.6238 3.7429 5.7936

10 1.6296 2.1206 2.9398 4.3272 6.9171

Table 2

Normalized mode-I SIF for an edge-cracked plate under membrane loading

Method E2=E1 KI
rt

ffiffiffiffiffiffi
pa

p

a=W ¼ 0:2 a=W ¼ 0:3 a=W ¼ 0:4 a=W ¼ 0:5 a=W ¼ 0:6
Proposed method-I ½ eMM ð1;2Þ� 0.1 1.3374 1.8976 2.5938 3.5472 4.9956

0.2 1.4193 1.8668 2.4657 3.3297 4.6905

5 1.1269 1.3754 1.7576 2.3772 3.4478

10 0.9958 1.2343 1.5980 2.1889 3.2167

Erdogan and Wu [51] 0.1 1.2965 1.8581 2.5699 3.5701 5.1880

0.2 1.3956 1.8395 2.4436 3.3266 4.7614

5 1.1318 1.3697 1.7483 2.3656 3.4454

10 1.0019 1.2291 1.5884 2.1762 3.2124

Chen et al. [52] 0.1 1.3193 1.8642 2.5588 3.5213 5.0726

0.2 1.4188 1.8497 2.4486 3.3234 4.7860

5 1.1622 1.3899 1.7746 2.4125 3.5736

10 1.0324 1.2499 1.6146 2.2234 3.3371

Kim and Paulino [30] (J �
1 ) 0.1 1.2840 1.8460 2.5440 3.4960 4.9620

0.2 1.3900 1.8310 2.4310 3.2920 4.6690

5 1.1320 1.3700 1.7490 2.3660 3.4480

10 1.0030 1.2280 1.5880 2.1750 3.2120
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Table 3

Normalized mode-I SIF for an edge-cracked plate under bending

Method E2=E1 KI
rb

ffiffiffiffiffiffi
pa

p

a=W ¼ 0:2 a=W ¼ 0:3 a=W ¼ 0:4 a=W ¼ 0:5 a=W ¼ 0:6
Proposed method-I ½ eMM ð1;2Þ� 0.1 1.9029 1.8747 1.9539 2.1547 2.5484

0.2 1.5976 1.6109 1.7150 1.9322 2.3347

5 0.6865 0.7830 0.9310 1.1666 1.5626

10 0.5635 0.6637 0.8120 1.0447 1.4340

Erdogan and Wu [51] 0.1 1.9040 1.8859 1.9778 2.2151 2.7170

0.2 1.5952 1.6122 1.7210 1.9534 2.4037

5 0.6871 0.7778 0.9236 1.1518 1.5597

10 0.5648 0.6588 0.8043 1.0350 1.4286

Kim and Paulino [30] (J �
1 ) 0.1 1.8880 1.8640 1.9430 2.1450 2.5530

0.2 1.5880 1.6010 1.7060 1.9250 2.3410

5 0.6870 0.7780 0.9240 1.1580 1.5610

10 0.5650 0.6590 0.8040 1.0350 1.4290

Fig. 3. Three-point bend specimen under mode-I loading: (a) geometry and loads; (b) half model; and (c) meshless discretization of half

model (231 nodes).
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LS ¼ 50 units and two supports were symmetrically placed with respect to an edge crack of length a. In the
depth direction, the beam consists of 2h units deep FGM sandwiched between two distinct homogeneous
materials, each of which has depth H 	 h. If E1 and E2 represent the elastic moduli of the bottom and top
layers, the elastic modulus of the FGM layer varies linearly, with the end values matching the properties of
the bottom and top layers. Mathematically, such a variation can be defined as

Eðx1Þ ¼
E2; x1 P h;
E1 þ E2
2

þ E2 	 E1
2h

; 	h6 x16 h;

E1; x16 	 h;

8><>: ð81Þ

where E1, E2 and 2h are material parameters. The following numerical values were chosen: 2h ¼ 1 unit,
E1 ¼ 1 unit, and E2=E1 ¼ 0:05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20. For each E2=E1 ratio, three different crack
lengths with a=2H ¼ 0:45, 0.5 and 0.55 were selected such that the crack tips were either at the middle of the
FGM layer (a=2H ¼ 0:5) or at the material interfaces (a=2H ¼ 0:45 or 0.55). The Poisson’s ratio was held
constant with m ¼ 0:3. A plane stress condition was assumed.
Due to symmetric geometry and loading with respect to the crack, only a half model of the beam, as

shown in Fig. 3(b), was analyzed. Fig. 3(c) shows the details of the meshless discretization consisting of 231
nodes for the half beam model. The domain of the plate was divided by 20� 10 rectangular cells with their
nodes coincident to the meshless nodes only for numerical integration. The eMM ð1;2Þ-integral was evaluated
using method I over a domain size 2b� b with b ¼ 0:5 units, as shown in Fig. 3(b).
Table 4 shows the predicted normalized mode-I SIF KI

ffiffiffiffi
H

p
=P , obtained by the proposed EFGM (method

I) for various combinations of E2=E1 and a=2H . Also presented in Table 4 are the corresponding FEM
results by Kim and Paulino [30]. The SIFs by EFGM are in good agreement with the FEM results. Al-
though not explicitly presented here, the graphical results of Gu et al. [24] can also be shown to agree well
with the present EFGM results.

5.3. Example 3: composite strip under mode-I

Consider the square composite strip configuration studied by Eischen [16] with size L ¼ 1 unit, 2h1 ¼ 0:6
units and 2h2 ¼ 0:4 units, as shown in Fig. 4(a). A crack of length a ¼ 0:4 units is located on the line x2 ¼ 0.
The Poisson’s ratio was held constant at m ¼ 0:3. The elastic modulus was assumed to vary smoothly ac-
cording to a hyperbolic tangent function, given by

Table 4

Normalized mode-I SIF for a three-point bend specimen

E2=E1 KI
ffiffiffi
H

p

P

a=2H ¼ 0:45 a=2H ¼ 0:5 a=2H ¼ 0:55
Proposed

method-I ½ eMM ð1;2Þ�
Kim and

Paulino [30] (J �
1 )

Proposed

method-I ½ eMM ð1;2Þ�
Kim and

Paulino [30] (J �
1 )

Proposed

method-I ½ eMM ð1;2Þ�
Kim and

Paulino [30] (J �
1 )

0.05 32.99 33.04 31.53 31.12 15.50 15.21

0.1 23.61 23.47 23.96 23.92 13.40 13.73

0.2 17.28 17.36 18.36 18.32 12.16 12.79

0.5 11.45 11.65 12.30 12.57 11.29 11.76

1 7.959 8.134 9.206 9.467 10.85 11.15

2 5.153 5.239 7.337 7.318 10.44 10.62

5 2.511 2.540 5.467 5.496 9.931 9.963

10 1.315 1.334 4.619 4.586 9.587 9.505

20 0.658 0.660 3.989 3.939 9.272 9.123
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Eðx1Þ ¼
E1 þ E2
2

þ E1 	 E2
2

tanh½gðx1 þ 0:1Þ�; 	0:56 x16 0:5; ð82Þ

where E1 and E2 are the bounds of Eðx1Þ, and g is a non-homogeneity parameter that controls the variation
of Eðx1Þ from E1 to E2, as shown in Fig. 4(a). When g ! 1, a sharp discontinuity occurs in the slope of
Eðx1Þ across the interface at x1 ¼ 	0:1. A tensile load corresponding to r22ðx1; 1Þ ¼ �eeEðx1Þ=ð1	 m2Þ was
applied at the top edge, which results in a uniform strain e22ðx1; x2Þ ¼ �ee in the corresponding uncracked
structure. The following numerical values were used: E1 ¼ 1 unit, E2 ¼ 3 units, ga ¼ 0, 2, 4, 6, and 20 units,
and �ee ¼ 1. A plane strain condition was assumed.
A meshless discretization consisting of 121 uniformly distributed nodes is shown in Fig. 4(b). The domain

of the plate was divided by 10� 10 rectangular cells with their nodes coincident to the meshless nodes solely

Fig. 4. Composite strip under mode-I loading: (a) geometry and elastic modulus variation; (b) meshless discretization (121 nodes).
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for the purposes of numerical integration. The eMM ð1;2Þ-integral was evaluated using both methods I and II
over a domain size 2b� b with b ¼ 0:1 units, as shown in Fig. 4(a).
Table 5 compares the predicted normalized mode-I SIF KI=½�eeEð	0:5Þ

ffiffiffiffiffiffi
pa

p
� obtained by the proposed

meshless methods I and II to Eischen’s FEM results [16] for several values of ga. The EFGM results ob-
tained using methods I and II agree very well with the FEM results. For EFGM, the domain independence
of the eMM ð1;2Þ-integral was verified by employing three different integral domains sizes: b ¼ 0:075, 0.1, and
0.125 units. Table 6 shows the results of normalized SIF as a function of the integral domain size. The SIFs
are accurate and stable regardless of the size of the integral domain and the type of the auxiliary field.

5.4. Example 4: slanted crack in a plate under mixed mode

Consider a slanted crack in a finite two-dimensional plate with length L ¼ 2 units, width W ¼ 1 unit and
a 45� edge crack of normalized length a=W ¼ 0:4

ffiffiffi
2

p
, as shown in Fig. 5(a). The elastic modulus was as-

sumed to follow an exponential function, given by

Eðx1Þ ¼ E exp g x1

��
	 1
2

��
; 06 x16W ; ð83Þ

where E and g are two material parameters. For numerical values, E ¼ 1 unit and g ¼ 0, 0.1, 0.25, 0.5, 0.75,
and 1. The Poisson’s ratio was held constant with m ¼ 0:3. A plane stress condition was assumed. The
applied load was prescribed along the upper edge with normal stress r22ðx1; 1Þ ¼ �eeE exp½gðx1 	 0:5Þ�, where
�ee ¼ 1. The displacement boundary condition was specified such that u2 ¼ 0 along the lower edge and, in
addition, u1 ¼ 0 for the node at the right side of the lower edge.

Table 5

Normalized mode-I SIF for a composite strip configuration

ga KI
�eeEð	0:5Þ

ffiffiffiffi
pa

p

Proposed method-I ½ eMM ð1;2Þ� Proposed method-II ½ eMM ð1;2Þ� Eischen [16]

0 2.133 2.133 2.112

2 2.304 2.348 2.295

4 2.589 2.670 2.571

6 2.769 2.879 2.733

20 3.314 3.579 3.228

Table 6

Domain independence of normalized mode-I SIF for a composite strip configuration

Method Domain size

(2b� b)

KI
�eeEð	0:5Þ

ffiffiffiffi
pa

p

ga ¼ 0 ga ¼ 2 ga ¼ 4 ga ¼ 6 ga ¼ 20
Proposed method-I

½ eMM ð1;2Þ�
0:15� 0:075 2.108 2.276 2.547 2.716 3.252

0:20� 0:1 2.133 2.304 2.589 2.769 3.314

0:25� 0:125 2.145 2.324 2.620 2.807 3.354

Proposed method-II

½ eMM ð1;2Þ�
0:15� 0:075 2.108 2.310 2.613 2.809 3.478

0:20� 0:1 2.133 2.348 2.670 2.879 3.579

0:25� 0:125 2.145 2.377 2.715 2.935 3.655
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Fig. 5(b) shows a meshless discretization consisting of 370 nodes. The plate was divided into 336 cells for
numerical integration. Both methods I and II were used to calculate the eMM ð1;2Þ-integral with a domain size
2b� 2b (b ¼ 0:045 units), as shown in Fig. 5(a).
Table 7 provides a comparison of the predicted normalized SIFs KI=�eeE

ffiffiffiffiffiffi
pa

p
and KII=�eeE

ffiffiffiffiffiffi
pa

p
, obtained by

the proposed meshless methods I and II with Eischen’s [16] and Kim and Paulino’s [30] FEM results for
several values of g. The agreement between the EFGM and FEM results is excellent. Using the EFGM
method, the domain independence of SIF was verified by employing four different sizes of the integral
domain parameter, e.g., b ¼ 0:045, 0.05, 0.06, and 0.07 units. Table 8 shows the results of SIF for two
extreme values of g (g ¼ 0 and 1), as a function of the size of the integral domain. Very accurate and stable
results of SIF were obtained regardless of the integral domain size and the type of the auxiliary field.

Table 7

Normalized SIFs for a slanted crack in a plate

g Proposed method-I ½ eMM ð1;2Þ� Proposed method-II ½ eMM ð1;2Þ� Eischen [16] Kim and Paulino [30] (J �
k )

KI
�eeE
ffiffiffiffi
pa

p KII
�eeE
ffiffiffiffi
pa

p KI
�eeE
ffiffiffiffi
pa

p KII
�eeE
ffiffiffiffi
pa

p KI
�eeE
ffiffiffiffi
pa

p KII
�eeE
ffiffiffiffi
pa

p KI
�eeE
ffiffiffiffi
pa

p KII
�eeE
ffiffiffiffi
pa

p

0 1.448 0.610 1.448 0.610 1.438 0.605 1.451 0.604

0.1 1.392 0.585 1.391 0.585 –a –a 1.396 0.579

0.25 1.313 0.549 1.312 0.549 –a –a 1.316 0.544

0.5 1.193 0.495 1.190 0.495 –a –a 1.196 0.491

0.75 1.086 0.447 1.082 0.446 –a –a 1.089 0.443

1 0.990 0.405 0.986 0.404 0.984 0.395 0.993 0.402

aNot available.

Fig. 5. Slanted crack in a plate under mixed-mode loading: (a) geometry and loads; (b) meshless discretization (370 nodes).
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5.5. Example 5: plate with an interior inclined crack under mixed mode

Consider a centrally located inclined crack of length 2a ¼ 2 units and an orientation c in a finite two-
dimensional square plate of size 2L ¼ 2W ¼ 20 units, as shown in Fig. 6(a). Plane stress conditions were
assumed with a constant Poisson’s ratio of m ¼ 0:3. The elastic modulus was assumed to be an exponential
function, given by

Eðx1Þ ¼ E expðgx1Þ; 	W 6 x16W ; ð84Þ

Table 8

Domain independence of normalized SIFs for a slanted crack in a plate

Method Domain size (2b� b) g ¼ 0 g ¼ 1
KI

�eeE
ffiffiffiffi
pa

p KII
�eeE
ffiffiffiffi
pa

p KI
�eeE
ffiffiffiffi
pa

p KII
�eeE
ffiffiffiffi
pa

p

Proposed method-I ½ eMM ð1;2Þ� 0:09� 0:09 1.448 0.610 0.990 0.405

0:1� 0:1 1.447 0.610 0.990 0.405

0:12� 0:12 1.447 0.610 0.990 0.405

0:14� 0:14 1.448 0.610 0.990 0.406

Proposed method-II ½ eMM ð1;2Þ� 0:09� 0:09 1.448 0.610 0.986 0.404

0:1� 0:1 1.447 0.610 0.984 0.403

0:12� 0:12 1.447 0.610 0.984 0.402

0:14� 0:14 1.449 0.610 0.984 0.403

Fig. 6. Plate with an interior inclined crack under mixed-mode loading: (a) geometry and loads; (b) meshless discretization (740 nodes).
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where E and g are material parameters. The following data were used for the numerical study: E ¼ 1 unit;
g ¼ 0:25 and 0.5; and c=p ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The applied load corresponds to
r22ðx1; 10Þ ¼ �eeE expðgx1Þ, where �ee ¼ 1. This stress distribution was obtained by applying nodal forces along
the top edge of the plate. The displacement boundary condition was prescribed such that u2 ¼ 0 along the
lower edge and, in addition, u1 ¼ 0 for the node at the left hand side of the lower edge. This loading results
in a uniform strain e22ðx1; x2Þ ¼ �ee in a corresponding uncracked structure.
The meshless discretization involves a total of 734 nodes for the cases in which c=p ¼ 0 and 0.5, and a

total of 740 nodes for the cases in which c=p ¼ 0:1, 0.2, 0.3, and 0.4. The total number of nodes for the cases
in which c=p ¼ 0 and 0.5 were divided as follows: 676 regularly distributed nodes, 10 additional nodes along
the crack length, and 48 additional nodes in two crack tips (24 nodes in 3 rings around each crack tip). The
total number of nodes for the cases in which c=p ¼ 0:1, 0.2, 0.3, and 0.4 were divided as follows: 676
regularly distributed nodes, 16 additional nodes along the crack length, and 48 additional nodes in the two
crack tips (24 nodes in 3 rings around each crack tip). A typical nodal distribution for c=p ¼ 0:2 is shown in
Fig. 6(b). The domain of the plate was divided by 25� 25 rectangular cells with their nodes coincident to
the regularly distributed 676 meshless nodes solely for the purposes of numerical integration. The inner
radius of the coupling region for hybrid enrichment of the basis function was 0.5a and the outer radius was
0.75a. Both methods I and II were used to evaluate the eMM ð1;2Þ-integral with a domain size 2b� 2b (b ¼ 0:3
units), as shown in Fig. 6(a).
Konda and Erdogan [53] have investigated an infinite plate with such a configuration. Obviously, a

meshless model cannot represent the infinite domains addressed in the analysis by Konda and Erdogan [53],
but as long as the ratios a=W and a=L are kept relatively small (e.g., a=W ¼ a=L6 1=10), the approximation
is acceptable. Tables 9 and 10 provide a comparison between the predicted normalized SIFs KIðaÞ=E�ee

ffiffiffiffiffiffi
pa

p

and KIð	aÞ=E�ee
ffiffiffiffiffiffi
pa

p
for both crack tips, obtained by the proposed meshless methods I and II and those of

Konda and Erdogan [53] for several values of c=p, when g ¼ 0:25 and g ¼ 0:5, respectively. A reason-
ably good agreement is obtained between the EFGM results and Konda and Erdogan’s [53] analytical
solution.

Table 9

Normalized SIFs for a plate with an interior inclined crack (g ¼ 0:25)
Method c=p KIðþaÞ

E�ee
ffiffiffiffi
pa

p KIð	aÞ
E�ee
ffiffiffiffi
pa

p KIIðþaÞ
E�ee
ffiffiffiffi
pa

p KIIð	aÞ
E�ee
ffiffiffiffi
pa

p

Proposed method-I ½ eMM ð1;2Þ� 0 1.202 0.830 0 0

0.1 1.176 0.801 	0.354 	0.263
0.2 0.864 0.598 	0.572 	0.441
0.3 0.424 0.293 	0.497 	0.421
0.4 0.118 0.073 	0.307 	0.281
0.5 0 0 0 0

Proposed method-II ½ eMM ð1;2Þ� 0 1.194 0.813 0 0

0.1 1.168 0.788 	0.349 	0.253
0.2 0.858 0.590 	0.565 	0.426
0.3 0.421 0.290 	0.494 	0.407
0.4 0.117 0.072 	0.306 	0.276
0.5 0 0 0 0

Konda and Erdogan [53] 0 1.196 0.825 0 0

0.1 1.081 0.750 	0.321 	0.254
0.2 0.781 0.548 	0.514 	0.422
0.3 0.414 0.290 	0.504 	0.437
0.4 0.121 0.075 	0.304 	0.282
0.5 0 0 0 0
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Although all five examples presented in this paper are associated with a single crack, the proposed
method is quite general and it should be applicable to fracture problems involving multiple cracks.
However, a multiple-crack analysis at the current stage of method development will require a significantly
larger effort and is outside the scope of the present study. Meshless analysis of multiple cracks in FGMs is a
subject of current research by the authors.

6. Summary and conclusions

AGalerkin-based meshless method has been developed for calculating SIFs for a stationary crack in two-
dimensional FGMs of arbitrary geometry. The method involves an EFGM, where the material properties
are smooth functions of spatial coordinates and two newly developed interaction integrals for mixed-mode
fracture analysis. The proposed interaction integral can also be implemented in conjunction with other
numerical methods, such as the FEM. Five numerical examples, including both mode-I and mixed-mode
problems, are presented to evaluate the accuracy of fracture parameters calculated by the proposed
meshless method. Comparisons have been made between the SIFs predicted by the meshless method and
available reference solutions in the literature, generated either analytically or numerically using various
other fracture integrals or analyses. A good agreement is obtained between the results of the proposed
meshless method and the previously obtained solutions.
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Table 10

Normalized SIFs for a plate with an interior inclined crack (g ¼ 0:5)
Method c=p KIðþaÞ

E�ee
ffiffiffiffi
pa

p KIð	aÞ
E�ee
ffiffiffiffi
pa

p KIIðþaÞ
E�ee
ffiffiffiffi
pa

p KIIð	aÞ
E�ee
ffiffiffiffi
pa

p

Proposed method-I ½ eMM ð1;2Þ� 0 1.418 0.665 0 0

0.1 1.390 0.641 	0.381 	0.208
0.2 1.016 0.488 	0.611 	0.361
0.3 0.502 0.243 	0.517 	0.368
0.4 0.145 0.057 	0.315 	0.262
0.5 0 0 0 0

Proposed method-II ½ eMM ð1;2Þ� 0 1.399 0.638 0 0

0.1 1.370 0.620 	0.368 	0.192
0.2 1.002 0.475 	0.596 	0.336
0.3 0.496 0.238 	0.512 	0.345
0.4 0.143 0.056 	0.313 	0.254
0.5 0 0 0 0

Konda and Erdogan [53] 0 1.424 0.674 0 0

0.1 1.285 0.617 	0.344 	0.213
0.2 0.925 0.460 	0.548 	0.365
0.3 0.490 0.247 	0.532 	0.397
0.4 0.146 0.059 	0.314 	0.269
0.5 0 0 0 0
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