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Abstract

This paper describes the development of a probabilistic methodology for fracture-mechanics analysis of weld
cracks in a center-cracked tension (CCT) specimen. It involves elastic±plastic analyses to predict J-integral,
statistical models of uncertainties in loads and material properties, and standard computational methods of

structural reliability theory for probabilistic analysis. Eighty-one deterministic ®nite element analyses were
performed for a wide variety of crack size, material mismatch factors, and weld geometric parameters to develop
approximate equations for the J-integral of a CCT specimen and were subsequently applied for probabilistic

fracture evaluations. Both fast probability integrators, such as ®rst- and second-order reliability methods, and
Monte Carlo simulation were used to determine the probabilistic characteristics of the J-integral. The same methods
were used later to predict the failure probability based on initiation of crack growth. Numerical results are

presented to illustrate the proposed methodology. The e�ects of mismatch factors on both deterministic and
probabilistic response characteristics were examined. The results indicate that the tensile properties of both base and
weld materials should be accounted for when calculating J. These mismatch factors have a signi®cant e�ect on the
probabilistic characteristics of J and failure probability. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Elastic±plastic fracture mechanics; Weld cracks; Probabilistic fracture mechanics; J-integral; Probability of failure; Base

metal; Weld metal; Mismatch factors

1. Introduction

When a crack is located in or near welds, a dissimi-
lar material interface is present near the crack. In
assessing the integrity of structures containing such

cracks, it is important to quantify the relevant crack-
driving force so that its load-carrying capacity can be

predicted. For ductile materials permitting large-scale
plasticity near the crack tip, this crack-driving force is
frequently described in terms of the J-integral, which is
an appropriate elastic±plastic fracture parameter (in

absence of constraint e�ects) for low-strength and
high-toughness materials. However, when a crack is in
the vicinity of a weld, the calculation of J becomes

much more complex, because the material near a weld
and crack is inhomogeneous as regards its tensile
strength property [1]. There are weld material, heat-

a�ected zone (HAZ) material, and base (parent) ma-
terial with mismatched stress±strain curves. Conse-
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quently, the fracture behavior cannot be accurately

determined by an analysis involving all-base, all-HAZ,
or all-weld material properties alone. It should involve
the characteristics of base, HAZ, and weld materials,

the weld and crack geometry relative to the size of
structure, and possibly residual stresses induced by the
multi-layer welding process [2,3].

The evaluation of J-integral for cracked welded
structures is usually performed by: (1) numerical analy-

sis and (2) engineering estimation techniques. Tra-
ditionally, a numerical study has been based on the
elastic±plastic ®nite element method (FEM). Using the

FEM, one can simulate various weld and crack geome-
tries and mismatching variables. However, it is also

useful to have simpli®ed estimation methods for rou-
tine engineering calculations. Most J-estimation
methods, which are currently available today, are

based on mathematical formulations derived for homo-
geneous materials and hence, can account for strength
properties of either base or weld metal explicitly. Pre-

dictions are usually made using the base-metal stress±
strain curve and the weld-metal J-resistance (J-R )

curve [4±6]. This can lead to mispredictions depending
on the strength ratio of the base versus weld material.
Hence, to improve the accuracy of fracture response

and load predictions, a number of recent studies on
weld cracks have also appeared. For two-dimensional

weld-crack problems involving center-cracked tension
(CCT) and single-edged notched bend specimens, ap-
proximate methods have been developed or examined

by Gilles and Franco [7], Eripret and Hornet [8], Hor-
net and Eripret [9], Joch et al., [10], Wang and Kirk
[11], and Lei and Ainsworth [12,13]. They are based on

limit-load analysis and the concept of an equivalent
homogeneous material. Some of these studies also

involve a limited number of ®nite element analysis
(FEA) to verify the J-estimation methods. A distinctly
di�erent approach was taken by Yagawa et al. [14],

who proposed a rule of mixture for material properties
that can be applied for analyzing welded structures
using standard J-estimation methods for homogeneous

materials. The optimum ratio of this mixture for ma-
terial constants is obtained by an inverse analysis pro-

cedure based on neural network techniques. So far,
this approach has been applied to small fracture speci-
mens with a reasonable amount of success. In addition

to the J-estimation methods, other studies involving
various analytical, computational, and experimental

work on elastic±plastic analysis of inhomogeneous ma-
terials and structures have also been reported [14].
For three-dimensional weld-crack problems,

methods have also been developed with particular
attention to through-wall-cracked (TWC) pipe welds
[4±6,15±19]. For example, an empirical approach,

proposed by Ganta and Ayres [16], suggests that
the load-carrying capacity of a cracked welded pipe

can be evaluated by applying a multiplicative cor-

rection factor on the load predicted by assuming a
base-metal stress±strain curve and a weld-metal J-R
curve. The correction factor involves a power-law

function of the yield ratio of weld and base metals
and requires two empirical parameters for its evalu-
ation. Recently, a method was also developed by

Rahman and Brust [17±19] to determine J-integral
and crack-opening displacement for a TWC pipe

weld that includes strength properties of both base
and weld metals. The method is based on an equiv-
alence criterion incorporating a reduced thickness

analogy for simulating system compliance due to
the presence of a crack in a pipe. The results from

this method suggest that the values of J for a pipe
weld can be overpredicted or underpredicted if the
material stress±strain curve is represented by all-base

or all-weld properties alone. It was also shown that
if the material properties of both base and weld
metals are taken into account, the estimated J

values became much closer to the more accurate
®nite element solutions. Later, Rahman et al. [5,6]

showed that this method also predicts a more accu-
rate load-carrying capacity of stainless steel ¯ux
welds when compared with test data generated from

full-scale pipe fracture experiments [4]. In spite of
all these studies, the methods in existence today are
limited to strictly deterministic analyses. Due to in-

herent statistical variabilities in loads, material prop-
erties, and geometric parameters, a probabilistic

methodology is needed to evaluate the stochastic
characteristics of fracture response and reliability of
welded structures. Hence, a probabilistic study on

weld cracks and an investigation on how the weld
and material parameters a�ect structural reliability
is timely and exciting.

This paper presents a probabilistic methodology for
fracture-mechanics analysis of weld cracks in a CCT

specimen. It is based on: (1) elastic±plastic analyses to
calculate J-integrals by ABAQUS ®nite-element code
[20], (2) statistical models of uncertainties in loads and

material properties, and (3) standard computational
methods of structural reliability theory for probabilistic

analysis. Eighty-one deterministic FEA were performed
for a wide variety of crack sizes, material mismatch
factors, and weld geometric parameters to develop ap-

proximate equations for the J-integral of a CCT speci-
men and were subsequently applied for probabilistic

analysis. Both fast probability integrators, such as
®rst- and second-order reliability methods (FORM/
SORM) and Monte Carlo simulation (MCS) were used

to determine the probabilistic characteristics of the J-
integral. The same methods were used later to predict
the failure probability based on initiation of crack

growth. Numerical results are presented to illustrate
the proposed methodology.
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2. Elastic±plastic fracture mechanics

The J-integral fracture parameter proposed by Rice

[21] has been extensively used in assessing fracture
integrity of cracked engineering structures, which
undergo large plastic deformation. For elastic±plastic

problems, its interpretation as the strength of the
asymptotic crack-tip ®elds by Hutchinson [22] and
Rice and Rosengren [23] represents the crux of the

basis for `J-controlled' crack growth behavior. For a
cracked body with an arbitrary counter-clockwise path
G around the crack tip, a formal de®nition of J-inte-
gral under the mode-I condition is

J �def
�
G

ÿ
Wn1 ÿ Tiui,1

�
dG �1�

where W� � sij deij is the strain energy density with sij
and eij representing components of stress and strain

tensors, respectively, ui and Ti � sijnj are the ith com-
ponent of displacement and traction vectors, nj is the
jth component of unit outward normal to integration
path, dG is the di�erential length along contour G, and
ui,1 � @ui=@x 1 is the di�erentiation of displacement
with respect to x1. Here, the summation convention is
adopted for repeated indices.
The J-integral is theoretically valid for nonlinear

elasticity or deformation theory of plasticity where no

or little unloading occurs. It is frequently used to
characterize the initiation of crack growth and a small
amount of crack propagation. In the case of large

amounts of crack growth, a great deal of unloading
occurs around the crack tip and hence, J may lose its
theoretical validity because of path dependence. In

such a condition, more advanced fracture parameters,
such as the T�-integral [24] and the Ĵ-integral [25]
which hold path independence during crack growth,
should be used. However, a wealth of comparisons

between predictions based on J-integral versus exper-
imental data now show that fairly accurate results can
be obtained for monotonic loading to failure even

though the theoretical conditions for a valid J-based
fracture theory are violated [26±33]. In this study, the
analysis of welds will focus only on the J-integral frac-

ture parameter.
For monotonically loaded elastic±plastic structures,

the J-integral completely describes the crack-tip con-

dition. The philosophy of using J to characterize elas-
tic±plastic crack growth, as lucidly summarized by
Hutchinson [34], may be mathematically stated as:

Crack Initiation: J � JIc �2�

Crack Instability:

8<:
J � JR

@J

@a
� dJR

da

�3�

The left sides of Eqs. (2) and (3) represent the crack
driving force and its rate while JIc and JR, representing

the fracture toughness at crack initiation and crack
growth, da, respectively, are the crack resistance prop-
erty of the material. If one can calculate J for a given

cracked structure, the corresponding values of loads
for crack initiation and fracture instability can be pre-
dicted from the known J-R curve of the material.

Note, the J-R curve, which is typically generated from
small-scale laboratory specimens, must be prescribed in
such a way that similar constraint conditions exist in

both cracked structure and laboratory specimens.
Otherwise, constraint e�ects should be accounted for
in the fracture-mechanics analysis [5,6].

3. The CCT weld crack problem

Consider Fig. 1, which illustrates a CCT specimen
subjected to a far-®eld tensile stress, s1 applied at the

Fig. 1. Schematics of a center-cracked tension specimen with

all geometric parameters.
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remote ends. The specimen has length, 2L, width, 2W,
and a center-crack of length, 2a. The crack is located

inside the weld material which has width, 2h. The
length of the uncracked ligament is de®ned as 2l,
where, l �Wÿ a: To study its elastic±plastic behavior,

the following simplifying assumptions were made:

1. The crack is two-dimensional with mode-I loading
and the state of stress is characterized by plane

strain condition.
2. Only base and weld metals are considered to rep-

resent the material inhomogeneity. Hence, there is a

sudden transition between weld and base materials
and their mechanical properties. No HAZ material
is considered.

3. The elastic properties of base and weld materials are
the same (i.e., same elastic modulus, E, and Pois-
son's ratio, n). This assumption is supported by ex-
perimental data [26±33]. The uniaxial stress±strain

curves for the base or weld materials follow the
Ramberg±Osgood equation:

e
e0k
� s

s0k
� ak

�
s
s0k

�nk

�4�

where, s0k is a reference stress, which can be arbi-
trary, but usually assumed to be the yield stress,

syk, E is the modulus of elasticity, e0k � s0k=E is the
associated reference strain, and ak and nk are model
parameters usually chosen from a best ®t of actual

laboratory data, and k � 1 or 2 representing base or
weld materials, respectively. Two mismatch factors
given by

ks � s02
s01

�5�

kn � n2
n1

�6�

are de®ned based on material reference stresses and
hardening exponents, respectively. They are denoted
as the strength mismatch factor and the hardening

mismatch factor in this paper.
4. Weld-induced residual stresses are ignored. This is a

reasonable assumption when the stresses due to pri-

mary loads in a structure are much larger than the
residual stresses. Otherwise, residual stresses should
be considered, but in that case the J-integral de®ned
by Eq. (1) may not be a meaningful fracture par-

ameter due to the loss of path independence.

All of the load and geometric parameters de®ned
above are sketched in Fig. 1.

4. Deterministic fracture analysis

The FEM in this study assumes the elastic±plastic

constitutive relation given by Eq. (4) and small strains.
It was based on proportional loading in the crack-tip

plastic zone. Hence, the use of deformation theory of
plasticity and Eq. (4) is entirely appropriate. The plas-
tic deformation was assumed to be incompressible and
independent of hydrostatic stress. An isotropic harden-

ing rule was assumed. While the analysis is for small
strains, nonlinearity enters through Eq. (4).
For calculating J, the domain integral method [35±

37] was used. This method is implemented into the
ABAQUS commercial ®nite element code (Version
5.6) [20]. The method is quite robust in the sense that

accurate J-integral estimates are usually obtained
even with coarse meshes. This is because the integral
is evaluated over a domain of elements surrounding
the crack front, so that the errors in local solution

parameters have a lesser e�ect on the value calcu-
lated.

4.1. Veri®cation of calculated J by ABAQUS

In order to validate the J-integral solutions for CCT

specimens, a limited number of FEAs were performed
initially for which cases there were existing solutions
available in the literature. Tables 1 and 2 show the

CCT geometric parameters and material properties, re-
spectively, for ®ve cases taken from the past work of
Lei and Ainsworth [12]. Using these input data from

Tables 1 and 2, several elastic±plastic analyses were
conducted to compute J using the ABAQUS ®nite el-

Table 1

CCT geometric parameters for ®nite element validationsa

Cases L (mm) W (mm) a (mm) h (mm)

(a), (c), (e) 224 96 48 20

(b), (d) 224 96 24 20

a Further details are available in the paper by Lei and Ains-

worth [12].

Table 2

CCT material properties for ®nite element validationsa

Cases Base metal Weld metal

s01 (MPa) a1 n1 s02 (MPa) a2 n2

(a), (b) 413.68 1.12 9.71 827.36 0.56 9.71

(c) 413.68 1.12 9.71 124.1 3.73 9.71

(d) 413.68 1.12 9.71 289.58 1.60 9.71

(e) 413.68 1.12 9.71 413.68 1.12 6.00

a The elastic properties of both base and weld metals are as

follows: E � 207 GPa, n � 0:3: Further details are available in

the paper by Lei and Ainsworth [12].
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ement code. Fig. 2 shows the comparisons of J vs. s1

plots from the present study (solid lines ) with the cor-

responding ®nite element results generated by Lei and

Ainsworth (closed points ) [12]. The two sets of results

are in close agreement with each other. Also, plotted

in Fig. 2 are the corresponding homogenous solutions

(i.e., using all-base and all-weld material properties) by

the authors' own FEA (broken lines ) and a J-esti-

mation formula developed by Kumar et al. (open

points ) [38]. The FEM results are practically identical

to the existing solutions. These results gave con®dence

in our ®nite element calculations.

Fig. 2. Comparisons of predicted J for CCT specimens with existing solutions.
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4.2. Finite element model and analysis matrix

Following validation of J, 81 elastic±plastic FEAs

were conducted for the CCT specimen in Fig. 1 with
W � 100 mm and L � 350 mm. A matrix of such ana-
lyses is de®ned in Table 3 for various combinations of

non-dimensional parameters, h/l, a/W, ks, and kn: It
involves 9 di�erent ®nite element meshes with
a=W � 0:25, 0.5, and 0.75, and h=l � 0:2, 0.4, and 0.8.

For each mesh, 9 analyses were performed due to 9
di�erent mismatch factors. For the material properties,
the following values were used: E � 200 GPa, n � 0:3,
s01 � 300 MPa, a1 � a2 � 1, and n1 � 3: These values,

in addition to the properties given in Table 3, provide
complete characterization of both base and weld ma-
terials. It was assumed that the Ramberg±Osgood

model can represent the tensile properties of materials
adequately.
Fig. 3 shows a ®nite element mesh by the MSC/

PATRAN solid modeler (Version 7) [39,40] for the
case 3 (i.e., a=W � 0:25 and h=l � 0:8� of Table 3. A
quarter model was used to take advantage of the sym-
metry. Eight-noded isoparametric quadrilateral el-

ements were used with focused elements at the crack
tip. In the crack-tip region, a ring of 18±54 triangular
elements was used. These triangular elements were con-

structed by collapsing the appropriate nodes of the
eight-noded quadrilateral elements to produce the 1/r
strain singularity. Although this singularity is strictly

valid for a fully plastic crack-tip ®eld of non-hardening
materials �nk41), it is practically adequate for work-
hardening materials as well [37]. A 2� 2 Gaussian

quadrature rule was used for the numerical integration.
All FEAs were performed using the ABAQUS (Ver-
sion 5.6) code [20]. Further details are given in Refs.
[40±42].

4.3. Deterministic results and discussions

Fig. 4 shows the convergence of J vs. s1 results
for the mismatch factors, ks � 0:5 and kn � 3 using
various meshes with increasing degrees of re®nement.

The results are practically identical. For the calcu-
lation of J, 14 contours were de®ned in the ®nite el-
ement meshes and are shown in Fig. 3. The values

of J for each of these contours are practically identi-
cal as shown by its path independence in Fig. 5 for
various contour numbers. The contours 1±9 are

Table 3

Matrix of ®nite element analysis for CCT specimens (9 runs

per model)

FEM model no. a/W h/l ks
a kn

b

1 0.25 0.2 0.5, 1.5, and 2 0.5, 1.5, and 3

2 0.25 0.4 0.5, 1.5, and 2 0.5, 1.5, and 3

3 0.25 0.8 0.5, 1.5, and 2 0.5, 1.5, and 3

4 0.50 0.2 0.5, 1.5, and 2 0.5, 1.5, and 3

5 0.50 0.4 0.5, 1.5, and 2 0.5, 1.5, and 3

6 0.50 0.8 0.5, 1.5, and 2 0.5, 1.5, and 3

7 0.75 0.2 0.5, 1.5, and 2 0.5, 1.5, and 3

8 0.75 0.4 0.5, 1.5, and 2 0.5, 1.5, and 3

9 0.75 0.8 0.5, 1.5, and 2 0.5, 1.5, and 3

a The strength mismatch factor, ks � s02=s01:.
b The hardening mismatch factor, kn � n2=n1:.

Fig. 3. A ®nite element mesh for a=W � 0:25 and h=l � 0:8
(intermediate model).
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located in the weld metal, contour 10 coincides with
the base-metal interface, and contours 11±14 traverse
the base-metal interface. The variations with respect

to the average value of J from all contours were less
than 3%. The results in Fig. 4 correspond to J for
the third contour. In summary, the intermediate

mesh (Fig. 3) is quite satisfactory with the largest
di�erence between its results and those from the ®ne
mesh is about 3.5%. Hence, ®nite element meshes

similar to Fig. 3 were used for the rest of the ana-
lyses. For the sake of brevity, only the results of the

extreme cases of Table 3 will be discussed in this
paper.
Fig. 6(a)±(d) show J vs. s1 plots for the case 1

mesh generated for a small crack �a=W � 0:25� and a
small weld width �h=l � 0:2� and for four extreme cases
of strength and hardening mismatch factors. For each

case, the J values were calculated from three separate
analyses based on tensile properties of all-base, all-
weld, and base and weld materials. The analyses were

performed until s1 reaches s10 , where s10 is the far-
®eld tensile stress (based on the higher reference stress)

Fig. 5. Path independence of J for a weld crack in a CCT specimen.

Fig. 4. J-integral versus far-®eld tensile stress for various ®nite element meshes.
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that corresponds to the reference load, P0, de®ned by

Kumar et al. [38].1 Fig. 6(a) represents the behavior of

a CCT weld specimen, which is undermatched with

respect to strength, but overmatched with respect to

material work hardening.2 For small load intensities,

the J values from all three analyses are close to each

other, with J calculated from the all-weld analysis

being slightly higher than that calculated from all-base

analysis. However, for large load intensities, these

curves cross each other and the J-values from the all-

base analysis become much higher than those from the

all-weld analysis. This mixed behavior is due to the

mixed mismatched condition with respect to strength

and material work hardening. Also, J for a welded

CCT specimen lies between the results of all-base and

all-weld analyses, and hence, it cannot be predicted by

all-base or all-weld tensile properties alone. This is

more clearly observed in Fig. 6(b), which shows similar

plots of J vs. s1 for a truly undermatched case (i.e.,

undermatched with respect to both strength and hard-

ening). In this case, the J values from the all-weld

analysis are much higher than those from the all-base

analysis due to much weaker weld material. A comple-

tely opposite behavior is exhibited in Fig. 6(c), which

represents a case with a truly overmatched condition.

The J values from the all-base analysis are now much

higher than those from the all-weld analysis due to a

much weaker base material. Finally, Fig. 6(d) shows

the results of the remaining case with the other mixed

mismatched condition. In this case, the CCT weld spe-

cimen is overmatched with respect to strength, but

undermatched with respect to material work harden-

ing. The trends in Fig. 6(d) show an opposite behavior

to those in Fig. 6(a) as expected. In all cases, the

results indicate that the tensile properties of both base

and weld materials should be accounted for when cal-

culating J of a welded structure.

Fig. 7(a)±7(d) show J vs. s1 plots for the case 3

mesh generated for a small crack �a=W � 0:25� and a

large weld width �h=l � 0:8). As before, the results of

four extreme cases are presented. The trends in the

results of all-base and all-weld analyses are identical to

the ones in Fig. 6(a)±(d). However, in Fig. 7(a)±(d),

the J values for the weld specimen are extremely close

to the J values from all-weld analyses. This is because

of the large width of the weld chosen, which allowed

little e�ect from the base metal properties. Hence, the
fracture behavior for these cases can be adequately

described by the weld properties alone.
Fig. 8(a)±(d) show similar results of J for the case 7

mesh generated for a large crack �a=W � 0:75� and a

small weld width �h=l � 0:2). Due to the large crack
sizes, the J values for a given applied load are much
higher than those for small cracks, in general. Other-

wise, the trends are identical to those in Fig. 6(a)±(d).
Finally, Fig. 9(a)±9(d) show J vs. s1 plots for the

case 9 mesh generated for a large crack �a=W � 0:75�
and a large weld width �h=l � 0:8). Once again, the J
values for a given load are much higher when com-
pared with those for small cracks as shown in
Fig. 7(a)±(d). The qualitative behavior of the J vs. s1

plots for small and large cracks is similar.

5. Probabilistic fracture analysis

5.1. Analytical approximation of J

Under elastic±plastic condition and the deformation
theory of plasticity when the stress±strain curve is

modeled by Eq. (4), the total crack driving force, J,
for a welded CCT specimen can be obtained by adding
the elastic component, Je, and the plastic component,

Jp, i.e.,

J � Je � Jp: �7�

Je is identical to that of a CCT specimen with the
crack in either base or weld metal, because their elastic
properties are similar. However, the calculation of Jp
is more di�cult, but it can be approximated based on
the FEM solutions. These solutions are brie¯y
described below.

5.1.1. Elastic solution

Under plane-strain condition, the elastic component,
Je, is [38]

Je � K 2
I

E
�1ÿ n2 � �8�

where, KI is the mode-I stress-intensity factor, given by
[37,38]

KI � 2s1
�����
W
p ������������������������

pa
4W

sec
pa
2W

r "
1ÿ 0:025

�
a

W

�2

� 0:06

�
a

W

�4
# �9�

1 According to Kumar et al. [38], P0 � 4Bls0= 3
p

, where B

is specimen thickness and s0 is reference stress.
2 In this paper, a weld joint is overmatched (under-

matched) with respect to strength when the strength of

weld metal is higher (lower) than that of base metal. Also,

a weld joint is overmatched (undermatched) with respect

to material hardening when the hardening exponent of

weld metal is lower (higher) than that of base metal.
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5.1.2. Plastic solution
From the observation of FEM results (see Figs. 6±

9), the plastic component, Jp, can be approximated by
superposing contributions from all-base �J B

p � and all-
weld �J W

p � solutions. For example, a simple way of ap-

proximating Jp for CCT weld specimen is

Jp � c

�
a

W
,
h

l
,ks,kn

�
J B

p

�
�
1ÿ c

�
a

W
,
h

l
,ks,kn

��
J W

p

�10�

where

J B
p � a1

s201
E

la

W
hB
1

�
a

W
,n1

��
2BWs1

PB
0

�n1�1
, �11�

J W
p � a2

s202
E

la

W
hW1

�
a

W
,n2

��
2BWs1

PW
0

�n2�1
, �12�

hB
1 and hW

1 are plastic in¯uence functions [38], PB
0 and

PW
0 are reference loads with the superscripts `B' and

`W' signifying base- and weld-metal analysis or proper-

Fig. 10. Comparisons of analytic approximations of J with FEM.
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ties, respectively, and c is a linear participation factor
due to all-base J-integral analysis. In general, c

depends on geometric parameters, a/W and h/l, and
material mismatch factors, ks and kn: It can be empiri-
cally determined by matching Eq. (7) with the gener-

ally more accurate FEM results. The calculation of J
by Eqs. (7) and (10) will be denoted as Method 1 in
this paper.

A slightly more generalized form of Eq. (10) is

Jp � c1

�
a

W
,
h

l
,ks,kn

�
J B

p � c2

�
a

W
,
h

l
,ks,kn

�
J W

p �13�

which involves two independent parameters, c1 and c2
that perhaps would ®t the FEM results more accu-

rately. The calculation of J by Eqs. (7) and (13) will be
denoted as Method 2 in this paper. Alternative
equations representing more complicated and a poss-

ibly nonlinear interaction between J B
p and J W

p can be
developed, but they were not considered in this study.
Only Eqs. (10) and (13) were used in this paper. The

parameters, c, c1, and c2 were estimated by standard
least-squares regression of ®nite element results.
To evaluate the adequacy of approximations in Eqs.

(10) and (13), Fig. 10 shows the comparisons of J vs.

s1 plots from these equations with the elastic±plastic
FEM solutions. The results in Fig. 10 were generated
for a=W � 0:2, h=l � 0:2 and two cases of material

mismatch factors: ks � 0:5, kn � 0:5 and ks � 2, kn �
0:5: The agreement between the analytical approxi-
mations by both methods and FEM is excellent. Due

to the simplicity, Method 1 (Eq. (10)) was used for
subsequent probabilistic calculations. Although these
analytical forms of J are not needed for deterministic

calculations, they are quite useful for probabilistic
analysis [42±44]. It is described in the following sec-
tions.

5.2. Random parameters and fracture response

Consider a cracked structure with uncertain mechan-

ical and geometric characteristics that is subject to ran-
dom loads. Denote by X an N-dimensional random
vector with components characterizing all uncertainties
in the system and load parameters. For example, when

a CCT weld specimen is considered, the possible ran-
dom components are: geometric parameters, a, W, and
h, material tensile parameters, E,n,a1,a2,n1, and n2,

fracture toughness parameters, JIc, C, and m, (C and
m are J-R curve parameters) and applied far-®eld
stress, s1: All or some of these variables can be mod-

eled as random variables. Hence, any relevant fracture
response, such as the J-integral, J�X�, should be evalu-
ated by the probability

FJ�j0 ��def
Pr
�
J�X� < j0

� � �
J�X�<j0

fX�x� dx �14�

or the probability density function (PDF),

fJ�j0� � dFJ�j0�=dj0, where FJ�j0� is the cumulative dis-
tribution function of J and fX�x� is the known joint
PDF of input random vector X:
The fracture parameter J can also be applied to cal-

culate structural integrity and hence, failure prob-
ability, PF, of cracked structures. This failure
probability depends on the failure criteria, some of

which are de®ned by Eqs. (2) and (3). For example, if
the initiation of crack growth in the CCT specimen
constitutes a failure condition, PF can be written as

PF � Pr
�
g�X� < 0

� � �
g�x�<0

fX�x� dx �15�

where,

g�X� � JIc ÿ J�X�: �16�
Note, if j0 represents the material fracture toughness at

crack initiation (JIc), PF is simply the complement of
FJ�j0�, i.e., PF � 1ÿ FJ�j0�: The failure probability, PF

in Eq. (15) corresponds to the probability of initiation

of crack growth, which provides a conservative esti-
mate of structural performance. A more realistic evalu-
ation of structural reliability requires calculating the

probability of fracture instability following crack in-
itiation. See Ref. [42] for further details.

5.3. Structural reliability analysis

The generic expression for the failure probability in
Eq. (15) involves multi-dimensional probability inte-

gration for its evaluation. In this study, standard re-
liability methods, such as FORM/SORM [45±59], and
MCS [60] were used to compute these probabilities.

They are used here to calculate the probability of fail-
ure, PF in Eq. (15) assuming a generic N-dimensional
random vector X and the performance function g�x�
de®ned by Eq. (16). A brief description of FORM/
SORM and MCS methods is given below.

5.3.1. FORM/SORM

The FORM/SORM are based on linear (®rst-order)
and quadratic (second-order) approximations of the

limit state surface g�x� � 0 tangent to the closest point
of the surface to the origin of the space. The determi-
nation of this point involves nonlinear constrained op-

timization and is usually performed in the standard
Gaussian image of the original space. The FORM/
SORM algorithms involve several steps. First, the

space x of uncertain parameters X is transformed into
a new N-dimensional space u consisting of independent
standard Gaussian variables U: The original limit state
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g�x� � 0 then becomes mapped into the new limit state

gU�u� � 0 in the u space. Second, the point on the

limit state gU�u� � 0 having the shortest distance to the

origin of the u space is determined by using an appro-

priate nonlinear optimization algorithm. This point is

referred to as the design point or beta point, and has a

distance bHL (known as reliability index) to the origin

of the u space. Third, the limit state gU�u� � 0 is ap-

proximated by a surface tangent to it at the design

point. Let such limit states be gL�u� � 0 and gQ�u� � 0,

which correspond to approximating surfaces as hyper-

plane (linear or ®rst-order) and hyperparaboloid

(quadratic or second-order), respectively. The prob-
ability of failure PF (Eq. (15)) is thus approximated by

Pr�gL�U� < 0� in FORM and Pr�gQ�U� < 0� in SORM.
These ®rst-order and second-order estimates PF,1 and
PF,2 are given by [45±59]

PF,1 � F
ÿÿ bHL

� �17�

PF,2 � F
ÿÿ bHL

�YNÿ1
i�1

 
1ÿ ki

f
ÿÿ bHL

�
F
ÿÿ bHL

� !ÿ1=2 �18�

Fig. 11. Probabilistic results for a=W � 0:25, h=l � 0:2, ks � 0:5, and kn � 0:5 �E�s1� � 225 MPa).
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where

f�u� � 1������
2p
p exp

�
ÿ 1

2
u2
�

�19�

F�u� � 1������
2p
p

�u
ÿ1

exp

�
ÿ 1

2
x2
�

dx �20�

are the probability density and cumulative distribution

functions, respectively, of a standard Gaussian random

variable, and ki's are the principal curvatures of the

limit state surface at the design point. Further details

of FORM/SORM equations are available in Refs. [45±

59].

FORM/SORM are standard computational methods

of structural reliability theory. In this study, a modi®ed

HL±RF algorithm, described in Appendix A, was used

to solve the associated optimization problem. The ®rst-

and second-order sensitivities were calculated numeri-

cally by the ®nite di�erence method.

Fig. 12. Probabilistic results for a=W � 0:25, h=l � 0:2, ks � 0:5, and kn � 0:5 �E�s1� � 450 MPa).
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5.3.2. MCS

Consider a generic N-dimensional random vector X

which characterizes uncertainty in all load and system

parameters with the known joint distribution function,

FX�x�: Suppose that x�1�,x�2�, . . . ,x�L� are L realizations

of input random vector, X, which can be generated

independently. Rubinstein [60] provides a simple

method to generate X from its known probability dis-

tribution. Let g�1�,g�2�, . . . ,g�L� be the output samples of

g�X� corresponding to the input x�1�,x�2�, . . . ,x�L� that

can be obtained by conducting repeated deterministic

evaluation of the performance function in Eq. (16).

De®ne Lf as the number of trials, which are associated

with negative values of the performance function.

Then, the estimate PF,MCS by simulation becomes

PF,MCS � Lf

L
�21�

which approaches the exact failure probability PF

when L approaches in®nity. When L is ®nite, a statisti-

cal estimate on the probability estimator may be
needed. In general, the required sample size must be at
least 10=Min�PF,1ÿ PF� for a 30% coe�cient of vari-
ation of the estimator [60].

5.4. Probabilistic results and discussions

For the probabilistic analysis, it was assumed that
both the load and material properties were random.

Table 4 shows the means, coe�cients of variation

Fig. 13. Probabilistic results for a=W � 0:25, h=l � 0:2, ks � 2, and kn � 3 �E�s1� � 450 MPa).

M. Francis, S. Rahman / Computers and Structures 76 (2000) 483±506 499



(COV), and probability distributions of load and ten-

sile parameters. The mean values were chosen arbitra-

rily and these same values were used for the

deterministic FEA discussed earlier. However, the

COV and probability distributions of these variables

came from recently performed statistical characteriz-

ation of Type 304 stainless steel at 2888C (550 F) [61].

These random variables were assumed to be statisti-

cally independent. The weld-metal tensile parameters

were de®ned by specifying the values of ks and kn:
Hence, the weld-metal parameters are also random,

but they are perfectly correlated with base-metal par-

ameters. The variability in load was de®ned arbitrarily.

Fig. 14. Probabilistic results for a=W � 0:25, h=l � 0:2, ks � 2, and kn � 3 �E�s1� � 800 MPa).

Table 4

Statistical properties of random input for CCT weld specimen

Random variable Mean COV Probability distribution

E 200 GPa 0.05 Gaussian

a1 1 0.439 Lognormal

n1 3 0.146 Lognormal

a2
a 1 0.439 Lognormal

n2
a 3kn

b 0.146 Lognormal

s1 Variablec 0.1 Gaussian

a Perfectly correlated with corresponding base-metal proper-

ties.
b kn is deterministic and varies from 0.5 to 3.
c Arbitrarily varied.
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The deterministic parameters are: s01 � 300 MPa, and

n � 0:3:
Using FORM/SORM, the failure probability and

probabilistic characteristics of J were calculated for the

CCT weld specimen. For the sake of brevity, the

results for a small crack �a=W � 0:25� and small weld

width �h=l � 0:2� and for four extreme cases of
strength and hardening mismatch factors, i.e., (a)

ks � 0:5, kn � 0:5; (b) ks � 0:5, kn � 3; (c) ks � 2,

kn � 0:5; and (d) ks � 2, kn � 3, are presented here.

Consider the case of ks � 0:5, kn � 0:5, which rep-

resents a weld specimen undermatched with respect to

strength, but overmatched with respect to material

work hardening. Fig. 11(a) shows the failure prob-

ability, PF, for this weld joint as a function of fracture

initiation toughness, JIc, when the mean far-®eld ten-

sile stress is 225 MPa (small). Three plots generated

from probabilistic analyses based on tensile properties

of all-base, all-weld, and base and weld materials are

shown. A number of observations can be made. First,

the failure probabilities calculated by FORM compare
extremely well with the generally more accurate results

of SORM and MCS. Hence, the rest of the probabilis-

tic calculations can be based on FORM. Second, the

probability of failure decreases with JIc regardless of

what tensile properties are used and is expected. Third,

Fig. 15. Probabilistic results for a=W � 0:25, h=l � 0:2, ks � 0:5, and kn � 3 �E�s1� � 225 MPa).
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the failure probabilities from all-weld and all-base ana-

lyses are slightly higher and lower, respectively, than

those using both base and weld metal properties. The

comparison with the corresponding deterministic

results at s1 � 225 MPa, shown in Fig. 6(a), supports

this behavior. Finally, the failure probabilities from all

three analyses are close to each other Ð a trend also

supported by Fig. 6(a). Similar behavior is also

re¯ected in the PDFs of J obtained by all three ana-

lyses and are shown in Fig. 11(b). However, when the

mean far-®eld tensile stress is raised to 450 MPa

(large), Fig. 12(a) and (b) show the corresponding

results and an opposite trend is exhibited, consistent

with deterministic observations in Fig. 6(a). Also, due

to larger s1, the di�erence between the results calcu-

lated using all-base, all-weld, and base and weld metal

properties increases and are shown in both failure

probabilities and PDF of J.

For the case of ks � 2, kn � 3, which represents a

weld specimen overmatched with respect to strength,

but undermatched with respect to material work hard-

ening, Figs. 13 and 14 present the similar results of

failure probability and PDF for mean far-®eld tensile

stress of 450 (small) and 800 MPa (large), respectively.

They indicate a complete opposite behavior when com-

pared with the results of Figs. 11 and 12. Similar

Fig. 16. Probabilistic results for a=W � 0:25, h=l � 0:2, ks � 2, and kn � 0:5 �E�s1� � 450 MPa).
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trends were also found in the deterministic calculations
of J (see Fig. 6(d)).

Finally, Figs. 15 and 16 show the similar results of
PF and PDF of J for the truly undermatched
�ks � 0:5, kn � 3� and truly overmatched �ks � 2, kn �
0:5� welds, respectively. For the truly undermatched
case, the failure probability is extremely high when
only the tensile properties of weld are used. But, the

calculations using material properties of both base and
weld metals show that it is only slightly higher than
those using all-base properties. A completely opposite

behavior is shown for the truly overmatched welds.
But, in this case, the failure probabilities calculated
using both base and weld metals lie in the middle
between the results of all-base and all-weld analyses.

6. Summary and conclusions

A methodology was developed for predicting prob-
abilistic characteristics and failure probability of CCT
weld specimens subject to far-®eld tensile stress. It is

based on elastic±plastic analyses by ABAQUS to cal-
culate J-integral, statistical models of uncertainties in
loads and material properties, and standard compu-

tational methods of structural reliability theory for
probabilistic analysis. Eighty-one deterministic FEAs
were performed for a wide variety of crack size, ma-

terial mismatch factors, and weld geometric parameters
to develop approximate equations for the J-integral
and were subsequently applied for probabilistic frac-
ture evaluations. FORM/SORM and Monte Carlo

methods were used to study the e�ects of mismatch
factors on the failure probability. The results show
that:

. The J-integral for a CCT weld specimen can be sig-
ni®cantly a�ected by the mismatch factors on ma-
terial strength and work-hardening parameters.

Hence, tensile parameters of both base and weld ma-
terials should be accounted for when calculating J.
This is the same conclusion reached by many

researchers in the past.
. The material mismatch factors can signi®cantly

a�ect the prediction of failure probability and other
probabilistic characteristics of J-integral. The failure

probabilities can be predicted by FORM with a very
good accuracy when compared with generally more
accurate results of SORM and MCS.

. For truly undermatched and overmatched welds, the
failure probabilities calculated by tensile properties
of all-base, all-weld, base and weld metals can vary

signi®cantly.
. For mixed undermatching and overmatching welds,

the failure probabilities calculated by tensile proper-

ties of all-base, all-weld, base and weld metals
strongly depend on the load intensity.

The authors are currently developing a similar prob-
abilistic methodology for analyzing more realistic
structures, such as pipe welds subject to bending, ten-

sion, torsion, and combined loads. The results will be
published elsewhere.
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Appendix A. A modi®ed HL±RF method

In FORM/SORM, the main e�ort is calculating the

reliability index, bHL � ku�k, by ®nding the design
point, u�, which can be formulated as a constrained
optimization problem de®ned by

min
u2RN

kuk

subject to gU�u� � 0

�A1�

where RN is an N-dimensional real vector space, u 2
RN is the space of standard Gaussian vector, U 2 RN,
and gU�u�:RN 7ÿ4R is the transformed performance

function in u-space, and

kuk�def

������������XN
i�i

u2i

vuut �A2�

is the Euclidean L2-norm of the N-dimensional vector,

u: A modi®ed HL±RF method, originally proposed by
Hasofer and Lind [45] and later extended by Rackwitz
and Fiessler [48] and modi®ed by Liu and Kiureghian

[62], is one of the most widely used and robust optim-
ization methods to solve the reliability problem in
Eq. (A1) [46,62]. The original HL±RF method involves

an iterative algorithm given by the following recursive
formula

uk�1� 1

krgU�uk �k2
h
rgU

ÿ
uk
�T

ukÿgU
ÿ
uk
�i
rgU�u� �A3�
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where, uk is the vector at kth iteration, r �
f@=@u1,@=@u2, . . . ,@=@uNgT is a vector of gradient oper-

ators, and rgU�uk� is the gradient of scalar ®eld,
gU�uk�: The algorithm proceeds iteratively until conver-
gence is achieved, i.e., when

juk�1i ÿ uki jRecon, for all i �A4�

and

jgU�u� �j � jgU
ÿ
uk�1�jRecon �A5�

where econ is a small control parameter assigned by the
user. From the past experience of authors, a value of
econ � 10ÿ4±10ÿ3 usually yields satisfactory estimates
of bHL:
To improve the robustness of Eq. (A3), Liu and

Kiureghian proposed a non-negative merit function,
m�uk�, which is de®ned as [62]

m
ÿ
uk
�
� 1

2






ukÿ rgU�u
k �Tuk

krgU�uk �k2rgU
ÿ
uk
�






2

�1
2
cgU

ÿ
uk
�2 �A6�

where, c is some scalar positive constant. The merit

function in Eq. (A6) is a convenient guide for selecting
step size, since it is a function of quantities already
known at the current iteration point, uk: This modi®-

cation greatly improves the convergence (although not
strictly guaranteed) of the original HL±RF method
[62].
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