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Abstract

This paper presents a new stochastic method by integrating spline dimensional decomposition (SDD) of a high-dimensional
andom function and isogeometric analysis (IGA) on arbitrary multipatch geometries to solve stochastic boundary-value
roblems from linear elasticity. The method, referred to as SDD-mIGA, involves (1) analysis-suitable T-splines with significant
pproximating power for geometrical modeling, random field discretization, and stress analysis; (2) Bézier extraction operator
or isogeometric mesh refinement; and (3) a novel Fourier-like expansion of a high-dimensional output function in terms
f measure-consistent orthonormalized splines. The proposed method can handle arbitrary multipatch domains in IGA and
ses standard least-squares regression to efficiently estimate the SDD expansion coefficients for uncertainty quantification
pplications. Analytical formulae have been derived to calculate the second-moment properties of an SDD-mIGA approximation
or a general output random variable of interest. Numerical results, including those obtained for a 54-dimensional, industrial-
cale problem, demonstrate that a low-order SDD-mIGA is capable of efficiently delivering accurate probabilistic solutions
hen compared with the benchmark results from crude Monte Carlo simulation.
2022 Elsevier B.V. All rights reserved.

eywords: Uncertainty quantification; Isogeometric analysis; T-splines; Bézier extraction operator; Random field discretization; Karhunen–Loève
xpansion

1. Introduction

Many complex mechanical systems exhibit uncertainties in their responses due to the intrinsic uncertainties in
he input to the system. For instance, consider a system where some material properties, geometrical characteristics,
nd external loads are random based on the nature of the manufacturing processes and operational conditions. In
uch a case, if a stress response is defined as an output function, the response variable is naturally random as
ell. Uncertainties in the output are generally dependent on those of the input, and must be quantified accurately

or meticulous design of complex systems. This process, referred to as uncertainty quantification (UQ), entails
ffectively propagating uncertainties from input to an output response variable of interest.
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UQ often requires solving stochastic partial differential equations (PDEs) by numerical methods, such as Monte
arlo simulation (MCS) [1] as a direct sampling method, stochastic finite element methods [2], stochastic boundary-
lement methods [3], stochastic meshfree methods [4,5], non-intrusive sparse-grids methods [6], collocation
ethods [7], and so forth. Although MCS is popular owing to its simplicity, broad applicability, and natural

uitability for parallel computing, it is often subject to slow convergence. For practical engineering problems
andating expensive-to-run computational analysis, MCS is hardly feasible or affordable. For the stochastic

ollocation methods, the crucial factor is how to construct the set of collocation points appropriately because the
hoice of the collocation points determines the performance of the method. While the basis splines (B-splines) have
een employed to construct the sparse-grid quadrature or interpolation, including those associated with a hierarchical
ersion [8], they are neither orthogonal nor measure-consistent, meaning that the basis functions are not adapted to
he probability measure of input random variables. Nonetheless, the sparse grids are highly efficient, although they

ay require many levels for an accurate integration or interpolation, depending on the problem at hand. However,
n the presence of nonsmooth or heavily oscillatory functions, the convergence properties of these aforementioned

ethods may deteriorate markedly when compared with those obtained for smooth functions. Isogeometric analysis
IGA) [9,10] has been proposed to solve PDEs by exploiting the outstanding approximating power of B-splines
nd non-uniform rational B-splines (NURBS) that are globally smooth over the physical domain, provided that the
apping between parametric and physical domains is smooth. IGA has the prospect of avoiding the mesh generation

hase by using a single geometry representation that is simultaneously suitable for design and analysis and is capable
f modeling many common geometries precisely. Over time, IGA has been improved on for water-tight modeling of
ignificantly complex domains by employing T-splines [11,12] in computer-aided design (CAD) and computational
echanics. T-splines deliver the essential feature of local mesh refinement [13] over the regions where the response

unctions of interest are locally prominent. However, there are linear dependence challenges for T-spline blending
unctions [14,15]. Therefore, analysis-suitable T-splines, which correspond to analysis-suitable T-meshes have been
roposed [16,17]. Analysis-suitable T-meshes have linearly independent underlying basis functions, desirable for
omputational analysis. Furthermore, hierarchical T-splines [18] and truncated T-splines [19] have been introduced,
nd IGA element data have been stored by the Bézier extraction operator [20,21] in search of a more accurate and

convenient analysis framework. By adopting IGA in UQ, several numerical stochastic IGA (SIGA) methods have
been proposed for vibration analysis of functionally graded plates [22], spectral analysis [23], and collocation-based
IGA formulations [24]. Moreover, order reduction techniques have been implemented to accelerate MCS [25] and
for more efficient SIGA [26].

There are numerous UQ methods applicable in the stochastic analysis of complex engineering systems.
Polynomial chaos expansion (PCE) [27] is one of the most prevalent methods, although it lacks accuracy in
the presence of non-smooth functions unless the polynomial order is significantly, if not prohibitively, high. The
reason for this phenomenon is that PCE utilizes globally supported polynomials. In an effort to enhance the
performance of globally supported PCE, domain decomposition techniques, such as multi-element formulation
of PCE [28] was introduced. The idea was to decompose the domain based on some variance error threshold.
However, in the presence of many subdomains, the multi-element PCE becomes computationally inefficient. Spline
chaos expansion (SCE) [29] has been introduced by employing B-splines in the expansion instead of globally
supported polynomials, thereby delivering the capability of effectively capturing locally abrupt changes in the
response functions. Another challenge in UQ is to efficiently, yet accurately, solve high-dimensional stochastic
problems, i.e., where the number of random variables is large and typically more than ten. While in such cases
MCS benefits from its convergence rate not relying on the dimension of the problem, it is tremendously expensive
and, hence, not practical for solving industrial-scale UQ problems. In addition, because of their tensor-product
structure, PCE and SCE both succumb to the curse of dimensionality, where the number of expansion coefficients
booms versus the increase in the number of random variables. As a remedy, polynomial dimensional decomposition
(PDD) [30] and spline dimensional decomposition (SDD) [31] have been proposed based on the analysis-of-variance
(ANOVA) dimensional decomposition (ADD) [32], to alleviate the computational difficulties with PCE and SCE,
respectively. Essentially, the PDD and SDD methods are, when properly truncated, efficiently capable of expressing
a high-dimensional function in terms of effective low-variate component functions with marginal loss of accuracy.
However, PDD, very much like PCE, still employs globally supported polynomials and therefore struggles in the case
of non-smooth or heavily oscillatory functions, while SDD addresses concerns with both the curse of dimensionality

and ineffective modeling of non-smooth functions. When facing the curse of dimensionality, one advantage of SDD
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over traditional stochastic Galerkin, stochastic collocation, and sparse grids methods is its capability of handling
any input probability measure, because its underlying basis functions are measure-consistent. Therefore, the authors
envision the need to present novel methods predicated on SDD to accurately solve the stochastic problems in linear
elasticity. A novel SIGA method [33] has been developed by employing IGA as a non-intrusive deterministic solver
of a general stochastic boundary-value problem (BVP) in a stochastic analysis framework involving SDD. The
SDD-IGA method has been applied to linear elasticity problems and benefits from the exceptional properties and
approximating power of B-splines and NURBS for CAD modeling, random field discretization, stress analysis, and
UQ. Furthermore, SDD-IGA has been able to effectively handle smooth and non-smooth functions. However, it has
been restricted to single-patch domains in the context of IGA. The motivation of this work is to develop a novel
SIGA method, referred to as SDD-mIGA, to solve stochastic BVPs from linear elasticity on arbitrary multipatch
domains. This is done by exploiting analysis-suitable T-splines in IGA and orthonormalized measure-consistent
B-splines in SDD, within an integrated framework.

In this paper, a novel stochastic method is proposed for solving a general stochastic BVP from linear elasticity
n arbitrary multipatch domains by integrating SDD and IGA. This work mainly focuses on practical applications,
nd readers interested in mathematical aspects and more details of SDD are referred to the companion paper [31].1

The paper is organized as follows. Section 2 entails basic preliminary definitions and assumptions on input random
variables and random field discretization by Karhunen–Loève expansion. IGA on multipatch domains is discussed
in Section 3, where the notations for analysis-suitable T-splines are presented and the patch coupling technique used
is briefly discussed. In Section 4 the stochastic BVP from linear elasticity is officially defined and a Galerkin, finite
dimensional IGA formulation of the problem is developed. Section 5 entails the SDD formulation and standard least
squares (SLS) regression method to efficiently estimate the SDD expansion coefficients. Analytical formulae are also
derived for the computation of output statistical moments. Three numerical examples, including a 54-dimensional
stochastic problem, are presented in Section 6, to illustrate the accuracy and efficiency of the proposed method,
before the conclusions are drawn in Section 7. The Bézier extraction operator is briefly presented in the Appendix
for the paper to be self-contained.

2. Input random variables and random fields

Let N := {1, 2, . . .}, N0 := N∪ {0}, R := (−∞,+∞), and R+
:= (0,+∞) represent the sets of positive integer,

non-negative integer, real, and positive real numbers, respectively. Moreover, let the closed and bounded D ⊂ Rd

represent a physical domain of dimension d = 1, 2, or 3.

2.1. Input random variables

Define a closed finite interval A{k}
:= [ak, bk] ⊂ R for N ∈ N and k = 1, . . . , N , where ak, bk ∈ R and

bk > ak . An N−dimensional bounded stochastic domain is therefore defined using the tensor-product operator
“ × ” as AN

:= ×
N
k=1A{k}

= ×
N
k=1[ak, bk].

Define a complete probability space by (Ω ,F ,P), where Ω , F , and P : F → [0, 1] are sample space, σ -
algebra, and probability measure, respectively. Let BN

:= B(AN ) represent the Borel σ -algebra on AN
⊆ RN and

consider an AN -valued input random vector X := (X1, . . . , X N )⊺ : (Ω ,F) → (AN ,BN ) as the collection of a
total of N random variables {X i }

N
i=1, which carry the information about the input statistical uncertainties. Vector

X is N -dimensional; therefore, the corresponding stochastic problem is commonly referred to be of dimension N .
Similarly, define each random variable Xk on its associated abstract marginal probability space (Ω {k},F {k},P{k}). A
joint distribution function of X is then denoted by FX(x) := P(∩N

k=1{Xk ≤ xk}), for which a joint probability density
function (PDF), if it exists, is written as fX(x) := ∂N FX(x)/∂x1 · · · ∂xN . For instance, for a cylinder of random
inner radius ri , outer radius ro, Young’s modulus E , and Poisson’s ratio ν under random internal pressure P with
associated statistical distributions, there is a total of five random variables (N = 5) and X = {ri , ro, E, ν, P}.

1 The PDF file to Ref. [31] is available at http://user.engineering.uiowa.edu/˜rahman/sdd.pdf.
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2.2. Random fields

In many engineering applications, there is spatial variability of a random input parameter, referred to as a random
eld. In other words, some characteristic parameter of the stochastic problem may not only vary from sample to
ample, but also from point to point within each sample. For example, the thickness and Young’s modulus of a
ylinder can be considered as random fields. In computational analysis, however, since there are infinitely many
oints in the domain, there is a need for random field discretization, thereby expressing the random field by a
nite number of constituent uncorrelated random variables. An illustrious approach for random field discretization

s the Karhunen–Loève (K–L) expansion [34], which yields an infinite series expansion of a given random field in
erms of uncorrelated random variables and deterministic functions with a spatial argument. The K–L method has
n error-minimizing property as well.

.2.1. Random field discretization
Let z ∈ D denote a spatial point in the physical domain of interest and define a real-valued random field α(z, ·)

on D ∈ Rd with zero mean and a square-integrable covariance function Γ : D×D → R. By solving the Fredholm
integral equation∫

D
Γ (z, z′)φ(z′)dz′

= λφ(z), (1)

n infinite sequence of eigenpairs {λi , φi (z)}i∈N is obtained, yielding

α(z, ·) ∼

∞∑
i=1

√
λiφi (z)X i , (2)

which is convergent in the mean-square sense to the correct limit. Note that in (2), {X i }i∈N is an infinite sequence
of zero-mean, standardized, and uncorrelated random variables.

2.2.2. Karhunen-Loève approximation
In practice, the infinite series in (2) must be truncated. Therefore, an N ′-term truncation or K–L approximation

is written as

αN ′ (z, ·) =

N ′∑
i=1

√
λiφi (z)X i (3)

with the eigenvalues arranged in a descending order in terms of magnitude. Hence, αN ′ (z, ·) is used in the subsequent
tochastic analysis instead of α(z, ·).

Note that truncating (2) at a relatively small N ′ yields a smaller problem dimension and, by extension, less
omputational burden in the subsequent stochastic analysis. On the other hand, a low accuracy is generally expected
n such a K–L approximation. Essentially, the truncation parameter N ′ must be chosen judiciously while keeping
n eye on the complexity of the subsequent stochastic analysis. The random variables X i , i = 1, . . . , N ′ should be
dded to vector X, described in Section 2.1. In other words, whether or not a random field exists in a stochastic
roblem, N represents the total number of random variables.

Various methods have been proposed for accurate and efficient numerical solution of (1). IGA methods have
roved to be accurate and convenient with Galerkin and collocation formulations for random field discretization on
ingle-patch [35,36] and arbitrary multipatch domains [37]. While the Galerkin formulations are typically more
omputationally intensive, the collocation-based methods deliver a satisfactory trade-off between accuracy and
fficiency when approximating the eigensolutions by B-splines, NURBS, or analysis-suitable T-splines. Moreover,
recent work [38] entails a matrix-free isogeometric Galerkin method using tensor-product splines to further boost

he efficiency in random field discretization by the K–L expansion. Readers interested in more details are referred
o the aforementioned works.

.3. Assumptions

The input random vector X := (X1, . . . , X N )⊺ : (Ω ,F) → (AN ,BN ) satisfies all of the following conditions to

be implementable in the SDD framework:

4
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(a) Each input random variable Xk : (Ω {k},F {k}) → (A{k},B{k}) with a bounded support A{k}
⊂ R has absolutely

continuous marginal distribution function FXk (xk) := P(Xk ≤ xk) and continuous marginal density function
fXk (xk) := ∂FXk (xk)/∂xk .

(b) All random variables Xk , k = 1, . . . , N , are statistically independent, but not necessarily identical. In other
words, fX(x) =

∏N
k=1 fXk (xk).

(c) Given a non-negative integer pk ∈ N0, each input random variable Xk has finite moments of all orders up to
2pk . In mathematical form, for all k = 1, . . . , N and 0 ≤ l ≤ 2pk ,

E
[
X l

k

]
:=

∫
Ω

X l
k(ω)dP(ω) =

∫
A{k}

x l
k fXk (xk)dxk < ∞,

where E is referred to as the expectation operator with respect to the probability measure P.

For a given input probability measure, these assumptions ensure the existence of a relevant sequence of orthogonal
plines. Furthermore, for the SDD formulation to be valid, the probability measures of input random variables must
e constrained to closed and bounded domains. However, the SDD formulation is able to handle the uncertainties
temming from unbounded statistical distributions as well, such as normal or lognormal probability measures, if
he associated measures are first properly transformed to others defined on closed and bounded domains. This will
e re-visited in the numerical examples section. The discrete distributions and dependent random variables are not
onsidered in this work.

. Isogeometric analysis

IGA provides a powerful framework for accurate approximation of the solution to PDEs in various fields of
ngineering [9,10] by exploiting B-splines, NURBS, T-splines, and other smooth basis functions. Essentially, IGA
mploys identical basis functions for CAD modeling and computational analysis. Although IGA precisely models
ommon geometries, many analysis domains are so complex that they must be modeled in multiple patches. T-
plines are common in modeling multipatch geometries due to their ability in water-tight modeling and enabling
ocal mesh refinement. This section briefly introduces T-splines by starting from two-dimensional domains. Readers
re referred to related works [12,15,21] for further details.

.1. T-splines

T-splines were first introduced for water-tight modeling in CAD and for tackling the issues with gaps and overlaps
n the patch interfaces [11] before IGA even officially made a debut. Through local mesh refinement, T-junctions
re allowed in the T-mesh tiling in the parametric space. In what follows, the paraphernalia of T-splines is described
imply for two-dimensional domains, which can be generalized for three-dimensional cases.

Denote by p1 and p2 ∈ N0 the polynomial orders in the two parametric coordinate directions 1 and 2, respectively.
or nc ∈ N number of control points denoted by ci , i = 1, . . . , nc in the physical domain D, there is the same
umber of anchors, denoted by ĉi , i = 1, . . . , nc in the parametric domain D̂ with a one-to-one correspondence.
wo T-meshes for even degree pk = 2, k = 1, 2 are indicated in parametric and physical domains in Figs. 1(a)
nd 1(b), respectively. The anchors are illustrated by black closed circles, and the black lines represent the element
dges. The shaded area in Fig. 1(b) demonstrates a nonzero area that covers the physical domain in Fig. 1(a). Let
e denote the total number of elements, where each element e = 1, . . . , ne can be transformed to the parent space
−1, 1]2 for Gauss integration.

For each anchor in a T-mesh, there are d number of local knot vectors associated with the corresponding
arametric coordinate directions ξk, k = 1, . . . , d . In each direction, a local knot vector is formed by taking an
nchor and marching horizontally or vertically. For the T-meshes with an even polynomial degree, marching stops
hen (pk/2 + 1) number of edges is crossed on either side. If there are no more edges to cross, the most recently
laced knot is repeated. Eventually, there are (pk + 2) entries in the local knot vectors. In mathematical form, for
n anchor i in a two-dimensional T-mesh,

ξ i
k = {ξ i

k,1, ξ
i
k,2, . . . , ξ

i
k,pk+2}, k = 1, 2, and i = 1, . . . , nc,

here ξ i
k,1 ≤ ξ i

k,2 ≤ · · · ≤ ξ i
k,pk+2. As an example, the two local knot vectors for Anchor A in Fig. 1(b) are

A A

1 = {0.2, 0.4, 1, 1} and ξ 2 = {0, 0.2, 1, 1}. For each set of local knot vectors associated with an anchor, the knot

5
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Fig. 1. A T-mesh: (a) physical domain; (b) parametric domain. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

lines are drawn by the tensor-product grid constructed by the knots. If a knot line does not coincide with an existing
element edge, a continuity reduction line is formed, as shown in red in Fig. 1(b). Continuity reduction lines break
the existing elements into smaller elements [21].

For each and every anchor i, i = 1, . . . , nc there is one associated T-spline blending function. T-splines are
constructed recursively, starting from order zero as

U i,k
ik ,0,ξk

(ξk) =

{
1, ξ i

k,ik
≤ ξk < ξ i

k,ik+1,

0, otherwise,
ik = 1, . . . , pk + 1,

nd for pk ≥ 1, a T-spline blending function is constructed by the Cox–de Boor formula [39] as

U i,k
ik ,pk ,ξk

(ξk) =
ξk − ξ i

k,ik

ξ i
k,ik+pk

− ξ i
k,ik

U i,k
ik ,pk−1,ξk

(ξk) +
ξ i

k,ik+pk+1 − ξk

ξ i
k,ik+pk+1 − ξ i

k,ik+1
U i,k

ik+1,pk−1,ξk
(ξk).

ventually, a single univariate T-spline function denoted by U i,k
1,pk ,ξk

(ξk), which is associated with anchor i ,
arametric direction k, polynomial degree pk , and local knot vector ξ k , is obtained.

The multivariate T-spline functions are constructed by the product operator as

Ui
p,Ξi (ξ ) :=

d∏
k=1

U i,k
1,pk ,ξk

(ξk), i = 1, . . . , nc,

here p := (p1, . . . , pd ) ∈ N0
d , ξ = (ξ1, . . . , ξd ), and Ξ i

:= (ξ i
1, . . . , ξ

i
d ). The function Ui

p,Ξi (ξ ) is, in general,
nly nonzero over a chunk of the domain of analysis. For instance, the green rectangle in Fig. 1(b) illustrates
egion [0, 0.4] × [0, 1], over which the multivariate T-spline associated with Anchor B is nonzero. Furthermore,
-spline blending functions, in contrast to NURBS, are formed for each anchor i, i = 1, . . . , nc independently,
hich ensures much more flexibility in mesh refinement. As a drawback, however, the T-splines defined so far

re not necessarily linearly independent — hence the name “blending function”. The linear dependence of these
unctions causes instability in the computational analyses, to say the least [15], which would not have been an
ssue if NURBS were employed. Therefore, only analysis-suitable T-splines are acceptable to proceed with in the
umerical computations. This will be re-visited in Section 3.3.
6
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3.2. Rational T-splines

In IGA, the control points representing an object in the physical domain, each have an associated weight
i ∈ R+, i = 1, . . . , nc. For CAD modeling and computational analysis on more complex geometries, such

s circles, cylinders, and spheres, the T-splines are rationalized as

Ti
p,Ξ i (ξ ) :=

wi Ui
p,Ξi (ξ )

nc∑
j=1

w j U
j
p,Ξ j (ξ )

, (4)

here Ti
p,Ξ i : D̂ → R is defined as a multivariate rational T-spline. The rational T-splines, simply referred to as

-splines from this point forth, satisfy the partition of unity property, which is essential in finite element methods.
ence, a line (d = 1), surface (d = 2), or volume (d = 3) can be expressed by the linear projection H̃(ξ ), defined

s

H̃(ξ ) :=

nc∑
i=1

Ti
p,Ξ i (ξ )ci .

ecall that ci is a control point in the physical domain and ξ represents a point in the parametric space. Assuming
hat the mapping is invertible,

T̄i
p,Ξ i (z) := Ti

p,Ξ i (ξ ) ◦ H̃−1 (5)

s defined as the multivariate T-spline blending functions corresponding to anchor i, i = 1, . . . , nc in the physical
pace. Here, z refers to a point in the physical domain.

.3. Analysis-suitable T-meshes

As discussed in Section 3.1, T-splines deliver flexibility to the discretization process by introducing T-junctions.
his is mainly because of the nature of point-based splines [11], which stems from using local knot vectors.
owever, Buffa et al. [14] were the first to realize that not every T-mesh is suitable for analysis because the
nderlying T-splines may not necessarily be linearly independent. This, as a downside of using T-splines, continued
o be studied until Li et al. [15] developed mathematical and topological ways to understand this phenomenon and
ssess whether a given T-mesh is analysis-suitable or not.

The topological approach of evaluating the analysis-suitability of a T-mesh is very straightforward. Define
T-node as a T-junction inside the parametric domain, and for every T-junction in the T-mesh, draw T-node

xtension lines, as indicated in Fig. 2, as an example. The T-nodes are indicated by closed green circles. Here,
pk = 2, k = 1, 2. There are two types of extension lines, namely face extension lines and edge extension
ines [16]. The former are drawn in the direction where there is no edge, and the latter are emitted in the opposite
irection. In Fig. 2, the two types of lines are demonstrated in blue and magenta, respectively. Simply, a T-mesh
s called analysis-suitable if no T-node extensions intersect. Figs. 2(a) and 2(b) are examples of non-analysis-
uitable and analysis-suitable T-meshes, respectively. The intersections are marked with red crosses. Note that the
nalysis-suitable T-splines are those associated with an analysis-suitable T-mesh [15].

By adopting the topological approach, drawing an analysis-suitable T-mesh may become tedious, as one may have
o remove and add edges repeatedly and check to avoid T-node extension intersections. Having said so, hierarchical
-splines [18] and adaptive refinement methods [40] have been developed to avoid such complexities in a rather
ore systematic manner.

.4. T-mesh refinement with Bézier extraction operator

The Bézier extraction operator, discussed in the Appendix, provides a simple means for local mesh refinement.
et T0 and TR represent the coarse mesh and refined mesh, respectively. In mathematical form, T0 ⊆ TR . Moreover,
enote by U0(ξ ) and UR(ξ ) the T-splines corresponding to T0 and TR , respectively, as defined in (A.2), with nc,0
nd n being the total number of control points (or T-splines) associated with T and T , respectively. The idea is
c,R 0 R

7
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Fig. 2. Two T-mesh examples: (a) non-analysis-suitable T-mesh; (b) analysis-suitable T-mesh. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

hat the representation of a T-spline object should remain the same after refinement. Therefore, express the T-splines
f the coarse mesh in terms of those of the refined mesh by

U0(ξ ) = TUR(ξ ). (6)

he transformation matrix T is of dimension nc,0 × nc,R and is referred to as the refinement matrix. Hence, let C0

nd CR be the Bézier extraction operators associated with the meshes T0 and TR , respectively, and by substituting
A.2) in (6), write

C0 = TCR . (7)

y matrix operations, (7) can be formulated for each anchor i , i = 1, . . . , nc,0 as

Ci
0 = CR

⊺Ti , (8)

ith Ti being the i th submatrix in T as

T = [T1, . . . ,Tnc,0 ]⊺.

y solving (8) for Ti , i = 1, . . . , nc,0, the refinement matrix T is obtained and the linear transformation in (6) is
t hand.

The weighted control points for TR are defined as cwR := [c1
R,w · · · cnc,R

R,w ]⊺ and can be computed using the
eighted control points of the coarse mesh cw0 := [c1

0,w · · · cnc,0
0,w ]⊺ by the projection [21]

cwR = T⊺cw0 ,

here

ci
0,w := {wi ci

1, . . . , wi ci
d}, i = 1, . . . , nc,0,

nd ci
d is the dth coordinate of the i th control point in the physical space D, and wi is its associated weight.

Note that in order to be able to analytically calculate the refinement matrix T, one must be able to write the
-splines of the coarse mesh in terms of those of the refined mesh. In technical language, the two sets of T-spline
unctions must be nested [21]. Otherwise, there is no unique solution for Ti in (8). In this work, the Bézier extraction
perator is employed for T-mesh refinement, the basis functions of the coarse and refined mesh are nested, and all
he T-meshes are analysis-suitable.
8
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Fig. 3. A decomposition of a two-dimensional geometry: (a) four-patch domain in the physical space; (b) parametric domain for mapping
to an arbitrary patch. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

3.5. Patch-coupling methods

For many common, relatively simple domains, there is no need for multiple patches, and a single T-mesh
uffices for representing the entire geometry. In some cases, however, the mapping of a domain from parametric to
hysical space is so complex that it might make the numerical computations inaccurate. For CAD modeling and
omputational analysis on arbitrary complex domains, subdividing the domain into smaller patches is, therefore,
esirable for convenience and accuracy.

Note that, in this work, a multipatch domain is specifically a region that is partitioned into a finite number of
ingle patches. As defined previously, denote by D ⊂ Rd a closed bounded domain of a physical object and let
p ∈ N be the total number of patches with open bounded domains Dq ⊆ D, q = 1, . . . , n p, such that

D̄ = D =

n p⋃
q=1

D̄q ,

here the overline represents set closure. Moreover, consider two distinct adjacent patches q and q ′, q ̸= q ′ with
ssociated domains Dq and Dq ′ . The two patches may overlap only at their interface Γqq ′ (say), that is,

D̄q ∩ D̄q ′ = Γqq ′ ̸= ∅.

Fig. 3(a) illustrates a four-patch geometry with domains D1 through D4 and three interfaces Γ12, Γ23, and Γ34,
hich are shown by cyan lines. Each patch is an image of the rectangular domain in Fig. 3(b) to the physical
omain. The solutions of interest can be mapped to the physical domain by initiating the numerical analyses from
he rectangular domains in the parametric space.

Clearly, multiple patches are required to model many complex geometries, and the arrangement of the patches
n the domain may be of importance, depending on the problem. Considering how the patches are arranged, the
ormulation of multipatch IGA may then become challenging. That is why research is ongoing to develop powerful
oupling methods [41]. However, regardless of the patch shapes including unstructured and highly structured
onforming patches, the C0-continuity constraints are straightforward to impose in IGA to couple them. This is
ccomplished as follows.

Let Figs. 4(a) and 4(b) demonstrate two analysis-suitable T-meshes, which represent two distinct adjacent patches,
amed as Patch 1 and Patch 2, respectively. Bazilevs et al. [12] described how such two patches are coupled in such
way to yield C0-continuity at the patch interface. Fig. 4(c) illustrates the coupled T-meshes, where C0-continuity

onstraints are imposed in the region shown by a cyan rectangle. In this region, there essentially must be common
dges and anchors in the two adjacent T-meshes, which are demonstrated by black lines and closed black circles,
espectively. Note that the resulting T-mesh in Fig. 4(c) must be double-checked for analysis-suitability according
o Section 3.3. Moreover, the knots have been normalized to zero to one after coupling, which is optional. Due
o the flexible nature of T-splines, T-junctions can be incorporated in such a way as to effectively minimize the
umber of elements in the subsequent computational analysis, and still yield proper local mesh refinement over
articular regions of the domain. Fig. 4(d) depicts the associated T-mesh tiling in the physical domain, where the

0
atch interface with the C -continuity is shown by a cyan line.

9
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Fig. 4. A T-mesh for a two-patch domain: (a) T-mesh for Patch 1; (b) T-mesh for an adjacent Patch 2; (c) patch coupling with C0-continuity;
(d) T-mesh tiling of the physical domain. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

For many practical applications, the C0-continuity is adequate and may be preferable due its simplicity of
implementation, although it clearly is not the best option in terms of accuracy. In this work, only C0-continuity
conditions are considered on all patch interfaces.

4. Stochastic boundary-value problem

This section entails official definition of the stochastic BVP from linear elasticity. In this problem, the domain
D ⊂ Rd represents the material under equilibrium. Generally, there is statistical variability in the loads, geometry,
and material properties, while the goal is to quantify the uncertainties in some response variables of interest.

4.1. Stochastic PDE

The information about statistical variability of the input is carried by the random vector X, as defined in

Section 2.1. In order to solve the stochastic PDE, the goal is to find the displacement vector u(z; X) and stress

10
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vector σ (z; X), which satisfy

∇ · σ (z; X) + b(z; X) = 0 in D(X) ⊂ Rd ,

σ (z; X) · n(z; X) = t̄(z; X) on Γt (X) ⊂ ∂D(X),
u(z; X) = ū(z; X) on Γu(X) ⊂ ∂D(X),

(9)

t point z = (z1, . . . , zd ) ∈ D(X) ⊂ Rd such that

Γt (X) ∪ Γu(X) ∪ Γ0(X) = ∂D(X), Γt (X) ∩ Γu(X) = ∅,

here Γ0(X) is the free boundary. In (9), ∇ := (∂/∂z1, . . . , ∂/∂zd ) contains the gradients, b(z; X) is the body force,
(z; X) is an unit outward normal, ¯t(z; X) is the prescribed traction, and ū(z; X) is the prescribed displacement.

The stress vector σ (z; X) is computed by D(z; X) : ϵ(z; X), where D(z; X) is the elasticity tensor and ϵ(z; X) :=

1/2)(∇ + ∇
⊺)u(z; X) is the strain vector. Furthermore, “:” symbolizes the tensor contraction operator.

The remainder of Section 4 concisely summarizes the method for solving the BVP defined in (9). Readers in
earch of more details are directed to the authors’ previous work [33].

.2. Finite dimensional formulation

The finite dimensional formulation of the stochastic BVP starts from converting the problem to its weak form.
et L2(D(X)) represent the collection of all square-integrable functions u : D × Ω → Rd . Define the vector space

U :=
{
u(z; X) : u(z; X) ∈ H 1(D(X )),u(z; X) |Γu = ū(z; X)

}
,

here the solution of the weak form lives. Here, H 1(D(X )) is the Sobolev space. The vector space of weighting
unctions is also defined as

W :=
{
w(z; X) : w(z; X) ∈ H 1(D(X )),w(z; X) |Γu = 0

}
.

herefore, the weak form is written as [10]

A(u(z; X),w(z; X)) = L(w(z; X)), (10)

here

A(u(z; X),w(z; X)) =

∫
D(X )

ϵ⊺(u(z; X))D(z; X)ϵ(w(z; X)) dz

nd

L(w(z; X)) =

∫
D(X)

w⊺(z; X)b(z; X) dz +

∫
Γt (X)

w⊺(z; X) t̄(z; X) dΓt .

he weak form in (10) and the strong form in (9) are analytically equivalent [42], if a set of regulatory conditions
s satisfied.

.2.1. Galerkin discretization
The Galerkin method uses the vector subspaces Uh

⊂ U and Wh
⊂ W as approximation spaces and expresses a

olution of interest in terms of a linear combination of a set of linearly independent basis functions residing in Uh

nd Wh . Typically, identical types of basis functions are used to form Uh and Wh . Consequently, for all wh
⊂ Wh ,

A(vh(z; X),wh(z; X)) = L(wh(z; X)) − A(wh(z; X), ūh(z; X)), (11)

ssuming that for a given function ūh(z; X) ∈ Uh and ūh(z; X) |Γu = ū(z; X), for every uh(z; X) ∈ Uh , there exists
unique vh(z; X) ∈ Wh such that

uh(z; X) = vh(z; X) + ūh(z; X).
he Galerkin approach can be employed to solve stochastic PDEs by finite element methods [43].

11
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4.2.2. Matrix formulation by T-splines
In this work, T-splines are employed for both geometrical modeling and stress analysis. For matrix formulation

f the BVP by (11), the same sets of T-spline basis functions are employed from Uh and Wh , which have been
defined in (4) and (5) associated with the parametric and physical spaces, respectively.

The matrix formulation of the stochastic BVP in its weak form yields

K(X)d(X) = F(X),

where

Ki j (X) = A
(

(T̄k1(i,d)
p,Ξ k1(i,d) (z); X), (T̄k2( j,d)

p,Ξ k2( j,d) (z); X)
)
,

Fi (X) = L
(

(T̄k(i,d)
p,Ξ k(i,d) (z); X)

)
.

(12)

In (12), Ki j (X) and Fi (X) refer to the (i, j)th and Fi th entry of K(X) and F(X), respectively, which are typically
andom. Moreover, k1, k2, and k are the control points indices, which are related to i or j and the problem dimension
. Eventually, solve for d(X) by

d(X) = K−1(X)F(X)

nd proceed with constructing the approximate displacement solution uh(z; X) ∈ Uh , as done in conventional finite
lement methods [42].

Note that the displacements uh(z; X) are random because the stiffness matrix K(X) and force vector F(X) are
enerally random. Thus, the random stress response is calculated by

σ h(z; X) = D(z; X)ϵh(z; X),

here ϵh(z; X) := (1/2)(∇ + ∇
⊺)uh(z; X) is defined as the approximate strain tensor. Furthermore, the elasticity

ensor D(z; X) is generally random as it carries the information about the material properties. In this work, uh(z; X)
nd σ h(z; X) are the main response variables of interest.

. Spline dimensional decomposition

This section encompasses the SDD method for uncertainty quantification with deterministic IGA solver for
rbitrary multipatch domains. While the details have been suppressed for brevity, readers interested in specifics
nd mathematical aspects of SDD are directed to the authors’ previous work [31].

.1. Standard B-splines

Denote by nk ∈ N and pk ∈ N0 the number of spline basis functions and polynomial order, respectively, in
oordinate direction k ∈ N. A knot vector ξ k is defined as a non-decreasing sequence of real numbers as

ξ k := {ξk,ik }
nk+pk+1
ik=1 = {ak = ξk,1, ξk,2, . . . , ξk,nk+pk+1 = bk},

ξk,1 ≤ ξk,2 ≤ . . . ≤ ξk,nk+pk+1

on a bounded interval [ak, bk] ⊂ R with ak < bk and nk > pk ≥ 0. Note that ξk,ik refers to the ik th knot in
oordinate direction k, where ik = 1, 2, . . . , nk + pk + 1. The knots may or may not be equally spaced, although
his work only considers equal knot spacing.

Denote by rk the total number of distinct knots in a knot vector and re-write the knot vector as

ξ k = (ak = ζk,1, . . . , ζk,1  
mk,1 times

, ζk,2, . . . , ζk,2  
mk,2 times

, . . . , ζk,rk , . . . , ζk,rk  
mk,rk times

= bk),

here ζk, jk , jk = 1, . . . , rk is a distinct knot and mk, jk , jk = 1, . . . , rk is its associated multiplicity. Therefore, for
very ζk, jk > ζk, jk−1, denote by [ζk, jk−1, ζk, jk ] ⊂ R a subinterval of the bounded domain [ak, bk]. A knot vector is
alled open if its first and last knots appear (pk + 1) times [44]. The knot vectors considered in this work are open,

nd all the knots on the interior region (ak, bk) have multiplicity of one.

12
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Univariate B-splines are constructed in a recursive manner. The zero-order basis functions are computed by

Bk
ik ,0,ξk

(xk) =

{
1, ξk,ik ≤ xk < ξk,ik+1,

0, otherwise,

nd the higher-order functions are built by the Cox–de Boor formula [39] as

Bk
ik ,pk ,ξk

(xk) =
xk − ξk,ik

ξk,ik+pk − ξk,ik
Bk

ik ,pk−1,ξk
(xk) +

ξk,ik+pk+1 − xk

ξk,ik+pk+1 − ξk,ik+1
Bk

ik+1,pk−1,ξk
(xk),

here ik = 1, . . . , nk , xk ∈ [ak, bk] is the function argument, and 0/0 is set as zero.
The B-splines are non-negative, locally supported on the subintervals, linearly independent, and committed to

artition of unity [9]. As a result, they form a basis over [ak, bk]. A B-spline function is C∞-continuous everywhere
xcept at the distinct knots ζk,ik , where it is Cpk−mk,ik -continuous, with the condition 1 ≤ mk,ik < pk + 1.

.2. Measure-consistent orthonormalized B-splines

The orthogonalization of B-splines has been previously elaborated on for regression formulations [45]. For
Q applications, however, having orthogonal basis functions is beneficial, because it helps with more stable

omputational analysis and elegant formulation of the method [31,33].

.2.1. Univariate orthonormalized B-splines
In this section, a linear transformation, originally proposed in the authors’ previous work [31], is presented as

ollows to construct measure-consistent orthonormalized B-splines associated with any probability distribution of
nterest.

(1) Given a set of B-splines for degree pk and knot vector ξ k in coordinate direction k, create an auxiliary set
by replacing, arbitrarily, the first basis function with 1. Arrange the elements of the set into an auxiliary
nk-dimensional vector

Pk(xk) := (1, Bk
2,pk ,ξk

(xk), . . . , Bk
nk ,pk ,ξk

(xk))T ,

which are still linearly independent [31].
(2) Form the spline moment matrix Gk of dimension nk × nk as

Gk := E[Pk(Xk)PT
k (Xk)],

where E is the expectation operator. Moreover, Gk is symmetric and positive-definite by definition [31]. Thus,
a non-singular nk × nk whitening matrix Wk exists such that

WT
k Wk = G−1

k .

(3) Apply a whitening transformation Wk on the auxiliary set of B-splines Pk(xk) to obtain

ψk(xk) = WkPk(xk),

which has the univariate orthonormalized basis functions ψk
ik ,pk ,ξk

(xk), ik = 1, . . . , nk, k = 1, . . . , N . Recall
that N is the number of random variables. There are many options for Wk . However, a straightforward choice
is to apply the Cholesky factorization on the spline moment matrix as

Gk = QkQ⊺
k ,

and obtain the whitening matrix as

Wk = Q−1
k .

Since the input random variables are independent, multivariate B-splines in N variables are constructed by tensor
roduct of measure-consistent univariate orthonormalized B-spline ingredients. However, since the tensor-product
tructure can be costly for high-dimensional problems, the authors advocate building the multivariate functions in

dimensionwise manner.
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5.2.2. Dimensionwise multivariate orthonormalized B-splines
For a subset ∅ ̸= u = {k1, . . . , k|u|} ⊆ {1, . . . , N }, define Xu := (Xk1 , . . . , Xk|u|

)⊺ on the abstract probability
pace (Ωu,Fu,Pu), where Ωu is the sample space, Fu is a σ -algebra on Ωu , and Pu is a probability measure. As

comprises independent random variables, the PDF of Xu is

fXu (xu) =

∏
k∈u

fXk (xk) =

|u|∏
l=1

fXkl
(xkl ), xu := (xk1 , . . . , xk|u|

)⊺.

Furthermore, denote by iu := (ik1 , . . . , ik|u|
) ∈ N|u|, nu := (nk1 , . . . , nk|u|

) ∈ N|u|, and pu := (pk1 , . . . , pk|u|
) ∈ N|u|

0 ,
hree multi-indices for the knot indices, numbers of basis functions, and degrees of B-splines, respectively. Define
n index set

Iu,nu :=
{
iu = (ik1 , . . . , ik|u|

) : 1 ≤ ikl ≤ nkl , l = 1, . . . , |u|
}

⊂ N|u|

ith the cardinality

|Iu,nu | =

∏
k∈u

nk .

or the coordinate direction kl , denote by rkl the number of distinct knots in the knot vector ξ kl
. Hence,

Ikl = rkl − 1,

s the number of subintervals.
The multivariate B-splines in xu = (xk1 , . . . , xk|u|

) consistent with the probability measure fXu (xu)dxu are
onstructed as

Ψ u
iu ,pu ,Ξ u

(xu) =

∏
k∈u

ψk
ik ,pk ,ξk

(xk) =

|u|∏
l=1

ψk
ikl ,pkl ,ξkl

(xkl ), iu = (ik1 , . . . , ik|u|
) ∈ Īu,nu , (13)

here

Īu,nu :=
{
iu = (ik1 , . . . , ik|u|

) : 2 ≤ ikl ≤ nkl , l = 1, . . . , |u|
}

⊂ (N \ {1})|u|,

s defined as a reduced index set with the cardinality

|Īu,nu | :=

∏
k∈u

(nk − 1). (14)

The function arguments in (13) are substituted with the input random variables X1, . . . , X N to yield multivariate
-splines Ψ u

iu ,pu ,Ξ u
(Xu) as functions of variables with uncertainty. Remove the first element of ψk(Xk), which is

he constant term, by limiting the index ikl associated with xkl to run from 2 to nkl . Hence,
For given ∅ ̸= u, v ⊆ {1, . . . , N }, iu ∈ Īu,nu , and jv ∈ Īv,nv , the first and second statistical moments of the

ultivariate orthonormalized B-splines are [31]

E
[
Ψ u

iu ,pu ,Ξ u
(Xu)

]
= 0 (15)

nd

E
[
Ψ u

iu ,pu ,Ξ u
(Xu)Ψ v

jv ,pv ,Ξ v
(Xv)

]
=

{
1, u = v and iu = jv,
0, otherwise,

(16)

espectively. These second-moment statistical properties are important for developing the SDD method.

.3. SDD approximation

For a set of measure-consistent multivariate B-splines {Ψ u
iu ,pu ,Ξ u

(Xu) : iu ∈ Īu,nu }, the size of the set is shown
n (14), which depends on the number of basis functions nkl , and by extension, the length of the knot vector ξ kl
nd order pkl . As the refinement process, consider a fixed pu while increasing the length of ξ kl

in all |u| coordinate
irections, where the largest subinterval size, say h , is monotonically reduced. In the limit, when n → ∞,
kl kl

14
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kl = 1, . . . , |u|, denote by ξ kl ,∞
and Ξ u,∞ = (ξ 1,∞, . . . , ξ |u|,∞) the associated knot vector of infinite length in the

kl th coordinate direction and the collection of |u| such knot vectors, respectively. Write the multi-index set

Īu,∞ :=
{
iu = (ik1 , . . . , ik|u|

) : 2 ≤ ikl < ∞, l = 1, . . . , |u|
}

o call the basis functions corresponding to Ξ u,∞ = (ξ 1,∞, . . . , ξ |u|,∞).
According to the standard Hilbert space theory, one can write the Fourier spline expansion [31] as

y(X) ∼ y∅ +

∑
∅̸=u⊆{1,...,N }

∑
iu∈Īu,∞

Cu
iu ,pu ,Ξ u,∞

Ψ u
iu ,pu ,Ξ u,∞

(Xu), (17)

here

y∅ :=

∫
AN

y(x) fX(x)dx (18)

nd

Cu
iu ,pu ,Ξ u,∞

:=

∫
AN

y(x)Ψ u
iu ,pu ,Ξ u,∞

(xu) fX(x)dx, iu ∈ Īu,∞ (19)

re various expansion coefficients.
The expansion in (17) is a Fourier-like expansion and is referred to as SDD. Evidently, the SDD of any square-

ntegrable random variable y(X) is a dimensionwise orthogonal projection onto the spline space spanning the set of
ssociated measure-consistent multivariate orthonormalized B-splines [31]. The SDD formulation is valid for any
quare-integrable random function y(X) and is not specific to linear elasticity problems.

In practice, the knot vectors are not of infinite dimension and nkl , kl = 1, . . . , |u| is a finite number. In this case,
truncated set {Ψ u

iu ,pu ,Ξ u
(Xu) : iu ∈ Īu,nu } is used to approximate y(X), and an SDD approximation is written as

yp,Ξ (X) := y∅ +

∑
∅̸=u⊆{1,...,N }

∑
iu∈Īu,nu

Cu
iu ,pu ,Ξ u

Ψ u
iu ,pu ,Ξ u

(Xu), (20)

here the expansion coefficients are defined as

Cu
iu ,pu ,Ξ u

:=

∫
AN

y(x)Ψ u
iu ,pu ,Ξ u

(xu) fX(x)dx, iu ∈ Īu,nu , (21)

hile the computation of y∅ still follows (18).
Since SDD benefits from a dimensional, hierarchical structure, many higher-variate interaction terms typically

ontribute only marginally to the function value and therefore can be safely ignored. A convenient approach to
gnore higher-variate terms in SDD is to retain the terms including at most 1 ≤ S ≤ N variables. Therefore, S is
pplied as an important truncation parameter to keep only the terms with the degrees of interaction less than or
qual to S. In mathematical form, an S-variate SDD approximation reads

yS,p,Ξ (X) := y∅ +

∑
∅̸=u⊆{1,...,N }

1≤|u|≤S

∑
iu∈Īu,nu

Cu
iu ,pu ,Ξ u

Ψ u
iu ,pu ,Ξ u

(Xu), (22)

hich is called a truncated SDD approximation. When N is large and S ≪ N , as it is common in real-
ife applications, the number of expansion coefficients drops significantly, which yields substantial savings of
omputational effort. This will be discussed further in Section 5.4.

For any square-integrable function y(X), the sequence of SDD approximations {yS,p,Ξ (X)}1≤S≤N , h>0 converges
o y(X) in mean-square [31], that is,

lim
S→N , h→0

E
[⏐⏐y(X) − yS,p,Ξ (X)

⏐⏐2] = 0,

here h represents the vector of largest subinterval sizes associated with the coordinate directions.
The SDD approximations in (20) and (22) converge in probability and in distribution. Readers interested in

ormal proofs are directed to the prior theoretical work [31].
15
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5.4. Computational effort

In an SDD approximation yp,Ξ (X) of a random function y(X), there is a total of

Lp,Ξ = 1 +

∑
∅̸=u⊆{1,...,N }

∏
k∈u

(nk − 1) =

N∏
k=1

nk

xpansion coefficients. This clearly means that the SDD method succumbs to the curse of dimensionality, implying
hat if all the terms in (20) are retained, the number of expansion coefficients surges exponentially versus N . In
uch case, the SDD method is identical to SCE [29].

On the other hand, a truncated SDD method introduced in (22) comprises of

L S,p,Ξ = 1 +

∑
∅̸=u⊆{1,...,N }

1≤|u|≤S

∏
k∈u

(nk − 1) ≤

N∏
k=1

nk = Lp,Ξ (23)

xpansion coefficients. As mentioned before, for high-dimensional stochastic problems, if S ≪ N , for instance,
nivariate (S = 1) or bivariate (S = 2) SDD approximations lead to tremendously efficient estimations of the random
unction y(X), as the numbers of expansion coefficients decline drastically. As an example, set N = 20, nk = 5,
nd S = 1 or 2. By retaining all the terms in the SDD approximation, the system is equivalent to SCE, and there
re more than 9 × 1013 expansion coefficients, whereas the univariate and bivariate SDD approximations include
nly 81 and 3121 terms, respectively. This is because of the polynomial computational complexity of truncated
DD with respect to N versus the exponential computational complexity in the case of SCE. This comparison
etween the computations efforts demonstrates the huge impact of SDD truncation by taking advantage of the
imensionwise decomposition of y(X), thereby alleviating the curse of dimensionality to the extent possible, while
n many applications, the loss of accuracy by setting S = 1 or 2 is negligible.

Furthermore, y1,p,Ξ (X) or y2,p,Ξ (X) should not be viewed as first- and second-order approximations because S
nly limits the degree of interaction between the random variables, but not their order. As a result, heavily non-linear
unctions can still be effectively modeled by low-variate B-spline component functions. This will be re-visited in
he Numerical Examples section.

How to choose a suitable combination of p, I , and S for a given problem remains an open question. As
his process is problem-dependent, an effective SDD method is picked based on either existing insight about the
egularity of the random function, prior experience from employing other UQ methods, or trial-and-error if the
esponse function is completely unknown. However, numerical schemes can be developed to pick the B-spline
rders and knot vectors in an adaptive framework that comprises of an error measure, a computational budget, and
n optimization algorithm [46].

.5. Output statistics and other properties

In Section 5.3 an inexpensive model yS,p,Ξ (X) was developed as a surrogate of the original random function
y(X), which is generally expensive to evaluate. Therefore, investigating the statistical moments of y(X) through
hose of yS,p,Ξ (X) is tremendously beneficial, provided that the expansion coefficients of yS,p,Ξ (X) are accurately
alculated.

By applying the expectation operators on yS,p,Ξ (X) and using (15) and (16), the mean and variance of yS,p,Ξ (X)
re formulated as [36]

E
[
yS,p,Ξ (X)

]
= y∅ = E [y(X)] (24)

nd

var
[
yS,p,Ξ (X)

]
=

∑
∅̸=u⊆{1,...,N }

1≤|u|≤S

∑
iu∈Īu,nu

Cu2

iu ,pu ,Ξ u
≤ var [y(X)] , (25)

espectively. As observed, the mean is equivalent to y∅, which is independent of S, p, and Ξ . More importantly, if
he integration in (18) is computed exactly, the SDD approximation always yields the exact mean.
16
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The analytical equations (24) and (25) clearly state that the accuracy to which the second-moment statistical
haracteristics of a random response are computed is highly dependent on the accuracy of the coefficient calculation.

hile there are several methods to estimate the expansion coefficients efficiently, the cumulative distribution
unction (CDF) and the PDF of y(X), if they exist, can also be estimated by economically re-sampling the surrogate
odel yS,p,Ξ (X). This will be further discussed in the Numerical Examples section.

.6. Calculation of expansion coefficients

The expansion coefficients in SDD are naturally computed by invoking their respective definitions in (18)
nd (21). This is generally done by numerical computations, which can be expensive, especially in the case of
igh-dimensional problems. As a remedy, a dimension-reduction method has been proposed with B-spline basis
unctions [33] to tremendously decrease the dimension of the integrals involved, thereby drastically boosting the
omputational expediency. However, there are various methods to estimate the expansion coefficients.

The SLS regression method provides a way to efficiently solve linear systems of equations. In this work, the SLS
ethod is employed to estimate the SDD expansion coefficients, thereby avoiding the costly numerical integration

n (18) and (19). This is accomplished in the context of single-index description of SDD as follows.

.6.1. A single-index variant of SDD
Consider the collection of measure-consistent orthonormalized multivariate B-splines

{Ψ u
iu ,pu ,Ξ u

(Xu) : 1 ≤ |u| ≤ S, iu ∈ Īu,nu }, (26)

s previously defined in Section 5.3, which consists of L S,p,Ξ basis functions. Without loss of generality and
onsistent with the orthonormalization procedure discussed in Section 5.2, write Ψ1(X) = 1, and with an arbitrary
rder of choice, arrange the elements of the set in (26) as{

Ψ u
iu ,pu ,Ξ u

(Xu) : 1 ≤ |u| ≤ S, iu ∈ Īu,nu

}
=

{
Ψ2(X), . . . ,ΨL S,p,Ξ (X)

}
, Ψ1(X) = 1,

uch that Ψi (X), i = 1, . . . , L S,p,Ξ represents the i th basis function in a truncated SDD expansion. For each basis
unction, there exists an associated expansion coefficient Ci ∈ R, i = 1, . . . , L S,p,Ξ . Hence, re-write the truncated
DD approximation as

yS,p,Ξ (X) :=

L S,p,Ξ∑
i=1

CiΨi (X). (27)

he result obtained from yS,p,Ξ (X) in (27) is identical to that computed from (22).

.6.2. Least-squares regression for SDD coefficient estimation
By employing the SLS regression method, the approximate SDD expansion coefficients of yS,p,Ξ (X) are

omputed through minimizing

E
[

y(X) −

L S,p,Ξ∑
i=1

CiΨi (X)
]2

.

In UQ applications, the probability distributions of the input random variables in X = {X i , . . . , X N } are defined
nd a random response function y : AN

→ R is under study with unknown uncertainty. Consider a set of input–
utput data set {x(l), y(x(l))}L

l=1 of size L ∈ N. Each element of this data set is generally obtained from an expensive
nite element analysis or IGA of a complex system. The IGA formulation, for instance, solves a PDE, as described

n Section 4, for a fixed input vector x(l) comprising samples drawn from associated probability distributions of the
andom input variables. As a result, the corresponding response of the deterministic IGA solver is also recorded as

y(x(l)), and the process is repeated L ∈ N times. There are various methods, such as the crude MCS, quasi MCS,
nd Latin hypercube sampling methods, for drawing samples from the probability distributions to form x(l).

Having obtained the data set {x(l), y(x(l))}L
l=1, the SLS regression requires minimizing the mean-square error [47]

eS,p,Ξ :=
1
L

L∑⎡⎣y(x(l)) −

L S,p,Ξ∑
CiΨi (x(l))

⎤⎦2

,

l=1 i=1

17
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which is done by estimating the expansion coefficients through

ĉ :=

(
Ĉ1, . . . , ĈL S,p,Ξ

)⊺
= (A⊺A)−1 A⊺b (28)

s an estimation of c := (C1, . . . ,CL S,p,Ξ )⊺, where

A :=

⎡⎢⎣Ψ1(x(1)) · · · ΨL S,p,Ξ (x(1))
...

. . .
...

Ψ1(x(L)) · · · ΨL S,p,Ξ (x(L))

⎤⎥⎦ and b :=
(
y(x(1)), . . . , y(x(L))

)⊺
.

Note that matrix A of dimension L × L S,p,Ξ carries the information about the basis functions used in the SLS
ethod, which are evaluated at {x(l)

}
L
l=1. Moreover, the L-dimensional column vector b has the responses reported

y the IGA deterministic solver, previously discussed in Section 4.2.2.
Furthermore, the square matrix A⊺A of dimension L S,p,Ξ ×L S,p,Ξ , which is referred to as the information matrix,

lays a crucial role in the SLS method. The accuracy of the regression method hinges on the condition number
f the information matrix, which itself depends on how many samples are used in the data set and how they are
icked for analysis. In other words, matrix A⊺A should not be singular and had better be well-conditioned. While
here are rules of thumb stating that two or three times the number of coefficients L S,p,Ξ is typically sufficient for
he number of samples L , the selection of L heavily depends on the application and may yield either inaccurate, if
ttainable, results or unnecessarily expensive computations if L is too small or too large, respectively. Having said
his, a necessary condition for the SLS method reads L > L S,p,Ξ .

There are measures to pick the samples for regression more cleverly. For example, the leave-one-out error has
roven to do very well with estimating the mean-square error [48] and cross validation. Moreover, the least angle
egression [49] is another popular method used in stochastic finite elements by regression [50] and other UQ
pplications. Readers interested in more details are directed to the aforementioned works.

.7. Integration of SDD and multipatch IGA

In Section 4, a stochastic PDE was defined to solve stochastic linear elasticity problems. The displacements
nd stresses are generally not available in closed form. Hence, a matrix formulation was proposed to solve for
h(z; X) and σ h(z; X) numerically by using an IGA deterministic solver, which exploits analysis-suitable T-splines
or modeling and analysis of arbitrary multipatch domains. Henceforth, the random response function of interest

y(X) defined in Section 5.3, is re-defined as

y(X) := y(uh(z; X); σ h(z; X)),

here the response is approximated by multipatch IGA. Therefore, the SDD method in (27) and the multipatch
GA solver are integrated to yield an SDD-multipatch IGA (SDD-mIGA) method.

Fig. 5 illustrates a flow chart for the proposed SDD-mIGA method. The algorithm reads some input data for the
andom vector X, the number of samples for SLS regression L , and the IGA-related data, such as the geometry,
oads, and material properties. The IGA responses are stored in the response vector b. Hence, the SDD algorithm
s carried out in a non-intrusive manner, as the expansion coefficients are estimated efficiently by applying (28).
ventually, the function yS,Ξ ,p is written by (27) as a surrogate of the original function y(X).

Note that although the proposed method utilizes SLS regression, various numerical techniques can, indeed, be
pplied to estimate the SDD expansion coefficients.

Moreover, from this point forth, the SDD-mIGA method proposed for UQ in practical engineering problems will
imply be called SDD for brevity.

. Numerical examples

The numerical examples section starts with the second-moment statistical analysis of nonsmooth and high-
imensional stochastic mathematical functions not related to IGA and custom-tailored to generally evaluate the
fficacy of SDD for UQ. Although this work focuses mainly on the applications of SDD, the authors aim to
crutinize its accuracy in Example 1 by making proper comparisons with other common UQ methods, such as
CE and sparse grids. Examples 2 and 3 involve a two-dimensional connecting rod and a three-dimensional gear,
18
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Fig. 5. A flow chart for the proposed SDD-mIGA method.
19
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respectively, from the real world to study the impact of the proposed SDD method in conjunction with multipatch
IGA. Essentially, solving practical engineering problems involving complex geometries has been the main focus of
this work.

In Examples 2 and 3, the geometries were modeled precisely by multipatch IGA and the problems were solved
onsidering fixed IGA finite element models. In other words, the IGA meshes were not refined, and the impact of
esh refinement was not studied in this work. However, the mesh densities were deemed satisfactory in terms of

he accuracy provided and the computation burden imposed to the analyses. In both examples, the IGA mesh and
ts corresponding control points were obtained by dint of the refinement matrix computed via the Bézier extraction

operator. This was accomplished by acting on a base coarse T-mesh T0, as discussed in the Appendix. Moreover,
since the T-splines technology has still not been commercialized in a user-friendly software package, all the analyses
were conducted by developing Matlab [51] codes. Moreover, MCS was employed in the examples to provide
benchmark solutions.

In all examples, the B-spline order p and knot vector ξ used for the SDD calculations were identical in all
coordinate directions of the stochastic domain. As a result, all subscripts k from pk , ξ k , and Ik were dropped
accordingly. Furthermore, all the knot vectors used by SDD had equally spaced interior knots. All the analyses in
this work were carried out on a standard desktop computer.

6.1. Example 1: Mathematical functions

The first numerical example comprises of two problems with the goal of accurately estimating the second-
moment statistical properties of analytical random functions. In Example 1-1, low-dimensional and high-dimensional
nonsmooth and discontinuous stochastic functions are studied, where SDD is compared with other popular UQ
methods, namely, PCE and sparse grids to rigorously conduct a convergence study and show the impact of SDD in
handling harsh functions in terms of regularity. In addition, Example 1–2 entails UQ analysis of a relatively smooth
function only by SDD, where the objective is to demonstrate the impact of the SDD truncation parameter S on the
resulting SDD accuracy by keeping at most S-variate terms in the spline expansion, where S ≤ N .

6.1.1. Example 1-1: Nonsmooth and discontinuous functions
Consider the nonsmooth, bivariate (N = 2) mathematical function

y1(X1, X2) = f1(X1) + f2(X2) + 0.05 f1(X1) f2(X2),

here

fi (X i ) =

{
exp(5X i ), if X i < 0,
exp(−5X i ), if X i ≥ 0,

i = 1, 2,

and the discontinuous N -variate function

y2(X) =

N∏
i=1

gi (X i ),

where

gi (X i ) =

{
1, if X i ≤ 0,
0.5 exp(X i ), if X i > 0,

i = 1, 2, . . . , N . (29)

Define all X i , i = 1, . . . , N as independent, identical random variables with uniform probability distribution on
[−1, 1]. Here, y1(X1, X2) is clearly a bivariate function, whereas y2(X) is studied for two cases: (1) N = 2 (bivariate)
nd (2) N = 10 (decavariate) to cover the two classes of low-dimensional and high-dimensional stochastic functions
o the extent possible. Hence, there will be three sets of numerical results in total.

Fig. 6 depicts the two-dimensional (N = 2) functions. The objective of this problem is to estimate the variance
f the defined stochastic functions. Bearing in mind that the variance of a random variable is generally more
omputationally challenging to estimate than its mean, the focus of this example has been allocated to variance
nvestigations.
20
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Fig. 6. Mathematical two-dimensional functions in Example 1-1: (a) nonsmooth function y1(x1, x2); (b) discontinuous function y2(x1, x2).

For N = 2, the variances of y1(X1, X2) and y2(X1, X2) were calculated exactly as 1.2349 × 10−1 and
.2098×10−2, respectively. The variances were then estimated by sparse grids with the Clenshaw–Curtis quadrature
ule [52,53], tensor-product PCE [27], and bivariate, linear (S = 2, p = 1) and bivariate, quadratic (S = 2, p = 2)
DD methods, where all the PCE and SDD coefficients were computed exactly. For N = 10, only the discontinuous
unction y2(X1, . . . , X10) was studied as it was expected to be computationally more difficult to encounter than the
onsmooth function. In this case, as the ten-dimensional exact integration for calculating the function expectations
as computationally burdensome, the reference variance was estimated by crude MCS with 109 samples as
.1395 × 10−1. For N = 10, PCE was ruled out due to its hefty computational cost. Three SDD methods were
herefore employed: 1) univariate, linear (S = 1, p = 1); 2) bivariate, linear (S = 2, p = 1); and 3) trivariate, linear
S = 3, p = 1), where each SDD coefficient was estimated by using crude MCS with 107 samples and the definition
resented in (21). In order to capture the discontinuity or nonsmoothness, the knots at xi = 0, i = 1, . . . , N , were
epeated properly to harness the capabilities of SDD. Eventually, the approximate variances from these methods
ere obtained, and their relative errors with respect to their reference values were calculated.
Fig. 7 illustrates how the variance errors decay versus the number of basis functions for various methods.

igs. 7(a) and 7(b) correspond to the low-dimensional (N = 2) functions y1(X1, X2) and y2(X1, X2), respectively. As
bserved, both sparse grids and PCE struggle to provide results as accurate as those obtained by the SDD methods
f order one or two. Furthermore, the superiority of SDD is more evident in Fig. 7(b) for the discontinuous function.
he convergence is also more steep for quadratic (p = 2) SDD in comparison with linear (p = 1) SDD for both
onsmooth and discontinuous functions. Note that as S = N = 2, the spline expansions are exact in terms of the
evel of interaction between the random variables. In addition, no improvement is delivered by the PCE methods
f odd order m in comparison with those of order m − 1, since the original functions are both even, as depicted in
ig. 6. According to Fig. 7(c), the high-dimensional stochastic function y2(X1, . . . , X10) is very challenging for UQ,
s the sparse grids method requires prohibitively many levels to estimate its variance. SDD, however, is efficiently
onvergent with respect to the increase in the number of subintervals and the truncation parameter S by using only
inear (p = 1) basis functions. Obviously, for a given number of basis functions, the SDD methods are substantially

ore accurate than sparse grids. Recall that there are errors in the SDD coefficients and the reference variance
stimated by crude MCS. Moreover, each SDD curve reaches a plateau because S < N in this case, as opposed to
he cases observed in Figs. 7(a) and 7(b), where there was a monotonic decrease in the errors because S was set
qual to N . Nevertheless, although selecting an SDD method with a higher B-spline order, a denser knot vector,
r a larger truncation parameter S would have reduced the amount of error further in this problem, reaching a
rade-off between accuracy and efficiency for large-scale problems is crucial. This is because the more the number
21



R. Jahanbin and S. Rahman Computer Methods in Applied Mechanics and Engineering 393 (2022) 114813

o
t

g
i
a
o
s

f
m
B
c
a
e
s
t
t
c
S
s

6

w

Fig. 7. Variance error analysis for the mathematical functions with different numbers of random variables in Example 1-1: (a) y1(X1, X2);
(b) y2(X1, X2); and (c) y2(X1, X2, . . . , X10).

f subintervals or the higher the B-spline order, the more daunting the coefficient estimation process becomes, due
o the increase in the number of basis functions.

It is noteworthy that in Fig. 7, the number of bases is associated with the number of quadrature points for sparse
rids integration, the maximum polynomial order for PCE, or the number of subintervals for a given B-spline order
n SDD. For instance, for N = 2, sparse grids has at most seven levels, PCE has an order of at most fifteen, and there
re two, four, or eight subintervals in the SDD calculations. Overall, Example 1–1 shows the superiority of SDD
ver the popular PCE and sparse grids methods in terms of the accuracy, while handling low- or high-dimensional
tochastic functions that are harsh in terms of regularity.

Note that a fundamental requirement of most UQ methods, including sparse-grid methods, is that the output
unction of interest is square-integrable with respect to the probability measure of input random variables. Bearing in
ind that sparse grids do not generally perform well when encountering discontinuous functions, as commented by
arthelmann et al. [54], the proposed SDD method performed much better for such functions by employing measure-
onsistent B-splines, provided that the knot vectors are judiciously chosen. Conveniently, the basis functions of SDD
re orthogonal and measure-consistent, which are the principal reasons why SDD performs better than sparse grids,
ven when compactly-supported B-splines can be used in both approximations. Moreover, the separable variable
tructure chosen in the first function in this example is merely for restricting the degree of interaction in SDD
o be at most two (S ≤ 2), which is also the same as the dimension (N = 2) of the UQ problem. The weaker
wo-variable interaction selected does not penalize the sparse grid method, as the foundational idea of sparse grids
an be traced to the referential dimensional decomposition (RDD) [32] of a high-dimensional function. By contrast,
DD is rooted in ADD, which is generally superior to RDD [32]. Therefore, contrasting the results of SDD and
parse grids predicated on RDD for a function with a separable variable structure is informative in this example.

.1.2. Example 1-2: Smooth function
Consider an elementary transformation function

y(X) =

√
1 + X⊺X/2,

here X = {X1, . . . , X N } is a random vector comprising independent, identical random variables X i , i = 1, . . . , N ,
defined on [−1, 1] with a uniform probability measure. The objective is to evaluate the variance of y(X) for the
cases of N = 1, 2, . . . , 6.

To solve the problem by SDD, N was varied from 1 to 6, and S was varied from 1 to N considering a fixed
quadratic (p = 2) SDD method with four subintervals (I = 4) in its knot vector with uniformly spaced simple knots.
According to the theory of SDD, S cannot be larger than N . For all cases, the reference variances were estimated
by Gauss–Legendre numerical integration with 16 Gauss points in each coordinate direction i, i = 1, . . . , N .
22
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Table 1
Relative variance errors computed by various SDD methods in Example 1–2.

S N

1 2 3 4 5 6

1 4.9807 × 10−6 1.3779 × 10−3 2.2648 × 10−3 2.8327 × 10−3 3.1887 × 10−3 3.4027 × 10−3

2 3.3902 × 10−6 1.6025 × 10−5 3.0776 × 10−5 4.3366 × 10−5 5.2735 × 10−5

3 2.1928 × 10−6 1.5757 × 10−6 1.3268 × 10−6 1.2484 × 10−6

4 1.2836 × 10−6 5.9719 × 10−7 7.8650 × 10−8

5 5.8795 × 10−7 5.2506 × 10−8

6 5.2128 × 10−8

Table 2
Numbers of basis functions in various SDD methods in Example 1–2.

S N

1 2 3 4 5 6

1 6 11 16 21 26 31
2 36 91 171 276 406
3 216 671 1526 2906
4 1296 4651 12281
5 7776 31031
6 46656

Moreover, the SDD expansion coefficients were approximately obtained by using a three-point Gauss–Legendre
numerical quadrature rule on each knot vector subinterval.

Table 1 lists the relative variance errors computed by various SDD methods. For a given N , the variance estimates
converge with the increase in S, but the errors are not zero when S = N , since the original function is not a spline

r polynomial. Moreover, the SDD methods enjoy an impressive accuracy by employing only quadratic (p = 2)
-splines, while having such low-order basis functions makes the subsequent numerical integration process so

traightforward that a three-point quadrature rule estimates the expansion coefficients accurately. Despite having low-
rder basis functions in the SDD methods, their relative errors listed in Table 1 are tremendously small, especially
or S as small as 2. The implication is that a bivariate approximation of the original function practically suffices to
rovide accurate results, even when N = 6.

Table 2 lists the numbers of basis functions in various SDD methods used in Example 1–2. Comparing Tables 1
nd 2 delivers a big picture about SDD. A take-away message is that increasing the truncation parameter S in
DD may not be needed, as it may unnecessarily increase the number of basis functions that not only contribute
arginally to the expansion, but also make the computations drastically intensive. For N = 6 as an example, an

rror of 5.2128 × 10−8 is recorded having 46656 basis functions when S = 6. However, a reasonably small error
f 5.2735 × 10−5 is obtained using a bivariate (S = 2) approximation with only 406 basis functions, which is
remendously cheaper to achieve. Example 1–2 clarifies why to start approaching a stochastic problem with S = 1

or 2 in SDD is a proper initiative. This will be re-visited in Examples 2 and 3. The proposed SDD method is able
to efficiently and accurately handle high-dimensional problems by expressing them in terms of linear combinations
of low-variate, low-order components. This feature is vital when facing large-scale stochastic problems, such as the
one presented in Example 3.

6.2. Example 2: Stress analysis of a two-dimensional connecting rod (N = 8)

Consider a two-dimensional connecting rod, as shown in Fig. 8(a) in a stochastic linear elasticity problem. As
he boundary conditions, the connecting rod is fixed on its right end and undergoes a prescribed displacement DL

on its left end. The material is considered isotropic. There are eight random variables (N = 8) in the problem. In
particular, the lengths d1, d2, and d3, the radii rL and rR , the prescribed displacement DL , the Young’s modulus

E , and the Poisson’s ratio ν are all random. Essentially, X = {d1, d2, d3, rL , rR, DL , E, ν}. The statistical details of
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d
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Fig. 8. A two-dimensional connecting rod in Example 2: (a) the geometry, boundary conditions, and material properties; (b) the 14-patch
omain; (c) the IGA finite element model with analysis-suitable T-splines and control points. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

Table 3
Statistical properties of the random input variables in Example 2.

Random variable Type Bounds Mean Standard deviation Units

d1 uniform [0.09, 0.11] 0.1 0.0058 m
d2 uniform [0.045, 0.055] 0.05 0.0029 m
d3 uniform [0.0765, 0.0935] 0.085 0.0049 m
rL uniform [0.019, 0.021] 0.02 5.7735 × 10−4 m
rR uniform [0.0095, 0.0105] 0.01 2.8868 × 10−4 m
DL uniform [7.5 × 10−5, 1.25 × 10−4] 1 × 10−4 1.4434 × 10−5 m
E uniform [165.6, 248.4] 207 23.90 GPa
ν uniform [0.255, 0.345] 0.3 0.026 –

the independent random variables are listed in Table 3. The random variables in this problem all follow uniform
probability distribution, with the units, bounds, mean values, and standard deviation values defined.

To model the geometry in IGA, the domain was decomposed into 14 patches, as indicated in Fig. 8(b), where
he patch interfaces are illustrated by cyan lines. Furthermore, the patches were coupled in a C0-continuous manner,
as discussed in Section 3.5. Fig. 8(c) demonstrates the IGA finite element model with quadratic (pk = 2, k = 1, 2)
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Table 4
Numbers of basis functions and regression samples for the SDD methods in Example 2.

SDD method Number of
basis functions

Number of IGA samples
for regression

Univariate SDD (p = 1, I = 2) 17 68
Univariate SDD (p = 1, I = 4) 33 132
Univariate SDD (p = 2, I = 4) 41 164
Bivariate SDD (p = 1, I = 2) 129 516
Bivariate SDD (p = 1, I = 4) 481 1924
Bivariate SDD (p = 2, I = 4) 741 2964

analysis-suitable T-spline, which includes 270 elements and 423 control points. The control points are shown by
closed green circles.

To induce stresses in the domain, the left end of the connecting rod moves downward by amount DL , which is
random, as stated previously. One may assume that this displacement is, in reality, applied by using a pin in contact
with the left end. In the finite element IGA model, however, the displacement DL was applied to all the control
points that control the left end circle. Similarly, the boundary conditions ux = u y = 0 were applied to the right end

y constraining the displacements of the control points of the right end circle in both x and y directions.
For UQ of the displacements and stresses, the problem was solved by crude MCS with 20,000 samples (IGA)

nd univariate (S = 1) and bivariate (S = 2) truncations of the SDD (p = 1, I = 2), SDD (p = 1, I = 4),
nd SDD (p = 2, I = 4) methods with the B-spline order p and the number of subintervals I equal in all
oordinate directions of the stochastic domain. Moreover, the interior knots were evenly spaced in the knot vectors.
he expansion coefficients of the SDD methods were computed by the SLS method via (28) with the number of

egression samples being four times the number of basis functions used in the SDD methods. Recall that in an SDD
ethod, the number of basis functions is equivalent to the number of expansion coefficients, which is computed

y invoking (23). Table 4 lists the numbers of basis functions and regression samples for the SDD methods used
n this example. Moreover, the standard deviations of the output variables of interest were computed by using the
nalytical formula in (25).

.2.1. Second-moment statistical analysis
Figs. 9 and 10 depict the standard deviation contour plots of root-mean-squared (RMS) displacement and von

ises stress in the connecting rod, obtained by MCS and SDD methods. As the geometry changes randomly, the
esults have been visualized on the mean input geometry. Evidently, the SDD methods have accurately estimated
he results, as there is an outstanding match between the contour plots associated with the MCS and SDD methods.
he differences in these plots are indistinguishable to the naked eye, considering that the SDD methods have been
ble to characterize the second-moment statistical properties of the responses by using far fewer numbers of IGA
han the 20,000 used by MCS. In addition, the match between the results clearly shows that the SLS method has
ccomplished accurate estimation of the SDD expansion coefficients.

Note that although the contour plots related to the RMS displacement are smooth, those of the von Mises stress
re not. This is because the solution space in IGA finite element formulation includes T-spline basis functions that
re smooth within the patches, but are only C0-continuous at the patch interfaces. Therefore, the first derivatives
f the T-splines, which are connected to the stresses, are C−1-continuous, or discontinuous, on the patch interfaces.
herefore, improvements in interpatch continuity of stresses merit further study.

In UQ applications, standard deviation is generally more challenging to accurately compute than mean, and the
igher the statistical moment, the more daunting the estimation becomes. Therefore, with the standard deviations
eing splendidly computed by the SDD methods, the results corresponding to the mean values have been suppressed
or brevity. That being noted, the mean values of maximum RMS displacement and maximum von Mises stress were
oughly 1.1×10−4 m and 60 MPa, respectively. Based on Figs. 9 and 10, this shows a coefficient of variation (COV)
f roughly 15% in the responses.

.2.2. Cumulative distribution function
The CDF includes all statistical moments of a random variable and is, therefore, computationally demanding to

stimate by UQ methods. Typically, the tail region of the CDF is of significant importance for probability of failure
25
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Fig. 9. Standard deviation contour plots of the RMS displacement in m by various methods visualized on the mean input geometry in
xample 2.

nalysis, probabilistic design purposes, and so forth. Therefore, in many engineering stochastic problems, the CDF
f a random output is investigated.

Denote by σc the von Mises stress located at the node where the von Mises stress is maximum at mean input.
Based on IGA considering mean input, σc occurs around the smaller hole on the right-hand side of the connecting
rod. However, as the geometric parameters are modeled as random variables, the physical domain of the connecting
rod and hence the location of the critical point are random. As a result, σc is not only a function of input random
variables but also possibly discontinuous. Fig. 11 illustrates the tail region of the CDF of σc, estimated by various
methods. Note that in this figure, “U” and “B” symbolize the univariate and bivariate SDD methods, respectively.
While the accuracy of the SDD estimations improves with the increase in the B-spline order p or the number of
subintervals I in both univariate and bivariate SDD approximations, there is a wide gap between the univariate
and bivariate cases. This reveals the need for bivariate SDD truncation in the CDF analysis, although for second-
moment statistical analysis, univariate SDD approximation sufficed, according to Figs. 9 and 10. Moreover, the
dimensionwise expansion of the random function σc(X) according to (22) has proven to have a significant impact in
accurately and efficiently solving this stochastic problem, where a bivariate truncation at S = 2 can simply capture
the major contribution of the terms in the expansion. This observation is consistent with the results reported in

Example 1–2 for a simple mathematical function.
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Fig. 10. Standard deviation contour plots of the von Mises stress in MPa by various methods visualized on the mean input geometry in
xample 2.

.3. Example 3: Fatigue durability analysis of a three-dimensional gear (N = 54)

The third numerical example entails solving a 54-dimensional, industrial-type, stochastic problem of a three-
dimensional mechanical gear, where the uncertainties emanate from a random field and several random variables. As
mentioned before, many UQ methods struggle, to say the least, when solving high-dimensional stochastic problems,
while methods like PCE and SCE are ruled out due to their tremendous computational burden. As a result, the goal
in this example is to efficiency and accurately approximate the second-moment statistical properties of the stresses
and fatigue durability of the mechanical gear by the proposed SDD method.

6.3.1. Problem definition
Consider a three-dimensional mechanical Bevel Gear, simply referred to as gear in this example, as shown

in Fig. 12. This type of gear is cone-shaped and typically transmits power between two intersecting axles in
many engineering devices and heavy duty machinery. Fig. 12(a) illustrates the front view of the gear with some
geometrical dimensions shown and the loaded region depicted with a red rectangle. In Fig. 12(b), the loaded region
is magnified, and the distributed surface loads are indicated with their directions noted with respect to the +x
direction. Fig. 12(c) demonstrates the rear view of the gear, with more dimensions and displacement boundary
conditions u = u = u = 0 all around the interior surface of the gear, where the gear is fixed to a shaft by means
x y z
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Fig. 11. The tail region of the CDF of σc , estimated by various methods in Example 2.

of a key. Last but not least, the side view of the gear is shown in Fig. 12(d) with two more geometrical dimensions
needed to completely define the geometry.

The gear in this example is made of cast steel. For material properties, set the Poisson’s ratio as ν = 1/3, and
let a homogeneous lognormal random field E(z; ·) as

E(z; ·) = Cα exp[α(z; ·)] (30)

with the mean µE = 30×106 psi and COV of νE = 0.1 define the Young’s modulus of the material. In (30), z ∈ D
epresents a physical point. Moreover,

Cα =
µE√

1 + ν2
E

and α(z; ·) is a homogeneous Gaussian random field with zero mean and exponential covariance function

Γ (z, z′) = σ 2 exp

(
−

z − z′


bL

)
, z, z′

∈ D ⊂ R3,

here σ 2
= 0.01, b = 0.2, and L = 2 in.

The mechanical gears typically withstand cyclic loading and contact forces, which lead to the fatigue failure
n their teeth. In this work, contact effects are ignored. For fatigue simulation, however, let the loads shown in
ig. 12(b) vary between zero and their specified value in a cyclic manner and with a constant amplitude. Let the
our parameters – (1) fatigue strength coefficient σ ′

f , (2) fatigue strength exponent b, (3) fatigue ductility coefficient
′

f , and (4) fatigue ductility exponent c – specify the fatigue properties of the cast steel material. Table 5 lists the
tatistical properties of the fatigue parameters defined. Note that, with some simplification, these parameters have
een considered to be mutually independent. They follow lognormal probability distributions and are defined on an
nbounded domain [0,+∞).

With the fatigue parameters defined, implement the strain-life method for fatigue durability analysis [55], which
ses the Coffin–Manson–Morrow equation to evaluate the fatigue crack initiation life N f by solving

∆ε

2
=
σ ′

f − σm

E
(2N f )b

+ ε′

f (2N f )c

or N f , where ∆ε, σm , and E are the equivalent strain range, equivalent mean stress, and Young’s modulus at

given point. Here, the stresses and strains must first be evaluated analytically or by numerical methods. For a
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Fig. 12. Gear geometry, dimensions, loads, and boundary conditions in Example 3: (a) front view with the loaded region depicted by a
rectangle; (b) magnified view of the loaded region with the direction of the distributed surface loads shown with respect to the +x direction;
(c) rear view and displacement boundary conditions; and (d) side view.

standard fatigue analysis, the largest principal stresses and strains are typically used as equivalent stress and strain
measures, respectively, but how to calculate σm and ∆ε by using the Ramberg–Osgood parameters [55] is general
knowledge in solid mechanics and is, therefore, omitted from this paper.

6.3.2. Computational modeling
As the gear model has a complex geometry, it is most convenient to be decomposed into patches. Therefore, a total

of 150 patches were conformed with C0-continuity over the patch boundaries to model the whole domain by a T-
mesh. Fig. 13(a) illustrates two three-dimensional views of the model geometry, precisely constructed in multipatch
29
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Table 5
Statistical properties of the fatigue parameters in Example 3.

Parameter Type Bounds Mean Standard deviation Units

σ ′

f Lognormal [0,+∞) 193190 28979 psi
b Lognormal [0,+∞) −0.1085 0.01085 –
ε′f Lognormal [0,+∞) 0.375 0.05625 –
c Lognormal [0,+∞) −0.6354 0.06354 –

Fig. 13. Gear model in Example 3: (a) two three-dimensional views; (b) three-dimensional and top views of the final IGA finite element
model TR with analysis-suitable T-splines and control points; and (c) three-dimensional and top views of the IGA base mesh T0 and its
control points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

IGA by using three-dimensional, analysis-suitable, quadratic (pk = 2, k = 1, 2, 3) T-splines. The three-dimensional
nd top views of the IGA finite element model are demonstrated in Fig. 13(b) and include 1950 elements and 8680
ontrol points. The control points are illustrated by closed green circles. The final IGA mesh TR in Fig. 13(b) and
ts control points were obtained by using the Bézier extraction operator and the base mesh T0 depicted in Fig. 13(c),
s discussed in Section 3.4. The mesh density was deemed adequate for analysis and was not refined further.

The stochastic problem involves a random field and four random variables, as defined previously. The K–L
xpansion method, described in Section 2.2.2, was employed for random field discretization. Note that for a low
orrelation length parameter b in the covariance function of a random field, a large number of terms is suggested
o be retained in the K–L expansion to accurately discretize the original random field. In this problem, as b = 0.2
as considered relatively small, the K–L expansion was truncated at N ′

= 50. Moreover, the eigensolutions
λi , φi (z)}i=1,...,50, needed to write (3), were numerically computed from (1) by using the collocation IGA method
ecently proposed for arbitrary multipatch domains [37].

Eventually, there were 50 standard Gaussian random variables stemming from the random field discretization,
lus four additional random variables to describe the fatigue behavior of cast steel. Hence, there was a total of 54
N = 54) independent random variables in this large-scale problem, which were all defined on unbounded domains.

For the UQ analysis, the problem was solved by crude MCS with 10,000 samples (IGA) to obtain a benchmark

olution. In addition, three univariate (S = 1) SDD methods were used, including SDD (p = 1, I = 2), SDD
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(p = 1, I = 4), and SDD (p = 2, I = 4) methods, which involved 109, 217, and 271 basis functions,
respectively, in their expansions. Recall that p and I refer to the B-spline order and the number of subintervals,
respectively, which were set equal in all coordinate directions of the stochastic domain. Again, the interior knots
were evenly spaced in the knot vectors. The SLS regression method, discussed in Section 5.6.2, was exploited to
estimate the expansion coefficients practically by setting the number of samples as four times the number of basis
functions for each SDD method. Consequently, 436, 868, and 1084 samples (IGA) were needed to construct the
SDD (p = 1, I = 2), SDD (p = 1, I = 4), and SDD (p = 2, I = 4) surrogate models, respectively.

Note that SDD, by theory, requires the random variables to be defined on bounded domains. Therefore, all random
ariables were properly transformed to a truncated normal probability measure on [−4, 4] with σ = 1. As there are
any options for target probability measure for transformation, it is recommended to choose the one that yields a

elatively mild, as opposed to heavily nonlinear, mapping from the original to the target distribution. From prior
xperience [33], the truncated normal distribution was deemed a good choice as such a target probability measure
n a bounded domain.

.3.3. Results
In this section, the second-moment statistical properties of the stress and fatigue life are investigated by the

roposed methods over the whole gear domain. Prior to the UQ analysis, the random field was discretized, for which
he results have been omitted for brevity. Readers interested in the K–L expansion by the isogeometric collocation

ethod on arbitrary multipatch domains are referred to the authors’ previous work [37]. Thus, the Young’s modulus
E in (29) would be evaluated via the K–L approximation of the random field at each point of the physical domain.

Figs. 14 and 15 demonstrate the mean and standard deviation contour plots, respectively, of the largest principal
tress, estimated by various methods. Both figures consistently show that the low-variate, low-order SDD methods
re able to accurately estimate the mean and standard deviation of the largest principal stress by using, at most,
oughly one tenth of the samples needed for estimation by crude MCS. Any difference between the contour plots
s indiscernible to the naked eye.

In Fig. 14, some negative largest principal stresses are set as one to be able to have the logarithmic scale.
oreover, the largest principal stress varies around 9 × 104 psi, which is beyond the typical yield strength of cast

teel. Hence, the case of fatigue failure is relevant.
Figs. 16 and 17 depict the mean and standard deviation contour plots, respectively, of the logarithm of the fatigue

ife, estimated by various methods. Here, as the fatigue life varies roughly in the range of 107 to 1050, the logarithm
f the fatigue life is plotted in logarithmic scale to have a better visual over the results. Based on the numerical
esults, the fatigue durability of the gear is approximately 108 cycles, particularly, in the loaded region with a
tandard deviation of roughly 107 cycles, yielding a COV of about 10%. Again, the results obtained by the MCS
nd low-order SDD methods match very well, while the SDD methods are tremendously more economical. This
eveals the great impact of the dimensionwise decomposition of the random output of interest, in terms of low-
rder measure-consistent orthonormalized B-splines, in effectively handling a 54-dimensional stochastic problem.
urthermore, the SLS regression method proves reliable in accurately estimating the SDD expansion coefficients.

Overall, the numerical examples indicate the efficacy of the proposed SDD method in conjunction with
GA on arbitrary multipatch domains, where a high-dimensional, complex function of input random variables is
pproximated by a set of low-variate component functions of B-splines in a systematic manner.

While the user-friendly implementation of IGA with unstructured three-dimensional T-splines in a commercial
ackage is to be expected in the near future, the proposed SDD-mIGA method has proved to be highly desirable,
specially for high-dimensional stochastic problems. The authors, therefore, envision the need to incorporate such
powerful UQ method in the common commercial packages for probabilistic engineering design and analysis.

urthermore, this paper mainly focused on solving the stochastic BVPs in linear elasticity by applying the proposed
DD-mIGA method. Having said so, approaching other types of engineering problems would be an interesting topic

o pursue in the future, especially when dealing with large-scale stochastic problems.

. Conclusion

This work debuted a new stochastic method, referred to as SDD-mIGA, to solve linear elasticity stochastic
VPs on arbitrary multipatch domains. The method followed the standard Galerkin formulation of the problem

y using the analysis-suitable T-splines with outstanding approximating power, where the patches were coupled
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Fig. 14. Mean contour plots for the largest principal stress in psi, estimated by various methods in Example 3.

Fig. 15. Standard deviation contour plots for the largest principal stress in psi, estimated by various methods in Example 3.

properly and in a water-tight manner. Moreover, the Bézier extraction operator was utilized to efficiently refine the
-meshes used in the multipatch isogeometric analysis from a coarse mesh. Last but not least, the SDD method was

ntegrated with the multipatch IGA framework for UQ purposes by expressing a high-dimensional, complex random
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Fig. 16. Mean contour plots for logarithm of the fatigue life in cycles, estimated by various methods in Example 3.

Fig. 17. Standard deviation contour plots for logarithm of the fatigue life in cycles, estimated by various methods in Example 3.

response in terms of a Fourier-like expansion with measure-consistent orthonormalized B-splines as its ingredients.
The dimensionwise expansion of the function led to a polynomial computational complexity, thereby alleviating
33
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the curse of dimensionality to a significant extent. The second-moment statistical properties were evaluated via
the analytical formulae derived. The SDD-mIGA method featured common B-spline and T-spline ingredients in
geometrical modeling, random field discretization, stress analysis, and uncertainty quantification, thereby harnessing
the approximating power of such basis functions. Moreover, the method used the SLS regression method to cheaply
but accurately estimate the expansion coefficients.

Three numerical examples were presented to investigate the efficacy of the proposed method in solving stochastic
VPs in linear elasticity, including a 54-dimensional problem of a mechanical gear. The numerical analyses revealed

hat a low-variate, low-order SDD-mIGA approximation effectively estimates the probabilistic solution not only at
n affordable computational cost, but at a desirable one.
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ppendix. Bézier extraction operator

The Bézier extraction makes access to IGA data tremendously more convenient and has been developed for T-
splines of arbitrary degree [20]. The purpose here is to enable standard assembly of IGA data for simple evaluation
routines [21]. In so doing, T-spline functions are written in terms of a linear combination of Bernstein polynomials,
which obviously form a basis on [−1, 1]. Let pk, k = 1, . . . , d , denote the polynomial orders of a given T-mesh.

he univariate Bernstein polynomials are defined as

Ṽ j
k (ηk) =

1
2pk

(
pk

j − 1

)
(1 − ηk)pk−( j−1)(1 + ηk) j−1, j = 1, . . . , pk + 1,

here ηk ∈ [−1, 1]. Map ηk to ξk through ξk : [−1, 1] → [0, 1], k = 1, . . . , d and denote by V j,e
k (ξk) the Bernstein

olynomial of degree ( j − 1) in coordinate direction k on element e, e = 1, . . . , ne. In a d-dimensional problem,
here are

n f =

d∏
k=1

(pk + 1)

-variate Bernstein polynomials that are nonzero on element e, constructed by tensor product. Form an n f -
imensional set as

{Ve
j (ξ )} j=1,...,n f :=

{ d∏
k=1

V jk ,e
k (ξk)

}
jk=1,...,pk+1, k=1,...,d

, (A.1)

here jk = 1, . . . , pk +1, k = 1, . . . , d and ξ = (ξ1, . . . , ξd ) refers to the parametric space discussed in Section 3.1.
rrange the elements of the set in (A.1) in a column vector Ve(ξ ) as

Ve(ξ ) =

⎧⎪⎨⎪⎩
Ve

1(ξ )
...

Ve
n f

(ξ )

⎫⎪⎬⎪⎭ .
ach and every multivariate T-spline Ui

p,Ξi (ξ ) associated with anchor i, i = 1, . . . , nc in the parametric space D̂
an now be written as

Ui,e
p,Ξi (ξ ) = Ci,e⊺Ve(ξ ), i = 1 = 1, . . . , nc, e = 1, . . . , ne,

hich essentially is formulated in an element-wise manner. Here, Ci,e is an n f -dimensional column vector of the
xpansion coefficients, which can be uniquely and exactly determined. Due to the local support behavior of T-splines,
ector Ci,e is generally expected to be sparse.

Up to this point, Ci,e is associated with anchor i and element e. Loop over the elements to obtain an n f × ne
atrix as

Ci
=
[
Ci,1, · · · ,Ci,ne

]
and V(ξ ) =

[
V1(ξ ), · · · ,Vne (ξ )

]
,
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t

and denote by

Ui (ξ ) = Ci V⊺(ξ )

he matrix of multivariate T-splines corresponding to anchor i , which is of dimension n f × n f . Make another loop,
this time over all anchors, to get

C =
[
C1, · · · ,Cnc

]
,

and write the key formula for Bézier extraction operation as

U(ξ ) = CV⊺
t (ξ ), (A.2)

where C is the Bézier extraction operator matrix of dimension n f × ncne and

U(ξ ) =
[
Ui (ξ ), . . . ,Unc (ξ )

]
and Vt (ξ ) =

[
V(ξ ), . . . ,V(ξ )  

nc times

]
of dimension n f × ncn f and n f × ncne, respectively.

For more details about the Bézier extraction operator and how it can be conveniently used to evaluate the T-
meshes in terms of the types of linear dependence and partition of unity, readers are directed to the works by Scott
et al. and May et al. [20,21], respectively.
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