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Abstract—This paper proposes a global hysteretic model and establishes analytical relationship between
the parameters of local and global hysteretic models for seismic analysis of multi-story shear type
buildings. In both models, the analysis involves hysteretic constitutive laws commonly used in earthquake
engineering to represent restoring forces and nonlinear dynamic analysis to estimate the seismic response
of structural systems. However, when the global model is used, the dimension of dynamic structural
analysis becomes much smaller, and hence, the computational effort can be reduced significantly. From
the proposed relationship between these models, the local hysteretic behavior and damage can be
recovered from analysis based on global models. Several numerical examples based on nondegrading and
degrading hysteresis of both single- and multi-degree-of-freedom shear beam systems are presented to
illustrate and validate the proposed methodology. The results suggest that the global model can provide
accurate estimates of seismic response and damage characteristics of structural systems.

1. INTRODUCTION

The conventional seismic analysis of discrete, non-
linear structural systems is based on a concentrated
plasticity model, which describes the local restoring
force characteristics at the critical components of
interest. For building frames, these restoring
force-deformation relationships are defined locally at
the member level for shear type buildings (e.g.,
column shear force versus refative column end dis-
placement) or at the cross-section level for general
yielding frames (e.g., bending moment versus curva-
ture or rotation at the end joints of a beam-column).
Given a hysteretic model, the parameters of such
local restoring forces are usually estimated by exper-
imental calibration. Using this local mode! with the
restoring forces adequately defined at all critical
components, the equations of motion can be directly
integrated to yield various structural response charac-
teristics. However, the inconvenience with regard to
the applicability of a local model as a practical
analysis tool for large structural systems is not of a
minor nature. This is obviously because of the large
dimension in which the stress analysis has to be
performed. The computational effort is still signifi-
cant and time-consuming even with the recent devel-
opment of numerical techniques and computational
facilities. These issues become more significant when
numerous deterministic analyses are required in a full
probabilistic analysis. It is thus desirable to perform
structural dynamic analysis on some reduced dimen-
sion to lessen the computational burden without any
serious loss of accuracy in the results. In principle,
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this can be achieved by using a global model. which
describes the restoring force-deformation character-
istics at a global level (e.g., story shear force versus
relative story displacements for shear type buildings).
But, when such a model is to be used, it is required
to know a priori the parameters which govern the
global hysteretic characteristics of structural sys-
tems. Currently, there are no rational methodologies
available for determining these giobal parameters.

In addition, some of the parameters of the local
restoring forces are usually related to known physical
properties, such as the strength and/or stiffness of
structural components. Any change in the values of
these time-variant parameters due to a potential
seismic event is thus indicative of induced damage
due to possible structural degradation. This suggests
that conceptual models of local damage indices can be
developed from the known state of local parameters.
During a seismic event, such local indices not only
describe the progression of structural damage for
seismic performance evaluation, but also provide a
unique characterization of the structural state due to
one-to-one correspondence with the parameters of
the local restoring forces. Traditionally, however,
seismic damage tolerance is evaluated by global
damage indices which are obtained from heuristic
combinations of local damage measures. Numerous
forms of such global indices are reported in the
current literature of earthquake engineering [l, 2).
Most of them are defined quite arbitrarily without
accounting for the mechanistic relations between
local and global damage measures. Thus, the current
measure of global damage (i) can not characterize the
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structural state uniquely, (ii) provides only a crude
estimate of structural performance during seismic
events, and (iii) can not be used to assess structural
vulnerability to future loadings 3, 4].

This paper develops a global hysteretic model and
establishes an analytic relationship between the par-
ameters of the local and global hysteretic models for
the seismic analysis of multi-story shear buildings.
The method of analysis is based on (i) a state-of-the-
art endochronic model [3, 5-9] for restoring forces
and (ii) nonlinear dynamic analysis for estimating the
structural response to earthquakes. Both nondegrad-
ing and degrading systems are considered. Several
numerical examples on single- and multi-degree-of-
freedom systems are presented to illustrate and vali-
date the proposed methodology.

2. SHEAR BEAM MODELS

Consider the shear beam model of n-degree-of-
freedom systems shown in Fig. 1(a). The second order
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differential equation representing the equation of
motion of the kth mass (floor) exhibited in Fig. 1(b)
is given by (k = 1 for the first floor and k = » for the
top floor)

& 8« 8k
Z%(l)+W([)+;k~(l_6kn>7k'=0‘ [¢))]

j=1

where U, (¢) is the displacement of the kth mass with
respect to displacement of the (k — 1)th mass (except
when k = 1), m is the kth mass, g, is the kth general
restoring force, W(r) is the external dynamic
excitation representing ground acceleration due to
earthquakes, # is the total number of masses (floors),
and J,, is the Kronecker delta, ie., §,,=1fork =n
or zero otherwise. When the (k — 1)th equation is
subtracted from the kth equation (except when
k =1), the resulting decoupled equation takes the
form
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Fig. 1. Shear beam idealization of framed structures.
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with the initial conditions U,(0)=0 and U,(0)=0
in which once again §,,, J,, are Kronecker deltas
introduced for the equation to be valid when & =1
and k =n.

in which 6, is a constant rate of local deterioration.
Note that the degradation law in eqn (5) 1s defined
here quite arbitrarily. It is obtained from one of the
many choices available in the current literature. Fur-
ther study with more realistic buildings needs to be
undertaken to make decisions regarding the proper
selection of deterioration laws. Following the state
vector approach with the designation of state
variables  6,(t) = U,(¢), 6,,(¢)=U,(t). and
O () =Z (1), ..., 0z n, (1) = Z,,, (1) at the kth
story, the equivalent system of first order differential
equations corresponding to eqns (2) and (4) becomes
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3. LOCAL RESTORING FORCE

Suppose that the kth story of a building consists of
n, individual columns (Fig. Ic) each of which may be
associated with widely different stiffness and strength
characteristics. The total restoring force g, at the kth
story can be obtained from

. i}
g =caUd)+ Z ok Ui (1)
=1

i

+ ), (1 — ok Zy() (3)
/=1

in which ¢, is the kth constant damping (viscous)
coefficient, a,, is the parameter defining the partici-
pation of the linear restoring force, &, is the stiffness,
and Z,,(t) is the hysteretic (auxiliary) variable, all of
which are associated with the /th column of the kth
story. It is assumed here that the evolution of Z,,(7)
can be modeled by a first-order nonlinear ordinary
differential equation [6-9)

Zu(t) = Au(DU(1) = Bl Ue(0)]
X | Zi (DM ' Zy (1) = ya U (D1 Zi (D%, (4)

where B, v, and g, are the time-invariant parameters
and A,,(1) is the time-varying parameter of the local
hysteretic restoring force model. The parameter
A,/(t) which controls column stiffness and strength
degradation is assumed to follow an energy-based
deterioration rule given by [10]

Ay(t) = A,0)=6,, JA(I — ki Z, dU()  (5)

which can be recast in a compact form
6() =h@(1), 1; A1) (7

with the initial conditions 6(0)=0, where
0 ={ .., 0u(1), 0(1), B5(t), ., Biae (1), }T
is a real (2n + Zj_ | n,)-dimensional response state
vector, A(t) = {..., Ay (1), Ay (1), ..., A, (1), ... )T
is a real (X} ., n,)-dimensional damage state vector
representing the state of the time-variant parameters
in the local restoring force, h(-) is a vector function,
0 is a null vector, and the superscript T is a symbol
for the transpose of a general vector. At any time ¢
during a potentially damaging seismic event, A(r)
characterizes uniquely the state of structural
damage due to any stiffness degradation or strength
deterioration.

4. GLOBAL RESTORING FORCE

Suppose that the total restoring force g, at the kth
story can also be modeled globally as

&= U+ etk U+ (1 —aPkFZX() 8)

in which «f is the global parameter defining the
participation of the kth linear restoring force, k} is
the kth story stiffness, and Z#(¢) is the single kth
global hysteretic variable, the evolution of which
can be modeled by a similar first-order nonlinear
ordinary differential equation

ZEO) = AFOU) = BHUONZE O 22 (1)

—yEUOIZEOIA, 9)
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where B, y¥, u¥ are the time-invariant parameters
and A4 ¥ (r) is the time-varying parameter of the global
hysteretic restoring force model. The parameter
A¥(t) which now controls story stiffness and
strength degradation is expected to follow a similar
degradation rule

FO)=A4F0)=6% J(l—at)kle‘(!)dUk(f) (10)

in which 6% represents a constant rate of global
deterioration. Following the designation of state vari-
ables 6%(:)=U,(1), 64(N=U,(t) and O4())=
Z ¥(t), the equivalent system of first order differential
equations corresponding to eqns (2) and (9) becomes
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which can be recast in a compact form

G%(1) = h*(O0*(), 1; A*(1)) (12)

with the initial conditions 6*(0)=0, where
0% (t)=1{...,08(1),05(),05(),...}7 is the 3n-
dimensional response state vector, A*(t)=
{A¥(1), A2 (t),...,AX(0)}" is the n-dimensional
damage state vector representing the state of time-
variant parameters in the global restoring force, and
h*(-) is a vector function. Note that in both local and
global models, the dynamic structural analysis can be
viewed as a nonlinear initial-value problem with the
system of the differential equations described above.
But, the dimension of 6*(¢) is much smaller than that
of 6(¢), particularly when the total number of
columns n, for all the stories k=1,2,...,n is
very large. Hence, when the global model is used,
the computational effort in solving the initial value
problem can be reduced significantly. Application of
the global model, however, will require estimation
of its parameters from the known calibrated
parameters of the local model. They are discussed in
the forthcoming section.

5. RELATIONSHIP BETWEEN LOCAL AND GLOBAL
PARAMETERS

Consider the kth total restoring force g, in eqn (3)
obtained from the local restoring forces. Following
simple algebra, it can be shown that

is the stiffness-based weighting coefficient. Further
simplification of above equation can be accomplishec
by noting that

Z Wiy Ziy (1)

I=1

W w as
Z Wi Zi(t) Z Wit @y
= =

=1

when «,,— 0 or &, does not vary within the column:
at a given story. In earthquake engineering, this is not
a significant limitation as the quantity «,,, which alsc
represents the ratio of post- to pre-yield stiffnesses, i
indeed small for realistic material models. Recen’
calibration with the laboratory data reported in [11
suggests that oy, =0.04 for steel and «,=0.02 fo
reinforced concrete. Thus, with this approximation.
eqn (13) takes the form

) " "
&=aU)+ Z Wiy Qg Z kyU(1)
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m " e
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which when compared with the kth total restorin;
force g, in eqn (8) obtained from the global restorin;
force gives

ny I
| — * __
Ay = Z Wi Qs k= Z ki
i=1 =1
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and

"

Zr)= Z Wi Zu(1).
/=1

an

5.1. Time-invariant parameters

Consider the rate equation of the global hysteretic
variable Z#(t) in eqn (17) which can be expanded as
follows:
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For an earthquake type of loading. it is however,
feasible to search for the approximate evaluation of
the above global parameters and still treat them as
time-invariant hysteretic parameters. Two extreme
cases based on the magnitude of the seismic intensity
can be perceived. When the intensity of scismic noise
is not extremely large, the time span during which
large differences in the values of Z,,(1) may occur can
be neglected. This will allow approximation of Z,,(r)
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3

(18)

Comparison of the above equation with eqn (9)
suggests

”
BE=th, A0 =Y wady (D) (19)
/=1
and
"
Y wuBul ZuO1H =1 Z, (1)
Br= 1=
k g ks — 1 g ’
l Z Wi Zy(t) z woZy(t)
I=1 =)
i
WiVl Zig ()|
yE=" (20)

i

Z Wi Zy(t)
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Note that the expressions for the global parameters
in eqn (20) involve local hysteretic variables Z,,(¢) in
both numerator and denominator which in turn may
be dependent on external load parameters. This has
the immediate effect that the global parameters ¥
and y? are no longer time-invariant as their counter-
parts are at the local level. Thus, when a global
modeling is adopted, the exact determination of these
parameters is not possible due to lack of a priori
knowledge regarding the evolution of local hysteretic
variables.

to be a common time function (say, Z,(t)) thus
simplifying eqn (20) to

ik

g
B = z wuBy and y¥=~ Z WirVie- Q2
I=1

=1

On the other hand, when the intensity of seismic
noise is very large, it can be argued that Z,(r)
assumes its maximum value Z;,.,(0) most of the
time during ground motion. The largest value
Zuma(0) can be easily obtained by substituting the
expression for Z,(t) in eqn (4) into the following
equation of maximization

Zy(t)
00 4= Ty~ @2

N
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Fig. 2. A sample of modulated gaussian white noise (G, = ).



744 S. Rahman and M. Grigoriu
500
U
250
o]
-250
Leocal Model ———— Lacal Modet
-20 Global Model (8, =y, =0.027) “500 [ . Giobas Model (B -y’ =0.027)
-+ Global Model (8] =y,=0.03) t —— - Global Model (8} =~y,~0.03) t
-30 -750
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(a) Displacement and Velocity Response
0.24 B. 0.10 y.
1 1
0.18 0.08
0.12 I
0.06 s IL. 0.06
1 T v M
0.00 ' l ' 0.04
-0.06
0.02
-0.12 t t
-0.18 0.00
0 1 2 3 4 5 6 [} 1 2 3 4 5 6
(b) Exact Globai Parameters from Local Modal
15000 T
Q
10000
5000
0
-5000
-10000 Local Model
- Global Modet (8~
S15000 [ __ " Giobat wedel (B, v, ~0.03) t
-20000
0 1 2 3 4 5 6
(c) Hysteretic Variables and Total Restoring Forces
Fig. 3. Time history of various responses for nondegrading system with G, = 1.0 x 10°.
giving {10] Z , [ AA/(O)]
KVt
s =1 Bkl"‘?‘u_ 24)
o= I A (0) Upe\
Ay(2) i \ < Z Wiy Pl AL )
Zimax (1) = [ " ] . (23) /<1 B+ Vi
Bur+ vu
. ) The two sets of estimates of 8¢ and y? given above
Following = the replacement of Z,(r) in eqn apply to two extreme cases of load intensity and can

(20) by Zymi(0) in eqn (23) at + =0 along with
the observation that at any time ¢ the signs of

Z,(t) are the same, another estimate of the
above  parameters can be obtained as
follows:
& Au(O)]
Wi
B~ ; “ “[5&/*‘7“
K _< i [Au(o) :Ilm)m
W,
i=1 K B+ vu
and

be used as some sort of bounds for the determination
of the above parameters. When the strength of the
noise is somewhat intermediate, the appropriate
values of these parameters can be interpolated from
these bounds.

5.2. Time-variant parameter

Consider the infinitesimal total hysteretic energy
dissipated at the kth story from the local model [eqn
(5)] which can be expanded as



Local and global models for nonlinear seismic dynamics 745

1000 1000

1000
500

-500
-1000

3000
1500

-1500
-3000

5000 3 5000 (o 5000 )
2500 f *° 2500 [ '3 2500} °?
0 0 )
-2500 -2500 -2500
U| U‘ Ul

-5000 -5000 -5000
-30 20 -10 © 10 20 30 -20 -10 © 10 20 -30 -20 10 O 10 20

7500 3 7500 T 7500 T
azsop ¢ arso | 4 arsot ¢
0 0 0
37 -3750 -3750
3750 u, u, u,

-7500 7500 -7500
-3¢ 20 10 O 10 20 -30 -20 -10 o 10 20 -30 -20 10 0 10 20
15000 15000 a 15000
7500 7500 ' 7500
[+] 0 0
-7500 -7500 u -7500
-15000 -15000 1 15000
-30 -20 -10 O 10 20 30 20 10 O 10 20 30 -20 -10 O 10 20
(a) Local Model (b) Global Model (c) Global Model
(B, = v, =0.03) (6 = v, =0.027)
Fig. 4. Hysteretic loops for nondegrading system with Go=1.0 x 10°.
"
¥ (1 — o)k Zy (1) dU (1) due to similar considerations as in eqn (15). From eqn
=1 (19) with A4,,(1) in eqn (5),
n
e Z Wiy Zyy (1) m
R S SV B ArO =3 ol 40 =5, (1=,
=1 3 ny =1
Z Wi Zu(t) Z W%y
i=] =1

” e Xkuzu(f)dUk(f):,
x Z ki Z Wi Z () dU (1)
(=1

=1

=Ar0) - Z Wit 5A“
=1

(l - Z Wkl“k/) z kg z Wi Z, (1) dU (1)
l=] i=1 =1
=(l—a})k}ZE(1)dU(r) 25) Xf(l =)k Zy (1) dUL(1) (26)

CAS 53,3—R



746

400
U

200

0

-200
== Local Mode!

-400 F (;l::-lllodol(ﬂ',-v:-ﬂ.ﬂl?) t
———- Global Model (8;=y,=0.03)

-600

0 1 2 3 4 5 6

S. Rahman and M. Grigoriu

4000 =
U1
2000

0

-2000

———— Local Model

-4000

-6000
] 1 2 3 4 5 6

(a) Displacement and Velocity Response

0.10 —= 0.10 —
0.08 B, 0.08 Vi

0.06 0.06

0.04 h‘ M 0.04 fy W i

0.02 LRRIAR t 0.02 X
0.00 0.00

0 1 2 3 4 5 6

0 1 2 3 4 5 6

{b) Exact Global Parameters from Local Model

0 1 2 3 4 5 6

40000

Q,.qQ
20000

0
-20000
Local Model

-40000 I —-—— Gisbat Model (B, =y, =0.027)

———- Global Model (8;=y’=0.03) t
-60000 +

0 1 2 3 4 5 6

(c) Hysteretic Variables and Total Restoring Forces

Fig. 5. Time history of various responses for nondegrading system with G, = 1.0 x 10"

which can be compared with eqn (10) and the dissi-
pated energy in eqn (25) to yield

Zw%ﬁf%mjam@mm
‘/=l

o% 27)

4

Z (- ak/)kli‘Zkl(()[}A(l)dr

t=1

in which the order of integral and summation oper-
ators is interchanged in the denominator, and
dU, (1) = U (1) dr. Again, the exact evaluation of 6%,
requires information regarding the time evolution of
local hysteretic variables. Following similar consider-
ations as in eqn (21) with small seismic intensity, the
above equation reduces to

Z Wklrs,{“(l L
(=1
o=

Z (1 — a3 )k,

=1

(28)

When a, is small or if it does not vary within the
columns at a particular story, a more simplified form
of eqn (28) results

"
« _ )2
0% =Y wjré,,

I=1

(29)

When the intensity of the nosie is large, similar
arguments given earlier for time-invariant parameters
may be applied to obtain another equation for 6%
However, such an estimate may not be reliable
in degrading systems with large seismic intensity.
This is because as time advances, A4,,(1)—0, and
Zitma (1) = [A (/B + 7)) — 0 at a much faster
rate due to the rapid loss of stiffness and/or strength.
At any time during ground motion, it is difficult to
anticipate the variation of Z,(1) among various
columns.
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6. RECOVERY OF LOCAL HYSTERESIS

Once the global parameters are estimated from the
known values of local parameters, practical seismic
analysis can be performed based on a global restoring
force model. It is however, desirable to recover the
local hysteretic behavior of structural systems. This
will allow determination of local damage distribution
which is uniquely related to the global model.

Consider the partitions of local and global re-
sponse state vectors 0(r)=1{6,(1),0,(1)}" and
0%(t)={0F(1),02(1)}T in which 6,()=0F()=
{..,Ut), Ut),...}T is the 2n-dimensional
traditional state vector (in both local and global
models) comprising the relative displacement
and  velocity of each story mass, and

O()={ .., Zy(t),..., 2, (¢),...}7 and 02(1) =
{...Z¥). ... )7 are (Z;_, n,)- and n-dimensional
state vectors consisting of additional hysteretic vari-
ables corresponding to the local and global models,
respectively. Suppose, at any time ¢, the state vector
0*(r) can be obtained by solving the global initial
value problem in eqn (12). Following extraction of
the component state vector 6*(r) from the global
solution @*(r), it can be substituted for 8,(¢) in the
local initial value problem of eqn (7) to yield a
solution for the state vector 8,(r) of the local hys-
teretic variables. This way, the local hysteretic
characteristics and damage of a building frame can be
recovered following structural analysis based on the
global model.



748 S. Rahman and M. Grigoriu

20 500 -
U 0,
10 250
0 0
-10 -250
Local Madet
N — ;.I::Inl.‘:::l.l(a;-v]- loz7) -500 Global Madel (5, =y, ~0.027) t
30 — =< Global Model (8, =y, =0.03) 750 - Global Model (8]
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(a) Displacement and Velocity Response
6.30 < 0.10 - sc08 ’
02e | B oos Y1 seo0 | O,
0.18 0.08 4€E-00
0.12 3E-08
0.08 il i 0.04 TRRTRURIAT TR THI IPEARTVU| QPPN
0.00 1 T kl .02 1€-08 T
-0.08 0.00 o
1 2 3 a 6 L] ] 1 3 4 & [ o 1 2 3 4 5 L]
(b) Exact Globa! Parameters from Local Model
20 15000
Z” 10000
1o 5000
0
0
-5000
.10 -10000 Locat Model
— %,. %u t ~15000 Global Model (8 =y =0.027)
- g13 N 14
-20 “ -20000

0 1 2 3 4 5 6

(c) Hysteretic Variables and Total Restoring Forces

Fig. 7. Time history of various responses for degrading system with G, = 1.0 x 10°.

7. NUMERICAL EXAMPLES

In this section, several numerical examples are
presented to illustrate and validate the proposed
methodology. First, a single-degree-of-freedom sys-
tem with both nondegrading and degradiqg restoring
forces is investigated to evaluate the adequacy of the
global hysteretic model in predicting various seismic
response characteristics. Second, a multi-degree-of-
freedom system with a more realistic design and
earthquake loading is studied to compare damage
measures by both local and global hysteretic models.

The nonlinear systems of first-order ordinary
differential equations in the initial-value problems of
both local [eqn (7)] and global {eqn (12)] models are
solved by direct numerical integration. Various inte-
grators such as the Runge-Kutta method [12, 13]
Adam’s or Gear's method [14, 15], the Bulirsch-Stoer
extrapolation method [16], and others can be applied
to obtain the solution. The sclection of a particular
method, however, depends on its computational
efficiency, numerical accuracy and stability, and the
‘stifiness’ of the nonlinear system of differential

equations. In this study, several numerical schemes
arc tested and finally the fifth- and sixth-order
Runge-Kutta integrators, which are summarized in
the Appendix, are determined to be satisfactory and
are used for structural analysis in this paper.

1.1. Single-degree-of-freedom systems

Consider a one-story (n = 1) shear building with
mass m, = |, damping coefficient ¢, = 0 which con-
sists of four different columns with the stiffnesses
k=100, k;; =200, k=300, k,=400, and the
strengths  F =960,  F,=2400, F, = 4800,
Fi4=9600. From the above physical properties with
the parameter identification procedures proposed

in [11], the time-invariant parameters of the local
model are: p, =1, B, =y,=005 ,= ¥ =0.04,
Bis=7,=0.03, Ba=74=002, ard A4,00)=1,

o, =0.04, for all / =1, 2,3, 4. Note that the stiffness
and strength characteristics are assumed to be widely
different among the columns. Both nondegrading
(84, =0) and degrading (d,,, # 0) systems are con-
sidered. The above structural and material properties
provide a complete local characterization of the
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Fig. 8. Hysteretic loops for degrading system with G, = 1.0 x 10°.

nondegrading system. When the degrading system is
considered, it is assumed to follow the deterioration
rule in eqn (5), and the values of the additional
parameters 6, for all the columns are taken as
5.0 x 107¢ in this study.

Suppose the nonlinear behavior of the building
system can be approximated by a single hysteretic
variable describing the restoring force for the build-
ing system itself. The time-invariant parameters cor-
responding to this global model can be calculated
from eqns (17) and (19) as k¥ =1000, A¥(0) =
l,af =0.04, and p} = 1, respectively. Two different
estimates of Y and y! are obtained following
eqns (21) and (24). They are found to be

F=yr=003 and Bf=yF=0027, respectively.

Obviously when the system is nondegrading
(04, =0), the global parameter §% =0 feqn (27)
or (28)). For degrading system, the global rate of
degradation 6}, is computed to be 1.5 x 107° by using
eqn (28) or (29).

A sample of modulated Gaussian white noise of
duration 6 s with a one-sided power spectral intensity
G, scaled to unity is shown in Fig. 2. This simulated
time-series multiplied by varying levels of intensity
Gy=1.0 x 10°and 1.0 x 107 are used as deterministic
inputs to the single-degree-of-freedom nonlinear
oscillator.

7.1.1. Nondegrading system. Figure 3(a) shows the
time evolution of the relative displacement and
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velocity of the oscillator due to the deterministic
forcing function in Fig. 2 with Gy=1.0 x 10°. The
results of both local and global hysteretic models with
two different estimates of 8 and y} are shown in the
figure. Excellent agreement between these models is
obtained irrespective of the approximations in eqns
(21) and (24). No meaningful difference in response
is noted due to the closeness of the bounds of the
estimated global parameters. Also shown in Fig. 3(b)
are the exact time variations of  and y ¥ in eqn (20)
in which the local hysteretic variables Z,(t) are
obtained following an analysis based on the local
model. It clearly indicates the accuracy of the esti-
mated global parameters f} and y} from the pro-
posed equations. The evolution of Z,,(t) mentioned
above is shown in Fig. 3(c) which confirms the
previous anticipation of a negligible time interval
during which Z;(¢) are different. Accordingly, eqn
(21) provides a simpler but useful approximation for
global parameters. Figure 3(c) also shows the evol-
ution of the displacement dependent story restoring
forces

Q)= é 9u(1)
with
qu(1) = ayk, Uy (1) + (1 — o)k Z,(1)
and
QW) =atkrUi()+ (1 —aP)kFZr (),

which are obtained from the local and global models,
respectively. Again, very good agreement between the

S. Rahman and M. Grigoriu

Figure 4(a) exhibits the plots of restoring forces
q,,(t) and Q,(¢) versus displacement U, (¢) which are
obtained from the local model thus providing hys-
teretic loops for individual columns and system itself.
For comparison with the results of the global model,
Figs 4(b) and 4(c) show similar kinds of plots of
restoring force QF(+) and the recovered column
restoring  forces  gf(1) =0,k U (0} + (1 — )
k,,Z%(t) in which the conventional state variables
U,(t) and U, (¢) are calculated from the global model
[eqn (12)] and the recovered local hysteretic variables
ZY(t) are obtained by directly integrating eqn (4).
They all indicate that the global model with both
estimates of parameters ¢ and y} can accurately
predict both the local and global hysteretic character-
istics of structural systems.

Figures 5 and 6 show similar sets of plots of various
responses for a seismic input in Fig. 2 with a larger
intensity of G, = 1.0 x 107. The results of the global
model with both estimates of parameters 8 and y ¥
are found to be quite satisfactory when compared
with those obtained from the local model. However,
when the intensity is very large (G, = 1.0 x 10), the
response characteristics due to global models with
estimated parameters ¥ =y¥ = 0.027 are found to
be superior to those obtained with f¥ =y¥ =0.03.
This is due to the fact that for a significant amount
of time the values of Z,(7) as obtained from the local
model and exhibited in Fig. 5(c) are equal to
Zyman(0) = [A4,,(0)/(By + 7,)]"". Due to the close
proximity of the bounds, however, the results based
on fif =yt =0.03 are still found to be reasonably
good.

7.1.2. Degrading system. Figure 7(a) exhibits the
time evolution of the displacement and velocity re-

results of both models is obtained. sponses of the degrading oscillator for the
Table 1. Column properties and hysteretic parameters of local model for a five-story building frame
Story Column Stiffness &, Strength

(k) ) (kN/mm) (kN) A,(0) Bu Yas Hy [ Y
I 1 19.22 91.23 ! 0.064 —0.021 2 3.00E -5 0.02
2 46.89 272.53 1 0.043 —0.014 2 3.00E-5 0.02

3 46.89 272.53 ! 0.043 -0.014 2 300E-5 0.02

4 19.22 91.23 1 0.064 —-0.021 2 3.00E-5 0.02

2 1 19.22 114.45 I 0.041 —-0.014 2 3.36E~5 0.02
2 30.78 22436 1 0.027 —0.009 2 336E-5 0.02

3 30.78 224.36 1 0.027 —0.009 2 336E-5 0.02

4 19.22 114.45 1 0.041 -0.014 2 336E -5 0.02

3 1 19.22 129.44 I 0.032 —-0.011 2 3.54E -5 0.02
2 19.22 161.82 ! 0.021 -0.007 2 3.54E -5 0.02

3 19.22 161.82 ! 0.021 —0.007 2 3.54E-5 0.02

4 19.22 129.44 1 0.032 —0.011 2 3.54E -5 0.02

4 1 11.34 68.63 1 0.039 —-0.013 2 3.36E -5 0.02
2 19.22 142.42 l 0.026 —0.009 2 336E-5 0.02

3 19.22 142.42 1 0.026 —0.009 2 336E -5 0.02

4 11.34 68.63 1 0.039 —0.013 2 3.36E~5 0.02

5 1 11.34 48.17 1 0.080 —-0.027 2 3.54E -5 0.02
2 11.34 58.94 I 0.053 —0.018 2 354E -5 0.02

3 11.34 58.94 1 0.053 —0.018 2 354E -5 0.02

4 11.34 48.17 1 0.080 —0.027 2 3.54E-5S 0.02
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Table 2. Hysteretic parameters of global model for a five-story building frame

Story kr
(k) (kN/mm) Bt Vv ud AY 3% al
1 132.22 0.049 —0.016 2 1 8.85E—6 0.02
2 100.00 0.032 —0.011 2 1 88SE—6 0.02
3 76.88 0.026 —0.009 2 I 8.85E -6 0.02
4 61.12 0.031 -0.010 2 1 885E—-6 0.02
5 45.36 0.067 —0.022 2 1 8.85E—-6 0.02
deterministic input in Fig. 2 with intensity eqns (20) and (27) and the hysteretic variables Z,{t)

Gy = 1.0 x 10°%. The results are compared again with
those obtained from the global models with two
different estimates of f¥ and y¥ as discussed earlier.
As noted in the nondegrading systems, excellent
agreement between the results of the local and global
models are also obtained here for degrading systems.
The exact time evolution of B¥, y¥ and 6% in

obtained from the local model are also shown, in Figs
7(b) and 7(c), respectively.

Figure 7(c) also shows the time evolution of restor-
ing forces Q,(r) and Q(¢) obtained from the local
and global hysteretic models. These story level restor-
ing forces along with the column restoring forces
qu(t) and gf(t) are also plotted against the
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Fig. 9. Damage indices from seismic analysis of a five-story building frame.
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displacement U, (¢) in Fig. 8 providing various hys-
teretic loops. The results suggest that the global
model with appropriate parameters can predict the
hysteretic structural response of degrading systems
with very good accuracy.

7.2. Multi-degree-of-freedom systems

Consider a five-story building frame designed ac-
cording to the Uniform Building Code [17] for seis-
mic zone-4. The building has four columns (n, = 4) at
each story and is idealized as a five-degree-of-freedom
shear beam system with one degree of freedom per
story. The Ilumped masses are nm=m=
my=my=0.0898 kN sec> mm~! for the first (bottom)
to fourth stories and mg = 0.0762 kN sec’mm~"! for
the fifth (top) story. The viscous damping coefficients
are ¢, = 0.844 kN secmm™', ¢, = 0.638 kN sec mm !,
¢;=0491 kN secmm™', ¢, = 0.390 kN seccmm~* and
¢5 = 0.288 kN sec mm~' for the bottom to top stories.
The damping is assumed to be proportional to the
initial stiffness matrix and the values of the above
damping coefficients correspond to 3% of critical for
the first mode. Table { provides the lateral stiffness
and strength properties of the columns at each story
and the parameters for the local hysteretic model.

Suppose the nonlinear behavior of this frame can
be approximated by a single hysteretic variable for
each story describing the global restoring force at that
story. From the parameters of the local model in
Table 1, the global parameters can be estimated based
on eqns (17), (19), (21) and (28) proposed earlier.
Table 2 provides these estimated values of these
global parameters for each story.

In order to evaluate the global model, this five-
story building frame is subjected to earthquakes to
determine the structural damage predicted by both
local and global models. A classical seismogram of
the 1940 EI Centro (NS component) earthquake with
varying peak ground accelerations (PGA) is used as
a deterministic input to this system. The above
ground acceleration with scaled PGA equal to 1.0g
(1.0 g =9.81 m/sec’) is shown in Fig. 9(a).

A major objective of seismic design is the gener-
ation of structures that can survive earthquakes with
a limited amount of damage. It has been proposed to
evaluate structural performance by damage indices
defined as scalar functions whose values can be
related to particular structural (physical) damage
states. In this paper, simple damage indices are
defined based on the state of degrading parameters of
hysteretic models (local and global). For example,
consider the normalized damage indices /4:‘(1) and
A, (1) defined as

wy, A; (1)

Wi A4, (0)

RN
-7

(30)

in which 4¥(r) and A,(t) are the time-variant de-
grading parameters of the local and global restoring
forces. In both cases, A} (1) and A,(s) represent the
damage indices at the kth story obtained from the
local and global models, respectively. Note that these
indices are not calibrated to field data on the
observed damage of actual building frames. How-
ever, from the values of A2(¢) and A (1), the corre-
sponding stiffness and strength degradation can be
evaluated.

Figures 9(b)—(f) show the time evolution of the
damage indices A¥(r) and A, (1) at the kth story
(k =1,2,...,5) which is obtained for the determinis-
tic seismic ground acceleration in Fig. 9(a) with
various PGA =0.2g, 0.4g and 1.0g. Comparisons
of results associated with local and global constitutive
law suggest that the global hysteretic model with its
parameters estimated from the proposed equations
can predict structural damage with very good
accuracy.

8. CONCLUSIONS

A global hysteretic model is developed and the
relationship between the parameters of the local and
global models is established for the seismic analysis of
multi-story shear buildings. In both models, the
analysis involves hysteretic constitutive laws com-
monly used in earthquake engineering to represent
restoring forces and nonlinear dynamic analysis for
estimating seismic structural response. From the pro-
posed relationship, the local hysteretic behavior and
damage can be obtained from an analysis based on
global model. Using current global indices based on
a heuristic combination of local damage measures.
this was not possible due to the lack of a unique
relationship between the lcoal and global damages.

Both nondegrading and degrading systems are
considered and several numerical examples on single-
and multi-degree-of-freedom systems of shear beam
models are presented to illustrate the proposed meth-
odology. First, a single-degree-of-freedom system
with both nondegrading and degrading restoring
forces is investigated to evaluate the adequacy of the
global hysteretic model in predicting various seismic
response characteristics. Second, a multi-degree-of-
freedom system with a more realistic design and
earthquake loading is studied to compare the damage
measures by both the local and global hysteretic
models. The results suggest that:

o the global model provides satisfactory estimates
of traditional seismic response variables, such as
displacement and velocity, when compared with
those obtained from the analysis based on local
model;

o the plots of restoring forces versus displacement,
which represent the hysteretic loops, are well-
predicted by the global model. When the local
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hysteretic characteristics are recovered from dy-
namic analysis based on the global model, they
are found to be in excellent agreement with the
results produced by the local model; and

e using the proposed relationship between local
and global parameters, the damage indices for a
five-story shear frame predicted by the global
hysteretic model compare very well with those
obtained by the local hysteretic model.

In both local and global models, the dynamic stress
analysis can be viewed as a nonlinear initial-value
problem. However, the dimension of the global in-
itial-value problem is much smaller than that of the
local initial-value problem. Hence, significant savings
of computational resources such as central processing
units and core memory can be achieved by using the
global model.
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APPENDIX: FIFTH- AND SIXTH-ORDER RUNGE-KUTTA
METHOD

Consider the initial-value problem

6()=h(O(@1), 1), 6(0)=6,, (Al)

where 1€ and 6 e R are independent and dependent
variables, respectively. A general explicit one-step method
for the solution of eqn (A1) is given by (12, 13]

i1 —0,=A10(1,, 0, An), (A2)
where ¢ is a discrete value of independent variable
£,6,=0(1), and @(-) will be defined later. The general
R-stage explicit Runge-Kutta method is defined by eqn
(A2) in which

R
et.0;An =Y 4K, (A3)
r=1
where
K, =h(,0)
r—i r—1
K,=h(x +AtY B, 0+AY B,,KI),
s=1 s=1
r=23....,R (A4

with A4, and B,, as appropriate constants. Note that an
R-stage Runge-Kutta method involves R function evalu-
ations per step. Each of the functions K,(i,0:Ar),
r=1,2,..., R, may be interpreted as an approximation to
the time derivative ¢, and the functions @{1, 0(¢); Ar) as the
weighted average of these approximations. For examples,
the six-stage fifth-order method is [18]

6,,,~6= lAg-’z(zuq + 125K, — 81K, + 125K,), (AS)
where
K, =h(1,6,)
Ky = h(1,+ 41,0, +}AtK,)

Ky=h{1,+ 1AL, 0,+ LAl[4K, + 6K,])
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Ky=h(1,+ A1, 0,+ jAt[K, — 12K, + 15K,)) Ky=h(t;+ {41, 6, + % At[K, + 3K,])
Ky =h(t,+3A1,8,+ 5 At[6K, + 90K, — S0K; + 8K,]) K= h(t,+ 18,6, + LA[K, - 3K, + 4K,))
Ky = h(t,+ A1, 6, + L A1[6K, + 36K, + 10K, + 8K,])

Ks=h(t, + 3A1, 0, + Ar[— 5K, + 27K, — 24K, + 6K,))
(A6)
= 2 1 —
and the eight-stage sixth order method is [19] Ko = h(t+300. 0,4 501(221K, — 981K,
At K, —
6,01 = 0,= 225 1K, + 216K, + 27K, + 212K + 867K, - 102K, + Ki])

Ky =h(t,+3 A0, 0, + L A1[— 183K, + 678K,
+27K, + 216K, +41K,), (A7) 1=hl 4800+ 5 A1 ! :

where — 472K, — 66K, + 80K, + 3K, ))
K, = h(s, ) Ky = h(t;+ A, 6, + S A1[T16K, — 2079K, + 1002K,
Ky =h(1,+}A1,0,+ SA1K,)

+834K, — 454K, — 9K, + 72K, ]). (A8)



