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Abstract

This paper presents a new dimensional decomposition method for obtaining probabilistic characteristics of crack-driv-
ing forces and reliability analysis of general cracked structures subject to random loads, material properties, and crack
geometry. The method involves a novel function decomposition permitting lower-variate approximations of a crack-driv-
ing force or a performance function, Lagrange interpolations for representing lower-variate component functions, and
Monte Carlo simulation. The effort required by the proposed method can be viewed as performing deterministic fracture
analyses at selected input defined by sample points. Compared with commonly-used first- and second-order reliability
methods, no derivatives of fracture response are required by the new method developed. Results of three numerical exam-
ples involving both linear-elastic and nonlinear fracture mechanics of cracked structures indicate that the decomposition
method provides accurate and computationally efficient estimates of probability density of the J-integral and probability of
fracture initiation for various cases including material gradation characteristics and magnitudes of applied stresses and
loads.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Stochastic fracture mechanics (SFM) is concerned with characterizing statistical uncertainties in loads,
material properties, and geometry and quantifying their impact on fracture response and integrity of materials
and structures. SFM, which blends the classical fracture mechanics and the probability theory, accounts for
both mechanistic and statistical aspects of the crack-driving force and provides probabilistic characteristics of
fracture initiation and growth of an existing crack, real or postulated, in an engineering structure. The imple-
mentation of SFM allows a rational way of incorporating and managing statistical uncertainties in engineering
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design and analysis. As a result, SFM finds applications in many engineering disciplines today as diverse as
aerospace and aircraft propulsion, civil infrastructure, electronic packaging, oil and gas industry, geology,
nuclear piping and pressure vessels, automotive systems, off-shore and marine industry, and others.

The most common probabilistic methods employed in SFM are perhaps the first- and second-order reliabil-
ity methods (FORM/SORM) [1–3] and simulation methods [4–6]. FORM/SORM is based on linear (FORM)
or quadratic approximation (SORM) of the limit-state surface at a most probable point (MPP). The MPP can
be located by various gradient-based optimization algorithms, which in turn require first- and/or second-order
response sensitivities or gradients, for which efficient means of calculation are required. If these sensitivities of
fracture response can be calculated analytically, FORM and SORM are quite efficient [7–9]. Otherwise,
FORM/SORM can be ineffective, for instance, when response sensitivities are not available or when sensitivity
analysis is computationally intensive. In addition, for highly nonlinear performance functions, which exist in
many fracture problems, results based on FORM/SORM must be interpreted with caution. If the Rosenblatt
transformation, frequently used to map non-Gaussian random input into its standard Gaussian image, yields
a highly nonlinear limit state, inadequate reliability estimates by FORM/SORM may result. The simulation

methods involving sampling and estimation are well known in the statistics and reliability literature. Direct
Monte Carlo simulation [4] is the most widely used simulation method, generally requires a large number
of simulations to calculate low failure probability, and is impractical when each simulation involves expensive
finite-element, boundary-element, or mesh-free calculations. While simulation methods do not exhibit the lim-
itations of approximate reliability methods, such as FORM/SORM, they generally require extensive calcula-
tions than the former methods. Consequently, simulation methods have been traditionally employed as a
measuring stick for approximate methods.

This paper presents a new class of computational methods, referred to as the dimensional decomposition
method, for predicting probabilistic characteristics of fracture response and reliability of engineering struc-
tures subject to random loads, material properties, and geometry. The method involves a novel function
decomposition allowing lower-variate approximations of fracture response, Lagrange interpolations for rep-
resenting various component functions, and efficient Monte Carlo simulation. Section 2 describes random
parameters and their impact on propagating uncertainties to fracture response. Section 3 gives a brief expo-
sition of a function decomposition that facilitates its lower-dimensional approximations. Section 4 describes
how the function decomposition is exploited in solving a general probabilistic fracture-mechanics problem.
Three numerical examples involving both linear-elastic and nonlinear fracture-mechanics problems illustrate
the proposed method in Section 5. Comparisons have been made with alternative approximate and simulation
methods to evaluate the accuracy and computational efficiency of the new method. Finally, Section 6 provides
conclusions from this work.

2. Stochastic fracture response and failure criteria

2.1. Random parameters and fracture response

Let ðX;F; P Þ be a probability space, where X is the sample space, F is the r-algebra of subsets of X, and P

is the probability measure, and RN be an N-dimensional real vector space. Defined on the probability space
ðX;F; P Þ, let X ¼ fX 1; . . . ;X NgT 2 RN denote an N-dimensional input random vector, which characterizes
statistical uncertainties of all input parameters including loads, material properties, and geometry. For exam-
ple, if the crack length 2a, the crack orientation c, random vectors XE and Xm respectively representing grada-
tion characteristics of elastic modulus and Poisson’s ratio, and M external loads S1, . . . ,SM are modeled as
input random variables in fracture analysis of a linear-elastic and isotropic functionally graded material, then
X = {2a,c,XE,Xm,S1, . . . ,SM}T. Similarly, if the crack length 2a, tensile properties E, a, and m, and M external
loads S1, . . . ,SM are stochastic variables in nonlinear fracture analysis of a homogeneous media, then
X = {2a,E,a,m,S1, . . . ,SM}T. If some of these random parameters have a spatial variability, they are typically
modeled as random fields, which must be discretized into a countable number of random variables to create X.
Regardless, the input random vector X 2 RN including all relevant sources of uncertainties must be character-
ized by its joint probability density function fXðxÞ : RN 7!R. However, in most practical applications, complete
information required to derive the joint probability density may not be available. In that case, one commonly
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invokes the assumption of statistical independence among random variables or employs a judiciously chosen
joint distribution property in conjunction with observed second-moment characteristics (e.g., covariance
matrix) to describe the joint density of X.

A major objective of SFM is to find probabilistic characteristics of crack-driving forces, such as stress-
intensity factors (SIFs) Ki(X), i = I, II, and III for all three modes (e.g., in linear-elastic analysis), the J-integral
J(X) (e.g., in linear-elastic or nonlinear-elastic analysis), and other fracture integrals due to uncertain input X.
Let y(X) describe a generic crack-driving force or a relevant performance function involving the crack-driving
force for a given fracture problem of interest. In general, the multivariate function yðxÞ : RN 7!R is implicit, is
not analytically available, and can only be viewed as a high-dimensional input–output mapping, where the
evaluation of the output function y for a given input x requires expensive finite-element, boundary element,
or mesh-free analysis. Therefore, methods employed in SFM analysis must be capable of generating accurate
probabilistic characteristics of y(X) with an acceptably small number of output function evaluations.

2.2. Failure criteria

Consider SIFs Ki, i = I, II, and III and the J-integral for a crack tip that can be calculated using standard
finite element analysis (FEA) for a given input. Suppose that a failure is defined when the crack propagation is
initiated at that crack tip, i.e., when Keff � h(KI,KII,KIII) > KIc or J > JIc, where Keff is an effective SIF with h

depending on a selected mixed-mode theory, and KIc or JIc is a relevant mode-I fracture toughness of the mate-
rial measured in terms of SIF or J-integral. This requirement cannot be satisfied with certainty, since Ki or J is
dependent on the input vector X which is random, and KIc or JIc itself may be a random variable. Hence, the
performance of the cracked structure should be evaluated by the reliability or its complement, the probability
of failure PF, defined as the multi-fold integral
P F � P ½yðXÞ < 0� �
Z

yðxÞ<0

fXðxÞdx; ð1Þ
where
yðXÞ ¼
KIcðXÞ � KeffðXÞ; SIF-based analysis

J IcðXÞ � JðXÞ; J -based analysis

�
ð2Þ
is a multivariate performance function that depends on random input X. The evaluation of the multi-dimen-
sional integral, either analytically or numerically, is not possible because N is large, fX(x) is generally
non-Gaussian, and y(x) is a highly nonlinear function of x. Direct Monte Carlo simulation is impractical
for calculating small failure probabilities since the evaluation of y(x) entails expensive numerical computation.

Eq. (1) represents the probability of initiation of crack growth, which provides a conservative estimate of
structural performance. A less conservative evaluation requires calculating the probability when crack growth,
if occurs, is unstable. The latter probability, known as the probability of fracture instability, is more difficult to
compute, since it must be obtained by incorporating automatic crack-growth simulation in a stochastic frac-
ture-mechanics analysis. Furthermore, knowledge of the derivatives of crack-driving force with respect to
crack-size parameters is required. In the past, the author examined probabilities of both fracture initiation
and instability of circumferentially cracked cylinders, for which simple, empirically-derived handbook solu-
tions of J-integral are readily available [10]. However, for a general cracked structure, no such handbook solu-
tions exist; one must conduct expensive FEA to obtain crack-driving force and its derivatives to be integrated
with a stochastic analysis. Therefore, calculating the probability of fracture instability of a general cracked
structure is not a trivial effort. In this work, all probabilistic calculations are limited to the fracture initiation,
although any performance function describing input–output system behavior is applicable.
3. Multivariate function decomposition

Consider a continuous, differentiable, real-valued function yðxÞ : RN 7!R that depends on x ¼ fx1; . . . ; xNgT 2
RN . A dimensional decomposition of y(x), described by [11–13]
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can be viewed as a finite hierarchical expansion of an output function in terms of its input variables with
increasing dimensions, where y0 is a constant, yiðxiÞ : R 7!R is a univariate component function representing
individual contribution to y(x) by input variable xi acting alone, yi1i2ðxi1 ; xi2Þ : R2 7!R is a bivariate component
function describing cooperative influence of two input variables xi1 and xi2 , yi1...iS ðxi1 ; . . . ; xiS Þ : RS 7!R is an S-
variate component function quantifying cooperative effects of S input variables xi1 ; . . . ; xiS , and so on. The last
term in Eq. (3) represents any residual dependence of all input variables cooperatively locked together to affect
the output function y. If
ŷSðxÞ ¼ y0 þ
XN

i¼1

yiðxiÞ þ
XN

i1;i2¼1
i1<i2

yi1i2ðxi1 ; xi2Þ þ � � � þ
XN

i1;...;iS¼1
i1<���<iS

yi1...iS ðxi1 ; . . . ; xisÞ ð4Þ
represents a general S-variate approximation of y(x), the univariate (S = 1) and bivariate (S = 2) approxima-
tions, respectively denoted by ŷ1ðxÞ and ŷ2ðxÞ, provide two- and three-term approximants of the finite decom-
position in Eq. (3). Similarly, trivariate, quadrivariate, and other higher-variate approximations can be
derived by appropriately selecting the value of S. The fundamental conjecture underlying this work is that
component functions arising in the function decomposition will exhibit insignificant S-variate effects cooper-
atively when S! N, leading to useful lower-variate approximations of y(x). In the limit, when S = N, ŷSðxÞ
converges to the exact function y(x). In other words, Eq. (4) generates a hierarchical and convergent sequence
of approximations of y(x).

4. Dimensional decomposition method

4.1. Lower-variate approximations based on a reference point

For a probabilistic fracture problem, recall that y(x) � y(x1, . . . ,xN) represents either a crack-driving force
(e.g., SIF, J-integral, etc.) or a performance function that depends on crack-driving force (e.g., Eq. (2)). In
either case, consider univariate and bivariate approximations of y(x), respectively defined by
ŷ1ðxÞ � ŷ1ðx1; . . . ; xNÞ �
XN

i¼1

yðc1; . . . ; ci�1; xi; ciþ1; . . . ; cN Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼yiðxiÞ

�ðN � 1ÞyðcÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼y0

ð5Þ
and
ŷ2ðxÞ � ŷ2ðx1; . . . ; xNÞ �
XN

i1;i2¼1
i1<i2

yðc1; . . . ; ci1�1; xi1 ; ci1þ1; . . . ; ci2�1; xi2 ; ci2þ1; . . . ; cNÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼yi1 i2

ðxi1 ;xi2 Þ

þ
XN

i¼1

�ðN � 2Þyðc1; . . . ; ci�1; xi; ciþ1; . . . ; cN Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼yiðxiÞ

þ ðN � 1ÞðN � 2Þ
2

yðcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼y0

; ð6Þ
where c = {c1, . . . ,cN}T is a reference point in the input domain, y(c) � y(c1, . . . ,cN),
yi(xi) � y(c1, . . . ,ci�1,xi,ci+1, . . . ,cN), yi1i2ðxi1 ; xi2Þ � yðc1; . . . ; ci1�1; xi1 ; ci1þ1; . . . ; ci2�1; xi2 ; ci2þ1; . . . ; cNÞ. Based
on the author’s past experience, the mean point of random input defines a suitable reference point. Neverthe-
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less, these two approximations of y(x) can be generalized to an S-variate approximation for any integer
1 6 S 6 N, given by
ŷSðxÞ �
XS

i¼0

ð�1Þi
N � S þ i� 1

i

� � XN

k1;...;kS�i¼1
k1<���<kS�i

yðc1; . . . ; ck1�1; xk1
; ck1þ1; . . . ; ckS�i�1; xkS�i ; ckS�iþ1; . . . ; cN Þ;

ð7Þ
where yðc1; . . . ; ck1�1; xk1
; ck1þ1; . . . ; ckS�i�1; xkS�i ; ckS�iþ1; . . . ; cN Þ is an (S � i)th dimensional component function

representing (S � i)th dimensional cooperation among input variables xk1
; . . . ; xkS�i . Using a multivariate func-

tion theorem proposed by Xu and Rahman [14], it can be shown that ŷSðxÞ in Eq. (7) consists of all terms of
the Taylor series of y(x) that have less than or equal to S variables. The expanded form of Eq. (7), when com-
pared with the Taylor expansion of y(x), indicates that the residual error in the S-variate approximation is
yðxÞ � ŷSðxÞ ¼ RSþ1, where the remainder RSþ1 includes terms of dimensions S + 1 and higher. When
S = 1 and 2, Eq. (7) degenerates to univariate (Eq. (5)) and bivariate (Eq. (6)) approximations, respectively.

It is worth noting that the univariate or bivariate approximations should not viewed as first- or second-
order Taylor series expansions nor do they limit the nonlinearity of y(x). In fact, all higher-order univariate
or bivariate terms of y(x) are included in Eq. (5) or (6), which therefore, should provide in general higher-order
representation of a multivariate function than those by first- or second-order Taylor expansions.

4.2. Lagrange interpolations

Consider the univariate component function yi(xi) � y(c1, . . . ,ci�1,xi,ci+1, . . . ,cN) in Eq. (5) or (6). If for
sample points xi ¼ xðjÞi ; j ¼ 1; . . . ; n, n distinct function values yðc1; . . . ; ci�1; x

ðjÞ
i ; ciþ1; . . . ; cN Þ; j ¼ 1; . . . ; n are

given, the function value for an arbitrary xi can be obtained by the Lagrange interpolation
yiðxiÞ ¼
Xn

j¼1

/jðxiÞyðc1; . . . ; ci�1; x
ðjÞ
i ; ciþ1; . . . ; cN Þ; ð8Þ
where
/jðxiÞ ¼
Qn

k¼1;k 6¼j xi � xðkÞi

� �
Qn

k¼1;k 6¼j xðjÞi � xðkÞi

� � ð9Þ
is the Lagrange shape function. By using Eqs. (8) and (9), arbitrarily many values of yi(xi) can be generated if n

values of that component function are given. The same idea can be applied to the bivariate component func-
tion yi1i2

ðxi1 ; xi2Þ � yðc1; . . . ; ci1�1; xi1 ; ci1þ1; . . . ; ci2�1; xi2 ; ci2þ1; . . . ; cN Þ in Eq. (6). If for xi1 ¼ xðj1Þ
i1 and xi2 ¼ xðj2Þ

i2 ,

n2 function values yi1i2ðx
ðj1Þ
i1 ; xðj2Þ

i2 Þ � yðc1; . . . ; ci1�1; x
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; x

ðj2Þ
i2 ; ci2þ1; . . . ; cN Þ; j1; j2 ¼ 1; . . . ; n are

given, the function value for an arbitrary point ðxi1 ; xi2Þ can be obtained using the Lagrange interpolation
yi1i2ðxi1 ; xi2Þ ¼
Xn

j2¼1

Xn

j1¼1

/j1
ðxi1Þ/j2

ðxi2Þyðc1; . . . ; ci1�1; x
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; x

ðj2Þ
i2 ; ci2þ1; . . . ; cN Þ: ð10Þ
The same procedure is repeated for all univariate and bivariate component functions, i.e., for all yi(xi),
i = 1, . . . ,N and for all yi1i2ðxi1 ; xi2Þ; i1; i2 ¼ 1; . . . ;N , leading to the univariate approximation
ŷ1ðXÞ ¼
XN

i¼1

Xn

j¼1

/jðX iÞyðc1; . . . ; ci�1; x
ðjÞ
i ; ciþ1; . . . ; cN Þ � ðN � 1ÞyðcÞ; ð11Þ
and to the bivariate approximation
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ŷ2ðXÞ �
XN

i1;i2¼1
i1<i2

Xn

j2¼1

Xn

j1¼1

/j1
ðX i1Þ/j2

ðX i2Þy c1; . . . ; ci1�1; x
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; x

ðj2Þ
i2 ; ci2þ1; . . . ; cN

� �

� ðN � 2Þ
XN

i¼1

Xn

j¼1

/jðX iÞy c1; . . . ; ci�1; x
ðjÞ
i ; ciþ1; . . . ; cN

� �
þ ðN � 1ÞðN � 2Þ

2
yðcÞ: ð12Þ
Following a similar consideration, the generalized S-variate approximation can be derived as
ŷSðXÞ ¼
XS

i¼0

ð�1Þi N � S þ i� 1
i

� � XN

k1;...;kS�i¼1
k1<���<kS�i

Xn

jS�i¼1

� � �
Xn

j1¼1

/j1
ðX k1
Þ . . . /jS�i

ðX kS�iÞ

� y c1; . . . ; ck1�1; x
ðj1Þ
k1
; ck1þ1; . . . ; ckS�i�1; x

ðjS�iÞ
kS�i

; ckS�iþ1; . . . ; cN

� �
; ð13Þ
which can be utilized to generate higher-variate approximations if desired. But, due to their higher cost, only
univariate and bivariate approximations are considered in this paper. Nevertheless, Eq. (13) provides a con-
vergent sequence of lower-variate approximations of y(X).

4.3. Monte Carlo simulation

Once the Lagrange shape functions /j(xi) and deterministic coefficients y(c), yðc1; . . . ; ci�1; x
ðjÞ
i ; ciþ1; . . . ; cN Þ,

yðc1; . . . ; ci1�1; x
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; x

ðj2Þ
i2 ; ci2þ1; . . . ; cN Þ, and yðc1; . . . ; ck1�1; x

ðj1Þ
k1
; ck1þ1; . . . ; ckS�i�1; x

ðjS�iÞ
kS�i

; ckS�iþ1;
. . . ; cN Þ are generated, Eqs. (11)–(13) provide explicit approximations of a crack-driving force in terms of random
input X. Therefore, any probabilistic characteristics of the crack-driving force, including its statistical moments
and probability density function, can be easily evaluated by performing Monte Carlo simulation on Eqs. (11)–
(13). Since Eqs. (11)–(13) do not require solving additional FEA, the embedded Monte Carlo simulation can be
efficiently conducted for any sample size.

For fracture reliability analysis if y(x) represents a performance function (see Section 2), the Monte Carlo
estimate PF,S of the failure probability employing an S-variate approximation is
P F;S ¼
1

NS

XNS

i¼1

I½ŷSðxðiÞÞ < 0� ð14Þ
where x(i) is the ith realization of X, NS is the sample size, and I½�� is an indicator function such that I ¼ 1 if x(i)

is in the failure set (i.e., when ŷSðxðiÞÞ < 0) and zero otherwise. By setting S = 1 or 2, univariate or bivariate
approximations can be invoked.

The proposed methods involving univariate (Eq. (11)) or bivariate (Eq. (12)) approximations, n-point
Lagrange interpolation (Eq. (8) or (10)), and associated Monte Carlo simulation are defined as the univariate

or bivariate decomposition methods in this paper. The methods developed do not require calculation of any
partial derivatives of the crack-driving force as compared with the commonly-employed FORM/SORM in
fracture reliability analysis [8–10].

4.4. Computational effort

The univariate and bivariate approximations require numerical function evaluations of y(x) (e.g., linear
or nonlinear FEA) to determine y(c), yðc1; . . . ; ci�1; x

ðjÞ
i ; ciþ1; . . . ; cN Þ, and yðc1; . . . ; ci1�1; x

ðj1Þ
i1 ; ci1þ1;

. . . ; ci2�1; x
ðj2Þ
i2 ; ci2þ1; . . . ; cN Þ for i, i1, i2 = 1, . . . ,N and j, j1, j2 = 1, . . . ,n. Hence, the computational effort required

by the proposed method can be viewed as numerically solving a fracture-mechanics problem at several deter-
ministic input defined by user-selected sample points. There are n and n2 numerical evaluations of y(x)
involved in Eqs. (8) and (10), respectively. Therefore, the total cost for the univariate decomposition method
entails a maximum of nN + 1 function evaluations, and for the bivariate approximation, N(N � 1)n2/
2 + nN + 1 maximum function evaluations are required. If the selected sample points include a common
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sample point in each coordinate xi (see the following section), the numbers of functions evaluations reduce to
(n � 1)N + 1 and N(N � 1)(n � 1)2/2 + (n � 1)N + 1 for univariate and bivariate methods, respectively.

5. Numerical examples

Three numerical examples involving linear-elastic and nonlinear fracture mechanics of two- and three-
dimensional cracked structures are presented to illustrate the dimensional decomposition method. Whenever
possible, comparisons have been made with the commonly-used FORM and the direct Monte Carlo simula-
tion to evaluate the accuracy and efficiency of the proposed method.

In all three examples, the function decomposition was formulated in the Gaussian image (u space) of the
original space (x space) of random input. The reference point c associated with the decomposition method
was fixed at the mean input in the u space. A 5-point (i.e., n = 5) Lagrange interpolation was selected. In

the u space, sample points ðc1; . . . ; ci�1; u
ðjÞ
i ; ciþ1; . . . ; cNÞ and ðc1; . . . ; ci1�1; u

ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; u

ðj2Þ
i2 ;

ci2þ1; . . . ; cN Þ were chosen with ci = 0. In Example 1, fifth-order Gauss–Hermite integration points were
employed for defining uðjÞi or uðj1Þ

i1 or uðj2Þ
i2 . In Examples 2 and 3, uniformly distributed points uðjÞi or uðj1Þ

i1 or
uðj2Þ

i2 ¼ �2;�1; 0; 1; 2 were deployed. Regardless of the distribution of sample points chosen, (n � 1)N + 1
and (n � 1)2N(N � 1)/2 + (n � 1)N + 1 function evaluations are involved in univariate and bivariate methods,
respectively, in all three examples.

5.1. Example 1: A linear-elastic and isotropic functionally graded plate

The first example involves a two-dimensional, edge-cracked plate made of a linear-elastic and isotropic
functionally graded material (FGM), presented to illustrate a mixed-mode probabilistic fracture-mechanics
analysis using the proposed decomposition method. As shown in Fig. 1(a), an FGM plate of length
L = 16 in was fixed at the bottom and subjected to a stochastic far-field normal stress r1 and a shear stress
s1 applied at the top. The elastic modulus was assumed to vary smoothly according to
(a)
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Fig. 1. An FGM edge-cracked plate: (a) geometry and loads and (b) finite-element discretization at mean crack size.



Table 1
Statistical properties of random input for the FGM plate

Random variable Mean Standard deviation Probability distribution

Crack length (a), in 3.5 0.404 Uniforma

Plate width (W), in 7.5 0.289 Uniformb

Far-field tensile stress (r1), ksi 1 0.1 Gaussian
Far-field shear stress (s1), ksi 1 0.1 Gaussian
Modulus angle parameter (h), rad 0 0.1 Gaussian
Modulus parameter (E1), ksi 1 0.1 Lognormal
Modulus parameter (E2), ksi 3 0.3 Lognormal
Modulus gradation parameter (b), in�1 lb

c 0.1 lb
c Lognormal

a Uniformly distributed over (2.8 in, 4.2 in).
b Uniformly distributed over (7 in, 8 in).
c lb varies as 0, 1, and 5 in�1.
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Eðn1; n2Þ ¼
E1 þ E2

2
þ E1 � E2

2
tanh½bðn1 cos hþ n2 sin hÞ�; ð15Þ
where (n1,n2) are spatial coordinates with the center of the plate as the origin, E1, E2, b, and h are modulus
parameters. A plane strain condition was assumed. The Poisson’s ratio m = 0. The following eight independent
random variables are defined: (1) crack length a; (2) plate width W; (3) far-field normal stress r1; (4) far-field
shear stress s1; (5) modulus angle parameter �p/2 6 h 6 p/2; (6) modulus parameter E1 = E(1,n2); (7) mod-
ulus parameter E2 = E(�1,n2); and (8) modulus gradation parameter b. The statistical property of the ran-
dom input X ¼ fa;W ; r1; s1; h;E1;E2; bgT 2 R8 is defined in Table 1. The gradation parameter b has mean
values lb = 0, 1, and 5 in�1 with a standard deviation rb = 0.1lb.

Due to the far-field normal stress r1 and shear stress s1, the plate is subjected to mixed-mode deformation
involving fracture modes I and II. The mixed-mode stress-intensity factors KI(X) and KII(X) were calculated
using an interaction integral method [15]. The plate was analyzed using the finite element method involving a
total of 832 8-noded, regular, quadrilateral elements and 48 6-noded, quarter-point (singular), triangular ele-
ments at the crack-tip, as shown in Fig. 1(b).

Fig. 2 displays the variation of the elastic modulus in Eq. (15) with respect to n1 when E1 = 1 ksi, E2 = 3 ksi,
W = 7.5 in, b = 0, 0.3, 1, and 5 in�1, and the material gradation follows horizontally (i.e., h = 0). The grada-
tion parameter b > 0, which represents a truly FGM plate, controls the smoothness of transition between the
elastic moduli at two ends of the plate. When b increases, the smoothness decreases, as depicted in Fig. 2.
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Fig. 2. Variation of elastic modulus for several gradation parameters.
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When b!1, the plate is no longer FGM and the transition occurs as a step function at n1 = 0. When b = 0,
the plate is homogeneous with the elastic modulus taking on a constant average value of (E1 + E2)/2 = 2 ksi.
Hence, several scenarios of the elastic modulus gradation can be created by appropriately varying b.

For the FGM plate, the failure criterion is based on a mixed-mode fracture initiation using the maximum
tangential stress theory [16], which leads to the performance function
yðXÞ ¼ KIc � KeffðXÞ ¼ KIc � KIðXÞ cos2 HðXÞ
2
� 3

2
KIIðXÞ sin HðXÞ

� 	
cos

HðXÞ
2

; ð16Þ
where KIc is a deterministic mode-I fracture toughness, typically measured from small-scale fracture experi-
ments under a plane strain condition, and
HcðXÞ ¼
2 tan�1 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8½KIIðXÞ=KIðXÞ�2
p

4KIIðXÞ=KIðXÞ

� �
; if KIIðXÞ > 0

2 tan�1 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8½KIIðXÞ=KIðXÞ�2
p

4KIIðXÞ=KIðXÞ

� �
; if KIIðXÞ < 0

8>>><
>>>:

ð17Þ
is the direction of crack propagation. For lb = 5 in�1 and rb = 0.1 lb = 0.5 in�1, the probability of fracture
initiation PF = P[y(X) < 0], predicted using the proposed univariate and bivariate decomposition methods,
FORM, and the direct Monte Carlo simulation, is plotted in Fig. 3 as a function of fracture toughness KIc.
All methods predict lower failure probability for higher toughness, as expected. Using n = 5 and N = 8, the
univariate and bivariate methods require only 33 and 481 functions evaluations (FEA), respectively, whereas
105 FEA were performed by the direct Monte Carlo simulation. The reliability analysis by FORM requires
50–100 FEA depending on the value of fracture toughness considered in this example. The results clearly show
that both the univariate and bivariate methods developed in this work can calculate the probability of fracture
initiation accurately and efficiently. Due to the high nonlinearity of the performance function associated with
FGM, FORM, which is commonly used in reliability analysis, may overestimate probability of fracture
initiation significantly.

Fig. 4 presents the failure probability vs. fracture toughness plots obtained by the bivariate decomposition
method for several values of mean gradation parameter: lb = 0, 1, and 5 in�1 (rb = 0.1 lb in all three cases).
For FGM (lb > 0), the failure probability decreases when lb decreases, indicating that a smoother transition
of material property lowers failure probability; the reduction of the failure probability is significant at higher
thresholds of fracture toughness. When lb = 0, the plate is homogeneous (i.e., a degenerate case) with a con-
stant and average elastic modulus with no gradation and the failure probability trend reaches the lowest
possible value.
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5.2. Example 2: A nonlinear double-edged-notched tension specimen

Consider a two-dimensional, homogeneous, double-edged-notched tension [DE(T)] specimen with width
2W = 40 in, length 2L = 200 in, and random crack length a, subject to a random far-field tensile stress r1,
as shown in Fig. 5(a). The nonlinear-elastic constitutive equation under small-displacement condition is based
on the well-known Ramberg–Osgood relation [16]
Fig. 5. A DE(T) specimen: (a) geometry and loads, (b) finite-element discretization at mean crack size, and (c) singular elements at the
crack tip.



Table 2
Statistical properties of random input for the DE(T) specimen

Random variable Mean Coefficient of variation Probability distribution

Crack length (a), in 10 0.1 Lognormal
Elastic modulus (E), psi 30 · 106 0.05 Gaussian
Ramberg–Osgood coefficient (a) 10 0.1 Lognormal
Ramberg–Osgood exponent (m) 5 0.1 Lognormal
Far-field tensile stress (r1), psi E[r1]a 0.05 Gaussian

a E[r1] represents mean of r1 and varies as 10,000 psi (Case 1) and 18,000 psi (Case 2).
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eij ¼
1þ m

E
sij þ

1� 2m
3E

rkkdij þ
3

2E
a

re

r0

� �m�1

sij; ð18Þ
where rij and eij are stress and strain components, respectively, E is the Young’s modulus, m is the Poisson’s
ratio, r0 is a reference stress, a is a dimensionless material coefficient, m is the strain hardening exponent, dij is
the Kronecker delta, sij = rij � 1/3 rkkdij is the deviatoric stress, and re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2sijsij

p
is the von Mises equiv-

alent stress. For nonlinear-elastic cracked structures, the J-integral uniquely defines the asymptotic crack-
tip stress and strain fields, known as the Hutchinson–Rice–Rosengren singularity field [16]. The far-field stress
r1, crack length a, and material constants E, a, and m were treated as statistically independent random vari-
ables. Table 2 presents the mean, coefficient of variation, and probability distribution for each of these random
parameters. The Poisson’s ratio of m = 0.3 was assumed to be deterministic. Two load cases involving a low
mean value of the applied stress E½r1� ¼ 10; 000 psi (Case 1) and a high mean value of the applied stress
E½r1� ¼ 18; 000 psi (Case 2) were studied.

Due to the double-symmetry of this DE(T) problem, Fig. 5(b) shows a finite element mesh (at mean crack
length) of the 1/4-model. A total of 114 elements and 393 nodes were used in the mesh. Both plane stress and
plane strain conditions were studied. Second-order elements from the ABAQUS (Version 6.5) [17] element
library were employed. For plane stress, the element type was CPS8R – the reduced integration, eight-noded
quadrilateral element. The element type CPE8R was used for plane strain. Focused singular elements were
deployed in the vicinity of the crack tip (Fig. 5(c)). A 2 · 2 Gaussian integration rule was employed in FEA.

Fig. 6 shows the deterministic, nonlinear FEA results of the J-integral obtained as a function of the far-field
stress r1 for both plane stress and plane strain conditions. The mean values of crack length and material
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properties defined in Table 2 were employed to generate the plots in Fig. 6. The crack-driving force (J-integral)
for a given applied stress is higher for plane stress than that for plane strain.

Fig. 7(a) and (b) shows comparisons of predicted probability densities and/or histograms of the J-integral
under plane stress condition by the univariate and bivariate decomposition methods and the direct Monte
Carlo simulation. Due to expensive FEA (ABAQUS analysis), only 5000 samples of J were generated in
the direct Monte Carlo simulation. Results of two load cases involving E½r1� ¼ 10; 000 psi (Case 1) and
E½r1� ¼ 18; 000 psi (Case 2) are shown in Fig. 7(a) and (b), respectively. In each case, the decomposition
method, which entails Monte Carlo analysis employing the univariate or bivariate approximations in Eq.
(11) or (12), permits inexpensive calculation of the J-integral by sidestepping additional nonlinear FEA solu-
tions. Hence, an arbitrarily large sample size of the embedded Monte Carlo analysis, such as 100,000 in this
particular example, was selected to generate the probability densities of J by the decomposition method. Com-
pared with the direct Monte Carlo simulation, the univariate method retaining only individual effects of ran-
dom variables yields encouraging results. The bivariate method, which includes both individual and
cooperative effects of random variables, provides excellent estimates of the probability densities of the J-inte-
gral. Similar analyses under a plane strain condition, which were conducted for the above-mentioned two load
cases and leading to the results of Fig. 8(a) and (b), reveal the same qualitative trend, except the J-integral
values for plane strain are much lower than that in plane stress, as deterministically observed in Fig. 6. Using
n = 5 and N = 5, the univariate and bivariate decomposition methods involve only 21 and 181 functions eval-
uations (FEA), respectively, whereas 5000 FEA were performed by the direct Monte Carlo simulation. There-
fore, the method developed is not only accurate, but also computationally efficient.
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5.3. Example 3: A nonlinear through-walled-cracked cylinder

The final example of the paper involves nonlinear fracture-mechanics analysis of a three-dimensional, cir-
cumferential, through-wall-cracked (TWC) cylinder subjected to four-point bending, as shown in Fig. 9(a).
The cylinder has a mid-thickness radius R = 50.8 mm, a wall thickness t = 5.08 mm, and a symmetrically cen-
tered through-wall crack with the normalized crack angle h/p = 0.125. The outer span L = 1.5 m and the inner
span S = 0.6 m. The cylinder is composed of ASTM Type 304 stainless steel with an operating temperature of
288 C. The cross-sectional geometry at the cracked section is shown in Fig. 9(b). TWC cylinders like the one in
Example 3 are frequently analyzed for fracture evaluation of pressure boundary integrity in the nuclear
industry.

Table 3 lists the means, coefficients of variation, and probability distributions of tensile parameters
(E,a,m), four-point bending load (P), and fracture toughness (JIc). The statistics of the material properties
were obtained from actual Type 304 stainless steel data at 288 C [18]. However, the probabilistic characteris-
tics of P were chosen arbitrarily. The load has a mean value lP that varies from 23.2 – 64 kN, but with a stan-
dard deviation rP = 0.1 lP in each load case. All random variables are statistically independent. Also,
r0 = 154.78 MPa and m = 0.3.

A finite element mesh of the quarter model of the TWC cylinder is shown in Fig. 9(c). Twenty-noded iso-
parametric solid elements (C3D20R) from the ABAQUS library were used, with focused singular elements at
the crack tip. A total of 236 elements and 1805 nodes were created. The stress–strain curve was modeled using
the nonlinear Ramberg–Osgood equation (Eq. (18)) in this example as well.
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Fig. 9. ATWC cylinder under four-point bending: (a) geometry and loads, (b) cracked cross-section, and (c) finite-element discretization.

Table 3
Statistical properties of random input for the TWC cylinder

Random variable Mean Coefficient
of variation

Probability
distribution

Elastic modulus (E), GPa 182.7 0.1 Gaussian
Ramberg–Osgood coefficient (a) 8.073 0.439 Lognormal
Ramberg–Osgood exponent (m) 3.8 0.146 Lognormal
Four-point bending load (P), kN lP

a 0.1 Gaussian
Initiation toughness (JIc), kJ/m2 1242.6 0.47 Lognormal

a lP varies as 23.2, 25.6, 28, 30.4, 33.6, 36, 38.4, 41.6, 45.6, 56, and 64 kN.
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Fig. 10 displays the J-integral vs. load P plots using the mean values of random material properties defined
in Table 3. The variations of J-integrals at the outer crack tip (Jo), middle crack tip (Jm), and inner crack tip
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(Ji), plotted individually, show the through-the-thickness variation of J. The weighted-average
Ja � (Ji + 4Jm + Jo)/6 appears to be close to Jm.

Using Monte Carlo simulation (106 samples) on Eq. (12), Fig. 11(a)–(c) present joint probability densities
of three J-integral pairs {Jo,Jm}, {Jo,Ji}, and {Ji,Jm} by the bivariate decomposition method when
lP = 41.6 kN and rP = 0.1 lP = 4.16 kN. Using n = 5 and N = 41, only 113 nonlinear FEA were required
by the bivariate method. The marginal probability densities of Jo, Jm, and Ji were also calculated and are
exhibited in Fig. 12.

Finally, the probability of fracture initiation in the TWC cylinder, defined as PF = P[JIc(X) � Ja(X) < 0],
was calculated for mean applied load lP varying between 23.2 and 64 kN (rP = 0.1 lP in all load cases)
and is presented in Fig. 13. Both univariate (open circle) and bivariate (closed circle) decomposition methods
involving 104–107 samples in the embedded Monte Carlo analysis (depending on PF) were employed to gen-
erate the failure probability plots. Due to expensive FEA, direct Monte Carlo simulation was not feasible for
this example to verify low probabilities in Fig. 13. Instead, a J-estimation-based Monte Carlo simulation [19]
(solid line) involving 104–107 samples (depending on PF) was also performed, the results of which are
1 The J-integral depends on four random variables E, a, m, and P and does not depend on material resistance JIc.
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displayed in Fig. 13. Decomposition methods, in particular the bivariate version, provide excellent estimates of
the probability of fracture initiation in cracked cylinders.

6. Conclusions

A dimensional decomposition method was developed for obtaining probabilistic characteristics of crack-
driving forces and reliability analysis of general cracked structures subject to random loads, material proper-
ties, and crack geometry. The method is based on (1) a novel function decomposition allowing lower-variate
approximations of a crack-driving force or a performance function; (2) Lagrange interpolations for represent-
ing lower-variate component functions, and (3) Monte Carlo simulation. The proposed decomposition results
in a finite, hierarchical, and convergent series for a crack-driving force or a performance function of interest.
The computational effort in finding the probabilistic characteristics of the crack-driving force or reliability
analysis can be viewed as performing deterministic fracture analyses at selected input defined by sample
points. Compared with commonly-used FORM/SORM, no derivatives of fracture response parameters are
required by the new method developed. Hence, the method can be easily adapted for solving a general prob-
abilistic fracture-mechanics problem involving third-party commercial finite-element codes. Results of three
numerical examples involving two-dimensional linear-elastic fracture of a functionally-graded plate and non-
linear fracture of two- and three-dimensional cracked structures indicate that the decomposition method pro-
vides excellent estimates of probability densities of the J-integral and probability of fracture initiation for
various cases including material gradation characteristics and magnitudes of applied stresses and loads.
The computational efforts required by the univariate and bivariate versions of the decomposition method
are linear and quadratic with respect to the number of random variables involved. Therefore, the method
developed is accurate and computationally efficient when compared with FORM and direct Monte Carlo
simulation.
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