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Abstract

This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random
variables. The analysis focuses on a new, generalized version of polynomial dimensional decomposition (PDD), referred to as
GPDD, entailing hierarchically ordered measure-consistent multivariate orthogonal polynomials in dependent variables. Under a
few prescribed assumptions, GPDD exists for any square-integrable output random variable and converges in mean-square to the
correct limit. New analytical formulae are proposed to calculate the mean and variance of a GPDD approximation of a general
output variable in terms of the expansion coefficients and second-moment properties of multivariate orthogonal polynomials.
However, unlike in PDD, calculating the coefficients of GPDD requires solving a coupled system of linear equations. Besides, the
variance formula of GPDD contains extra terms due to statistical dependence among input variables. The extra terms disappear
when the input variables are statistically independent, reverting GPDD to PDD. Two numerical examples, the one derived from a
stochastic boundary-value problem and the other entailing a random eigenvalue problem, illustrate second-moment error analysis
and estimation of the probabilistic characteristics of eigensolutions.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Uncertainty quantification (UQ) in computational models of complex systems is a crucial ingredient in numerous
fields of science and engineering as diverse as climate science, mechanics, material science, finance, and medicine.
In practice, confronting hundreds of input variables or more is no longer unusual, where a response variable of
interest, defined algorithmically via time-consuming finite-element analysis (FEA) or similar numerical calculations,
is all too often costly to evaluate. Contemporary surrogate methods or approximations, for instance, stochastic
collocation [1,2], polynomial chaos expansion (PCE) [3,4], and sparse-grid approximation [5,6], are known to impart
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hefty computational benefit over crude Monte Carlo simulation (MCS). However, for truly high-dimensional systems,
they require astronomically large numbers of terms or coefficients, thereby acceding to the curse of dimensionality.
Therefore, alternative computational methods capitalizing on low effective dimensions [7] of high-dimensional
functions, such as the polynomial dimensional decomposition (PDD) methods [8–10], are desirable. Although PDD
and PCE are built using the same measure-consistent orthogonal polynomials, a recent mathematical study reveals
that PDD cannot commit larger error than PCE for identical expansion orders [11]. Moreover, to estimate with the
same precision the variance of an output function involving exponentially attenuating expansion coefficients, the PDD
approximation can be markedly more efficient than the PCE approximation.

However, the success of PDD is largely predicated on the independent assumption of input random variables,
because the analysis-of-variance (ANOVA) dimensional decomposition (ADD) [12–16], which leads to PDD, is
fundamentally rooted in the product structure of the probability distribution. In reality, there may exist significant
correlation or dependence among input variables, hindering or invalidating most existing stochastic methods,
including PDD. Indeed, ignoring these correlations or dependencies, whether emanating from loads, material
properties, or manufacturing variables, may produce inaccurate or inadequate designs [17]. Therefore, the classical
ADD and existing PDD must be generalized for an arbitrary, non-product-type probability measure. Doing so will
require modifying the foundations of the classical ADD that will endow desirable stochastic properties of PDD,
insofar as is possible, to the generalization. Such capabilities are currently lacking, but are critical for paradigm-
shifting advances in UQ theory and praxis.

The main objective of this study is to create a new, generalized version of PDD, referred to as GPDD, for UQ
analysis of complex systems in the presence of arbitrary, dependent probability measures of input variables. While
this paper focuses on the computational aspect of the generalization, readers interested in a rigorous mathematical
analysis of GPDD, including theoretical results and their formal proofs, should consult the companion paper [18].
The paper is organized as follows. Section 2 discusses mathematical notations and preliminaries, including a list of
four requisite assumptions. A brief exposition of multivariate orthogonal polynomials consistent with a general, non-
product-type probability measure, including their statistical properties, is given in Section 3. The orthogonal basis and
completeness of multivariate orthogonal polynomials have been established. In this section and Appendix A, a special
class of orthogonal polynomials generated from the derivatives of the probability density functions is also discussed.
Section 4 introduces GPDD for a square-integrable output random variable, including the approximation or method
emanating from a truncated GPDD. In the same section, new analytical formulae for the mean and variance of a
truncated GPDD are derived. An algorithm for numerical implementation of the GPDD method is outlined. The GPDD
results of second-moment error analysis obtained for a stochastic ordinary differential equation (ODE) are reported
in Section 5 with supplementary details in Appendix B. The section also demonstrates an engineering application of
GPDD by estimating the probabilistic characteristics of random eigensolutions from structural dynamics. Section 6
discusses a few computational challenges for future work. Finally, conclusions are drawn in Section 7.

2. Notation, preliminaries, and assumptions

Let N := {1, 2, . . .}, N0 := N ∪ {0}, R := (−∞,+∞), and R+0 := [0,+∞) represent the sets of positive integer
(natural), non-negative integer, real, and non-negative real numbers, respectively. For a non-zero, finite integer N ∈ N,
denote by AN

⊆ RN a bounded or unbounded subdomain of RN .
Let (Ω ,F ,P) be a complete probability space, where Ω is a sample space representing an abstract set of elementary

events, F is a σ -algebra on Ω , and P : F → [0, 1] is a probability measure. With BN
:= B(AN ) representing the Borel

σ -algebra on AN
⊆ RN , consider an AN -valued input random vector X := (X1, . . . , X N )T

: (Ω ,F) → (AN ,BN ),
describing the statistical uncertainties in all system parameters of a UQ problem. The input random variables are
generally dependent and are also referred to as basic random variables. The integer N represents the number of input
random variables and is often referred to as the dimension of the UQ problem.

Denote by FX(x) := P(∩N
i=1{X i ≤ xi }) the joint distribution function of X, admitting the joint probability density

function fX(x) := ∂ N FX(x)/∂x1 · · · ∂xN . Given the abstract probability space (Ω ,F ,P), the image probability space
is (AN ,BN , fXdx), where AN can be viewed as the image of Ω from the mapping X : Ω → AN , and is also the
support of fX(x).

It is assumed that the random vector X := (X1, . . . , X N )T
: (Ω ,F)→ (AN ,BN ) has

(1) an absolutely continuous joint distribution function FX(x) and a continuous joint probability density function
fX(x) with a bounded or unbounded support AN ;
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(2) absolute finite moments of all orders, that is, for all j := ( j1, . . . , jN ) ∈ NN
0 ,

E[|Xj
|] <∞,

where Xj
= X j1

1 · · · X
jN
N and E is the expectation operator with respect to the probability measure P or fX(x)dx;

(3) a joint probability density function fX(x), which is either (a) compactly supported or (b) exponentially
integrable, that is, there exists a real number a > 0 such that

E[exp(a∥X∥)] <∞,

where ∥ · ∥ : AN
→ R+0 is an arbitrary norm; and

(4) a joint probability density function fX(x) with a grid-closed support, that is, there exists a grid for every point x
of supp( fX) = AN

⊆ RN .

Unless otherwise stated, all four assumptions are employed throughout the paper.

3. Multivariate orthogonal polynomials

For N ∈ N, denote by {1, . . . , N } an index set, so that u ⊆ {1, . . . , N } is a subset, including the empty set
∅, with cardinality 0 ≤ |u| ≤ N . The complementary subset of u is denoted by −u := {1, . . . , N } \ u. For
∅ ̸= u ⊆ {1, . . . , N }, let Xu := (X i1 , . . . , X i|u| )

T , 1 ≤ i1 < · · · < i|u| ≤ N , a subvector of X, be defined on
the abstract probability space (Ωu,Fu,Pu), where Ωu is the sample space of Xu , Fu is a σ -algebra on Ωu , and Pu

is a probability measure. The complementary subvector is defined by X−u := X{1,...,N }\u . The corresponding image
probability space is (Au,Bu, fXu dxu), where Au

⊆ R|u| is the image sample space of Xu , Bu is the Borel σ -algebra
on Au , and fXu (xu) :=

∫
A−u fX(x)dx−u is the marginal probability density function of Xu supported on Au .

Let X be an input random vector with a general probability measure fX(x)dx on AN , satisfying Assumptions
(1)–(3). When ∅ ̸= u ⊆ {1, . . . , N }, a |u|-dimensional multi-index is denoted by ju := ( ji1 , . . . , ji|u| ) ∈ N|u|0 with the
total degree |ju | := ji1 + · · · + ji|u| , where ji p ∈ N0, p = 1, . . . , |u|, represents the pth component of ju .2

3.1. Measure-consistent orthogonal polynomials

Denote by

Π u
:= R[xu] = R[xi1 , . . . , xi|u| ]

the space of all real polynomials in xu . For any polynomial pair Pu, Qu ∈ Π u , ∅ ̸= u ⊆ {1, . . . , N }, define an inner
product

(Pu, Qu) fXu dxu :=

∫
Au

Pu(xu)Qu(xu) fXu (xu)dxu = E [Pu(Xu)Qu(Xu)] (1)

on Π u with respect to the measure fXu (xu)dxu . The polynomials Pu ∈ Π u and Qu ∈ Π u are called orthogonal to each
other with respect to fXu (xu)dxu if (Pu, Qu) fXu dxu = 0. Moreover, a polynomial Pu ∈ Π u is said to be an orthogonal
polynomial with respect to fXu (xu)dxu if it is orthogonal to all polynomials of lower degree, that is, if [19]

(Pu, Qu) fXu dxu = 0 ∀Qu ∈ Π u with deg Qu < deg Pu . (2)

Under Assumptions (1) and (2), moments of Xu of all orders exist and are finite, so that the inner product in (1) is well
defined. Then there exists an infinite set of multivariate orthogonal polynomials, say, {Pu,ju (xu) : ju ∈ N|u|0 }, Pu,0 = 1,
Pu,ju ̸= 0, which is consistent with the probability measure fXu (xu)dxu , satisfying(

Pu,ju , Pu,ku

)
fXu dxu

= 0 whenever |ju | ̸= |ku | (3)

for ku ∈ N|u|0 . Here, the multi-index ju of the multivariate polynomial Pu,ju (xu) refers to its total degree |ju |. Clearly,
each Pu,ju ∈ Π u is an orthogonal polynomial satisfying (2). This means that Pu,ju is orthogonal to all polynomials of
different degrees, but it may not be orthogonal to other orthogonal polynomials of the same degree.

2 The same symbol |·| is used for designating both the cardinality of a set and the degree of a multi-index in this paper.
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Perhaps the most commonly cited example of classical multivariate orthogonal polynomials is the case of
multivariate Hermite polynomials, which are consistent with the measure defined by a Gaussian density [20,21].
Readers interested to learn more about orthogonal polynomials in multiple variables with respect to other measures
are referred to the works of Appell and de Fériet [22], Erdélyi [20], Krall and Sheffer [23], and Dunkl and Xu [19].

For general probability measures, established numerical techniques, such as the Gram–Schmidt orthogonalization
process [24], can be applied to a sequence of monomials {xju

u }ju∈N|u|0
with respect to the inner product in (1) to generate

a corresponding sequence of any measure-consistent orthogonal polynomials. However, it is important to emphasize
that the space of multivariate orthogonal polynomials for a generally non-product-type density function cannot be
constructed by the tensor product of the spaces of univariate orthogonal polynomials.

Once the multivariate orthogonal polynomials are obtained, they can be scaled to generate the standardized version
of measure-consistent multivariate orthogonal polynomials

Ψu,ju (xu) :=
Pu,ju (xu)√
E[P2

u,ju
(Xu)]

, ∅ ̸= u ⊆ {1, . . . , N }, ju ∈ N|u|0 . (4)

The standardization is not absolutely required, but it produces relatively simpler expressions of GPDD and subsequent
results. The standardized polynomials are used in numerical examples.

3.2. Dimension-wise decomposition of polynomial spaces

A decomposition of polynomial spaces entailing dimension-wise splitting leads to GPDD. Here, to facilitate such
splitting of the polynomial space Π u for any ∅ ̸= u ⊆ {1, . . . , N }, limit the component ji p associated with the
i pth variable, where i p ∈ u ⊆ {1, . . . , N }, p = 1, . . . , |u|, and |u| > 0, to take on only positive integer values. In
consequence, ju := ( ji1 , . . . , ji|u| ) ∈ N|u|, the multi-index of Pu,ju (xu), has degree |ju | = ji1 + · · ·+ ji |u|, varying from
|u| to∞ as ji1 ̸= · · · ji|u| ̸= 0.

For ju ∈ N|u| and xu := (xi1 , . . . , xi|u ), a monomial in the variables xi1 , . . . , xi|u| is the product xju
u = x

ji1
i1

. . . x
ji|u|

i|u|

and has a total degree |ju |. A linear combination of xju
u , where |ju | = l, |u| ≤ l < ∞, is a homogeneous polynomial

in xu of degree l. For ∅ ̸= u ⊆ {1, . . . , N }, denote by

Qu
l := span{xju

u : |ju | = l, ju ∈ N|u|}, |u| ≤ l <∞,

the space of homogeneous polynomials in xu of degree l where the individual degree of each variable is non-zero
and by

Θu
m := span{xju

u : |u| ≤ |ju | ≤ m, ju ∈ N|u|}, |u| ≤ m <∞,

the space of polynomials in xu of degree at least |u| and at most m where the individual degree of each variable is
non-zero.

Let Zu
|u| := Θu

|u|. For each |u| + 1 ≤ l < ∞, denote by Zu
l ⊂ Θu

l the space of orthogonal polynomials of degree
exactly l that are orthogonal to all polynomials in Θu

l−1, that is,

Zu
l := {Pu ∈ Θu

l : (Pu, Qu) fXu dxu = 0 ∀ Qu ∈ Θu
l−1}, |u| + 1 ≤ l <∞.

Then Zu
l , provided that the support of fXu (xu) has non-empty interior, is a vector space of dimension [18]

Mu,l := dimZu
l = dimQu

l =

(
l − 1
|u| − 1

)
.

Many choices exist for the basis of Zu
l . Here, as proved in the companion paper [18], {Pu,ju (xu) : |ju | = l, ju ∈ N|u|} ⊂

Zu
l forms a basis of Zu

l , comprising Mu,l number of basis functions. Each basis function Pu,ju (xu) is a multivariate
orthogonal polynomial of degree |ju | as defined earlier. Clearly,

Zu
l = span{Pu,ju (xu) : |ju | = l, ju ∈ N|u|}, |u| ≤ l <∞.

According to (3), Pu,ju (Xu) is orthogonal to Pu,ku (Xu) whenever |ju | ̸= |ku |. Therefore, any two distinct polynomial
subspaces Zu

l and Zu
l ′ , where ∅ ̸= u ⊆ {1, . . . , N }, |u| ≤ l <∞, and |u| ≤ l ′ <∞, are orthogonal whenever l ̸= l ′.
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Consequently, there exists a decomposition of

Π N
= 1⊕

⋃
∅̸=u⊆{1,...,N }

∞⨁
l=|u|

Zu
l

= 1⊕
⋃

∅̸=u⊆{1,...,N }

∞⨁
l=|u|

span{Pu,ju (xu) : |ju | = l, ju ∈ N|u|}

= 1⊕
⋃

∅̸=u⊆{1,...,N }

span{Pu,ju (xu) : ju ∈ N|u|},

where the symbol ⊕ represents the orthogonal sum of vector spaces and 1 := span{1}, the constant subspace, needs
to be added because the subspace Zu

l excludes constant functions [18].
Given the dimension-wise splitting of Π N , any square-integrable function of input random vector X can be

expanded as a Fourier-like series of hierarchically ordered multivariate orthogonal polynomials in Xu , ∅ ̸= u ⊆
{1, . . . , N }. The expansion defines GPDD, to be formally presented in Section 4.

3.3. Completeness of orthogonal polynomials and basis

An important question regarding orthogonal polynomials is whether they are complete and constitute a basis in
L2(AN ,BN , fXdx), which represents the Hilbert space of square-integrable functions with respect to the probability
measure fX(x)dx supported on AN . Under Assumptions (1)–(3), it can be shown that, indeed, these orthogonal
polynomials span the Hilbert space of interest [18]. Therefore, the set of polynomials from the union-sum collection

1⊕
⋃

∅̸=u⊆{1,...,N }

∞⨁
l=|u|

span{Pu,ju (xu) : |ju | = l, ju ∈ N|u|}

is dense in L2(AN ,BN , fXdx). The denseness or completeness is vitally important for the mean-square convergence
of GPDD to the correct limit [18].

3.4. Statistical properties of random multivariate polynomials

When the input random variables X1, . . . , X N , instead of real variables x1, . . . , xN , are inserted in the argument,
the multivariate polynomials Pu,ju (Xu) or Ψu,ju (Xu), where ∅ ̸= u ⊆ {1, . . . , N } and ju ∈ N|u|, become functions of
random input variables. Therefore, it is important to establish their second-moment properties, as follows.

3.4.1. Annihilating conditions
Under Assumptions (1)–(4), there exist weak annihilating conditions, which mandate that each polynomial of the

set {Pu,ju (xu) : ju ∈ NN
} integrates to zero with respect to the marginal density function fXu (xu) of Xu in each

coordinate direction of u, that is [18],∫
A{i}

Pu,ju (xu) fXu (xu)dxi = 0 for i ∈ u ̸= ∅, ju ∈ N|u|. (5)

They produce two remarkable properties of random orthogonal polynomials: (1) each polynomial Pu,ju (xu), where
∅ ̸= u ⊆ {1, . . . , N } and ju ∈ N|u|, has a zero mean; and (2) two distinct polynomials Pu,ju (xu) and Pv,kv (xv), where
∅ ̸= u, v ⊆ {1, . . . , N }, v ⊂ u, ju ∈ N|u|, and kv ∈ N|v|, are orthogonal. They lead to the following second-moment
properties of Ψu,ju (Xu).

3.4.2. Second-moment properties
For ∅ ̸= u, v ⊆ {1, . . . , N }, ju ∈ N|u|, and kv ∈ N|v|, the first- and second-order moments of standardized

multivariate orthogonal polynomials, respectively, are

E
[
Ψu,ju (Xu)

]
= 0 (6)
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and

E
[
Ψu,ju (Xu)Ψv,kv (Xv)

]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, u ⊂ v ⊂ u,∀ ju, kv,

0, ∀ u, v, |ju | ̸= |kv|,

1, u = v, ju = kv,∫
Au∪v
Ψu,ju (xu)Ψv,kv (xv) fXu∪v (xu∪v)dxu∪v, otherwise.

(7)

Here, the two orthogonality conditions of (7) deserve attention. The condition in the first line stems from the weak
annihilating conditions (5) obeyed by Pu,ju (xu). The orthogonality holds for any nested subsets u ⊂ v ⊂ u, but for
arbitrary ju ∈ N|u|, kv ∈ N|v|. The condition in the second line is rooted in the definition of orthogonal polynomials
in x, that is, in (3) for u = {1, . . . , N }. The non-trivial expressions of (7) come from their definitions. No further
reduction is possible for a general probability measure.

When X = (X1, . . . , X N )T comprises independent, but not necessarily identical, input random variables, the
multivariate polynomials are usually built from the tensor product of univariate polynomials, and the second-moment
properties simplify substantially. Denote by fXi (xi ), i = 1, . . . , N , the marginal density function of the i th random
variable X i and by Ψ{i}, ji (xi ) the ji th-degree univariate orthonormal polynomial in xi , which is obtained consistent
with the probability measure fXi (xi )dxi . Then, for ∅ ̸= u ⊆ {1, . . . , N }, ju ∈ N|u|,

Ψu,ju (xu) =
∏
i∈u

Ψ{i}, ji (xi ) =
|u|∏

p=1

Ψ{i p}, ji p
(xi p )

is a multivariate orthonormal polynomial in xu = (xi1 , . . . , xi|u| ) of degree |ju | = ji1 + · · · + ji|u| . Consequently, for
∅ ̸= u, v ⊆ {1, . . . , N }, ju ∈ N|u|, and kv ∈ N|v|, the first- and second-order moments of multivariate orthonormal
polynomials, respectively, are

E
[
Ψu,ju (Xu)

]
= 0 (8)

and

E
[
Ψu,ju (Xu)Ψv,kv (Xv)

]
=

{
1, u = v, ju = kv,

0, otherwise. (9)

The simplified results of (8) and (9), readily exploited by the existing PDD [11], are no longer valid for dependent
variables, which are the focus of this paper.

3.5. A special class of orthogonal polynomials

Consider a family of probability measures, where the probability density function of Xu , ∅ ̸= u ⊆ {1, . . . , N },
has derivatives of all orders, that is, fXu ∈ C∞(AN ), where C∞(AN ) represents the class of infinitely differentiable
functions on AN . In such a case, there exists a special class of multivariate orthogonal polynomials in xu that can be
generated directly from the derivatives of the density function, leading to a Rodrigues type formula:

Pu,ju (xu) fXu (xu;αu) ∝
(

∂

∂xu

)ju

fXu (xu;βu(αu, ju)), ∅ ̸= u ⊆ {1, . . . , N }, ju ∈ N|u|. (10)

Here, αu is a vector of real-valued parameters describing fXu ; βu , depending on the choice of fXu , is a function of αu

and ju ; fXu (xu;αu) = fXu (xu) is an additional symbol for the same density function but with the parameters explicitly

shown as arguments; and (∂/∂xu)ju := ∂
ji1+···+ ji|u| /∂x

ji1
i1
· · · ∂x

ji|u
i|u|

.
Three commonly used probability density functions for which the formula (10) can be applied are (1) Gaussian

density on the real space R|u|, (2) Gegenbauer or ultraspherical density on the unit ball B|u| := {xu ∈ R|u| : ∥xu∥ :=

(x2
i1
+ · · · + x2

i|u|
)1/2
≤ 1}, and (3) Dirichlet density on the standard simplex T|u| := {xu ∈ R|u| : xi1 ≥ 0, . . . , xi|u| ≥

0, |xu | := xi1 + · · · + xi|u| ≤ 1}. The associated polynomials are referred to as multivariate Hermite, Gegenbauer, and
Dirichlet polynomials, respectively. Explicit forms of these density functions and formulae are described as follows.
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3.5.1. Gaussian density on R|u| [20,25]

fXu (xu;αu) = (2π)−
|u|
2
(
detΣXu

)− 1
2 exp

[
−

1
2

xT
u Σ
−1
Xu

xu

]
, xu ∈ R|u|,

ΣXu =

⎡⎢⎢⎢⎣
σ 2

i1
ρi1i2σi1σi2 · · · ρi1i|u|σi1σi|u|

σ 2
i2

· · · ρi2i|u|σi2σi|u|
. . .

...

(sym.) · · · σ 2
i|u|

⎤⎥⎥⎥⎦ (must be positive-definite),

0 < σi p <∞, − 1 < ρi p iq < +1, 1 ≤ p, q ≤ |u|, i p, iq ∈ u,

αu = (σi1 , . . . , σi|u|; ρi1i2 , . . . , ρi|u|−1i|u| ) ∈ R
|u|+|u|2

2 , βu = αu,

Pu,ju (xu) fXu (xu;αu) ∝
(

∂

∂xu

)ju

exp
[
−

1
2

xT
u Σ
−1
Xu

xu

]
.

3.5.2. Gegenbauer density on B|u| [19,20,22]

fXu (xu;αu) =
Γ
(
µu +

|u|+1
2

)
π
|u|
2 Γ

(
µu +

1
2

)(1− ∥xu∥
2)µu−

1
2 , ∥xu∥

2
:= x2

i1
+ · · · + x2

i|u| , xu ∈ B|u|,

µu > −
1
2
, αu = (µu) ∈ R, βu = (|ju | + µu) ∈ R,

Pu,ju (xu) fXu (xu;αu) ∝
(

∂

∂xu

)ju (
1− ∥xu∥

2)|ju |+µu−
1
2 .

3.5.3. Dirichlet density on T|u| [19,20,22]

fXu (xu;αu) =
Γ
(∑|u|+1

p=1 κu,i p +
|u|+1

2

)
∏|u|+1

p=1 Γ
(
κu,i p +

1
2

)
⎛⎝ |u|∏

p=1

x
κu,i p−

1
2

i p

⎞⎠ (1− |xu |)
κu,i|u|+1−

1
2 ,

|xu | := xi1 + · · · + xi|u| , xu ∈ T|u|,

κu,i p > −
1
2
, p = 1, . . . , |u| + 1, αu = (κu,i1 , . . . , κu,i|u|+1 ) ∈ R|u|+1,

βu = (κu,i1 + ji1 , . . . , κu,i|u|+1 + ji|u|+1 ) ∈ R|u|+1,

Pu,ju (xu) fXu (xu;αu) ∝
(

∂

∂xu

)ju

⎡⎣⎛⎝ |u|∏
p=1

x
κu,i p−

1
2+ ji p

i p

⎞⎠ (1− |xu |)
κu,i|u|+1−

1
2+|ju |

⎤⎦ .

The Gaussian distribution is well known and often used in natural, applied, and social sciences. The Gegenbauer
distribution or polynomials find their applications in engineering or mathematics, for instance, in potential theory and
harmonic analysis. The Dirichlet distribution is frequently employed in Bayesian statistics.

Note that the specific forms of (10) written for the Gaussian and Gegenbauer distributions mandate that the input
random vectors X have zero means. Conversely, if the mean E[X] is not zero, then the same formula can be used
working with the shifted input random vector X − E[X]. In other words, (10), if it exists, is also applicable for
random input with non-zero means. All three distributions will be revisited in Section 5 where numerical examples
are presented.
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Formula (10) is also useful in proving that the resultant orthogonal polynomials satisfy (5). This is demonstrated
in Appendix A when the probability density function has a compact support, such as the Gegenbauer and Dirichlet
distributions, or has an unbounded support where the density function converges to zero faster than the rate at which
polynomials become unbounded at the boundary, such as the Gaussian distribution. It is important, however, to clarify
that although (5) and (A.1) state the same result, the former is more general than the latter, and is applicable to any
measure-consistent orthogonal polynomials. In either case, the result is valid as long as ju ∈ N|u|, that is, the power
ji p of the i pth variable, where i p ∈ u ⊆ {1, . . . , N }, p = 1, . . . , |u|, and |u| > 0, takes on positive integer values.

4. Generalized polynomial dimensional decomposition

Let y(X) := y(X1, . . . , X N ) be a real-valued, square-integrable output random variable defined on the same
probability space (Ω ,F ,P). The vector space L2(Ω ,F ,P) is a Hilbert space such that

E
[
y2(X)

]
:=

∫
Ω

y2(X(ω))dP(ω) =
∫
AN

y2(x) fX(x)dx <∞.

It is elementary to show that y(X(ω)) ∈ L2(Ω ,F ,P) if and only if y(x) ∈ L2(AN ,BN , fXdx).

4.1. Generalized ADD

Under Assumption (4), a square-integrable function y(X) ∈ L2(Ω ,F ,P) of input variables X admits a unique,
finite, hierarchical expansion [26]

y(X) = y∅ +
∑

∅̸=u⊆{1,...,N }

yu(Xu), (11a)

y∅ =
∫
AN

y(x) fX(x)dx, (11b)

yu(Xu) =
∫
A−u

y(Xu, x−u) fX−u (x−u)dx−u −
∑
v⊂u

yv(Xv)−

∑
∅̸=v⊆{1,...,N }
v∩u ̸=∅,v ̸⊆u

∫
Av∩−u

yv(Xv∩u, xv∩−u) fXv∩−u (xv∩−u)dxv∩−u, (11c)

in terms of its input variables with increasing dimensions, where u ⊆ {1, . . . , N } is a subset with the complementary
set −u = {1, . . . , N } \ u and yu is a |u|-variate component function describing a constant or an |u|-variate interaction
of Xu = (X i1 , . . . , X i|u| ) on y when |u| = 0 or |u| > 0. This expansion is known as the generalized ADD [26].
Although it was originally derived using AN

= RN [26], the extension for the case of AN
⊆ RN is trivial. Here,

(Xu, x−u) denotes an N -dimensional vector whose i th component is X i if i ∈ u and xi if i ̸∈ u. Similar to the classical
ADD, the summation in (11a) comprises 2N

− 1 terms with each term depending on a group of variables indexed by
a particular subset of {1, . . . , N }. When u = ∅, both sums in (11c) vanish, resulting in the expression of the constant
function y∅ in (11b). When u = {1, . . . , N }, the integration in the first line of (11c) is on the empty set and the
sum in the second line of (11c) vanishes, reproducing (11a) and hence finding the last function y{1,...,N }. Indeed, all
component functions of y can be obtained by interpreting literally (11c).

The generalized ADD described by (11a)–(11c) has two notable properties [26,27]: (1) the component functions
yu , where ∅ ̸= u ⊆ {1, . . . , N }, have zero means, that is,

E [yu(Xu)] = 0; (12)

and (2) two distinct component functions yu,G and yv,G , where ∅ ̸= u ⊆ {1, . . . , N }, ∅ ̸= v ⊆ {1, . . . , N }, and v ⊂ u,
are orthogonal, that is, they satisfy the property

E [yu(Xu)yv(Xv)] = 0. (13)

These properties originate from enforcing similar weak annihilating conditions on the generalized ADD component
functions yu [27]. Readers interested in further details are directed to a prior work of the author [26].
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4.2. Generalized PDD

The GPDD of a random variable y(X) ∈ L2(Ω ,F ,P) is simply the expansion of y(X) with respect to a complete,
hierarchically ordered, orthogonal polynomial basis of L2(Ω ,F ,P).

Theorem 1. Let X := (X1, . . . , X N )T be a vector of N ∈ N input random variables fulfilling Assumptions (1)-(4).
For ∅ ̸= u ⊆ {1, . . . , N } and Xu := (X i1 , . . . , X i|u| )

T
: (Ωu,Fu) → (Au,Bu), denote by {Ψu,ju (xu) : ju ∈ N|u|} the

set of standardized multivariate orthogonal polynomials consistent with the probability measure fXu (xu)dxu . Then for
any random variable y(X) ∈ L2(Ω ,F ,P) there exists a Fourier-like series in multivariate orthogonal polynomials in
X, referred to as the GPDD of

y(X) ∼ y∅ +
∑

∅̸=u⊆{1,...,N }

∑
ju∈N|u|

Cu,juΨu,ju (Xu), (14)

where the zero-variate, expansion coefficient y∅ ∈ R is defined by

y∅ := E [y(X)] :=
∫
AN

y(x) fX(x)dx (15)

and the |u|-variate, |ju |th-order expansion coefficients Cu,ju ∈ R satisfy the infinite-dimensional linear system∑
∅̸=v⊆{1,...,N }

∑
kv∈N|v|

Cv,kv Ju,ju ;v,kv = Iu,ju , ∅ ̸= u ⊆ {1, . . . , N }, ju ∈ N|u|, (16)

with the integrals

Iu,ju := E
[
y(X)Ψu,ju (Xu)

]
:=

∫
AN

y(x)Ψu,ju (xu) fX(x)dx, (17a)

Ju,ju ;v,kv := E
[
Ψu,ju (Xu)Ψv,kv (Xv)

]
:=

∫
AN

Ψu,ju (xu)Ψv,kv (xv) fX(x)dx. (17b)

Furthermore, the GPDD of y(X) ∈ L2(Ω ,F ,P) converges to y(X) in mean-square, in probability, and in distribution.
Here, the symbol∼ in (14) represents equality in a weaker sense, such as equality in mean-square, but not necessarily
pointwise nor almost everywhere.

Proof. For a complete proof, see the companion paper [18]. Here, an alternative proof, not available elsewhere,
deriving only the equations involving the expansion coefficients is presented.

Applying the expectation operator on (14) and using the zero-mean property of Ψu,ju (Xu) from (6) results in (15).
To obtain (16), replace y(X) in (17a) with the full GPDD, that is, (14), producing

Iu,ju =

∫
AN

[
y∅ +

∑
∅̸=v⊆{1,...,N }

∑
kv∈N|v|

Cv,kvΨv,kv (Xv)
]
Ψu,ju (xu) fX(x)dx

=

∫
AN

y∅Ψu,ju (xu) fX(x)dx+
∫
AN

∑
∅̸=v⊆{1,...,N }

∑
kv∈N|v|

Cv,kvΨu,ju (xu)Ψv,kv (Xv) fX(x)dx

=

∫
AN

∑
∅̸=v⊆{1,...,N }

∑
kv∈N|v|

Cv,kvΨu,ju (xu)Ψv,kv (Xv) fX(x)dx

=

∑
∅̸=v⊆{1,...,N }

∑
kv∈N|v|

Cv,kv

∫
AN

Ψu,ju (xu)Ψv,kv (Xv) fX(x)dx.

Here, the third line is attained by applying (6) to the second line, annihilating the first integral. The last line is obtained
by switching the orders of integral and summation operators, which is permissible as the infinite series of GPDD is a
convergent sum [18]. Finally, invoking the definition of Ju,ju ;v,kv in (17b) results in (16). □

The infinite system (16) can be reduced further as many of the integral coefficients, that is, Ju,ju ;v,kv , vanish
conforming to (7). Indeed, as Ju,ju ;v,kv = 0 for |ju | ̸= |kv|, (16) is actually an infinite system of uncoupled
finite-dimensional linear systems. Moreover, the system matrix of each finite-dimensional system is sparse, because



S. Rahman / Comput. Methods Appl. Mech. Engrg. 344 (2019) 910–937 919

Ju,ju ;v,kv = 0 for u ⊂ v ⊂ u. Some of these issues will be revisited in a forthcoming section devoted to the expansion
coefficients of a truncated GPDD.

It should be emphasized that the function y must be square-integrable for the mean-square and other convergences
to hold. However, the rate of convergence depends on the smoothness of the function. The smoother the function, the
faster the convergence. If the function is a polynomial, then its GPDD exactly reproduces the function. These results
can be easily proved using classical approximation theory.

4.2.1. Relationship with the generalized ADD
The GPDD proposed is surely connected to the generalized ADD. For instance, comparing (14) and (11a) reveals

yu(Xu) ∼
∑

ju∈N|u|
Cu,juΨu,ju (Xu), (18)

indicating a clear affiliation between GPDD and the generalized ADD. Indeed, the former can be conceived as a
polynomial adaptation of the latter. Here, Cu,juΨu,ju (Xu) in (14) or (18) represents a |u|-variate, |ju |th-order GPDD
component function of y(X), describing the |ju |th-order polynomial approximation of the |u|-variate component
function yu(Xu) of the generalized ADD.

Moreover, given the statistical properties of multivariate orthogonal polynomials in (6) and (7), it is easy to verify
that the second-moment properties of yu(Xu), that is, (12) and (13), are naturally satisfied when yu(Xu) is expanded
as in (18). Therefore, GPDD inherits all desirable traits of the generalized ADD — an important prerequisite for any
refinement of the latter.

4.2.2. A special case of independent variables
When X = (X1, . . . , X N )T comprises independent, but not necessarily identical, input random variables, denote

by fXi (xi ), i = 1, . . . , N , the marginal density function of the i th random variable X i and by Ψ{i}, ji (xi ) the ji th-
degree univariate orthonormal polynomial in xi , which is obtained consistent with the probability measure fXi (xi )dxi .
Then one can write: fX(x) =

∏N
i=1 fXi (xi ) and Ψu,ju (xu) =

∏|u|
p=1Ψ{i p}, ji p

(xi p ). In addition, from (9), the integral
Ju,ju ;v,kv = 1 when u = v and ju = kv , and zero otherwise. As a result, the proposed GPDD reduces to the existing
PDD, yielding

y(X) ∼ y∅ +
∑

∅̸=u⊆{1,...,N }

∑
ju∈N|u|

Cu,ju

|u|∏
p=1

Ψ{i p}, ji p
(X i p )

with the expansion coefficients

y∅ = E [y(X)] =
∫
AN

y(x)
N∏

i=1

fXi (xi )dxi

and

Cu,ju = E

⎡⎣y(X)
|u|∏

p=1

Ψ{i p}, ji p
(X i p )

⎤⎦ := ∫
AN

y(x)
|u|∏

p=1

Ψ{i p}, ji p
(xi p )

N∏
i=1

fXi (xi )dxi .

4.3. Truncation

The full GPDD contains an infinite number of orthogonal polynomials or coefficients. In practice, the number
must be finite, meaning that GPDD must be truncated. However, there are multiple ways to perform the truncation.
A straightforward approach adopted in this work entails (1) keeping all polynomials in at most 0 ≤ S ≤ N
variables, thereby retaining the degrees of interaction among input variables less than or equal to S, and (2) preserving
polynomial expansion orders (total) less than or equal to S ≤ m < ∞. The result is an S-variate, mth-order GPDD
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approximation3

yS,m(X) = y∅ +
∑

∅̸=u⊆{1,...,N }
1≤|u|≤S

∑
ju∈N|u|
|u|≤|ju |≤m

Cu,juΨu,ju (Xu) (19)

of y(X). It is important to clarify a few things about the truncated GPDD proposed. First, the truncation with respect
to the expansion order in (19) is related to the total degree index set⎧⎨⎩ju ∈ N|u| :

|u|∑
p=1

ji p ≤ m

⎫⎬⎭ .

Other kinds of truncation involve the tensor product and hyperbolic cross index sets, but they were not considered in
this work. Second, for the total degree index set, the minimum value of m must be S. If m < S, then for m < |u| ≤ S
there are no |u|-variate, mth-order polynomials in (19). Third, the right side of (19) contains sums of at most
S-dimensional orthogonal polynomials, representing at most S-variate GPDD component functions of y. Therefore,
the term “S-variate” used for the GPDD approximation should be interpreted in the context of including at most
S-degree interaction of input variables, even though yS,m is strictly an N -variate function. Fourth, when S = 0,
y0,m = y∅ for any m as the outer sums of (19) vanish. Finally, when S → N and m →∞, yS,m converges to y in the
mean-square sense, generating a hierarchical and convergent sequence of GPDD approximations.

The motivation behind generalized ADD- and GPDD-derived approximations is the following. In a practical
setting, the function y(X), fortunately, has an effective dimension much lower than N , meaning that the right side
of (11a) can be effectively approximated by a sum of lower-dimensional component functions yu , |u| ≪ N , but still
maintaining all random variables X of a high-dimensional UQ problem. For instance, an S-variate, mth-order GPDD
approximation yS,m(X) is generated, where 0 ≤ S ≤ N and S ≤ m < ∞ define the largest degree of interactions
among input variables and the largest order of orthogonal polynomials retained in a concomitant truncation. The
approximation is grounded on a fundamental conjecture known to be true in many real-world problems: given a
high-dimensional function y, its |u|-variate, |ju |th-order GPDD component function Cu,juΨu,ju (Xu) decays rapidly
with respect to |u| and |ju |, leading to an accurate low-variate, low-order approximation of y.

4.4. Computational effort

Due to identical hierarchical structures of function decompositions, the GPDD method has the same computational
complexity as the existing PDD method. To expound on the scalability of GPDD with respect to the problem size or
the number of random variables N , consider two special cases of approximations: the one representing the univariate
(S = 1), mth-order GPDD approximation

y1,m(X) = y∅ +
N∑

i=1

m∑
ji=1

C{i}, jiΨ{i}, ji (X i ) (20)

and the other describing the bivariate (S = 2), mth-order GPDD approximation

y2,m(X) = y∅ +
N∑

i=1

m∑
ji=1

C{i}, jiΨ{i}, ji (X i )

+

N−1∑
i1=1

N∑
i2=i1+1

∑
( ji1

, ji2
)∈N2

2≤ ji1
+ ji2
≤m

C{i1,i2},( ji1 , ji2 )Ψ{i1,i2},( ji1 , ji2 )(X i1 , X i2 ).
(21)

Analogs of these two approximations, obtained from the existing PDD method, are frequently used for solving
large-scale UQ problems [28–31]. In either case, the computational effort is proportional to the respective number
of expansion coefficients involved. Therefore, the computational effort of a GPDD or PDD approximation can be
judged by the number of coefficients. For instance, in (20) and (21), there are respectively

1+ Nm

3 The nouns degree and order associated with GPDD or orthogonal polynomials are used synonymously in the paper.
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Fig. 1. Growth of expansion coefficients in the GPDD and GPCE approximations.

and

1+ Nm +
N (N − 1)

2
m(m − 1)

2
numbers of coefficients. Hence, given a fixed value of m, the computational effort with respect to N grows linearly
for univariate approximation and quadratically for bivariate approximation. For example, when N = 20 and m = 2,
the univariate, second-order GPDD approximation and the bivariate, second-order GPDD approximation require 41
and 231 expansion coefficients, respectively. Following similar considerations, the number of expansion coefficients
for a general S-variate, mth-order GPDD approximation in (19) is

L S,m = 1+
S∑

s=1

(
N
s

)(
m
s

)
, (22)

including y∅. Therefore, the computational effort by an S-variate, mth-order GPDD approximation scales S-degree-
polynomially with respect to N . The same formula (22) applies for determining the expansion coefficients of the
respective PDD approximation valid for independent random variables [11]. Indeed, the computational complexity of
a truncated GPDD or PDD is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality
to a substantial extent.

Finally, to understand better the computational effort of GPDD, contrasting it with the recently developed
generalized polynomial chaos expansion (GPCE) [32], also valid for dependent variables, should be interesting.
When truncated according to the total degree index set, the pth-order GPCE approximation of y(X) comprises
L p = (N + p)!/(N !p!) number of expansion coefficients. For a problem size of N = 20, Fig. 1 presents four plots
explaining how the required numbers of expansion coefficients – L S,m for GPDD and L p for GPCE – rise with respect
to the order m or p. For GPDD, three plots for distinct values of S = 1, S = 2, and S = 3, representing univariate,
bivariate, and trivariate approximations, respectively, are displayed. According to Fig. 1, the growth of the number of
expansion coefficients in GPCE is much steeper than that in GPDD. The number of expansion coefficients escalates
significantly when the polynomial expansion order is large. This is primarily because a GPCE approximation is wholly
prescribed by a single truncation parameter p, which determines the largest polynomial expansion order preserved,
but not the degree of interaction freely. In contrast, there are two different truncation parameters S and m in a GPDD
approximation, supporting a greater adaptability in retaining the largest degree of interaction and largest polynomial
expansion order. Consequently, the GPDD approximation can be decidedly more computationally efficient than the
GPCE approximation.

4.5. Expansion coefficients

According to (19), determining the expansion coefficients of the S-variate, mth-order GPDD approximation
requires solving an (L S,m × L S,m) system of linear equations. However, as Ju,ju ;v,kv vanishes whenever |ju | ̸= |kv|,
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Table 1
A degree-wise arrangement for the expansion coefficients of y3,4, N = 3.

l = 1 l = 2 l = 3 l = 4

C{1},(1) C{1},(2) C{1},(3) C{1},(4)
C{2},(1) C{2},(2) C{2},(3) C{2},(4)
C{3},(1) C{3},(2) C{3},(3) C{3},(4)

C{1,2},(1,1) C{1,2},(2,1) C{1,2},(3,1)
C{1,3},(1,1) C{1,2},(1,2) C{1,2},(2,2)
C{2,3},(1,1) C{1,3},(2,1) C{1,2},(1,3)

C{1,3},(1,2) C{1,3},(3,1)
C{2,3},(2,1) C{1,3},(2,2)
C{2,3},(1,2) C{1,3},(1,3)
C{1,2,3},(1,1,1) C{2,3},(3,1)

C{2,3},(2,2)
C{2,3},(1,3)
C{1,2,3},(2,1,1)
C{1,2,3},(1,2,1)
C{1,2,3},(1,1,2)

the coefficients interact with each other only for a specific degree. Therefore, the coefficients for each degree can be
determined independently.

Given 1 ≤ S ≤ N and S ≤ m <∞, let 1 ≤ l ≤ m be an integer. Rearranging the expansion coefficients according
to the degree l, the same S-variate, mth-order GPDD approximation can be written as

yS,m(X) = y∅ +
m∑

l=1

∑
∅̸=u⊆{1,...,N }
1≤|u|≤min(S,l)

∑
ju∈N|u|
|ju |=l

Cu,juΨu,ju (Xu). (23)

For each l, there are

QS,l =

min(S,l)∑
s=1

(
N
s

)(
l − 1
s − 1

)
(24)

number of lth-degree orthogonal polynomials Ψu,ju (xu) and corresponding expansion coefficients Cu,ju , where
1 ≤ |u| ≤ min(S, l) and |ju | = l. To determine all such lth-degree interacting coefficients, only a (QS,l × QS,l)
linear system∑

∅̸=v⊆{1,...,N }
1≤|v|≤min(S,l)

∑
kv∈N|v|
|kv |=|ju |

Cv,kv Ju,ju ;v,kv = Iu,ju , 1 ≤ |u| ≤ min(S, l), |ju | = l, (25)

has to be solved. The system matrix is a Gram matrix entailing moments of linearly independent orthogonal
polynomials and is, therefore, positive-definite. As the matrix is positive-definite, it is invertible, meaning that a
unique solution exists. When (25) is solved for l = 1, . . . , m, then all L S,m expansion coefficients of (23) for degree
at most m have been determined. Obviously,

L S,m =

m∑
l=1

QS,l .

For illustration, consider a problem comprising three (N = 3) dependent random variables, where a trivariate
(S = 3), fourth-order (m = 4) GPDD approximation is desired. Therefore, the degree of polynomials l runs from 1 to
4. For l = 1, 2, 3, and 4, Table 1 itemizes the expansion coefficients Cu,ju from the condition: 1 ≤ |u| ≤ min(S, l) and
|ju | = l. The numbers of expansion coefficients listed in Table 1 agree with (24), for instance, Q3,1 = 3, Q3,2 = 6,
Q3,3 = 10, and Q3,4 = 15. Therefore, to find all expansion coefficients of the aforementioned GPDD approximation,
one can solve each group of the coefficients independently. It is easy to verify that the total number of coefficients,
which is 3+ 6+ 10+ 15 = 34, matches the value of L3,4 from (22).
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4.6. Output statistics and other probabilistic characteristics

The S-variate, mth-order PDD approximation yS,m(X) can be deemed as a surrogate of y(X). Therefore, relevant
probabilistic characteristics of y(X), including its first two moments and probability density function, if it exists, can
be assessed from the statistical properties of yS,m(X).

Proposition 2. The truncated GPDD and GPDD have identical means

E
[
yS,m(X)

]
= E [y(X)] = y∅ (26)

that are exact, whereas their variances are

var
[
yS,m(X)

]
=

∑
∅̸=u,v⊆{1,...,N }

1≤|u|≤S
1≤|v|≤S

∑
ju∈N|u|,kv∈N|v|
|u|≤|ju |≤m
|v|≤|kv |≤m

Cu,ju Cv,kv Ju,ju ;v,kv (27)

and

var [y(X)] =
∑

∅̸=u,v⊆{1,...,N }

∑
ju∈N|u|,kv∈N|v|

Cu,ju Cv,kv Ju,ju ;v,kv (28)

respectively. Moreover, the variance of the truncated GPDD converges to the variance of GPDD when S → N and
m →∞.

Proof. Applying the expectation operator on yS,m(X) and y(X) in (14) and (19) and imposing the second-moment
properties of orthogonal polynomials in (6) and (7), their means are the same as y∅, the exact mean as per (26), and
are independent of S and m. Therefore, GPDD truncated for any values of 0 ≤ S ≤ N and S ≤ m < ∞ yields the
exact mean. Nonetheless, E[yS,m(X)] will be referred to as the S-variate, mth-order GPDD approximation of the mean
of y(X).

Applying the expectation operator again, this time on [yS,m(X)− y∅]2, produces

var
[
yS,m(X)

]
:= E

[
yS,m(X)− y∅

]2

= E
[ ∑
∅̸=u⊆{1,...,N }

1≤|u|≤S

∑
ju∈N|u|
|u|≤|ju |≤m

Cu,juΨu,ju (Xu)
]2

= E
[ ∑
∅̸=u,v⊆{1,...,N }

1≤|u|,|v|≤S

∑
ju∈N|u|,kv∈N|v|
|u|≤|ju |≤m
|v|≤|kv |≤m

Cu,ju Cv,kvΨu,ju (Xu)Ψv,kv (Xv)
]

=

∑
∅̸=u,v⊆{1,...,N }

1≤|u|,|v|≤S

∑
ju∈N|u|,kv∈N|v|
|u|≤|ju |≤m
|v|≤|kv |≤m

Cu,ju Cv,kv Ju,ju ;v,kv .

Here, the second line is obtained by employing (19); the third line is derived by expanding the square; and the last line
is attained by interchanging the expectation and summation operators, followed by using the definition of the integral
Ju,ju ;v,kv in (17b). Again, var[yS,m(X)] will be referred to as the S-variate, mth-order GPDD approximation of the
variance of y(X). The derivation of (28) is similar. Clearly, var[yS,m(X)] approaches var[y(X)], the exact variance of
y(X), as S→ N and m →∞. □

When the input variables follow independent, but not necessarily identical, distributions, GPDD rolls back to the
existing PDD, as alluded to in Section 4.2.2 already. In such a case, the means of the truncated PDD and PDD are also
equal to y∅, but the expressions of respective variances simplify to

var
[
yS,m(X)

]
=

∑
∅̸=u⊆{1,...,N }

1≤|u|≤S

∑
ju∈N|u|
|u|≤|ju |≤m

C2
u,ju
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and

var [y(X)] =
∑

∅̸=u⊆{1,...,N }

∑
ju∈N|u|

C2
u,ju

.

Here, many terms of (27) and (28) associated with two unequal subsets u and v vanish as for independent variables
Ju,ju ;v,kv = 0 whenever u ̸= v. The only summation terms retained are the ones when u = v and ju = kv , resulting in
Ju,ju ;v,kv = 1.

Being convergent in probability and distribution, the probability density function of y(X), if it exists, can also
be estimated by that of yS,m(X). However, no analytical formula exists for the density function. In that case, the
density can be estimated by sampling methods, such as MCS of yS,m(X). Such simulation should not be confused
with crude MCS of y(X), typically used for producing benchmark results whenever possible. The crude MCS
can be expensive or even prohibitive, particularly when the sample size needs to be very large for estimating tail
probabilistic characteristics. In contrast, the MCS applied to the GPDD approximation requires evaluations of simple
polynomial functions that describe yS,m . Therefore, a relatively large sample size can be accommodated in the GPDD
approximation even when y is expensive to evaluate.

4.7. Numerical implementation

Algorithm 1 describes a procedure for developing an S-variate, mth-order GPDD approximation yS,m(X) of a
general square-integrable function y(X). It includes calculation of the mean and variance of yS,m(X).

Algorithm 1: GPDD approximation and second-moment statistics

Input: The total number N of input variables X = (X1, . . . , X N )T , a joint probability density function fX(x) of
X satisfying Assumptions (1)–(4), a square-integrable function y(X), and the largest degree of interaction
S and largest order of orthogonal polynomials m

Output: The S-variate, mth-order GPDD approximation yS,m(X) of y(X), mean and variance of yS,m(X)
1 Calculate the marginal probability density functions fXu (xu) of Xu for all 1 ≤ |u| ≤ S
2 for l ← 1 to m do
3 Generate the sets of orthogonal polynomials {Pu,ju (xu) : 1 ≤ |u| ≤ min(S, l), |ju | = l} and their standardized

version {Ψu,ju (xu) : 1 ≤ |u| ≤ min(S, l), |ju | = l} that are consistent with the measure fXu (xu)dxu

/* from the Gram--Schmidt process or other means and (4) */

4 Calculate or estimate y∅, Iu,ju , and Ju,ju ;v,kv for 1 ≤ |u|, |v| ≤ min(S, l) and |ju | = |kv| = l
/* from quasi MCS (QMCS) or other numerical methods */

5 Construct and solve the linear system to obtain the lth-degree expansion coefficients Cu,ju ,
1 ≤ |u| ≤ min(S, l), |ju | = l

/* from (25) */

6 Compile the requisite set of S-variate, mth-order GPDD expansion coefficients and hence construct the
S-variate, mth-order GPDD approximation yS,m(X)

/* from (19) */

7 Calculate the mean E[yS,m(X)] and variance var[yS,m(X)]
/* from (26) and (27) */

5. Examples

Two examples, the one involving a stochastic ODE describing a three-dimensional diffusion problem and the other
entailing 11-dimensional random eigenvalue problem from structural dynamics application, are presented to illustrate
the proposed GPDD.

5.1. Stochastic ODE

Consider a stochastic boundary-value problem described by the ODE

−
d

dξ

(
exp(X1)

d
dξ

y(ξ ;X)
)
= (X2 + X3)2, 0 ≤ ξ ≤ 1, y(ξ ;X) ∈ R, (29)
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Table 2
Three cases of input probability density functions.

Case Probability density function

1

Gaussian density on R3
:

fX1 X2 X3 (x1, x2, x3) = (2π)−
3
2 (detΣX)−

1
2 exp

[
−

1
2

xT Σ−1
X x

]
, x = (x1, x2, x3)T

∈ R3,

where ΣX =

⎡⎢⎢⎢⎣
σ 2

1 ρ12σ1σ2 ρ13σ1σ3

σ 2
2 ρ23σ2σ3

(sym.) σ 2
3

⎤⎥⎥⎥⎦ , σ1 = σ2 = σ3 = 1/4, ρ12 = ρ13 = ρ23 = 1/5.

2

Gegenbauer density on B3
:

fX1 X2 X3 (x1, x2, x3) =

⎧⎪⎪⎨⎪⎪⎩
Γ (µ+ 2)

π
3
2 Γ

(
µ+ 1

2

) (1− ||x||2
)µ− 1

2
, x = (x1, x2, x3)T

∈ B3,

0, otherwise,

where ||x||2 :=
3∑

i=1

x2
i , µ = 5.

3

Dirichlet density on T3
:

fX1 X2 X3 (x1, x2, x3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ
(∑4

i=1 κi + 2
)

∏4
i=1 Γ

(
κi +

1
2

) ( 3∏
i=1

x
κi−

1
2

i

)
(1− |x|)κ4−

1
2 , x = (x1, x2, x3)T

∈ T3,

0, otherwise,

where |x| :=
3∑

i=1

xi , κ1 = κ2 = κ3 = κ4 = 1.

with boundary conditions

y(0;X) = 0, exp(X1)
dy
dξ

(1;X) = 1,

where X = (X1, X2, X3)T is a real-valued, trivariate input random vector with known probability density function.
Three distinct cases of the probability density function of X, one with an unbounded support and the other two with
bounded supports, were considered: (1) a Gaussian density function on R3

:= {(x1, x2, x3) : −∞ < x1, x2, x3 <

+∞}; (2) a Gegenbauer density function on the unit disk B3
:= {(x1, x2, x3) : x2

1 + x2
2 + x2

3 ≤ 1}; and (3) a Dirichlet
density function on the standard tetrahedron T3

:= {(x1, x2, x3) : 0 ≤ x1, x2, x3; x1 + x2 + x3 ≤ 1}. Table 2 presents
explicit forms of the density functions, including the values of their parameters. For all three cases, a three-dimensional
contour plot of the joint density fX1 X2 X3 (x1, x2, x3) = 0 (left) and several contours of fX1 X2 X3 (x1, x2, x3) over slice
planes through the center (right) are depicted in Figs. 2(a), 3(a), and 4(a). The marginal densities of (X i , X j ) (left) and
X i (right), i, j = 1, 2, 3 i ̸= j , are drawn in Figs. 2(b), 3(b), and 4(b). The objective is to assess the approximation
quality of the truncated GPDD in terms of the second-moment statistics of the solution of the ODE.

5.1.1. Orthogonal polynomials
The aforementioned input density functions satisfy Assumptions (1) and (2). Therefore, measure-consistent

orthogonal polynomial bases exist in all cases. However, there are multiple and explicit forms of orthogonal
polynomial bases [19]. In this work, however, a set of orthogonal polynomials {Pu,ju (xu): 1 ≤ |u| ≤ 3, |u| ≤ |ju | ≤ 6},
consistent with the Gaussian, Gegenbauer, and Dirichlet density functions, were determined using the respective
formulae described in Section 3.5. They were later scaled using (4) to generate their standardized version {Ψu,ju (xu)}.
More explicitly, Table 3 presents first-, second-, and third-order (-degree) orthogonal polynomials in xu , 1 ≤ |u| ≤ 3,
obtained for all three density functions; here, the indices i = 1, 2, 3 and i1, i2 = 1, 2, 3, i2 > i1. It is easy to verify
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Table 3
A few orthogonal polynomials consistent with the three density functions of Example 1.a

Case 1: Gaussian density on R3 (σ1 = σ2 = σ3 = 1/4, ρ12 = ρ13 = ρ23 = 1/5)
Ψ{i}1 = 4xi ,

Ψ{i}2 = 8
√

2x2
i −

1
√

2
,

Ψ{i}3 = 32
√

2
3 x3

i − 2
√

6xi ,

Ψ{i1,i2}11 = −
25
3

√
2

13 x2
i1
+

10
3

√
26xi2 xi1 −

25
3

√
2

13 x2
i2
+

1
√

26
,

Ψ{i1,i2}12 =
50x3

i1
27 −

170
9 xi2 x2

i1
+ 50x2

i2
xi1 − 3xi1 −

250x3
i2

27 +
5xi2

3 ,

Ψ{i1,i2}21 = −
250x3

i1
27 + 50xi2 x2

i1
−

170
9 x2

i2
xi1 +

5xi1
3 +

50x3
i2

27 − 3xi2 ,

Ψ{1,2,3}111 =

60
7

√
10
203

x3
1 −

310
7

√
10

203
x2x2

1 −
310
7

√
10
203

x3x2
1 −

310
7

√
10

203
x2
2 x1 −

310
7

√
10
203

x2
3 x1

+
80
7

√
290
7

x2x3x1 + 2

√
10

203
x1 +

60
7

√
10

203
x3
2 +

60
7

√
10

203
x3
3 −

310
7

√
10

203
x2x2

3

+2

√
10

203
x2 −

310
7

√
10

203
x2
2 x3 + 2

√
10

203
x3 .

Case 2: Gegenbauer density on the unit ball B3 (µ = 5)
Ψ{i}1 = −

√
14xi ,

Ψ{i}2 = 28
√

2
13 x2

i − 2
√

2
13 ,

Ψ{i}3 = 3
√

42
13 xi − 16

√
42
13 x3

i ,

Ψ{i1,i2}11 = 4
√

14xi1 xi2 ,

Ψ{i1,i2}12 = −2
√

42
13 x3

i1
− 2
√

546x2
i2

xi1 + 2
√

42
13 xi1 ,

Ψ{i1,i2}21 = −2
√

42
13 x3

i2
− 2
√

546x2
i1

xi2 + 2
√

42
13 xi2 ,

Ψ{123}111 = −24
√

7x1x2x3.

Case 3: Dirichlet density on the standard tetrahedron T3 (κ1 = κ2 = κ3 = κ4 = 1)

Ψ{i}1 =
√

7
3 − 4

√
7
3 xi ,

Ψ{i}2 =
224x2

i√
55
− 28

√
5

11 xi + 3
√

5
11 ,

Ψ{i}3 = −128
√

15
13 x3

i + 672
√

3
65 x2

i − 112
√

5
39 xi + 7

√
5

39 ,

Ψ{i1,i2}11 = 11
√

42
19 x2

i1
+ 2
√

798xi2 xi1 − 14
√

42
19 xi1 + 11

√
42
19 x2

i2
− 14

√
42
19 xi2 + 3

√
42
19 ,

Ψ{i1,i2}12 =
−6

√
1001
37

x3
i1
− 614

√
77

481
xi2

x2
i1
+ 174

√
77
481

x2
i1
− 2
√

37037x2
i2

xi1
+ 788

√
77
481

xi2
xi1

−114

√
77
481

xi1
− 18

√
1001
37

x3
i2
+ 30

√
1001

37
x2
i2
− 174

√
77
481

xi2
+ 18

√
77

481
,

Ψ{i1,i2}21 =
−18

√
1001
37

x3
i1
− 2
√

37037xi2
x2
i1
+ 30

√
1001

37
x2
i1
− 614

√
77

481
x2
i2

xi1
+ 788

√
77
481

xi2
xi1

−174

√
77
481

xi1
− 6

√
1001
37

x3
i2
+ 174

√
77
481

x2
i2
− 114

√
77
481

xi2
+ 18

√
77
481

,

Ψ{1,2,3}111 =

−12
√

55x3
1 − 50

√
55x2x2

1 − 50
√

55x3x2
1 + 138

√
11
5

x2
1 − 50

√
55x2

2 x1 − 50
√

55x2
3 x1

+346

√
11
5

x2x1 − 128
√

55x2x3x1 + 346

√
11
5

x3x1 − 96

√
11
5

x1 − 12
√

55x3
2

−12
√

55x3
3 + 138

√
11
5

x2
2 − 50

√
55x2x2

3 + 138

√
11
5

x2
3 − 96

√
11
5

x2 − 50
√

55x2
2 x3

+346

√
11
5

x2x3 − 96

√
11
5

x3 + 18

√
11
5

.

a Here, i = 1, 2, 3; i1, i2 = 1, 2, 3, i2 > i1.

from (6) and (7) that all polynomials of Table 3 have zero means and any two distinct polynomials are orthogonal

whenever (u ⊂ v ⊂ u,∀ ju, kv) or (∀ u, v, |ju | ̸= |kv|).
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Fig. 2. Input probability measures and GPDD results for the Gaussian density on R3; (a) contour plot of fX1 X2 X3 (x1, x2, x3) = 0 (left) and sliced
contours of fX1 X2 X3 (x1, x2, x3) (right); (b) marginal densities of (X i , X j ) (left) and X i (right); (c) decay of L1 error in the variance of yS,m (1;X)
with respect to m.
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Fig. 3. Input probability measures and GPDD results for the Gegenbauer density on B3; (a) contour plot of fX1 X2 X3 (x1, x2, x3) = 0 (left) and
sliced contours of fX1 X2 X3 (x1, x2, x3) (right); (b) marginal densities of (X i , X j ) (left) and X i (right); (c) decay of L1 error in the variance of
yS,m (1;X) with respect to m.
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Fig. 4. Input probability measures and GPDD results for the Dirichlet density on T3; (a) contour plot of fX1 X2 X3 (x1, x2, x3) = 0 (left) and sliced
contours of fX1 X2 X3 (x1, x2, x3) (right); (b) marginal densities of (X i , X j ) (left) and X i (right); (c) decay of L1 error in the variance of yS,m (1;X)
with respect to m.
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5.1.2. Exact solution
A straightforward integration of (29) leads to the exact solution:

y(ξ ;X) =
1

exp(X1)

[
ξ +

(
ξ −

ξ 2

2

)
(X2 + X3)2

]
. (30)

Clearly, the first two raw moments E[y(ξ ;X)] and E[y2(ξ ;X)], or any probabilistic characteristics of y(ξ ;X)] for that
matter, depend on the probability density of X. Appendix B provides analytical results of these two moments at ξ = 1
for all three cases of input density functions.

5.1.3. GPDD solution
The Gaussian density function, which has an unbounded support, satisfies Assumption (3b) [25], whereas

the density functions on the unit ball and the standard tetrahedron, which have bounded supports, clearly fulfill
Assumption (3a). Moreover, the support of each density function is grid-closed for the parameters chosen, that is,
Assumption (4) is also satisfied. Furthermore, y(ξ ;X) is a square-integrable function. Therefore, GPDD can be applied
to solve this problem for all three density functions. However, since y(ξ ;X) is a non-polynomial function of X, a
convergence analysis with respect to m – the order of GPDD approximation –is essential. Employing S = 1, 2, 3 and
m = 1, 2, 3, 4, 5, 6, various GPDD approximations of y(ξ ;X) and their second-moment statistics were constructed
or calculated for all three density functions.

Define at ξ = 1 an L1 error

eS,m :=

⏐⏐var[y(1;X)]− var[yS,m(1;X)]
⏐⏐

var[y(1;X)]
(31)

in the variance, committed by an S-variate, mth-order GPDD approximation yS,m(1;X) of y(1;X), where var[y(1;X)]
and var[yS,m(1;X)] are exact and approximate variances, respectively. The exact variance was obtained from the first
two raw moments in (B.1) through (B.6), depending on the input probability measure, whereas the approximate
variance, given S and m, was calculated following (27). The integrals Iu,ju and Ju,ju ;v,kv , needed to determine
the expansion coefficients Cu,ju and y∅, were calculated analytically for all three density functions. Therefore, the
variances from the GPDD approximations and resultant errors were determined exactly.

Fig. 2(c) presents three plots describing how the error eS,m of a GPDD approximation in (31), obtained using the
Gaussian density function of input variables, decays with respect to m. The three plots correspond to three GPDD
truncations with respect to the degree of interaction S = 1 (univariate), S = 2 (bivariate), and S = 3 (trivariate). In
all cases, the approximation errors drop with respect to S and m as expected. In addition, the errors committed by the
univariate and bivariate GPDD approximations may decline further by increasing m, but they level off at respective
limits. The magnitudes of how much they decline and their limits depend on the function y and are expected to be more
pronounced if y is a highly nonlinear function of X, but endowed with no or little interactions among input variables.
In contrast, the errors from the trivariate GPDD approximation do not settle down, descend strictly monotonically
with respect to m, and lead to nearly exponential convergence. This is because in the trivariate approximation S is
equal to three, the total number (N ) of random variables in this problem. Similar plots of error analysis obtained using
the Gegenbauer and Dirichlet density functions are displayed in Fig. 3(c) and Fig. 4(c), respectively. The results are
qualitatively the same as those discussed for the case of Gaussian density function.

5.2. Random eigenvalue problem

The final example entails random eigenvalue analysis of an undamped cantilever plate, shown in Fig. 5(a), often
performed in structural dynamics. The plate has the following deterministic geometric and material properties: length
L = 2 in (50.8 mm), width W = 1 in (25.4 mm), Young’s modulus E = 30 × 106 psi (206.8 GPa), Poisson’s ratio
ν = 0.3, and mass density ρ = 7.324× 10−4 lb-s2/in4 (7827 kg/mm3). The randomness in eigenvalues arises due to
random thickness t(ξ ), which is spatially varying in the longitudinal direction ξ only. The thickness is represented by a
homogeneous, lognormal random field t(ξ ) = c exp[α(ξ )] with mean µt = 0.01 in (0.254 mm), variance σ 2

t = v2
t µ

2
t ,

and coefficient of variation vt = 0.2, where c = µt/
√

1+ v2
t and α(ξ ) is a zero-mean, homogeneous, Gaussian

random field with variance σ 2
α = ln(1+v2

t ) and covariance function Γα(τ ) = E[α(ξ )α(ξ+τ ) = σ 2
α exp[−|τ |/(0.2L)].

Two numerical grids were employed: (1) a 10 × 20 finite-element grid of the plate, consisting of 200 eight-noded,
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Fig. 5. A cantilever plate; (a) geometry; (b) finite-element grid; (c) random-field grid.
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Table 4
Second-moment properties of the first four eigenvalues of the cantilever plate by three GPDD approximations and crude MCS.

Univariate,
1st-order GPDD

Univariate,
2nd-order GPDD

Bivariate,
2nd-order GPDD

Crude MCS
(10,000 samples)

Λa Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

Λ1 0.275088 0.0869715 0.275088 0.0880851 0.275088 0.0896882 0.274852 0.0888108
Λ2 5.10714 1.18771 5.10714 1.19738 5.10714 1.21458 5.10376 1.20242
Λ3 10.6004 2.0924 10.6004 2.10071 10.6004 2.14212 10.5987 2.14294
Λ4 54.5265 9.85134 54.5265 9.90945 54.5265 10.1103 54.5506 10.0225

a The unit of eigenvalue is (rad/ms)2.

second-order shell elements and 661 nodes, as shown in Fig. 5(b); and (2) an 11-point random-field grid of the
plate, parameterizing the random field α(ξ ) into a zero-mean, 11-dimensional, dependent Gaussian random vector
X = (α1, . . . , α11)T with covariance matrix ΣX = [Γα(ξi − ξ j )], i, j = 1, . . . , 11, where ξi is the coordinate
of the column of nodes after traversing 2(i − 1) columns of finite elements from the left, as shown in Fig. 5(c).
The thickness is linearly interpolated between two consecutive nodes of the random-field grid. The finite-element
grid was used for domain discretization, generating the random mass matrix M(X) and random stiffness matrix
K(X) of the cantilever plate. The random eigenvalue problem calls for solving the matrix characteristic equation:
det[K(X) − Λ(X)M(X)] = 0, where Λ(X) is a random eigenvalue of interest with its square-root representing the
corresponding natural frequency. A Lanczos algorithm [33] was used to calculate the eigenvalue.

Three GPDD approximations described by (19) were employed to estimate various probabilistic characteristics
of the first four eigenvalues of the plate: (1) univariate, first-order GPDD approximation (S = 1, m = 1), (2)
univariate, second-order GPDD approximation (S = 1, m = 2), and (3) bivariate, second-order GPDD approximation
(S = 2, m = 2). All univariate and bivariate orthogonal polynomials involved were exactly determined by analytical
formula as before. However, unlike in the former example, Iu,ju and Ju,ju ;v,kv , needed to calculate the expansion
coefficients Cu,ju and y∅, are all 11-dimensional integrals entailing an implicit function from FEA, and hence,
they cannot be determined exactly. Instead, a QMCS [34] was used to estimate the integrals, yielding approximate
coefficients in three steps: (1) select a QMCS sample size L QMC S ∈ N and generate a low-discrepancy point set
PL QMC S := {u

(k)
∈ [0, 1]11, k = 1, . . . , L QMC S}; (2) map each sample from PL QMC S to the sample x(k)

∈ R11,
following the Gaussian probability measure of X; and (3) approximate the integrals as arithmetic averages of integrand
values at the aforementioned point set. The computational cost of QMCS is proportional to L QMC S , as all sample
calculations require the same effort. The Sobol sequence [35] was used for the low-discrepancy point set with the
value of L QMC S = 3000. The sample size chosen was deemed adequate for this problem.

5.2.1. Second-moment statistics
Table 4 presents the means and standard deviations of the first four eigenvalues, Λi , i = 1, . . . , 4, of the plate by

four different methods: the three GPDD approximations and crude MCS. In all four methods, the solution of the matrix
characteristic equation for a given input is equivalent to performing an FEA. Therefore, computational efficiency, even
for this simple plate, is a practical requirement in solving random eigenvalue problems. Due to the expense of FEA,
crude MCS was conducted for a sample size L MC S = 10,000, which should be adequate for providing benchmark
solutions of the second-moment characteristics. The agreement between the means and standard deviations by all
three GPDD approximations and crude MCS in Table 4 is generally good. However, the univariate, second-order
and bivariate, second-order GPDD approximations are relatively more accurate than the univariate, first-order GPDD
approximation in estimating standard deviations, as expected.

5.2.2. Cumulative distribution function
Fig. 6 illustrates the marginal cumulative distribution functions, respectively, of the four eigenvalues by the three

GPDD approximations and crude MCS. Due to the computational expense inherent to FEA, the same 10,000 samples
generated for verifying the statistics in Table 4 were utilized for the crude MCS estimates in Fig. 6. However,
since the GPDD approximations yield explicit eigenvalue approximations in terms of multivariate polynomials, a
relatively large sample size, 100,000 in this particular example, was selected to sample (19) for estimating the
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Fig. 6. Marginal cumulative distribution functions (CDFs) of the first four eigenvalues of the cantilever plate by three GPDD approximations and
crude MCS.

respective distribution functions. According to Fig. 6, the distribution functions estimated by the bivariate, second-
order GPDD approximations and crude MCS match extremely well over the entire support for all four eigenvalues.
In contrast, the univariate, first-order GPDD approximations produce satisfactory estimates of distribution functions
only around the means or medians; however, in the tail regions there are significant discrepancies. This is because
of the lack of interactions among and/or nonlinear effects of input variables in a low-order univariate approximation.
Interestingly, the distribution functions from the univariate, second-order GPDD approximations are close to those
from the bivariate, second-order GPDD approximations or crude MCS, thereby producing palpably improved results.
This is possible as a higher-order univariate approximation can capture arbitrarily large nonlinear behavior of the
response, although it cannot pick up any interactive effects of input variables.

In closing this section, a brief discussion on the practical significance of the work is warranted. First and foremost,
GPDD acquires the desirable hierarchical structure of the generalized ADD, and is, therefore, expected to ameliorate
the curse of dimensionality to the extent possible in tackling a high-dimensional UQ problem. By removing the
independence assumption, GPDD opens a new avenue for treatment of dependent random variables and should be
able to solve large-scale UQ problems subject to more realistic input distributions than before. Second, the GPDD
method entailing polynomials, orthogonal with respect to the original, non-product-type probability density function,
is expected to converge faster than the commonly used tensor product PDD method in the transformed variables.
This is because the measure transformations – with the exception of dependent Gaussian variables, where such
transformations are linear – often lead to highly nonlinear output functions of transformed variables. Third, the
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GPDD proposed is particularly beneficial for non-trivial domains, such as a ball or a simplex, where a priori measure
transformations are complicated or impractical. Fourth, stable formulae for computing measure-consistent orthogonal
polynomials, at least for the special cases considered in the paper, are highly desirable.

6. Future work

While this paper has presented a novel approach for tackling dependent random variables, there remain two
outstanding computational challenges for future endeavors. First, the calculation of the expansion coefficients of
the GPDD method requires evaluating various N -dimensional integrals Iu,ju , Ju,ju ;v,kv , and y∅ on AN , which cannot
be determined analytically or exactly if y is a general function and fX(x)dx is a general probability measure.
Furthermore, for large N , a full numerical integration employing an N -dimensional tensor product of a univariate
quadrature formula is computationally expensive and likely prohibitive. In Section 5, a QMCS was employed to
estimate these integrals. However, in the future, more efficient alternative methods, such as sparse-grid quadrature [6],
dimension-reduction integration [36], and other numerical methods, should be pursued or developed for calculating
these integrals. Denote by Ĩu,ju , J̃u,ju ;v,kv , and ỹ∅ the estimates of the aforementioned integrals from an approximate
method of choice. Therefore, instead of (25), the actual finite-dimensional linear system involving approximate
coefficients C̃u,ju , 1 ≤ |u| ≤ min(S, l) and |ju | = l, is∑

∅̸=v⊆{1,...,N }
1≤|v|≤min(S,l)

∑
kv∈N|v|
|kv |=|ju |

C̃v,kv J̃u,ju ;v,kv = Ĩu,ju , 1 ≤ |u| ≤ min(S, l), |ju | = l, (32)

which is ready to be implemented and solved, and is scalable to higher dimensions in a straightforward way. Once
the linear system (32) is solved for all 1 ≤ l ≤ m, the result is a truly implementable S-variate, mth-order GPDD
approximation

ỹS,m(X) = ỹ∅ +
∑

∅̸=u⊆{1,...,N }
1≤|u|≤S

∑
ju∈N|u|
|u|≤|ju |≤m

C̃u,juΨu,ju (Xu)

of y(X) for a general UQ problem.
Second, multivariate orthogonal polynomials in xu consistent with the input probability measure must be generated.

For Gaussian density on R|u| and select densities on the unit ball B|u| or the standard simplex T|u|, measure-
consistent orthogonal polynomials can be generated analytically, as explained in Section 3.5. Therefore, measure-
consistent orthogonal polynomials for these probability measures can be produced purely analytically. However, for
general probability measures, no such analytical solutions exist; instead, numerical approximations are required.
For instance, the Gram–Schmidt process can be employed to generate from monomials a sequence of orthogonal
polynomials. However, the process is known to be ill-conditioned. Therefore, more stable methods are needed to
compute orthogonal polynomials. Moreover, deriving an analytical formula for the second-moment properties of
orthogonal polynomials for arbitrary non-Gaussian measures is nearly impossible. Having said so, these properties,
which represent high-dimensional integrals comprising products of orthogonal polynomials, can be determined by
writing them as a sum of expectations of monomials {Xj

}, 0 ≤ |j| ≤ 2m, where the moments of X are calculated
either analytically, if possible, or by numerical integration. Note that the numerical integration can be performed with
an arbitrary precision even when N is large. This is because no generally expensive output function evaluations are
involved.

7. Conclusion

A new computational method, referred to as the GPDD method, is presented for UQ analysis of complex
systems subject to dependent input random variables. The method involves a Fourier-like series expansion of a high-
dimensional random output function in terms of a hierarchically ordered, measure-consistent multivariate orthogonal
polynomials in dependent input variables. The proposed GPDD, which can be viewed as a generalized version
of the existing PDD, exists for any square-integrable function and converges in mean-square to the correct limit,
provided that a few assumptions on the input probability measures are met. The GPDD method does not require
independence of random variables; yet, it generates a convergent sequence of low-variate, low-order approximations
for efficiently estimating the probabilistic characteristics of a general stochastic response of interest. New formulae are
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developed to calculate the mean and variance of a GPDD approximation of a general output variable in terms of the
expansion coefficients and second-moment properties of multivariate orthogonal polynomials. However, unlike in the
existing PDD, calculating the coefficients of GPDD requires solving a coupled system of linear equations. Moreover,
the variance formula of GPDD contains additional terms – a consequence of statistical dependence among input
random variables – that are not present in that of PDD. The additional terms vanish as they should when the input
variables are statistically independent, regressing the proposed PDD to the existing PDD. Two UQ problems – the
one involving a stochastic ODE from three-dimensional diffusion analysis and the other entailing an 11-dimensional
random eigenvalue analysis from structural dynamics – were solved, illustrating the construction and use of GPDD
approximations in estimating various statistical properties of output variables.

Appendix A. Annihilating conditions revisited

Proposition 3. Let fXu (xu;αu), ∅ ̸= u ⊆ {1, . . . , N }, be an infinitely differentiable probability density function of
Xu := (X i1 , . . . , X i|u| )

T . Denote by {Pu,ju (xu) : ju ∈ NN
} an infinite set of multivariate orthogonal polynomials, which

are generated using the formula (10). Assume that the density function is either compactly supported or it converges
to zero faster than the rate at which the polynomials become unbounded at the boundary. Then each multivariate
orthogonal polynomial of the set satisfies the weak annihilating conditions (5).

Proof. Let ∅ ̸= u ⊆ {1, . . . , N }, ju ∈ NN , and i ∈ u. Then∫
A{i}

Pu,ju (xu) fXu (xu;αu)dxi

∝

∫
A{i}

(
∂

∂xu

)ju

fXu (xu;βu)dxi

=

∫
A{i}

∂
ji1 ,..., ji|u|

∂x
ji1

i1
· · · x

ji|u|
i|u|

{
fXu (xi1 , . . . , xi|u|;βu)

}
dxi

=

⎡⎣ ∂
ji1 ,...,( ji−1),..., ji|u|

∂x
ji1

i1
· · · x ( ji−1)

i · · · x
ji|u|

i|u|

{
fXu (xi1 , . . . , xi , . . . , xi|u|;βu)

}⎤⎦
∂A{i}

=

[
P{i1,...,i,...,i|u|},( ji1 ,...,( ji−1),..., ji|u| )

(xi1 , . . . , xi , . . . , xi|u| ) ×

fXu (xi1 , . . . , xi , . . . , xi|u|;βu)
]
∂A{i}

= 0. (A.1)

Here, the second line is formed using the formula (10), the third line expresses a longer version of the same integrand
in the second line, the fourth line is derived after performing the integration with respect to xi , where ∂A{i} is the
boundary of the domain A{i}, and the fifth line is obtained using again the formula (10). Finally, the equality to
zero in the last line is deduced from the cognizance that at the boundary ∂A{i}, the density function is either zero or
converges to zero more rapidly than the rate at which the polynomial P{i1,...,i,...,i|u|},( ji1 ,...,( ji−1),..., ji|u| )

reaches±∞when
xi approaches the boundary. □

Appendix B. Second-moment properties of y(1; X)

Applying the expectation operators on (30) and its square, the first two raw moments of y(1;X) are respectively
given by (B.1) and (B.2) for the Gaussian density on R3, by (B.3) and (B.4) for the Gegenbauer density on B3, and by
(B.5) and (B.6) for the Dirichlet density on T3.

(1) Gaussian density on R3 (σ1 = σ2 = σ3 = 1/4, ρ12 = ρ13 = ρ23 = 1/5):

E [y(1;X)] =
3441 32

√
e

3200
≈ 1.10945. (B.1)

E
[
y2(1;X)

]
=

748761 8
√

e
640000

≈ 1.32571. (B.2)
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(2) Gegenbauer density on B3 (µ = 5):

E [y(1;X)] = 46080 [I6(1)+ I7(1)] ≈ 1.10997. (B.3)

E
[
y2(1;X)

]
= 180 [7I6(2)− 17I7(2)] ≈ 1.32882. (B.4)

(3) Dirichlet density on T3 (κ1 = κ2 = κ3 = κ4 = 1):

E [y(1;X)] =
32
[
4453I0

( 1
2

)
− 18321I1

( 1
2

)]
231
√

e
≈ 0.908263. (B.5)

E
[
y2(1;X)

]
=

8 [10283I0(1)− 22517I1(1)]
1001e

≈ 0.862236. (B.6)

Here, In(z) is a modified Bessel function of the first kind, which satisfies the differential equation: z2w′′ + zw′ −
(z2
+ n2)w = 0.
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