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Abstract

This paper presents two new methods for conducting a continuum shape sensitivity analysis of a crack in an iso-

tropic, linear-elastic functionally graded material. These methods involve the material derivative concept from conti-

nuum mechanics, domain integral representation of interaction integrals, known as the M-integral, and direct

differentiation. Unlike virtual crack extension techniques, no mesh perturbation is needed to calculate the sensitivity

of stress–intensity factors. Since the governing variational equation is differentiated prior to the process of discretiza-

tion, the resulting sensitivity equations are independent of approximate numerical techniques, such as the meshless

method, finite element method, boundary element method, or others. Three numerical examples are presented to cal-

culate the first-order derivative of the stress–intensity factors. The results show that first-order sensitivities of stress

intensity factors obtained using the proposed method are in excellent agreement with the reference solutions obtained

using the finite-difference method for the structural and crack geometries considered in this study.
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1. Introduction

Functionally graded materials (FGMs) that possess spatially varying microstructure and mechanical/

thermal properties are essentially multi-phase particulate composites, engineered to meet a predetermined

functional performance [1,2]. In recent years, various theoretical, computational, and experimental studies
have been conducted to understand the fracture behavior of FGMs. A collection of technical papers, pub-

lished in [3] reflects state-of-the-art research into FGM fracture. A major component of such studies involves

calculating the crack-driving forces in FGMs both accurately and efficiently. Consequently, various numer-

ical methods have been developed for calculating stress–intensity factors (SIFs), and can be found in the

above-mentioned literature. More recently in 2003, Rao and Rahman [4,5] developed two interaction integ-

rals for the mixed-mode fracture analysis of cracks in isotropic and orthotropic FGMs. In contrast to exist-

ing methods, it is not necessary to perform integration along the crack face of the discontinuity. Hence, the

interaction integral method is simpler and more efficient than previously existing methods.
While past studies demonstrate a better understanding of FGM fracture, they also indicate areas of fu-

ture development. For example, in many fracture mechanics applications, either the derivatives or sensitiv-

ities of SIF with respect to crack size are needed for predicting stability and arresting crack propagation in

FGM. Another major use of SIF derivatives is in the reliability analysis of cracked structures. For example,

the first- and second-order reliability methods [6], frequently used in probabilistic fracture mechanics [7–

13], require the gradient and Hessian of the performance function with respect to crack length. In a lin-

ear-elastic fracture, the performance function builds on SIF. Hence, both first- and second-order derivatives

of SIF are needed for probabilistic analysis of FGMs.
For predicting sensitivities of SIF under a mode-I condition, some methods have already appeared for

homogenous materials. In 1988, Lin and Abel [14] employed a virtual crack extension technique [15–18]

and the variational formulation in conjunction with the finite element method (FEM) to calculate the

first-order derivative of SIF for a structure containing a single crack. Subsequently, Hwang et al. [19] gener-

alized this method to calculate both first- and second-order derivatives for structures involvingmultiple crack

systems, an axisymmetric stress state, and crack-face and thermal loading. However, these methods require

mesh perturbation, a fundamental requirement of all virtual crack extension techniques. For second-order

derivatives, the number of elements surrounding the crack tip affected by mesh perturbation has a significant
effect on solution accuracy. To overcome this problem, Chen et al. [20–22] recently applied concepts from

shape sensitivity analysis to calculate the first-order derivative of SIFs. In this new method, the domain inte-

gral representation of the J-integral (mode-I) or the interaction integral (mixed-mode) is invoked and the

material derivative concept from continuum mechanics is then used to obtain the first-order sensitivity of

SIFs. Since the governing variational equation is differentiated before discretization, the resulting sensitivity

equations are independent of any approximate numerical techniques, such as FEM, the boundary element

method, or others. However, most of the analytical methods discussed above are developed for the sensitivity

analysis of cracks in homogenous materials. Only recently, Rao and Rahman [23] developed a sensitivity
analysis method for a crack in an isotropic, linear-elastic FGM under mode-I loading conditions. Hence,

there is a clear need to develop similar sensitivity equations for mixed-mode loading conditions.

This paper presents a new method for predicting the first-order sensitivity of mode-I and mode-II stress–

intensity factors, KI and KII, respectively, for a crack in an isotropic, linear-elastic FGM. This method uses

the material derivative concept from continuum mechanics, domain integral representation of an interac-

tion integral, known as theM-integral, and direct differentiation. Unlike virtual crack extension techniques,

no mesh perturbation is needed in the proposed method to calculate the sensitivity of stress–intensity fac-

tors. Since the governing variational equation is differentiated prior to the process of discretization, result-
ing sensitivity equations are independent of such approximate numerical techniques as the meshless

method, the finite element method, the boundary element method, or others. Numerical examples are pre-

sented to calculate the first-order derivative of the M-integral and stress–intensity factors using the pro-
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posed method. Numerical results of the first-order sensitivities of stress–intensity factors obtained using the

proposed method are compared with reference solutions obtained from using finite-difference methods.
2. Shape sensitivity analysis

2.1. Velocity field

Consider a general three-dimensional body with a specific configuration, referred to as the reference con-

figuration, with domain X, boundary C, and a body material point identified by position vector x 2 X. Con-

sider the motion of the body as it travels away from the reference configuration and into another

configuration with domain X and boundary Cs, as shown in Fig. 1. This process can be expressed as
T : x ! xs; x 2 X; ð1Þ

where x and xs are the position vectors of a material point in the reference and perturbed configuration,

respectively, T is a transformation mapping, and s is a scalar time like parameter denoting the amount

of shape change, with
xs ¼ Tðx; sÞ;
Xs ¼ TðX; sÞ;
Cs ¼ TðC; sÞ:

ð2Þ
A velocity field V can then be defined as
Vðxs; sÞ ¼
dxs

ds
¼ dTðx; sÞ

ds
¼ oTðx; sÞ

os
: ð3Þ
In the neighborhood of an initial time s = 0, assuming a regularity hypothesis and ignoring high-order

terms, T can be approximated by
Tðx; sÞ ¼ Tðx; 0Þ þ s
oTðx; 0Þ

os
þOðs2Þ ffi xþ sVðx; 0Þ; ð4Þ
where x = T(x, 0) and V(x) = V(x, 0).

2.2. Sensitivity analysis

The variational governing equation for a non-homogeneous or homogeneous structural component with

domain X can be formulated as [24,25]
Fig. 1. Variation of domain.
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aXðz;�zÞ ¼ ‘Xð�zÞ for all �z 2 Z; ð5Þ
where z and �z are the actual and virtual displacement fields of the structure, respectively, Z is the space of
kinematically admissible virtual displacements, and aXðz;�zÞ and ‘Xð�zÞ are energy quadratic and load linear

forms, respectively. The subscript X in Eq. (5) is used to indicate the governing equation�s dependence on

the shape of the structural domain.

The pointwise material derivative at x 2 X is defined as [24,25]
_z ¼ lim
s!0

zsðxþ sVðxÞÞ � zðxÞ
s

� �
: ð6Þ
If zs has a regular extension into a neighborhood of Xs, then
_zðxÞ ¼ z0ðxÞ þ $zTVðxÞ; ð7Þ
where
z0 ¼ lim
s!0

zsðxÞ � zðxÞ
s

� �
ð8Þ
is the partial derivative of z and $ = {o/ox1,o/ox2,o/ox3}
T is the vector of gradient operators. One attractive

feature of the partial derivative is that, given the smoothness assumption, it commutes with the derivatives

with respect to xi, i = 1, 2, and 3, since they are derivatives with respect to independent variables, i.e.,
oz

oxi

� �0

¼ o

oxi
ðz0Þ; i ¼ 1; 2; and 3: ð9Þ
Let w1 be a domain functional, defined as an integral over Xs, i.e.,
w1 ¼
Z

Xs

fsðxsÞdXs; ð10Þ
where fs is a regular function defined on Xs. If X is Ck regular, then the material derivative of w1 at X is

[24,25]
_w1 ¼
Z

X
½f 0ðxÞ þ divðf ðxÞVðxÞÞ�dX: ð11Þ
For a functional form of
w2 ¼
Z

Xs

gðzs;$zsÞdXs; ð12Þ
the material derivative of w2 at X can be found using Eqs. (10) and (12), as [25]
_w2 ¼
Z

Xs

½g;zi _zi � g;ziðzi;jV jÞ þ g;zi;j _zi;j � g;zi;jðzi;jkV kÞ þ divðgVÞ�dX; ð13Þ
in which a comma is used to denote partial differentiation, e.g., zi,j = ozi/oxj, zi,jk = o2zi/oxjoxk, _zi;j ¼ o_zi=oxj,
g,zi = og/ozi, g,zi,j = og/ozi,j and Vj is the jth component of V. In Eq. (13), the material derivative _z is the solu-
tion to the sensitivity equation obtained by taking the material derivative of Eq. (5).

If no body force is involved, the variational equation (Eq. (5)) can be written as
aXðz;�zÞ �
Z

X
rijðzÞeijð�zÞdX ¼ ‘Xð�zÞ �

Z
C
T i�zi dC; ð14Þ
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where rij(z) and eijð�zÞ are components of the stress and strain tensors of the displacement z and virtual dis-

placement �z, respectively, Ti is the ith component of the surface traction, and �zi is the ith component of �z.
Taking the material derivative of both sides of Eq. (14) and using Eq. (9),
aXð _z;�zÞ ¼ ‘0Vð�zÞ � a0Vðz;�zÞ 8�z 2 Z; ð15Þ

where the subscript V indicates the dependency of the terms on the velocity field. The terms ‘0Vð�zÞ and

a0Vðz;�zÞ can be further derived as [24,25]
‘0Vð�zÞ ¼
Z

C
f�T ið�zi;jV jÞ þ ½ðT i�ziÞ;jnj þ jCðT i�ziÞ�ðV iniÞgdC ð16Þ
and
a0Vðz;�zÞ ¼
Z

X
rijðzÞð�zi;kV k;jÞ þ rijð�zÞðzi;kV k;jÞ � eijð�zÞDijkl;meklðzÞV m � rijðzÞeijð�zÞdivV
� �

dX; ð17Þ
where ni is the ith component of unit normal vector n, jC is the curvature of the boundary, zi,j = ozi/oxj,
�zi;j ¼ o�zi=oxj, Vi,j = oVi/oxj, Dijkl is the constitutive tensor, and Dijkl,m = oDijkl/oxm. Note that the third term

in the integrand on the right hand side of Eq. (17) arises naturally in the formulation of a continuum shape

sensitivity analysis for non-homogeneous materials, but vanishes for homogeneous materials. If the modu-

lus of elasticity E(x) is the only material property that varies, then Dijkl,m = (oE(x)/oxm)Dijkl/E(x).
To evaluate the sensitivity expression of Eq. (13), a numerical method is needed to solve Eq. (14), for

which a standard FEM was used. If the solution z is obtained for Eq. (14) using an FEM code, the same

code can be used to solve Eq. (15) for _z. This solution can be obtained efficiently since it only requires an

evaluation of the same set of FEM matrix equations with a different fictitious load, which is the right hand
side of Eq. (15).
3. The interaction integral

Consider a linear-elastic, isotropic, two-dimensional cracked FGM with a rectilinear crack of length 2a,

subjected to external loads S1,S2, . . . ,Sm, as shown in Fig. 2. It is assumed that the modulus of elasticity is

the only material property that varies, according to
E ¼ Eðx1; x2Þ ¼ EðxÞ; ð18Þ

where x ¼ fx1; x2gT 2 R2, E(x) P 0 is a continuous, bounded, and at least piecewise differentiable function

on domain X, and x1�x2 is the coordinate system. In reality, FGMs are multi-phase materials with generally,

locally discontinuous material properties. Hence, E(x1,x2) in Eq. (18) should be viewed as the smoothly vary-

ing ‘‘effective’’ material properties of FGM. Poisson�s ratio m was also held constant, which is a reasonable

assumption, since variation in Poisson�s ratio is usually smaller than that of the elastic modulus.
Consider two independent equilibrium states of the cracked body. Let state 1 correspond to the actual

state for the given boundary conditions, and let state 2 correspond to an auxiliary state, which comprises

either mode-I or mode-II near tip displacement and stress fields. Superposition of these two states leads to

another equilibrium state (say, state S), for which the domain form of the J-integral is
J ðSÞ ¼
Z
A

ðrð1Þ
ij þ rð2Þ

ij Þ
oðzð1Þi þ zð2Þi Þ

ox1
� ðW ð1Þ þ W ð2Þ þ W ð1;2ÞÞd1j

 !
oq
oxj

dA

þ
Z
A

ðrð1Þ
ij þ rð2Þ

ij Þ
o2zð2Þi

oxjox1
�
oeð2Þij

ox1

 !
� 1

2
ðeð1Þij þ eð2Þij Þ

oDijkl

ox1
ðeð1Þkl þ eð2Þkl Þ

 !
qdA; ð19Þ



Fig. 2. General cracked body under mixed-mode loading.
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whereW = �rijdeij is the strain energy density, W ð1;2Þ ¼ 1
2
ðrð1Þ

ij eð2Þij þ rð2Þ
ij eð1Þij Þ is the mutual strain energy from

the two states, dij is the Kronecker delta, A is the area inside the contour, q is a weight function, and the

superscripts denote various equilibrium states. In comparing Eq. (19) to the classical J-integral, the pres-

ence of material non-homogeneity results in the addition of the second domain integral. The J-integral,

which also represents the energy release rate of an elastic body, becomes zero for any closed contour
in an uncracked homogeneous (as well as non-homogeneous) body, and therefore, remains path-

independent when used in conjunction with cracks in FGM. By expanding Eq. (19), it can be shown that

[4]
J ðSÞ ¼ J ð1Þ þ J ð2Þ þM ð1;2Þ; ð20Þ
where J(1) and J(2) are the J-integrals for states 1 and 2, respectively, and M(1,2) is an interaction integral.

Clearly, evaluations of J(S) and the resulting interaction integral are dependent on how the auxiliary field is

defined, and several options are available. Two methods proposed by Rao and Rahman [4] are summarized

as follows.
3.1. Method I—Homogeneous auxiliary field

Method I involves selecting auxiliary stress and displacement fields given by either mode-I or mode-II near

tip displacement and stress fields. The auxiliary strain field is calculated from the symmetric gradient of the

auxiliary displacement field. In this approach, the auxiliary stress and strain fields are related through a con-

stant constitutive tensor evaluated at the crack tip. Hence, both the equilibrium condition (orð2Þ
ij =oxj ¼ 0) and

the strain–displacement relation eð2Þij ¼ ozð2Þi =oxj

 �

are satisfied in the auxiliary state. However, the non-

homogeneous constitutive relation of FGM is not strictly satisfied in the auxiliary state, yielding [4]
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M ð1;2Þ ¼
Z
A

rð1Þ
ij

ozð2Þi

ox1
þ rð2Þ

ij
ozð1Þi

ox1
� W ð1;2Þd1j

" #
oq
oxj

dA

þ
Z
A

1

2
rð1Þ
ij

oeð2Þij

ox1
�
orð2Þ

ij

ox1
eð1Þij þ rð2Þ

ij

oeð1Þij

ox1
�
orð1Þ

ij

ox1
eð2Þij

" #
qdA: ð21Þ
3.2. Method II—Non-homogeneous auxiliary field

Method II entails selecting the auxiliary stress and displacement fields given by either mode-I or mode-II
near tip displacement and stress fields. The auxiliary strain field is calculated from the auxiliary stress field

using the same spatially varying constitutive tensor from FGM. In this approach, the auxiliary stress field

satisfies the equilibrium condition ðorð2Þ
ij =oxj ¼ 0Þ; however, the auxiliary strain field is not compatible with

the auxiliary displacement field (eð2Þij 6¼ ozð2Þi =oxj). Since the auxiliary fields are not compatible, this method

also introduces additional terms to the resulting interaction integral, i.e. [4],
M ð1;2Þ ¼
Z
A

rð1Þ
ij

ozð2Þi

ox1
þ rð2Þ

ij
ozð2Þi

ox1
� W ð1;2Þd1j

" #
oq
oxj

dA

þ
Z
A

rð1Þ
ij

o2zð2Þi

oxjox1
�
oeð2Þij

ox1

 !
� eð1Þij

oDijkl

ox1
eð2Þkl

" #
qdA: ð22Þ
Since the auxiliary strain field is calculated from the auxiliary stress field using the same spatially varying

constitutive tensor of FGM, Eq. (22) can be rewritten as
M ð1;2Þ ¼
Z
A

rð1Þ
ij

ozð2Þi

ox1
þ rð2Þ

ij
ozð1Þi

ox1
� W ð1;2Þd1j

" #
oq
oxj

dA

þ
Z
A

rð1Þ
ij

oeð2Þij

ox1
�
o~eð2Þij

ox1

 !
� eð1Þij

oDijkl

ox1
eð2Þkl

" #
qdA; ð23Þ
where ~eð2Þij ¼ Cijklr
ð2Þ
ij with Cijkl representing the compliance tensor. In Eq. (19) and (21)–(23), the auxiliary

state for stresses and displacements is
rð2Þ
11

rð2Þ
22

rð2Þ
12

8>><
>>:

9>>=
>>; ¼ 1ffiffiffiffiffiffiffi

2pr
p

cos
h
2

1� sin
h
2
sin

3h
2

� �

cos
h
2

1þ sin
h
2
sin

3h
2

� �

cos
h
2
sin

h
2
cos

3h
2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð24Þ
and
zð2Þ1

zð2Þ2

( )
¼ 1

2ltip

ffiffiffiffiffiffi
r
2p

r cos
h
2

j � 1þ 2sin2 h
2

� �

sin
h
2

j þ 1� 2cos2
h
2

� �
8>>><
>>>:

9>>>=
>>>;

ð25Þ
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rð2Þ
11

rð2Þ
22

rð2Þ
12

8>><
>>:

9>>=
>>; ¼ 1ffiffiffiffiffiffiffi

2pr
p

�sin
h
2

2þ cos
h
2
cos

3h
2

� �

sin
h
2
cos

h
2
cos

3h
2

cos
h
2

1� sin
h
2
sin

3h
2

� �

>>>>>>><
>>>>>>>:

>>>>>>>=
>>>>>>>;

ð26Þ
and
zð2Þ1

zð2Þ2

( )
¼ 1

2ltip

ffiffiffiffiffiffi
r
2p

r sin
h
2

j þ 1þ 2cos2
h
2

� �

�cos
h
2

j � 1� 2sin2 h
2

� �
8>>><
>>>:

9>>>=
>>>;

ð27Þ
for mode-I and mode-II, respectively, where ltip = Etip/[2(1 + m)] is the shear modulus, Etip is the elastic

modulus at the crack tip, and j = (3 � m)/(1 + m) for plane stress, and j = 3 � 4m for plane strain. Note that

all quantities are evaluated with respect to a coordinate system with the crack tip as the origin. Also, the

summation convention is adopted for repeated indices.

The energy release-rate interpretation of the J-integral in Eqs. (19) and (20) yields
M ð1;2Þ ¼ 2

E�
tip

ðKð1Þ
I Kð2Þ

I þ Kð1Þ
II K

ð2Þ
II Þ

h i
; ð28Þ
where E�
tip is given by Etip under the plane stress condition and by Etip/[1 � m2] under the plane strain con-

dition, respectively. The individual SIFs for the actual state can be obtained by judiciously choosing the

auxiliary state (state 2). For example, if state 2 is chosen to be state I (state II), i.e., the mode-I (mode-

II) near tip displacement and stress field is chosen as the auxiliary state, then Kð2Þ
I ¼ 1ð0Þ and

Kð2Þ
II ¼ 0ð1Þ. In that case, Eq. (28) yields
Kð1Þ
I ¼

M ð1;IÞE�
tip

2
; ð29Þ

Kð1Þ
II ¼

M ð1;IIÞE�
tip

2
: ð30Þ
In Eqs. (29) and (30),M(1,I) andM(1,II) are the two interaction integrals for modes I and II, respectively, and

can easily be evaluated using Eq. (21) or (23). In contrast to existing methods [28], there is no need to per-

form integration along the crack face of the discontinuity. Hence, the proposed method is simpler and more

efficient than existing methods. See Ref. [4] for further details. In this study, both Eqs. (21) and (23) were

employed for sensitivity analysis, as described in the following section.
4. Sensitivity of interaction integral and stress–intensity factors

4.1. Method I—Homogeneous auxiliary field

The expansion of each term on the right side of Eq. (21) yields
M ð1;2Þ ¼
Z
A
pdA; ð31Þ
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where
p ¼
X26
i¼1

pi: ð32Þ
The explicit expressions of pi, i = 1, . . . ,26 are given in Appendix A. In relation to Eq. (11), the material

derivative of M(1,2) is
_M
ð1;2Þ ¼

Z
A
½p0 þ divðpVÞ�dA; ð33Þ
where
p0 ¼
X26
i¼1

p0i; ð34Þ

V ¼
V 1ðxÞ
V 2ðxÞ

� �
ð35Þ
is the velocity field, and
divðpVÞ ¼ oðpV 1Þ
ox1

þ oðpV 2Þ
ox2

¼
X26
i¼1

oðpiV 1Þ
ox1

þ
X26
i¼1

oðpiV 2Þ
ox2

: ð36Þ
Finally, Eq. (33) becomes
_M
ð1;2Þ ¼

X26
i¼1

Z
A
P i dA; ð37Þ
where
P i ¼ p0i þ
oðpiV 1Þ
ox1

þ oðpiV 2Þ
ox2

; i ¼ 1; . . . ; 26: ð38Þ
For illustrative purposes, consider the first term
P 1 ¼ p01 þ
oðp1V 1Þ
ox1

þ oðp1V 2Þ
ox2

; ð39Þ
which can be expanded to
P 1 ¼ rð1Þ
11

ozð2Þ1

ox1

oq
ox1

 !0

þ o

ox1
rð1Þ
11

ozð2Þ1

ox1

oq
ox1

V 1

 !
þ o

ox2
rð1Þ
11

ozð2Þ1

ox1

oq
ox1

V 2

 !

¼ r0ð1Þ
11

ozð2Þ1

ox1

oq
ox1

þ rð1Þ
11

oz0ð2Þ1

ox1

oq
ox1

þ rð1Þ
11

ozð2Þ1

ox1

oq0

ox1
þ orð1Þ

11

ox1

ozð2Þ1

ox1
V 1

oq
ox1

þ rð1Þ
11

o2zð2Þ1

ox21
V 1

oq
ox1

þ rð1Þ
11

ozð2Þ1

ox1

oV 1

ox1

oq
ox1

þ rð1Þ
11 V 1

ozð2Þ1

ox1

o2q
ox21

þ orð1Þ
11

ox2

ozð2Þ1

ox1
V 2

oq
ox1

þ rð1Þ
11

o2zð2Þ1

ox1ox2
V 2

oq
ox1

þ rð1Þ
11

ozð2Þ1

ox1

oV 2

ox2

oq
ox1

þ rð1Þ
11 V 2

ozð2Þ1

ox1

o
2q

ox1ox2
: ð40Þ
In this study, the velocity field V was chosen in such a way that the finite element mesh in the domain over

which theM-integral in the Eq. (21) or (23) is evaluated, has a virtual rigid body translation along with the

crack tip. The velocity field V is constant in the region over which the M-integral is evaluated, varies
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smoothly in rest of the domain, and is zero along the boundary. The velocity field will be explained in more

detail in a forthcoming section. Since q is defined around the crack tip in the domain over which the M-

integral is evaluated, if the crack tip moves, the value of q will be same around the new crack tip. Hence,
_q ¼ 0. Therefore,
q0 ¼ _q� $VTqV ¼ �$TqV ¼ � oq
ox1

V 1 �
oq
ox2

V 2: ð41Þ
In addition, since the velocity field V is constant in the region over which the M-integral is evaluated,
oV i

oxj
¼ 0; i; j ¼ 1; 2 ð42Þ
and
o2V i

oxjoxk
¼ 0; i; j; k ¼ 1; 2: ð43Þ
Eqs. (41) and (42) yield
oq0

ox1
¼ � o2q

ox21
V 1 �

o2q
ox1ox2

V 2; ð44Þ

oq0

ox2
¼ � o2q

ox1ox2
V 1 �

o2q
ox22

V 2: ð45Þ
Since E(x) is independent of the change in crack length, E 0 = 0. Therefore,
_E ¼ $TEV ¼ oE
ox1

V 1 þ
oE
ox2

V 2: ð46Þ
Using Eqs. (7), (42), and the strain–displacement relationship, it can be shown that,
e0ð1Þ11 ¼ o_zð1Þ1

ox1
� o2zð1Þ1

ox21
V 1 �

o2zð1Þ1

ox1ox2
V 2; ð47Þ

e0ð1Þ22 ¼ o_zð1Þ2

ox2
� o

2zð1Þ2

ox2ox1
V 1 �

o
2zð1Þ2

ox22
V 2 ð48Þ
and
e0ð1Þ12 ¼ 1

2

o_zð1Þ1

ox2
� o2zð1Þ1

ox2ox1
V 1 �

o2zð1Þ1

ox22
V 2 þ

o_zð1Þ2

ox1
� o2zð1Þ2

ox21
V 1 �

o2zð1Þ2

ox1ox2
V 2

 !
: ð49Þ
From the stress–strain relationship, it follows that
r0ð1Þ
ij ¼ Dijkle

0ð1Þ
kl : ð50Þ
Substituting Eqs. (42), (44), (47) and (50) into Eq. (40), following by simplification, leads to
P 1 ¼ _rð1Þ
11

ozð2Þ1

ox1

oq
ox1

þ rð1Þ
11

o_zð2Þ1

ox1

oq
ox1

; ð51Þ
where _rð1Þ
11 is the material derivative of rð1Þ

11 , which is more explicitly defined in Eq. (A.41) of Appendix A.

A similar procedure can be applied using Eqs. (41)–(50) to determine the remaining P-functions. The

explicit expressions of Pi, i = 1, . . . ,26 are given in Appendix A.
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4.2. Method II—Non-homogeneous auxiliary field

Similarly, the expansion of each term on the right side of Eq. (23) yields and noting that in obtaining Eq.

(23), the auxiliary strain field is calculated from the auxiliary stress field using the same spatially varying

constitutive tensor of FGM yieldsZ

M ð1;2Þ ¼

A
sdA; ð52Þ
where
s ¼
X14
i¼1

si: ð53Þ
The explicit expressions of si, i = 1, . . . ,14 are given in Appendix B. In relation to Eq. (11), the material

derivative of M(1,2) is
_M
ð1;2Þ ¼

Z
A
½s0 þ div ðsVÞ�dA; ð54Þ
where
s0 ¼
X14
i¼1

s0i ð55Þ
and
div ðsVÞ ¼ oðsV 1Þ
ox1

þ oðsV 2Þ
ox2

¼
X14
i¼1

oðsiV 1Þ
ox1

þ
X14
i¼1

oðsiV 2Þ
ox2

: ð56Þ
Finally, Eq. (54) becomes
_M
ð1;2Þ ¼

X14
i¼1

Z
A
Si dA; ð57Þ
where
Si ¼ s0i þ
oðsiV 1Þ
ox1

þ oðsiV 2Þ
ox2

; i ¼ 1; . . . ; 14: ð58Þ
The explicit expressions of Si, i = 1, . . . ,14 are given in Appendix B.
Eqs. (A.2)–(A.27) in Appendix A provide explicit expressions of Pi, i = 1, . . ., 26, and Eqs. (B.2)–(B.15) in

Appendix B provide explicit expressions of Si, i = 1, . . ., 14, which can be inserted into Eqs. (37) and (57),

respectively, to yield the first-order sensitivity of M(1,2) with respect to crack size. The integral in Eqs. (37)

and (57) are independent of the domain size A and can be calculated numerically using standard Gaussian

quadrature. A 2 · 2 or higher integration rule is recommended for calculating _M . A flow diagram for cal-

culating the sensitivity of M is shown in Fig. 3.

4.3. Sensitivities of stress–intensity factors

From Eqs. (29) and (30), the sensitivities of KI and KII can be calculated by
oKI

oa
¼

M ð1;IÞE�
tip þM ð1;IÞ _E

�
tip

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

1;tip þ V 2
2;tip

q ð59Þ



Fig. 3. A flowchart for continuum sensitivity analysis of crack size.

1924 B.N. Rao, S. Rahman / Comput. Methods Appl. Mech. Engrg. 194 (2005) 1913–1946
and
oKII

oa
¼

M ð1;IIÞE�
tip þM ð1;IIÞ _E

�
tip

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

1;tip þ V 2
2;tip

q ; ð60Þ
respectively, where V1,tip and V2,tip are corresponding crack-tip velocities in x1- and x2 directions, respec-

tively, and _E
�
tip is equal to _Etip under plane stress and _Etip=ð1� m2Þ under plane strain, and _Etip is equal

to _E when evaluated at the crack-tip. According to Eqs. (59) and (60), the first-order sensitivities of KI

and KII require material derivatives of interaction integral, which in turn can be evaluated using Eqs.

(37) and (57). In this study, methods of sensitivity analysis involving Eqs. (37) and (57) are described as

Method-I and Method-II, respectively.

4.4. Velocity field definition

The definition of the velocity field is an important step in continuum shape sensitivity analysis. Applying
an inappropriate velocity field for shape sensitivity analysis will yield inaccurate sensitivity results. The

velocity field must meet numerous, stringent theoretical and practical criteria [26–28]. Theoretically, (1)
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the design velocity field must have the same regularity as the displacement field, and (2) depend linearly on

the variation of shape design parameters. For two- and three-dimensional elastic solid problems C0 design

velocity fields with integrable first derivatives are required. The regularity requirement comes from the

mathematical regularity of design velocity in the design sensitivity expression in Eq. (17). This requirement

can also be met by using the displacement shape functions of the finite element analysis to represent design
velocity fields. For practical applications, (1) the design velocity computation method must retain the topol-

ogy of the original finite element mesh, (2) provide finite element boundary nodes that stay on the geometric

boundary for all shape changes, (3) use a mathematical rule that guarantees linear dependency of finite ele-

ment node movements on the variations of shape design parameters, (4) produce a finite element mesh that

is not distorted, (5) be naturally linked to design parameters defined on a computer simulation model, (6)

allow the mathematical rule to be reusable, and (7) be efficient and general for a large class of applications.

A number of methods have been proposed in the literature to compute the velocity field [27,28]. Two types

of velocity fields were adopted in this study using the proposed methods (Method-I and Method-II). For
convenience, they are referred to as Velocity Field I and Velocity Field II. Both velocity fields satisfy the

theoretical and practical criteria outlined above and ensure that the finite element mesh in the domain over

which the SIFs and their sensitivities are evaluated has a virtual rigid body translation along with the crack

tip. The following example illustrates the velocity fields that were adopted in this study.

Consider an edge-cracked plate with length L, width W and crack length a, as shown in Fig. 4(a). Also

shown in Fig. 4(a), is a domain of size 2b · 2b, which was used to calculate the mixed-mode SIFs and their

sensitivities. Then, the two velocity fields V adopted in this study can be defined.

Velocity Field I: Referring to Fig. 4(b), the C0 continuous velocity field V with integrable first derivatives
is defined as
VðxÞ ¼
V 1ð�x1;�x2Þ
V 2ð�x1;�x2Þ

� �
; ð61Þ
where �x1–�x2 axes are measured with respect to crack tip T0 and are oriented in the direction of the x1�x2
axes. More explicit forms of V(x) that depend on crack geometry and which satisfy both the theoretical and

practical criteria outlined above are defined in the subsequent section of numeric examples.

Velocity Field II: Velocity field V can be obtained by performing an FEM analysis. The same FEM dis-

cretization used in regular fracture analysis is adopted. The FEM analysis is performed by prescribing a

velocity at the crack-tip (V1,tip,V2,tip), and at all nodes in the domain 2b · 2b, as shown in Fig. 4(b). A zero

velocity field is prescribed on the boundary. The displacement response from FEM analysis and applied

boundary conditions constitute the velocity field V(x).
Both velocity fields were employed in the following numerical examples.
5. Numerical examples

Three numerical examples based on mixed-mode deformations are presented to illustrate Method-I and

Method-II that have been proposed. In all examples, Poisson�s ratio was held constant with m = 0.3, and a

2 · 2 Gaussian integration was employed. A perturbation of 10�5 times the crack length was used in finite-

difference calculations to provide benchmark results. In the first example, both velocity fields were studied.
The second and third examples employ Velocity Field I and Velocity Field II, respectively.

5.1. Example 1: Edge-cracked plate

This example involves the edge-cracked plate shown in Fig. 4(a), which is fixed at the bottom and sub-

jected to far-field shear stress of s1 = 1 unit applied on top. The plate has length L = 16 units, widthW = 7



Fig. 4. Edge-cracked plate; (a) geometry, loads, and domain size; (b) velocity field definition; and (c) FEM discretization (2711 nodes,

832 8-noded quadrilateral elements and 48 focused quarter—point 6-noded triangular elements).
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units and crack length a = 3.5 units. The elastic modulus was assumed to follow an exponential function,

given by
Eðx1Þ ¼ E1 exp
gx1
W


 �
; 06 x1 6W ; ð62Þ
where g = ln(E2/E1) is the material parameter, E1 = E(0), and E2 = E(W). For numerical values, E1 = 1 unit,

and E2/E1 = exp(g) = 0.1, 0.2, 1, 5, and 10 were used. A plane strain condition was assumed. Both Methods

I and II were used to calculate the mixed-mode SIFs and their sensitivities with a domain size 2b · 2b

(b = 3.0 units), as shown in Fig. 4(a). FEM discretization involved 2711 nodes, 832 8-noded quadrilateral

elements, and 48 focused quarter-point 6-noded triangular elements, as shown in Fig. 4(c). Both types of

velocity fields (Velocity Field I and Velocity Field II) were employed.

Velocity Field I is defined as
V 1ð�x1;�x2Þ
V 2ð�x1;�x2Þ

� �
¼ V 1;tip

C1ð�x1ÞC2ð�x2Þ
0

� �
; ð63Þ
where
C1ð�x1Þ ¼

1 if j�x1j6 3:0;

x1 � 3:5

�0:5
if �x1 > 3:0;

x1 þ 3:5

0:5
if �x1 < �3:0

8>>>><
>>>>:

ð64Þ
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and
C2ð�x2Þ ¼

1 if j�x2j6 3:0;

4:0� ðj�x2j � 3:0Þ
7:0

if j�x2j > 3:0 and j�x2j6 7:0;

0 if j�x2j > 7:0:

8>><
>>: ð65Þ
The �x1–�x2 axes are measured with respect to the crack tip T0 and are oriented in the direction of the x1–x2
axes, as shown in Fig. 4(b). Velocity Field II involves FEM analysis, as described in a previous section. In
both cases, the velocity field at the crack-tip, (V1,tip,V2,tip) = (10�5a, 0), was used for sensitivity analysis.

Fig. 5 shows the contour plot of the variation of the V1 component of Velocity Field I, whereas Fig.

6(a) and (b) schematically illustrates the variation of the V1 and V2 components of Velocity Field II over

the entire domain of the edge-cracked plate.

Tables 1 and 2 show the predicted mixed-mode SIFs and their sensitivities for the edge-cracked problem,

obtained in the present study for various values of E2/E1 using Method-I and Method-II for the two kinds

of velocity fields. Two sets of results are shown for oKI/oa and oKII/oa. The first set of results are computed

using the proposed methods (Method-I and Method-II) and the second set are calculated using the finite-
difference method. The results in Tables 1 and 2 demonstrate that continuum shape sensitivity analysis pro-

vides accurate estimates of oKI/oa and oKII/oa when compared with corresponding results from the finite-

difference method for various values of E2/E1, and irrespective of the kind of velocity fields. Using the pro-

posed methods (Method-I and Method-II), the domain independence of mixed-mode SIFs and their sensi-

tivities was verified by varying the sizes of the integral domain parameter. Tables 3–5 show the results of

mixed-mode SIFs and their sensitivities for various values of E2/E1 using Method-I and Method-II for

the integral domain parameter b = 2.33, 1.74, and 1.22 units, respectively. The results in Tables 3–5 were

obtained using Velocity Field I. Very accurate and stable results of mixed-mode SIFs and their sensitivities
were obtained regardless of the integral domain size and type of method.
Fig. 5. Variation of V1 component of Velocity Field I (Example 1).



Fig. 6. Variation of Velocity Field II (Example 1); (a) V1 component; (b) V2 component.
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5.2. Example 2: Slanted crack in a plate

Consider a slanted crack in a finite two-dimensional plate with length L = 2 units, widthW = 1 unit and

a 45-degree edge crack of normalized length a=W ¼ 0:4
ffiffiffi
2

p
, as shown in Fig. 7(a). The elastic modulus was

assumed to follow an exponential function, given by
Eðx1Þ ¼ E exp g x1 �
1

2

� �� �
; 06 x1 6W ; ð66Þ



Table 1

Stress intensity factors and sensitivity of stress intensity factors for an edge-cracked plate (Velocity Field I, b = 3.0 units)

Method E2/E1 SIF values Sensitivity of SIF values

KI KII oKI/oa oKII/oa

Present results Present results Proposed method Finite difference Proposed method Finite difference

Method-I 0.01 69.8472 7.9892 16.3415 16.3417 1.0848 1.0848

0.1 48.8555 6.1657 16.2291 16.2293 1.3624 1.3624

0.2 43.8370 5.6612 15.9021 15.9023 1.4188 1.4188

1.0 34.0637 4.5899 14.8104 14.8105 1.4995 1.4995

5.0 26.3819 3.6370 13.4741 13.4743 1.5144 1.5144

10.0 23.5686 3.2532 12.8719 12.8721 1.4992 1.4992

100.0 15.8030 2.0810 10.8327 10.8329 1.3355 1.3355

Method-II 0.01 69.7959 8.0093 16.3247 16.3249 1.0865 1.0865

0.1 48.8396 6.1716 16.2226 16.2228 1.3635 1.3635

0.2 43.8277 5.6647 15.8980 15.8982 1.4196 1.4196

1.0 34.0637 4.5899 14.8104 14.8105 1.4995 1.4995

5.0 26.3850 3.6353 13.4754 13.4755 1.5135 1.5135

10.0 23.5716 3.2510 12.8729 12.8730 1.4979 1.4979

100.0 15.8016 2.0782 10.8288 10.8290 1.3320 1.3320

Table 2

Stress intensity factors and sensitivity of stress intensity factors for an edge-cracked plate (Velocity Field II, b = 3.0 units)

Method E2/E1 SIF values Sensitivity of SIF values

KI KII oKI/oa oKII/oa

Present results Present results Proposed method Finite difference Proposed method Finite difference

Method-I 0.01 69.8472 7.9892 16.3421 16.3423 1.0851 1.0851

0.1 48.8555 6.1657 16.2291 16.2292 1.3625 1.3625

0.2 43.8370 5.6612 15.9019 15.9021 1.4189 1.4189

1.0 34.0637 4.5899 14.8101 14.8102 1.4996 1.4996

5.0 26.3819 3.6370 13.4746 13.4747 1.5144 1.5144

10.0 23.5686 3.2532 12.8731 12.8732 1.4992 1.4992

100.0 15.8030 2.0810 10.8385 10.8386 1.3356 1.3356

Method-II 0.01 69.7959 8.0093 16.3254 16.3256 1.0866 1.0866

0.1 48.8396 6.1716 16.2226 16.2228 1.3635 1.3635

0.2 43.8277 5.6647 15.8979 15.8980 1.4196 1.4196

1.0 34.0637 4.5899 14.8101 14.8102 1.4996 1.4996

5.0 26.3850 3.6353 13.4759 13.4760 1.5136 1.5136

10.0 23.5716 3.2510 12.8740 12.8742 1.4980 1.4980

100.0 15.8016 2.0782 10.8348 10.8347 1.3323 1.3323

B.N. Rao, S. Rahman / Comput. Methods Appl. Mech. Engrg. 194 (2005) 1913–1946 1929
where E and g are two material parameters. For numerical values, E ¼ 1 unit and g = 0, 0.1, 0.25, 0.5, 0.75,

and 1 were adopted. A plane stress condition was assumed. The applied load was prescribed along the

upper edge with normal stress r22ðx1; 1Þ ¼ �eE exp½gðx1 � 0:5Þ�, where �e ¼ 1. The displacement boundary

condition was specified such that u2 = 0 along the lower edge and, in addition, u1 = 0 for the node at the

right side of the lower edge.



Table 3

Stress intensity factors and sensitivity of stress intensity factors for an edge-cracked plate (Velocity Field I, b = 2.33 units)

Method E2/E1 SIF values Sensitivity of SIF values

KI KII oKI/oa oKII/oa

Present results Present results Proposed method Finite difference Proposed method Finite difference

Method-I 0.01 69.8435 7.9919 16.3386 16.3388 1.0843 1.0843

0.1 48.8549 6.1659 16.2287 16.2289 1.3622 1.3622

0.2 43.8370 5.6612 15.9020 15.9022 1.4187 1.4187

1.0 34.0636 4.5898 14.8103 14.8105 1.4995 1.4995

5.0 26.3806 3.6370 13.4730 13.4732 1.5143 1.5143

10.0 23.5664 3.2531 12.8700 12.8701 1.4990 1.4990

100.0 15.7970 2.0803 10.8264 10.8265 1.3341 1.3341

Method-II 0.01 69.7959 8.0093 16.3247 16.3249 1.0865 1.0865

0.1 48.8396 6.1715 16.2225 16.2227 1.3634 1.3634

0.2 43.8277 5.6647 15.8980 15.8982 1.4196 1.4196

1.0 34.0636 4.5898 14.8103 14.8105 1.4995 1.4995

5.0 26.3850 3.6352 13.4754 13.4755 1.5135 1.5135

10.0 23.5716 3.2510 12.8728 12.8730 1.4978 1.4978

100.0 15.8016 2.0782 10.8288 10.8290 1.3319 1.3320

Table 4

Stress intensity factors and sensitivity of stress intensity factors for an edge-cracked plate (Velocity Field I, b = 1.74 units)

Method E2/E1 SIF values Sensitivity of SIF values

KI KII oKI/oa oKII/oa

Present results Present results Proposed method Finite difference Proposed method Finite difference

Method-I 0.01 69.8419 7.9940 16.3374 16.3376 1.0844 1.0844

0.1 48.8550 6.1662 16.2285 16.2287 1.3622 1.3622

0.2 43.8372 5.6613 15.9020 15.9022 1.4186 1.4186

1.0 34.0637 4.5898 14.8103 14.8105 1.4994 1.4994

5.0 26.3798 3.6369 13.4724 13.4726 1.5142 1.5142

10.0 23.5650 3.2530 12.8689 12.8691 1.4989 1.4989

100.0 15.7937 2.0802 10.8232 10.8234 1.3336 1.3336

Method-II 0.01 69.7959 8.0092 16.3247 16.3249 1.0865 1.0865

0.1 48.8396 6.1715 16.2225 16.2227 1.3634 1.3634

0.2 43.8277 5.6646 15.8980 15.8982 1.4195 1.4195

1.0 34.0637 4.5898 14.8103 14.8105 1.4994 1.4994

5.0 26.3850 3.6352 13.4754 13.4755 1.5134 1.5134

10.0 23.5716 3.2509 12.8728 12.8730 1.4978 1.4978

100.0 15.8016 2.0781 10.8289 10.8290 1.3319 1.3319
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Fig. 7(c) shows FEM discretization involving 1541 nodes, 460 8-noded quadrilateral elements, and 40

focused quarter-point 6-noded triangular elements. Methods I and II were both used to calculate the

mixed-mode SIFs and their sensitivities with a domain size 2b · 2b (b = 0.2 units), as shown in the Fig.

7(a). The velocity field (Velocity Field I) was computed by linear interpolation, defined as



Table 5

Stress intensity factors and sensitivity of stress intensity factors for an edge-cracked plate (Velocity Field I, b = 1.22 units)

Method E2/E1 SIF values Sensitivity of SIF values

KI KII oKI/oa oKII/oa

Present results Present results Proposed method Finite difference Proposed method Finite difference

Method-I 0.01 69.8429 7.9963 16.3371 16.3373 1.0845 1.0845

0.1 48.8559 6.1667 16.2286 16.2288 1.3622 1.3622

0.2 43.8380 5.6616 15.9022 15.9024 1.4186 1.4186

1.0 34.0638 4.5897 14.8104 14.8106 1.4994 1.4994

5.0 26.3791 3.6367 13.4721 13.4722 1.5142 1.5142

10.0 23.5640 3.2528 12.8683 12.8685 1.4988 1.4988

100.0 15.7914 2.0801 10.8215 10.8216 1.3335 1.3335

Method-II 0.01 69.7963 8.0092 16.3247 16.3250 1.0864 1.0864

0.1 48.8399 6.1714 16.2226 16.2228 1.3634 1.3634

0.2 43.8280 5.6645 15.8981 15.8983 1.4195 1.4195

1.0 34.0638 4.5897 14.8104 14.8106 1.4994 1.4994

5.0 26.3851 3.6351 13.4754 13.4756 1.5133 1.5133

10.0 23.5717 3.2508 12.8729 12.8731 1.4977 1.4977

100.0 15.8017 2.0780 10.8289 10.8291 1.3318 1.3318

Fig. 7. Slanted crack in a plate; (a) geometry, loads, and domain size; (b) velocity field definition; and (c) FEM discretization (1785

nodes, 540 8-noded quadrilateral elements, and 40 focused quarter-point 6-noded triangular elements).
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V 1ð�x1;�x2Þ ¼

V 1;tip if �r < 0:2829;

V 1;tipð0:4� �rÞ
0:4� 0:2829

if 0:2829 > �r > 0:4;

0 if �r > 0:4

8>><
>>: ð67Þ
and
V 2ð�x1;�x2Þ ¼

V 2;tip if �r < 0:2829;

V 2;tipð0:4� �rÞ
0:4� 0:2829

if 0:2829 > �r > 0:4;

0 if �r > 0:4;

8>><
>>: ð68Þ
where the �x1–�x2 axes are measured with respect to the crack tip T0, are oriented in the direction of the x1�x2
axes, as shown in Fig. 7(b), and �r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x21 þ �x22

p
. In this example, a crack-tip velocity field (V1,tip,

V2,tip) = (10�5acosc, 10�5a sinc) was used for sensitivity analysis. It can be seen from Eqs. (67) and (68)

that the variation of the V1 and V2 components of the velocity field is similar over the entire domain of

the plate. Fig. 8 schematically illustrates the variation of the V1 component of the velocity field.

Table 6 provides a comparison of the predicted normalized SIFs KI=�eE
ffiffiffiffiffiffi
pa

p
and KII=�eE

ffiffiffiffiffiffi
pa

p
and the sen-

sitivities of the SIFs, obtained by the proposed methods for several values of g. It is worth mentioning that
the present results of normalized SIFs KI=�eE

ffiffiffiffiffiffi
pa

p
and KII=�eE

ffiffiffiffiffiffi
pa

p
are in good agreement with the reported

results of Rao and Rahman [4], Eischen [29] and Kim and Paulino [30]. Table 6 contains two sets of results

for oKI /oa and oKII/oa. The first set of results is computed using the proposed methods (Method-I and

Method-II) and the second is calculated using the finite-difference method. The results in Table 6 again

demonstrate that continuum shape sensitivity analysis provides accurate estimates of oKI/oa and oKII/oa,

as compared with corresponding results from the finite-difference method for various values of g.
Fig. 8. Variation of V1 component of Velocity Field (Example 2).



Fig. 9. Plate with an interior inclined crack; (a) geometry, loads, and domain size; and (b) velocity field definition.

Table 6

Normalized stress intensity factors and sensitivity of stress intensity factors for a slanted crack in a plate

Method g Normalized SIF values Sensitivity of SIF values

KI

eE
ffiffiffiffiffiffi
pa

p KII

eE
ffiffiffiffiffiffi
pa

p oKI/oa oKII/oa

Present results Present results Proposed method Finite difference Proposed method Finite difference

Method-I 0 1.4471 0.6145 6.1180 6.1180 1.7110 1.7110

0.1 1.3915 0.5891 5.9268 5.9268 1.6559 1.6559

0.25 1.3128 0.5533 5.6544 5.6544 1.5778 1.5778

0.5 1.1931 0.4992 5.2359 5.2360 1.4594 1.4594

0.75 1.0861 0.4513 4.8580 4.8580 1.3540 1.3540

1 0.9904 0.4087 4.5162 4.5162 1.2601 1.2601

10 0.1049 0.0415 1.0363 1.0363 0.3919 0.3919

Method-II 0 1.4471 0.6145 6.1180 6.1180 1.7110 1.7110

0.1 1.3915 0.5892 5.9269 5.9268 1.6560 1.6560

0.25 1.3128 0.5534 5.6544 5.6545 1.5782 1.5782

0.5 1.1931 0.4994 5.2361 5.2361 1.4601 1.4601

0.75 1.0861 0.4515 4.8581 4.8582 1.3550 1.3550

1 0.9904 0.4090 4.5164 4.5164 1.2614 1.2614

10 0.1049 0.0421 1.0366 1.0366 0.3978 0.3978
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5.3. Example 3: Plate with an interior inclined crack

Consider a centrally located inclined crack of length 2a = 2 units and an orientation of c in a finite two-

dimensional square plate of size 2L = 2W = 20 units, as shown in Fig. 9(a). A plane stress condition was

assumed. The elastic modulus was assumed to be an exponential function, given by
Fig. 10. FEM discretization for plate with an interior inclined crack; (a) c/p = 0; (b) c/p = 0.1; (c) c/p = 0.2; (d) c/p = 0.3; (e) c/p = 0.4;

and (f) c/p = 0.5.
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Eðx1Þ ¼ E expðgx1Þ; �W 6 x1 6W ; ð69Þ

where E and g are material parameters. The following data were used for the numerical study: E ¼ 1 unit;

g = 0.25 and 0.5; and c/p = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The applied load corresponds to

r22ðx1; 10Þ ¼ �e�E expðgx1Þ, where �e ¼ 1. This stress distribution was obtained by applying nodal forces along

the top edge of the plate. The displacement boundary condition was prescribed such that u2 = 0 along the

lower edge and, in addition, u1 = 0 for the node at the left hand side of the lower edge. This loading results

in a uniform strain e22ðx1; x2Þ ¼ �e in a corresponding uncracked structure.
Fig. 11. Variation of Velocity Field (Example 3); (a) V1 component; (b) V2 component.
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The velocity field was obtained from an FEM analysis. The FEM analysis was performed by prescribing

a velocity field (V1tip,V2tip), evaluated at the right crack-tip, at all points in the domain 2b · b surrounding
the right crack tip, and a velocity field (�V1tip,�V2tip), at all points in the domain 2b · b surrounding the

left crack-tip, as shown in Fig. 9(b). A zero velocity field was prescribed at all points on the boundary. A

velocity field ðV 1;tip; V 2;tipÞ ¼ ð10�5a cos c;�10�5a sin cÞ was used for the sensitivity analysis. The same FEM
discretization used in the regular analysis was adopted to obtain the velocity field.

Fig. 10(a)–(f) shows the FEM discretization involving 2416 nodes, 736 8-noded quadrilateral elements,

and 64 focused quarter-point 6-noded triangular elements, adopted for c/p = 0, 0.1, 0.2, 0.3, 0.4 and 0.5,

respectively. Both Methods I and II were used to calculate the mixed-mode SIFs and their sensitivities

with a domain size 2b · 2b (b = 1.0 units), as shown in Fig. 9(a). Fig. 11(a) and (b) shows the contour

plot of the variation of the V1 and V2 components of velocity field over the entire domain of the inte-

rior inclined cracked plate with c/p = 0, when a velocity field (V1tip,V2tip) is prescribed at the right

crack-tip.
Table 7

Normalized stress intensity factors and sensitivity of stress intensity factors for a inclined interior crack in a plate (g = 0.25, Method-I)

Method c/p Normalized SIF values

KIðþaÞ
E e

ffiffiffiffiffiffi
pa

p KIð�aÞ
E e

ffiffiffiffiffiffi
pa

p KIIðþaÞ
E e

ffiffiffiffiffiffi
pa

p KIIð�aÞ
E e

ffiffiffiffiffiffi
pa

p

Present results Method-I [M(1,2)] 0 1.2207 0.8396 �0.0003 �0.0002

0.1 1.1015 0.7622 �0.3275 �0.2577

0.2 0.7919 0.5565 �0.5223 �0.4255

0.3 0.4174 0.2946 �0.5103 �0.4396

0.4 0.1207 0.0768 �0.3052 �0.2829

0.5 0.0008 0.0008 0.0003 �0.0003

Konda and Erdogan [31] 0 1.196 0.825 0 0

0.1 1.081 0.750 �0.321 �0.254

0.2 0.781 0.548 �0.514 �0.422

0.3 0.414 0.290 �0.504 �0.437

0.4 0.121 0.075 �0.304 �0.282

0.5 0 0 0 0

Sensitivity of SIF values

oKIðþaÞ
oa

oKIð�aÞ
oa

oKIIðþaÞ
oa

oKIIð�aÞ
oa

Proposed Method-I ½ _M ð1;2Þ� 0 1.5549 0.5018 0.0030 �0.0033

0.1 1.3970 0.4599 �0.3485 �0.1739

0.2 0.9900 0.3471 �0.5483 �0.2992

0.3 0.5126 0.1870 �0.5184 �0.3304

0.4 0.1513 0.0407 �0.2981 �0.2288

0.5 �0.0007 �0.0008 �0.0007 0.0007

0 1.5549 0.5018 0.0030 �0.0033

0.1 1.3970 0.4599 �0.3485 �0.1739

0.2 0.9900 0.3471 �0.5483 �0.2992

0.3 0.5126 0.1870 �0.5184 �0.3304

0.4 0.1513 0.0407 �0.2981 �0.2288

0.5 �0.0007 �0.0008 �0.0007 0.0007



Table 8

Normalized stress intensity factors and sensitivity of stress intensity factors for a inclined interior crack in a plate (g = 0.25, Method-II)

Method c/p Normalized SIF values

KIðþaÞ
Ee

ffiffiffiffiffiffi
pa

p KIð�aÞ
Ee

ffiffiffiffiffiffi
pa

p KIIðþaÞ
Ee

ffiffiffiffiffiffi
pa

p KIIð�aÞ
Ee

ffiffiffiffiffiffi
pa

p

Present results Method-II [M(1,2)] 0 1.2208 0.8395 �0.0003 �0.0002

0.1 1.1015 0.7621 �0.3277 �0.2575

0.2 0.7919 0.5565 �0.5226 �0.4253

0.3 0.4174 0.2947 �0.5105 �0.4395

0.4 0.1206 0.0769 �0.3053 �0.2828

0.5 0.0008 0.0008 0.0003 �0.0003

Konda and Erdogan [31] 0 1.196 0.825 0 0

0.1 1.081 0.750 �0.321 �0.254

0.2 0.781 0.548 �0.514 �0.422

0.3 0.414 0.290 �0.504 �0.437

0.4 0.121 0.075 �0.304 �0.282

0.5 0 0 0 0

Sensitivity of SIF values

oKIðþaÞ
oa

oKIð�aÞ
oa

oKIIðþaÞ
oa

oKIIð�aÞ
oa

Proposed Method-II ½ _M ð1;2Þ� 0 1.5552 0.5016 0.0030 �0.0033

0.1 1.3972 0.4597 �0.3484 �0.1740

0.2 0.9901 0.3471 �0.5482 �0.2993

0.3 0.5126 0.1870 �0.5184 �0.3304

0.4 0.1513 0.0408 �0.2982 �0.2287

0.5 �0.0007 �0.0008 �0.0009 0.0009

Finite difference 0 1.5552 0.5016 0.0030 �0.0033

0.1 1.3972 0.4597 �0.3484 �0.1740

0.2 0.9901 0.3471 �0.5482 �0.2993

0.3 0.5126 0.1870 �0.5184 �0.3304

0.4 0.1513 0.0408 �0.2982 �0.2287

0.5 �0.0007 �0.0008 �0.0009 0.0009
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Konda and Erdogan [31] investigated an infinite plate with such a configuration for SIFs. Obviously, an

FEM model cannot represent the infinite domains addressed in their analysis, but as long as the ratios a/W

and a/L are kept relatively small (e.g, a/W = a/L 6 1/10), the approximation is acceptable. Tables 7 and 8

provide a comparison between predicted normalized SIFs KIðaÞ=E�e
ffiffiffiffiffiffi
pa

p
and KIð�aÞ=E�e ffiffiffiffiffiffi

pa
p

for both crack

tips obtained by Methods I and II, respectively, and those of Konda and Erdogan [31] for several values of

c/p, when g = 0.25. Tables 7 and 8 also provide a comparison between the predicted sensitivities of SIFs

obtained by the proposed methods for both crack tips for several values of c/p, when g = 0.25. Table 7 con-

tains two sets of results for oKI/oa and oKII/oa. The first set is computed using the proposed methods
(Method-I and Method-II), while the second set is calculated using the finite-difference method. Tables 9

and 10 present similar results for normalized SIFs KIðaÞ=E�e
ffiffiffiffiffiffi
pa

p
and KIð�aÞ=E�e ffiffiffiffiffiffi

pa
p

and the sensitivities

of SIFs for various values of c/p, when g = 0.5. The results in Tables 7–10 demonstrate that continuum

shape sensitivity analysis provides accurate estimates of oKI/oa and oKII/oa when compared with corre-

sponding results from the finite-difference method for various values of crack lengths and material inhomo-

geneity parameters.



Table 9

Normalized stress intensity factors and sensitivity of stress intensity factors for a inclined interior crack in a plate (g = 0.5, Method-I)

Method c/p Normalized SIF values

KIðþaÞ
E e

ffiffiffiffiffiffi
pa

p KIð�aÞ
E e

ffiffiffiffiffiffi
pa

p KIIðþaÞ
E e

ffiffiffiffiffiffi
pa

p KIIð�aÞ
E e

ffiffiffiffiffiffi
pa

p

Present results Method-I [M(1,2)] 0 1.4463 0.6797 �0.0036 0.0019

0.1 1.3009 0.6234 �0.3524 �0.2128

0.2 0.9303 0.4650 �0.5556 �0.3655

0.3 0.4893 0.2498 �0.5352 �0.3971

0.4 0.1446 0.0608 �0.3122 �0.2694

0.5 0.0009 0.0009 0.0008 �0.0007

Konda and Erdogan [31] 0 1.424 0.674 0 0

0.1 1.285 0.617 �0.344 �0.213

0.2 0.925 0.460 �0.548 �0.365

0.3 0.490 0.247 �0.532 �0.397

0.4 0.146 0.059 �0.314 �0.269

0.5 0 0 0 0

Sensitivity of SIF values

oKIðþaÞ
oa

oKIð�aÞ
oa

oKIIðþaÞ
oa

oKIIð�aÞ
oa

Proposed Method-I ½ _M ð1;2Þ� 0 2.2609 0.1238 �0.0058 0.0025

0.1 2.0148 0.1351 �0.4096 �0.0614

0.2 1.4080 0.1384 �0.6295 �0.1477

0.3 0.7197 0.0905 �0.5815 �0.2194

0.4 0.2142 0.0080 �0.3216 �0.1888

0.5 �0.0019 �0.0021 �0.0011 0.0011

Finite difference 0 2.2609 0.1238 �0.0058 0.0025

0.1 2.0148 0.1351 �0.4096 �0.0614

0.2 1.4080 0.1384 �0.6295 �0.1477

0.3 0.7197 0.0905 �0.5815 �0.2194

0.4 0.2142 0.0080 �0.3216 �0.1887

0.5 �0.0019 �0.0021 �0.0011 0.0011
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6. Summary and conclusions

Two new methods are presented for predicting the first-order sensitivity of Mode-I and Mode-II stress–

intensity factors for a crack in isotropic, linear-elastic functionally graded materials. These methods in-
volve the material derivative concept from continuum mechanics, domain integral representation of inter-

action integrals, known as the M-integral, and direct differentiation. Unlike virtual crack extension

techniques, no mesh perturbation is needed in the proposed methods to calculate the sensitivity of

stress–intensity factors. Since the governing variational equation is differentiated prior to discretization,

the resulting sensitivity equations are independent of such approximate numerical techniques as the mesh-

less method, the finite element method, the boundary element method, or others. Three examples are pre-

sented to calculate the first-order derivative of stress–intensity factors. Results show that first-order

sensitivities of stress intensity factors obtained using the proposed method are in excellent agreement with
the reference solutions obtained from finite-difference methods for the structural and crack geometries

considered in this study.



Table 10

Normalized stress intensity factors and sensitivity of stress intensity factors for a inclined interior crack in a plate (g = 0.5, Method-II)

Method c/p Normalized SIF values

KIðþaÞ
E e

ffiffiffiffiffiffi
pa

p KIð�aÞ
E e

ffiffiffiffiffiffi
pa

p KIIðþaÞ
E e

ffiffiffiffiffiffi
pa

p KIIð�aÞ
E e

ffiffiffiffiffiffi
pa

p

Present results Method-II [M(1,2)] 0 1.4465 0.6796 �0.0036 0.0019

0.1 1.3010 0.6234 �0.3529 �0.2125

0.2 0.9303 0.4650 �0.5562 �0.3651

0.3 0.4892 0.2499 �0.5356 �0.3969

0.4 0.1445 0.0608 �0.3124 �0.2693

0.5 0.0009 0.0009 0.0008 �0.0007

Konda and Erdogan [31] 0 1.424 0.674 0 0

0.1 1.285 0.617 �0.344 �0.213

0.2 0.925 0.460 �0.548 �0.365

0.3 0.490 0.247 �0.532 �0.397

0.4 0.146 0.059 �0.314 �0.269

0.5 0 0 0 0

Sensitivity of SIF values

oKIðþaÞ
oa

oKIð�aÞ
oa

oKIIðþaÞ
oa

oKIIð�aÞ
oa

Proposed Method-II ½ _M ð1;2Þ� 0 2.2616 0.1236 �0.0058 0.0025

0.1 2.0154 0.1349 �0.4094 �0.0615

0.2 1.4083 0.1383 �0.6293 �0.1478

0.3 0.7196 0.0905 �0.5816 �0.2194

0.4 0.2141 0.0080 �0.3219 �0.1886

0.5 �0.0019 �0.0021 �0.0015 0.0015

Finite difference 0 2.2616 0.1235 �0.0058 0.0025

0.1 2.0154 0.1349 �0.4094 �0.0615

0.2 1.4083 0.1383 �0.6293 �0.1478

0.3 0.7196 0.0905 �0.5816 �0.2194

0.4 0.2141 0.0080 �0.3219 �0.1886

0.5 �0.0019 �0.0021 �0.0015 0.0015
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Appendix A

The p-functions
p1 ¼ rð1Þ
11

ozð2Þ1

ox1

oq
ox1

; p2 ¼ rð1Þ
12

ozð2Þ1

ox1

oq
ox2

; p3 ¼ rð1Þ
21

ozð2Þ1

ox1

oq
ox1
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ox2
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p5 ¼ rð2Þ
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ozð1Þ1

ox1

oq
ox1
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ox1
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ox1

 !
; ðA:35Þ

_eð1Þ22 ¼ o_zð1Þ2

ox2
; ðA:36Þ

o_eð1Þ11

ox1
¼ o

2 _zð1Þ1

ox21
; ðA:37Þ

o_eð1Þ12

ox1
¼ 1

2

o2 _zð1Þ2

ox21
þ o2 _zð1Þ1

ox1ox2

 !
; ðA:38Þ

o_eð1Þ22

ox1
¼ o2 _zð1Þ2

ox1ox2
; ðA:39Þ

rð1Þ
ij ¼ DijklðxÞeð1Þkl ; ðA:40Þ

_rð1Þ
ij ¼ _DijklðxÞeð1Þkl þ DijklðxÞ_eð1Þkl ; ðA:41Þ

orð1Þ
ij

ox1
¼ oDijkl

ox1
ðxÞeð1Þkl þ DijklðxÞ

oeð1Þkl

ox1
; ðA:42Þ
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o _rð1Þ
ij

ox1
¼ o _DijklðxÞ

ox1
eð1Þkl þ oDijklðxÞ

ox1
_eð1Þkl þ _DijklðxÞ

oeð1Þkl

ox1
þ DijklðxÞ

o_eð1Þkl

ox1
; ðA:43Þ

DijklðxÞ ¼

EðxÞ
1� m2

1 m 0

m 1 0

0 0
1� m
2

2
664

3
775 for plane stress;

EðxÞ
ð1þ mÞð1� 2mÞ

1� m m 0

m 1� m 0

0 0
1� 2m

2

2
664

3
775 for plane strain;

8>>>>>>>>>><
>>>>>>>>>>:

ðA:44Þ

_DijklðxÞ ¼
_EðxÞ
EðxÞDijklðxÞ; ðA:45Þ

o _DijklðxÞ
ox1

¼
_E;1ðxÞ
EðxÞ DijklðxÞ; ðA:46Þ

_E;1ðxÞ ¼
o

ox1

oEðxÞ
ox1

� �
V 1 þ

o

ox2

oEðxÞ
ox1

� �
V 2; ðA:47Þ

eð2Þ11 ¼ ozð2Þ1

ox1
; ðA:48Þ

eð2Þ12 ¼ 1

2

ozð2Þ2

ox1
þ ozð2Þ1

ox2

 !
; ðA:49Þ

eð2Þ22 ¼ ozð2Þ2

ox2
; ðA:50Þ

oeð2Þ11

ox1
¼ o

2zð2Þ1

ox21
; ðA:51Þ

oeð2Þ12

ox1
¼ 1

2

o2zð2Þ2

ox21
þ o2zð2Þ1

ox1ox2

 !
; ðA:52Þ

oeð2Þ22

ox1
¼ o2zð2Þ2

ox1ox2
; ðA:53Þ

_eð2Þij ¼ �
_Etip

Etip

eð2Þij ðA:54Þ
and
o_eð2Þij

ox1
¼ �

_Etip

Etip

oeð2Þij

ox1
; ðA:55Þ
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with _Etip being equal to _E evaluated at the crack tip. In equations p1–p26 and P1–P26, E = E(x1) and m = con-

stant. When E = constant, p15–p26 and P15–P26 vanish, as expected. Hence p1–p24 and P1–P14 degenerate to

corresponding equations for homogeneous materials [22].
Appendix B

The s-functions
s1 ¼ rð1Þ
11

ozð2Þ1

ox1

oq
ox1

; s2 ¼ rð1Þ
12

ozð2Þ1

ox1

oq
ox2

; s3 ¼ rð1Þ
21

ozð2Þ2

ox1

oq
ox1

;

s4 ¼ rð1Þ
22

ozð2Þ2

ox1

oq
ox2

; s5 ¼ rð2Þ
12

ozð1Þ1

ox1

oq
ox2

; s6 ¼ rð2Þ
22

ozð1Þ2

ox1

oq
ox2

;

s7 ¼ rð2Þ
12

ozð1Þ1

ox2

oq
ox1

; s8 ¼ rð2Þ
22

ozð1Þ2

ox2

oq
ox1

; s9 ¼ rð1Þ
11

oeð2Þ11

ox1
� o~eð2Þ11

ox1

 !
q;

s10 ¼ 2rð1Þ
12

oeð2Þ12

ox1
� o~eð2Þ12

ox1

 !
q; s11 ¼ rð1Þ

22

oeð2Þ22

ox1
� o~eð2Þ22

ox1

 !
q; s12 ¼

1

E
oE
ox1

rð2Þ
11 eð1Þ11 q;

s13 ¼
2

E
oE
ox1

rð2Þ
12 eð1Þ12 q; s14 ¼

1

E
oE
ox1

rð2Þ
22 eð1Þ22 q:

ðB:1Þ
The S-functions
S1 ¼ _rð1Þ
11

ozð2Þ1

ox1

oq
ox1

þ rð1Þ
11

o_zð2Þ1

ox1

oq
ox1

; ðB:2Þ

S2 ¼ _rð1Þ
12

ozð2Þ1

ox1

oq
ox2

þ rð1Þ
12

o_zð2Þ1

ox1

oq
ox2

; ðB:3Þ

S3 ¼ _rð1Þ
21

ozð2Þ2

ox1

oq
ox1

þ rð1Þ
21

o_zð2Þ2

ox1

oq
ox1

; ðB:4Þ

S4 ¼ _rð1Þ
22

ozð2Þ2

ox1

oq
ox2

þ rð1Þ
22

o_zð2Þ2

ox1

oq
ox2

; ðB:5Þ

S5 ¼ rð2Þ
12

o_z1
ox1

oq
ox2

; ðB:6Þ

S6 ¼ rð2Þ
22

o_zð1Þ2

ox1

oq
ox2

; ðB:7Þ

S7 ¼ �rð2Þ
12

o_zð1Þ1

ox2

oq
ox1

; ðB:8Þ

S8 ¼ �rð2Þ
22

o_zð1Þ2

ox2

oq
ox1

; ðB:9Þ
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S9 ¼ _rð1Þ
11

oeð2Þ11

ox1
� o~eð2Þ11

ox1

 !
qþ rð1Þ

11

o_eð2Þ11

ox1
� o_~e

ð2Þ
11

ox1

 !
q; ðB:10Þ

S10 ¼ 2 _rð1Þ
12

oeð2Þ12

ox1
� o~eð2Þ12

ox1

 !
qþ 2rð1Þ

12

o_eð2Þ12

ox1
� o_~e

ð2Þ
12

ox1

 !
q; ðB:11Þ

S11 ¼ _rð1Þ
22

oeð2Þ22

ox1
� o~eð2Þ22

ox1

 !
qþ rð1Þ

22

o_eð2Þ22

ox1
� o_~e

ð2Þ
22

ox1

 !
q; ðB:12Þ

S12 ¼
1

E
oE
ox1

rð2Þ
11 _e

ð1Þ
11 q; ðB:13Þ

S13 ¼ 2
1

E
oE
ox1

rð2Þ
12 _e

ð1Þ
12 q; ðB:14Þ

S14 ¼
1

E
oE
ox1

rð2Þ
22 _e

ð1Þ
22 q; ðB:15Þ
where eð1Þij , _e
ð1Þ
ij , oe

ð1Þ
ij =ox1, o_e

ð1Þ
ij =ox1, r

ð1Þ
ij , _r

ð1Þ
ij , or

ð1Þ
ij =ox1, o _r

ð1Þ
ij =ox1, e

ð2Þ
ij , _e

ð2Þ
ij , oe

ð2Þ
ij =ox1, o_e

ð2Þ
ij =ox1 can be computed

as described in Appendix A,
o~eð2Þij

ox1
¼ oCijklðxÞ

ox1
rð2Þ
kl þ CijklðxÞ

orð2Þ
kl

ox1
ðB:16Þ
and
o_~e
ð2Þ
ij

ox1
¼ �

_EðxÞ
EðxÞ

o~eð2Þij

ox1
: ðB:17Þ
In equations s1–s14 and S1–S14, E = E(x1) and m = constant. When E = constant, s9–s14 and S9–S14 vanish,

as expected. Hence s1–s8 and S1–S8 degenerate to corresponding equations for homogeneous materials [22].
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