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Abstract

In this paper new mode decoupling continuum shape sensitivity method for calculating mixed-mode stress-intensity factors for a sta-
tionary crack in two-dimensional, linear-elastic, functionally graded materials with arbitrary geometry is presented. The proposed
method involves the mode decoupling of deformations, the material derivative concept taken from continuum mechanics, and direct dif-
ferentiation. The discrete form of the energy release rate is simple and easy to calculate, as it only requires multiplication of displacement
vectors and stiffness sensitivity matrices. By judiciously selecting the velocity field, the method only requires displacement response in a
sub domain close to the crack tip, thus making the method computationally efficient. Excellent agreement is obtained between stress-
intensity factors predicted by the proposed method and available reference solutions in the literature. Therefore, mode decoupling shape
sensitivity analysis provides an attractive alternative to fracture analysis of cracks in homogeneous and non-homogeneous materials.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Ever increasing multi-functional, structural performance demands in aerospace, transportation, energy, electronics, bio-
medical engineering, and other applications have spurred the development of a new class of materials called functionally
graded materials (FGMs). FGMs engineered to meet a pre-determined functional performance [1,2] are multi-phase mate-
rials with volume fractions of the constituents varying gradually in a pre-determined profile, thus yielding a non-uniform
microstructure in the material with continuously graded properties. Given the nature of processing techniques, graded
materials can become anisotropic. For example, graded materials processed by a plasma spray technique generally have
a lamellar structure [3], whereas processing by electron beam physical vapor deposition would lead to a highly columnar
structure [4]. Such materials would not be isotropic, but orthotropic, with material directions that can be considered per-
pendicular to one another in an initial approximation. In recent years, various theoretical, computational, and experimen-
tal studies have been conducted to understand the fracture behavior of FGMs. A collection of technical papers, published
in Volume 69, Issues 14–16 of [5] Engineering Fracture Mechanics (2002) reflects such state-of-the-art research into FGM
fracture. A major component of such studies involves calculating crack-driving forces in FGMs accurately and efficiently.
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Consequently, various numerical methods have been developed or examined to calculate stress-intensity factors (SIFs),
such as the displacement correlation method, the modified crack-closure integral method, the J �k-integral method and
others [6]. More recently the interaction integral methods [7,8] that are simpler and more efficient have emerged as a useful
and viable alternative to existing methods for mixed-mode fracture analysis of cracks in both isotropic and orthotropic
FGMs. In contrast to existing methods, for the interaction integral methods it is not necessary to perform integration along
the crack face of the discontinuity. Nevertheless, the majority of current numerical methods for FGM fracture analysis
stem from extensions to methods originally developed for cracks in homogeneous materials.

An alternative approach to previously developed methods involves shape sensitivity analysis, which is frequently
employed in structural design optimization. Shape sensitivity analysis permits direct, analytical evaluation of first-order
(and higher-order, if required) derivatives of potential energy with respect to crack size. Broadly speaking, there are
two fundamentally different approaches to shape sensitivity analysis. The first, known as the discrete approach, employs
a discretized numerical model (e.g., finite element method [FEM], boundary element method [BEM], mesh-free method,
etc.) to approximate the potential energy and then transforms shape derivatives into differentiations of algebraic equations
by controlling node motions. For instance, Ishikawa [9] proposed a virtual crack extension method for mode separation of
the energy release rate into mode I and mode II components and evaluated the mixed-mode SIFs. The second, known as
the continuum approach and adopted in the present work, relies on the variational formulation used in continuum
mechanics [10]. In this approach, shape sensitivity analysis is conducted by introducing a smooth velocity field to simulate
shape change of the initial domain due to the crack advance. While discrete and continuum approaches are related (the
former is an approximation of the latter), the continuum approach has two principal advantages: (1) a rigorous mathemat-
ical theory is obtained, without the uncertainty/errors associated with finite-dimensional approximation errors; and (2)
explicit relations for sensitivity are obtained in terms of physical quantities rather than in terms of sums of derivatives
of element matrices. These characteristic features of the continuum approach are of major importance in developing struc-
tural optimization theory [11,12].

For homogeneous materials, several shape sensitivity methods involving discrete [13–15] and continuum [16–19] formu-
lations have appeared in calculating SIFs. Both FEM and BEM have been employed for the shape sensitivity analysis of
cracks. Most of these investigations are applicable only to linear-elastic fracture-mechanics problems. More recently, con-
tinuum shape sensitivity methods have also been developed for predicting first-order sensitivities of mixed-mode SIFs for
isotropic materials [20–22]. These analytical sensitivities of SIFs provide a convenient means by which subsequent fracture
reliability analysis can be performed accurately and efficiently. However, all of the aforementioned shape sensitivity meth-
ods are strictly applicable to homogeneous materials. As a result, there is considerable interest in developing shape sensi-
tivity methods for the numerical evaluation of crack-driving forces in FGM. With this need in mind, the authors recently
developed a continuum shape sensitivity methods for calculating mixed-mode SIFs for a stationary crack in two-dimen-
sional, linear-elastic, isotropic and orthotropic FGMs of arbitrary geometry [23,24]. However, these methods involve
superposition of mode I or mode II near crack tip displacement and stress fields on the actual state for given boundary
conditions.

This paper presents a mode decoupling continuum shape sensitivity method for calculating mixed-mode SIFs for a sta-
tionary crack in two-dimensional, linear-elastic, FGMs of arbitrary geometry. The method involves the mode decoupling
of deformations, the material derivative concept taken from continuum mechanics, and direct differentiation. Since the
governing variational equation is differentiated prior to discretization, resulting sensitivity equations are independent of
approximate numerical techniques, such as FEM, BEM, the mesh-free method, or others. Six numerical examples involv-
ing both isotropic and orthotropic FGMs, in conjunction with FEM are presented to evaluate the accuracy of fracture
parameters calculated by the proposed method. Comparisons have been made between the SIFs predicted by the proposed
method and available reference solutions in the literature, generated either analytically or numerically using various other
fracture integrals or analyses.

2. Shape sensitivity analysis

2.1. Velocity field

Consider a general three-dimensional body with a specific configuration, referred to as the initial (reference) configura-
tion, with domain X, boundary C, and a body material point identified by position vector x 2 X. Consider the body�s
motion from an initial configuration with domain X and boundary C into a perturbed configuration with domain Xs

and boundary Cs, as shown in Fig. 1. This process can be expressed as

T : x! xs; x 2 X; ð1Þ
where xs is the position vector of the material point in the perturbed configuration, T is a transformation mapping, and
s 2 Rþ is a scalar, fictitious, time-like parameter denoting the amount of shape change, with
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Fig. 1. Variation of domain.

5964 S. Rahman, B.N. Rao / Comput. Methods Appl. Mech. Engrg. 195 (2006) 5962–5982
xs ¼ Tðx; sÞ;
Xs ¼ TðX; sÞ;
Cs ¼ TðC; sÞ.

ð2Þ

A velocity field can then be defined as

vðxs; sÞ �
dxs

ds
¼ dTðx; sÞ

ds
¼ oTðx; sÞ

os
. ð3Þ

In the neighborhood of the initial time s = 0, assuming a regularity hypothesis and ignoring high-order terms,

xs ¼ Tðx; sÞ ¼ Tðx; 0Þ þ s
oTðx; 0Þ

os
þOðs2Þ ffi xþ svðx; 0Þ; ð4Þ

where x = T(x, 0). For the rest of this paper, the velocity field v(x, 0) will be denoted by V(x) or V. Thus, a velocity field
characterizes the direction of domain variation, which implies that for a given V(x), the shape change of X is uniquely con-
trolled by the scalar parameter s.

2.2. Sensitivity analysis

The variational governing equation for a linear-elastic, non-homogeneous or homogeneous solid with domain X can be
formulated as [12]

aXðz;�zÞ ¼ ‘Xð�zÞ; for all �z 2 Z; ð5Þ
where z and �z are the actual and virtual displacement fields of the structure, respectively, Z is the space of kinematically
admissible virtual displacements, and aXðz;�zÞ and ‘Xð�zÞ are energy bilinear and load linear forms, respectively. The sub-
script X in Eq. (5) is used to indicate the dependency of the governing equation on the shape of the structural domain.
If zs(xs) represents the displacement at xs = x + sV(x) of the perturbed domain, the point-wise material derivative at
x 2 X is defined as [12]

_zðxÞ � lim
s!0

zsðxþ sVðxÞÞ � zðxÞ
s

� �
¼ z0ðxÞ þ $zTVðxÞ; ð6Þ

where

z0 ¼ lim
s!0

zsðxÞ � zðxÞ
s

� �
ð7Þ

is the partial derivative of z and $ = {o/ox1, o/ox2, o/ox3}T is the vector of gradient operators.
If no body forces are involved, the variational equation (Eq. (5)) can be written as

aXðz;�zÞ �
Z

X
rijðzÞeijð�zÞdX ¼ ‘Xð�zÞ �

Z
C

T i�zi dC; ð8Þ

where rij(z) and eijð�zÞ are components of the stress and strain tensors of the displacement z and virtual displacement �z,
respectively, Ti is the ith component of the surface traction, and �zi is the ith component of �z. Taking the material derivative
of both sides of Eq. (8), it can be shown that [12]

aXð _z;�zÞ ¼ ‘0Vð�zÞ � a0Vðz;�zÞ; 8�z 2 Z; ð9Þ
where the subscript V indicates the dependency of the terms on the velocity field. The terms ‘0Vð�zÞ and a0Vðz;�zÞ can be fur-
ther derived as [12]
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‘0Vð�zÞ ¼
Z

C
�T ið�zi;jV jÞ þ ½ðT i�ziÞ;jnj þ jCðT i�ziÞ�ðV iniÞ
n o

dC ð10Þ

and

a0Vðz;�zÞ ¼ �
Z

X
eijðzÞDijklðxÞð�zk;mV m;lÞ þ eijð�zÞDijklðxÞðzk;mV m;lÞ � eijð�zÞDijkl;mðxÞeklðzÞV m � eijðzÞDijklðxÞeklð�zÞdivV
� �

dX;

ð11Þ
where ni is the ith component of unit normal vector n, jC is the curvature of the boundary, zi,j = ozi/oxj, �zi;j ¼ o�zi=oxj,
Vi,j = oVi/oxj, Dijkl(x) is a component of the constitutive tensor and Dijkl,m(x) = oDijkl(x)/oxm. If the modulus of elasticity
E(x) is the only material property that varies, then Dijkl,m(x) = [oE(x)/oxm]Dijkl(x)/E(x). Note that the third term in the inte-
grand on the right hand side of Eq. (11) arises naturally in the formulation of a continuum shape sensitivity analysis for
non-homogeneous materials, but vanishes for homogeneous materials. In addition, Dijkl is constant for homogeneous
materials.

3. Shape sensitivity method for fracture analysis

The method of mode decoupling/separation of deformations is an effective tool for calculating mixed-mode fracture
parameters in homogeneous materials [9]. In this section, the method of mode decoupling of deformations is derived in
conjunction with continuum shape sensitivity analysis to solve mixed-mode problems in isotropic and orthotropic FGMs.
The study of FGM fracture analysis would enhance the understanding of a fracture in a generic material, since upon
shrinking the gradient layer in FGM is expected to behave like a sharp interface, and upon expansion, the fracture behavior
would be analogous to that of a homogeneous material.

3.1. Mode decoupling method for J-integral

Consider an arbitrary, two-dimensional cracked body of crack length a, with unit thickness subjected to an arbitrary
loading as shown in Fig. 2. The total potential energy P of the system, in the absence of body forces, is

P � 1

2

Z
X

eijðzÞDijkleklðzÞdX�
Z

C
T izi dC. ð12Þ

Substituting �z with z in Eq. (8) and using Eq. (12) produce the following

P ¼ � 1

2
aXðz; zÞ. ð13Þ

The energy release rate is equal to the derivative of potential energy with respect to the crack area. For a two-dimensional
cracked structure with unit thickness, the crack area is equal to crack length a. Assuming crack length a to be the variable
of interest, a change in crack area or crack length involves a change in the shape of the cracked continuum. In relation to
shape sensitivity theory, this change implies that the energy release rate is equal to the material derivative of potential
Fig. 2. A crack in a functionally graded material.
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energy. Hence, for elastic (linear or nonlinear) solids under mixed-mode loading conditions, the J-integral, which is equal
to the energy release rate, can be derived as

J � � _P ¼ 1

2
½aXð _z; zÞ þ aXðz; _zÞ þ a0Vðz; zÞ�; ð14Þ

where the over dot indicates a material derivative. If (1) velocity field V(x) is defined such that traction-loading boundary C
is fixed, i.e., V(x) = 0 on the traction-loading boundary C, and (2) �z is replaced with z in Eq. (9), noting that
aXð _z; zÞ ¼ aXðz; _zÞ ¼ �a0Vðz; zÞ, then

J ¼ � 1

2
a0Vðz; zÞ. ð15Þ

Substituting the expression of a0Vðz; zÞ from Eq. (11) and noting that Dijkl is constant for homogeneous orthotropic mate-
rials (Dijkl,m = 0) gives

J ¼ 1

2

Z
X
½rijðzÞðzi;kV k;jÞ þ rijðzÞðzi;kV k;jÞ � rijðzÞeijðzÞdivV �dX. ð16Þ

By defining W = rijeij/2 as the strain energy density and V(x) = {V1(x), 0}T as the velocity field, with V1(x) having a value
of unity at the crack tip, zero along the boundary of the domain, and arbitrary elsewhere, the following equation is
produced

J ¼
Z

X
rij

ozi

ox1

� W d1j

� �
oV 1

oxj
dX; ð17Þ

which is the same as the traditional domain form of the J-integral, with V1 taking the place of weight function q. Hence,
weight function q can be considered the virtual change in crack length, having a value of unity at the crack tip, zero along
the boundary of the domain, and arbitrary elsewhere.

For decoupling the J-Integral into mode I and mode II components, consider two points P(x1, x2) and P*(x1, �x2) sym-
metric about the crack line (x1-axis) as shown in Fig. 2. The stress, strain, displacement and traction fields can be separated
analytically into mode I and mode II components within a symmetric region with respect to x1-axis, in the neighborhood of
the crack tip. Let the displacement, strain, and stress field parameters at point P(x1, x2) be z, e(z), r(z) respectively and at
point P*(x1, �x2) be z*, e*(z), r*(z) respectively. Deformation of mode I and mode II are symmetric and skew symmetric,
respectively, with respect to x1-axis. First, let us consider the separation of displacement z = (z1, z2) into two components
zI ¼ ðzI

1; z
I
2Þ and zII ¼ ðzII

1 ; z
II
2 Þ of mode I and mode II. Because of the symmetrical deformation of mode I and skew sym-

metrical deformation of mode II with respect to the x1-axis, zI ¼ ðzI
1; z

I
2Þ and zII ¼ ðzII

1 ; z
II
2 Þ can also be defined

z ¼ zI þ zII; ð18Þ

where

zI
1

zI
2

� 	
¼ 1

2

z1 þ z�1
z2 � z�2

� 	
ð19Þ

and

zII
1

zII
2

� 	
¼ 1

2

z1 � z�1
z2 þ z�2

� 	
. ð20Þ

Here, ( )* denotes the value of displacement, strain, stress, etc. at point P* that is symmetrical point of point P with respect
to the x1-axis. For instance,

z�i ðx1; x2Þ ¼ ziðx1;�x2Þ. ð21Þ
Using these displacement components, zI

i and zII
i , strain components, eI

ijðzÞ related to zI
i and eII

ij ðzÞ related to zII
i , are defined

by a strain–displacement relation as follows:

eijðzÞ ¼ ðzM
i;j þ zM

j;iÞ=2 ðM ¼ I; IIÞ. ð22Þ

Substituting Eq. (18) into Eq. (22), we obtain

eijðzÞ ¼ eI
ijðzÞ þ eII

ij ðzÞ; ð23Þ
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where

eI
11ðzÞ

eI
22ðzÞ

eI
12ðzÞ

8><
>:

9>=
>; ¼

1

2

e11ðzÞ þ e11ðz�Þ
e22ðzÞ þ e22ðz�Þ
e12ðzÞ � e12ðz�Þ

8><
>:

9>=
>; ð24Þ

and

eII
11ðzÞ

eII
22ðzÞ

eII
12ðzÞ

8><
>:

9>=
>; ¼

1

2

e11ðzÞ � e11ðz�Þ
e22ðzÞ � e22ðz�Þ
e12ðzÞ þ e12ðz�Þ

8><
>:

9>=
>;. ð25Þ

Similarly, the stress components rij(z) at the point P can be separated in such a form the rij(z) is the sum of rI
ijðzÞ and rII

ij ðzÞ
that are expressed in terms of stress components rij(z) at point P of coordinates (x1, x2) and stress rij(z*) at point P* of
coordinates (x1, �x2) as shown below

rijðzÞ ¼ rI
ijðzÞ þ rII

ij ðzÞ; ð26Þ

where

rI
11ðzÞ

rI
22ðzÞ

rI
12ðzÞ

8><
>:

9>=
>; ¼

1

2

r11ðzÞ þ r11ðz�Þ
r22ðzÞ þ r22ðz�Þ
r12ðzÞ � r12ðz�Þ

8><
>:

9>=
>; ð27Þ

and

rII
11ðzÞ

rII
22ðzÞ

rII
12ðzÞ

8><
>:

9>=
>; ¼

1

2

r11ðzÞ � r11ðz�Þ
r22ðzÞ � r22ðz�Þ
r12ðzÞ þ r12ðz�Þ

8><
>:

9>=
>;. ð28Þ

By partially differentiating rij(z*) with respect to x2, we obtain

½orijðz�Þ=ox2�ðx1;x2Þ ¼ �½orijðzÞ=ox2�ðx1;�x2Þ. ð29Þ

Hence it can be shown that

rM
ij;jðzÞ ¼ 0 ðM ¼ I; IIÞ ð30Þ

and

rM
ij ðzÞ ¼ rM

ji ðzÞ ðM ¼ I; IIÞ. ð31Þ

In other words, rM
ij ðzÞ ðM ¼ I; IIÞ satisfy the equilibrium equation of force and that of moment. Substituting the relation-

ships in Eqs. (18), (23) and (26) into Eq. (11) we obtain

J ¼ 1

2

Z
X
½rI

ijðzÞðzI
i;kV k;jÞ þ rI

ijðzÞðzI
i;kV k;jÞ � eI

ijðzÞDijkl;mðxÞeI
klðzÞV m � rI

ijðzÞeI
ijðzÞdivV �dX

þ 1

2

Z
X
½rI

ijðzÞðzII
i;kV k;jÞ þ rI

ijðzÞðzII
i;kV k;jÞ � eI

ijðzÞDijkl;mðxÞeII
klðzÞV m � rI

ijðzÞeII
ij ðzÞdivV �dX

þ 1

2

Z
X
½rII

ij ðzÞðz1
i;kV k;jÞ þ rII

ij ðzÞðz1
i;kV k;jÞ � eII

ij ðzÞDijkl;mðxÞeI
klðzÞV m � rII

ij ðzÞeI
ijðzÞdivV �dX

þ 1

2

Z
X
½rII

ij ðzÞðzII
i;kV k;jÞ þ rII

ij ðzÞðzII
i;kV k;jÞ � eII

ij ðzÞDijkl;mðxÞeII
klðzÞV m � rII

ij ðzÞeII
ij ðzÞdivV �dX. ð32Þ

Since ½oð Þ=ox2�ðx1;x2Þ ¼ �½oð Þ=ox2�ðx1;�x2Þ, the second and third integrands in Eq. (32) reduce to zero, when evaluated in a
symmetric region with respect to x1-axis. Hence,

J ¼ 1

2

Z
X
½rI

ijðzÞðzI
i;kV k;jÞ þ rI

ijðzÞðzI
i;kV k;jÞ � eI

ijðzÞDijkl;mðxÞeI
klðzÞV m � rI

ijðzÞeI
ijðzÞdivV �dX

þ 1

2

Z
X
½rII

ij ðzÞðzII
i;kV k;jÞ þ rII

ij ðzÞðzII
i;kV k;jÞ � eII

ij ðzÞDijkl;mðxÞeII
klðzÞV m � rII

ij ðzÞeII
ij ðzÞdivV �dX ffi J I þ J II. ð33Þ

Therefore using the above relationship the J-Integral can be decoupled into mode I and mode II components JI and JII as
follows:
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J I ¼ 1

2

Z
X
½rI

ijðzÞðzI
i;kV k;jÞ þ rI

ijðzÞðzI
i;kV k;jÞ � eI

ijðzÞDijkl;mðxÞeI
klðzÞV m � rI

ijðzÞeI
ijðzÞdivV �dX ð34Þ

and

J II ¼ 1

2

Z
X
½rII

ij ðzÞðzII
i;kV k;jÞ þ rII

ij ðzÞðzII
i;kV k;jÞ � eII

ij ðzÞDijkl;mðxÞeII
klðzÞV m � rII

ij ðzÞeII
ij ðzÞdivV�dX. ð35Þ

To evaluate all three terms of JI and JII in Eqs. (34) and (35), one needs to prescribe an appropriate velocity field V(x) and
calculate actual displacement field z(1) for the initial shape of the cracked body. In other words, a single stress analysis
employing a suitable numerical method, such as FEM or the mesh-free method, efficiently evaluates JI and JII components
of J-Integral. Similar to the J-Integral it can be easily shown that JI and JII are domain/path independent using divergence
theorem as follows.

3.2. Domain independence of JI and JII

First consider the JI component, by defining V(x) = {V1(x), 0}T, with V1(x) having a value of unity at the crack tip, zero

along the boundary of the domain, and arbitrary elsewhere, the Eq. (34) reduces to

J I ¼
Z

X
rI

ijðzÞzI
i;1 �

1

2
rI

klðzÞeI
klðzÞd1j

� �
oV 1

oxj
dX�

Z
X

1

2
eI

ijðzÞ
oDijkl

ox1

eI
klðzÞV 1 dX; ð36Þ

which can be written as

J I ¼
Z

X
rI

ijðzÞzI
i;1 �

1

2
rI

klðzÞeI
klðzÞd1j

� �
oV 1

oxj
dXþ

Z
X

rI
ij;jðzÞzI

i;1 þ rI
ijðzÞzI

i;1j � rI
ijðzÞeI

ij;1ðzÞ �
1

2
eI

ijðzÞ
oDijkl

ox1

eI
klðzÞ

� �
V 1 dX.

ð37Þ

Applying the divergence theorem to Eq. (37) yields

J I ¼
Z

C
rI

ijðzÞzI
i;1 �

1

2
rI

klðzÞeI
klðzÞd1j

� �
V 1nj dC�

Z
X

rI
ij;jðzÞzI

i;1 þ rI
ijðzÞzI

i;1j � rI
ijðzÞeI

ij;1ðzÞ �
1

2
eI

ijðzÞ
oDijkl

ox1

eI
klðzÞ

� �
V 1 dX

þ
Z

X
rI

ij;jðzÞzI
i;1 þ rI

ijðzÞzI
i;1j � rI

ijðzÞeI
ij;1ðzÞ �

1

2
eI

ijðzÞ
oDijkl

ox1

eI
klðzÞ

� �
V 1 dX. ð38Þ

and noting that V1 takes the place of a weight function we obtain

J I ¼
Z

C
rI

ijðzÞzI
i;1 �

1

2
rI

klðzÞeI
klðzÞd1j

� �
nj dC; ð39Þ

with C being the contour surrounding the domain X. Once again applying the divergence theorem to Eq. (39) leads to
JI = 0 for any closed contour C. Hence the JI component is domain/path independent. Similarly the JII component can
be shown to be domain/path independent.

3.3. Evaluation of stress-intensity factors

3.3.1. Isotropic functionally graded materials

The mode I and mode II components of J-integral, JI and JII which are also equal to the energy release rates of mode I
and mode II, are related to the SIFs KI and KII [25] by the relationships

J I ¼ K2
I

E�tip
ð40Þ

and

J II ¼ K2
II

E�tip
; ð41Þ

where E�tip is equal to E* evaluated at the crack tip, with E* being equal to E under plane stress condition and equal to E/
[1 � m2] under plane strain condition, respectively. From Eqs. (34) and (35) the SIFs KI and KII can be obtained as follows:

KI ¼
ffiffiffiffiffiffiffiffiffiffiffi
J IE�tip

q
ð42Þ
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and

KII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J IIE�tip

q
. ð43Þ
3.3.2. Orthotropic functionally graded materials

The mode I and mode II components of J-integral, JI and JII which are also equal to the energy release rates of mode I
and mode II, are related to the SIFs KI and KII [26] by the relationships

J I ¼ �KI

2
a22Im

KIðl1 þ l2Þ þ KII

l1l2

� �
ð44Þ

and

J II ¼ KII

2
a11Im½KIIðl1 þ l2Þ þ KIl1l2�; ð45Þ

where lj are the roots of the equation

a11l
4 � 2a16l

3 þ ð2a12 þ a66Þl2 � 2a26lþ a22 ¼ 0; ð46Þ

which are either complex or purely imaginary and occur in conjugate pairs, as l1; �l1; l2, and �l2 [27]. In Eq. (46) the coef-
ficients aij are compliance coefficients with aij = aji relating the deformation and stress fields in the solid by the generalized
Hooke�s law as follows:

ei ¼
X6

j¼1

aijrj i; j ¼ 1; 2; . . . ; 6. ð47Þ

Eqs. (44) and (45) provide a system of linear algebraic equations that can be solved for SIFs Kð1ÞI and Kð1ÞII under various
mixed-mode loading conditions.

Therefore, the SIFs KI and KII for isotropic and orthotropic FGMs can be evaluated separately using Eqs. (42)–(45). In
general both for isotropic and orthotropic FGMs to evaluate the SIFs KI and KII, a numerical method is required for cal-
culating JI and JII.
4. Numerical implementation

4.1. Finite element method

Consider a finite element discretization of a two-dimensional FGM cracked body involving N number of nodes. Let
zI ¼ ðzI

1; z
I
2Þ and zII ¼ ðzII

1 ; z
II
2 Þ be the mode I and mode II components of the displacement vector, respectively, at the

Jth node. If dI ¼ fzI
Jg 2 R2N ; J = 1, N and dII ¼ fzII

J g 2 R2N ; J = 1, N represent global displacement vectors, the mode I
and mode II components of J-integral, JI and JII can be approximated by

J I ffi 1

2
dIT

K 0dI ð48Þ

and

J II ffi 1

2
dIIT

K 0dII. ð49Þ

where K 0 ¼ ½k0IJ � 2 LðR2N � R2N Þ; I, J = 1, N is global stiffness sensitivity matrix with k0IJ 2 LðR2 � R2Þ representing ele-
ment-level (domain Xe) sensitivity matrix, given by

k0IJ ¼
Z

Xe

ðBT
I DðxÞB0J þ BT

I DðxÞB0J � BT
I D0ðxÞBJ � BT

I DðxÞBJ divVÞdXe. ð50Þ

In Eq. (50),

D0ðxÞ ¼ oDðxÞ
ox1

V 1ðxÞ þ
oDðxÞ
ox2

V 2ðxÞ; ð51Þ
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with D(x) being the constitutive tensor,

BIðxÞ ¼
UI;1ðxÞ 0

0 UI ;2ðxÞ
UI;2ðxÞ UI ;1ðxÞ

2
64

3
75 ð52Þ

and

B0I ¼
UI;1ðxÞV 1;1ðxÞ þ UI;2ðxÞV 2;1ðxÞ 0

0 UI;1ðxÞV 1;2ðxÞ þ UI;2ðxÞV 2;2ðxÞ
UI;1ðxÞV 1;2ðxÞ þ UI;2ðxÞV 2;2ðxÞ UI;1ðxÞV 1;1ðxÞ þ UI;2ðxÞV 2;1ðxÞ

2
64

3
75; ð53Þ

with UI,i(x) serving as the partial derivatives of the shape function corresponding to the Ith node in the ith direction. Eqs.
(48) and (49) can be viewed as a discrete analog of the continuum formulation in Eqs. (34) and (35). The former involves
simple matrix algebra and, as a result, provides a convenient means for calculating JI and JII.

4.2. Velocity field

The definition of the velocity field is an important step in continuum shape sensitivity analysis. Applying an inappro-
priate velocity field for shape sensitivity analysis will yield inaccurate sensitivity results. The velocity field must meet numer-
ous, stringent theoretical and practical criteria [28]. Theoretically, (1) the design velocity field must have the same regularity
as the displacement field, and (2) depend linearly on the variation of shape design parameters. For two- and three-dimen-
sional elastic solid problems C0 design velocity fields with integrable first derivatives are required. The regularity require-
ment comes from the mathematical regularity of design velocity in the design sensitivity expression in Eq. (11). This
requirement can also be met by using the displacement shape functions of the finite element analysis to represent design
velocity fields. For practical applications, (1) the design velocity computation method must retain the topology of the ori-
ginal finite element mesh, (2) provide finite element boundary nodes that stay on the geometric boundary for all shape
changes, (3) use a mathematical rule that guarantees linear dependency of finite element node movements on the variations
of shape design parameters, (4) produce a finite element mesh that is not distorted, (5) be naturally linked to design param-
eters defined on a computer simulation model, (6) allow the mathematical rule to be reusable, and (7) be efficient and gen-
eral for a large class of applications. A number of methods have been proposed in the literature to compute the velocity
field [28]. For a fracture problem, the velocity field V(x) is defined with a compact support Xc, i.e., V(x), is non-zero when
x 2 Xc and is zero when x 2 X � Xc. Hence, the domain X in various integrals (see Eqs. (34) and (35)) can be replaced by
the sub domain Xc. Specifically, consider a rosette of eight 6-noded quarter-point elements around a crack tip, as shown in
Fig. 3. These quarter-point elements are standard finite elements commonly employed for fracture analysis of linear-elastic
bodies. Assume that the size of these elements is small enough that the rosette can be defined as support Xc. Inside Xc, the
velocity field satisfies the following conditions: (1) the crack tip is assigned a velocity of unit magnitude, i.e.,

Vð0Þ ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

1;tip þ V 2
2;tip

q
ÞfV 1;tip; V 2;tipgT; (2) the velocity at a point on the boundary Cc of the rosette is zero; and (3) veloc-

ity at any point between boundary Cc and the crack tip varies linearly. For example, the velocity V(xi) at the ith node of the
quarter-point elements in Fig. 3 can be defined as

VðxiÞ ¼
0; if i is a node on the outer ring ðopen circlesÞ;
0:75Vð0Þ; if i is a quarter-point node ðclosed circlesÞ;
Vð0Þ; if i is the crack-tip node ðclosed circleÞ.

8><
>: ð54Þ

Since the velocity field is zero on and outside the outer boundary of the quarter point elements, Eqs. (48) and (49) reduces to

J I ffi 1

2

XM

J ;K¼1

zIT

J K 0JKzI
K ð55Þ

and

J II ffi 1

2

XM

J ;K¼1

zIIT

J K 0JKzII
K ; ð56Þ

where M is the total number of quarter-point and crack-tip nodes in a rosette of focused quarter-point elements near the
crack tip, as shown by the closed circles in Fig. 3. In other words, displacement response is only required at an M number
of nodes. Since M� N, the effort in computing JI and JII using Eqs. (55) and (56) is trivial compared to that required for a
complete stress analysis.
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Fig. 3. Rosette of focused quarter-point 6-noded triangular elements near the crack tip.
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Compared with existing methods, the proposed method has several advantages: (1) the calculation of SIFs is simple and
straightforward as it only requires multiplication of displacement vectors and stiffness sensitivity matrices; (2) since Xc is
small and the velocity field outside Xc is zero, the method only requires displacement response in Xc, rendering it compu-
tationally efficient; (3) the accuracy of SIF estimates is not affected by a lack of smooth transition between mesh resolutions
inside and outside Xc, as demonstrated by numerical results; and (4) the method is applicable to multiple interacting cracks
even if crack tips are close to one other.

Unlike in the displacement correlation method, and the modified crack-closure integral method SIFs are calculated in
the proposed method using displacement response around the crack tip in an average sense. When compared with existing
integral based methods such as the J-integral, the J �k-integral, and the interaction integral the proposed method requires
displacement response only in a small portion around the crack tip. In addition, in case of multiple interacting cracks with
crack tips very close to one other, it is very difficult to choose a domain around the crack tip with size enough for accurate
evaluation of SIFs using existing integral based methods and hence, the proposed method provides an alternative in such
cases. Also, in contrast to existing methods, such as the J �k-integral method, there is no need to perform integration along
the crack face of the discontinuity (e.g., in calculating J �2). Hence, the proposed method is also simpler and more efficient
than existing methods.

5. Numerical examples

In conjunction with the newly developed mode decoupling shape sensitivity method, standard FEM was applied to eval-
uate the SIFs of rectilinear cracks in two-dimensional isotropic and orthotropic FGM structures. Six numerical examples
involving mixed-mode (modes I and II) conditions were considered. In all six examples, the elastic modulus varies spatially,
while the Poisson�s ratio is held constant. This is a reasonable assumption, since variation of the Poisson�s ratio is usually
small compared with that of the elastic modulus. For numerical integration, a 2 · 2 Gauss quadrature rule was used in all
examples.

The first four numerical examples involve isotropic FGM whereas fifth and sixth numerical examples involve orthotro-
pic FGM structures. The results of orthotropic FGMs obtained in the current study were compared with the semi-analyt-
ical solutions of Ozturk and Erdogan [29]. For comparative purposes, the independent orthotropic engineering constants,
E11, E22, G12, m12, and m21 have been replaced by stiffness parameter E, a stiffness ratio d4, an average Poisson�s ratio m, and a
shear parameter j [29], which are defined as
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E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p
; d4 ¼ E11

E22

¼ m12

m21

; m ¼ ffiffiffiffiffiffiffiffiffiffiffi
m12m21

p
; j ¼ E

2G12

� m ð57Þ

for plane stress, and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E11E22

ð1� m13m31Þð1� m23m32Þ

s
; d4 ¼ E11

E22

ð1� m23m32Þ
ð1� m13m31Þ

;

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm12 þ m13m32Þðm21 þ m23m31Þ
ð1� m13m31Þð1� m23m32Þ

s
; j ¼ E

2G12

� m

ð58Þ

for plane strain.

5.1. Example 1: Edge-cracked plate under mixed-mode loading

This mixed-mode example involves the edge-cracked plate in Fig. 4(a), which is fixed at the bottom and subjected to a
far-field shear stress s1 = 1 unit applied on the top. The plate has length L = 16 units, width W = 7 units, and crack length
a = 3.5 units. The elastic modulus was assumed to follow an exponential function, given by

Eðx1Þ ¼ E1 exp
gx1

W

� �
; 0 6 x1 6 W ; ð59Þ

where E1 = E(0), E2 = E(W), and g = ln(E2/E1). In Eq. (59), E1 and g are two independent material parameters that char-
acterize the elastic modulus variation. The following numerical values were used: E1 = 1 unit, E2/E1 = exp(g) = 0.1, 0.2, 5,
and 10, and a/W = 0.2, 0.3, 0.4, 0.5 and 0.6. The Poisson�s ratio was held constant with m = 0.3. A plane strain condition
was assumed. Fig. 4(b) shows FEM discretization involving 2711 nodes, 832 8-noded quadrilateral elements, and 48
focused quarter-point 6-noded triangular elements, adopted to solve with the proposed method. A velocity field {V1,tip,
V2,tip}T = {10�5a, 0}T was used in the analysis.

Recently, Rao and Rahman [7] also solved this problem using two interaction integrals, referred to as Method-I and
Method-II. However, the auxiliary fields employed in Ref. [4] are different from the one defined in the present study. It
would be interesting to compare the results of the present method with those of Methods-I and II [7]. Table 1 shows
the predicted mixed-mode SIFs for this edge-cracked problem, obtained in the present study for various values of E2/
E1 using the proposed method. Table 1 also shows the predicted mixed-mode SIFs, obtained for various values of E2/
E1 using Method-I and Method-II [7]. The results in Table 1 demonstrate that the present method using continuum shape
sensitivity provides accurate estimates of KI and KII as compared with corresponding results obtained using previously
developed methods.
L /2

L /2

W

a

Crack

Integral Domain

2b

2b
x1

x2

(a) (b)

τ∞

Fig. 4. Edge-cracked plate under mixed-mode loading: (a) geometry, loads, and domain size and (b) FEM discretization.



Table 1
Stress-intensity factors for an edge cracked plate under shear loading

E2/E1 Present method Method-I [7] Method-II [7]

KI KII KI KII KI KII

0.1 48.8562 6.1731 48.8532 6.1650 48.8376 6.1714
0.2 43.8421 5.6661 43.8357 5.6606 43.8260 5.6646
1 34.0740 4.5910 34.0624 4.5898 34.0624 4.5898
5 26.3924 3.6361 26.3785 3.6372 26.3839 3.6352
10 23.5780 3.2518 23.5638 3.2532 23.5705 3.2509
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5.2. Example 2: Slanted crack in a plate under mixed-mode

Consider a slanted crack in a finite two-dimensional plate with length L = 2 units, width W = 1 unit and a 45-degree
edge crack of normalized length a=W ¼ 0:4

ffiffiffi
2
p

, as shown in Fig. 5(a). The elastic modulus was assumed to follow an expo-
nential function, given by

Eðx1Þ ¼ E exp g x1 �
1

2

� �� �
; 0 6 x1 6 W ; ð60Þ

where E and g are two material parameters. For numerical values, E ¼ 1 unit and g = 0, 0.1, 0.25, 0.5, 0.75, and 1. The
Poisson�s ratio was held constant with m = 0.3. A plane stress condition was assumed. The applied load was prescribed
along the upper edge with normal stress r22ðx1; 1Þ ¼ �eE exp½gðx1 � 0:5Þ�, where �e ¼ 1. The displacement boundary condition
was specified such that u2 = 0 along the lower edge and, in addition, u1 = 0 for the node on the right side of the lower edge.
FEM discretization involved 1541 nodes, 460 8-noded quadrilateral elements, and 40 focused quarter-point 6-noded trian-
gular elements, as shown in Fig. 5(b). A crack-tip velocity {V1,tip, V2,tip}T = {10�5acosc, 10�5a sinc}T was used in the anal-
ysis. Using the same FEM discretization, the current example was also solved using Methods-I and II by Rao and Rahman
[7], as described in the previous example.

Table 2 shows the predicted normalized SIFs KI=�eE
ffiffiffiffiffiffi
pa
p

and KII=�eE
ffiffiffiffiffiffi
pa
p

, obtained in the present study for several values
of g using the proposed method. Table 2 also shows the predicted normalized SIFs obtained by using Methods-I and II [7]
as well as Kim and Paulino�s [30] results for various values of g. The results in Table 2 demonstrate that the present method
using continuum shape sensitivity provides accurate estimates of KI and KII as compared with the corresponding results of
Rao and Rahman [7] and Kim and Paulino [30]. Agreement between the proposed method and reference solutions is
excellent.
(a) (b)

Fig. 5. Slanted crack in a plate under mixed mode loading: (a) geometry and loads and (b) FEM discretization.



Table 2
Normalized stress-intensity factors for a slanted crack in a plate

g Present method Method-I [7] Method-II [7] Kim and Paulino [30] ðJ �kÞ
KI

�eE
ffiffiffiffiffiffi
pa
p KII

�eE
ffiffiffiffiffiffi
pa
p KI

�eE
ffiffiffiffiffiffi
pa
p KII

�eE
ffiffiffiffiffiffi
pa
p KI

�eE
ffiffiffiffiffiffi
pa
p KII

�eE
ffiffiffiffiffiffi
pa
p KI

�eE
ffiffiffiffiffiffi
pa
p KII

�eE
ffiffiffiffiffiffi
pa
p

0 1.452 0.614 1.448 0.610 1.448 0.610 1.451 0.604
0.1 1.396 0.589 1.392 0.585 1.391 0.585 1.396 0.579
0.25 1.317 0.553 1.313 0.549 1.312 0.549 1.316 0.544
0.5 1.196 0.500 1.193 0.495 1.190 0.495 1.196 0.491
0.75 1.089 0.452 1.086 0.447 1.082 0.446 1.089 0.443
1 0.993 0.409 0.990 0.405 0.986 0.404 0.993 0.402
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5.3. Example 3: Plate with an interior inclined crack under mixed-mode

Consider a centrally located inclined crack of length 2a = 2 units and an orientation c in a finite, two-dimensional square
plate of size 2L = 2W = 20 units, as shown in Fig. 6. Plane stress conditions were assumed with a constant Poisson�s ratio
of m = 0.3. The elastic modulus was assumed to be an exponential function, given by

Eðx1Þ ¼ E expðgx1Þ; �W 6 x1 6 W ; ð61Þ
where E and g are material parameters. The following data were used for the numerical study: E ¼ 1 unit; g = 0.25 and 0.5;
and c/p = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The applied load corresponds to r22ðx1; 10Þ ¼ �eE expðgx1Þ, where �e ¼ 1. This stress
distribution was obtained by applying nodal forces along the top edge of the plate. The displacement boundary condition
was prescribed such that u2 = 0 along the lower edge and, in addition, u1 = 0 for the node on the left hand side of the
lower edge. This loading results in a uniform strain e22ðx1; x2Þ ¼ �e in a corresponding uncracked structure. Fig. 7(a)–(f)
show 6 FEM discretizations, each involving 2092 nodes, 628 8-noded quadrilateral elements, and 68 focused quarter-point
6-noded triangular elements, adopted for c/p = 0, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. In the analysis, a velocity
{V1,tip, V2,tip}T = {10�5a cosc, �10�5a sinc}T was used at the right crack tip, while a velocity {V1,tip, V2,tip}T =
{�10�5acosc, 10�5a sinc}T was used at the left crack tip.

Konda and Erdogan [31] previously investigated an infinite plate with a similar configuration. Although an FEM model
cannot represent the infinite domains addressed in their analysis, as long as the ratios a/W and a/L are kept relatively small
(e.g., a/W = a/L 6 1/10), the approximation is acceptable. Tables 3 and 4 provide a comparison between the predicted nor-
malized SIFs for both crack tips, KIðþaÞ=E�e

ffiffiffiffiffiffi
pa
p

; KIð�aÞ=E�e
ffiffiffiffiffiffi
pa
p

; KIIðþaÞ=E�e
ffiffiffiffiffiffi
pa
p

, and KIIð�aÞ=E�e
ffiffiffiffiffiffi
pa
p

, obtained by the
Fig. 6. Plate with an interior inclined crack under mixed mode loading.



Fig. 7. FEM discretization of plate with an interior inclined crack under mixed mode loading: (a) c/p = 0; (b) c/p = 0.1; (c) c/p = 0.2; (d) c/p = 0.3;
(e) c/p = 0.4 and (f) c/p = 0.5.

Table 3
Normalized stress-intensity factors for a plate with an interior inclined crack (g = 0.25)

Method c/p KIðþaÞ
E�e

ffiffiffiffiffiffi
pa
p KIð�aÞ

E�e
ffiffiffiffiffiffi
pa
p KIIðþaÞ

E�e
ffiffiffiffiffiffi
pa
p KIIð�aÞ

E�e
ffiffiffiffiffiffi
pa
p

Present method 0 1.22471 0.837858 0 0
0.1 1.10207 0.762755 �0.326716 �0.257921
0.2 0.790374 0.558607 �0.520307 �0.427262
0.3 0.415458 0.296924 �0.508223 �0.441699
0.4 0.117824 0.0808491 �0.304821 �0.283432
0.5 0 0 0 0

Konda and Erdogan [31] 0 1.196 0.825 0 0
0.1 1.081 0.750 �0.321 �0.254
0.2 0.781 0.548 �0.514 �0.422
0.3 0.414 0.290 �0.504 �0.437
0.4 0.121 0.075 �0.304 �0.282
0.5 0 0 0 0
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Table 4
Normalized stress-intensity factors for a plate with an interior inclined crack (g = 0.5)

Method c/p KIðþaÞ
E�e

ffiffiffiffiffiffi
pa
p KIð�aÞ

E�e
ffiffiffiffiffiffi
pa
p KIIðþaÞ

E�e
ffiffiffiffiffiffi
pa
p KIIð�aÞ

E�e
ffiffiffiffiffiffi
pa
p

Present method 0 1.45504 0.676402 0 0
0.1 1.30674 0.620708 �0.346954 �0.216084
0.2 0.932016 0.464307 �0.551663 �0.368193
0.3 0.487678 0.251823 �0.533518 �0.398537
0.4 0.139743 0.0692727 �0.313425 �0.268601
0.5 0 0 0 0

Konda and Erdogan [31] 0 1.424 0.674 0 0
0.1 1.285 0.617 �0.344 �0.213
0.2 0.925 0.460 �0.548 �0.365
0.3 0.490 0.247 �0.532 �0.397
0.4 0.146 0.059 �0.314 �0.269
0.5 0 0 0 0
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proposed method and those of Konda and Erdogan [31] for several values of c/p, when g = 0.25 and g = 0.5, respectively.
A good agreement is obtained between present FEM results and Konda and Erdogan�s analytical solution.

5.4. Example 4: Plate with two interacting cracks under mixed-mode loading

Consider a finite two-dimensional square plate of size 2L = 2W = 20 units, containing two cracks of length 2a = 2 units,
oriented with angles h1 = 300, h2 = 600, as shown in Fig. 8(a). The distance from the origin to each of the two left crack tips
is 1.0 unit. Plane stress conditions were assumed with a constant Poisson�s ratio of m = 0.0. The elastic modulus was
assumed to be an exponential function of x2, given by

Eðx2Þ ¼ E expðbx2Þ; �L 6 x2 6 L; ð62Þ
where E and b are material parameters. The following data were used for the numerical study: E ¼ 1 unit; and ba = 0.0,
0.25, 0.5, 0.75, and 1.0. The applied load corresponds to r22(x1, ±10) = ±r0 = 1.0. This stress distribution was obtained by
applying nodal forces along the top edge of the mesh. The displacement boundary condition was prescribed such that
u2 = 0 along the lower edge and, in addition, u1 = 0 for the node on the left hand side of the lower edge. FEM discretization
involved 3093 nodes, 936 8-noded quadrilateral elements, and 64 focused quarter-point 6-noded triangular elements,
( )22 1 = 1.0x , Lσ

2a
x1

x2

WW

L

L

(b)(a)

Fig. 8. Plate with two interacting cracks under mixed mode loading: (a) geometry and loads and (b) FEM discretization.



Table 5
Normalized stress-intensity factors for lower crack in multiple interacting cracks

Method b KIð�aÞ
r22

ffiffiffiffiffiffi
pa
p KIIð�aÞ

r22
ffiffiffiffiffiffi
pa
p KIðþaÞ

r22
ffiffiffiffiffiffi
pa
p KIIðþaÞ

r22
ffiffiffiffiffiffi
pa
p

Present method 0.0 0.6005 0.4332 0.8044 0.4200
0.25 0.6319 0.3938 0.8159 0.4879
0.5 0.6701 0.3533 0.8418 0.5625
0.75 0.7076 0.3178 0.8800 0.6450
1.0 0.7424 0.2867 0.9287 0.7349

Kim and Paulino MCCI [30] 0.0 0.589 0.423 0.804 0.408
0.25 0.626 0.385 0.816 0.474
0.5 0.662 0.346 0.842 0.546
0.75 0.696 0.312 0.880 0.625
1.0 0.715 0.277 0.930 0.709

Kim and Paulino J�k-integral [30] 0.0 0.603 0.431 0.801 0.431
0.25 0.627 0.401 0.811 0.495
0.5 0.662 0.363 0.841 0.558
0.75 0.692 0.347 0.895 0.617
1.0 0.734 0.298 0.985 0.663

Kim and Paulino DCT [30] 0.0 0.598 0.413 0.812 0.399
0.25 0.632 0.375 0.818 0.463
0.5 0.672 0.336 0.838 0.533
0.75 0.712 0.302 0.869 0.610
1.0 0.747 0.273 0.910 0.693

Shbeeb et al. [32] 0.0 0.59 0.43 0.78 0.42
0.25 0.62 0.39 0.82 0.48
0.5 0.66 0.36 0.88 0.57
0.75 0.69 0.34 0.98 0.685
1.0 0.70 0.315 1.10 N/Aa

a Not available.
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as shown in Fig. 8(b). Velocities {V1,tip, V2,tip}T = {10�5acosh1, 10�5a sinh1}T and {V1,tip, V2,tip}T = {�10�5acosh1,
�10�5a sinh1}T were employed at right and left crack tips, respectively, of the lower crack.

Kim and Paulino [30] investigated this example using the displacement correlation technique, the modified crack-closure
integral method and the J �k integral method. In addition, Shbeeb et al. [32] provided semi-analytical solutions obtained
using an integral equation method. However, the results of Shbeeb et al. were only presented in graphical form, making
accurate verification difficult. Nevertheless, Table 5 provides a comparison between the predicted normalized SIFs,
KIðþaÞ=r22

ffiffiffiffiffiffi
pa
p

; KIIðþaÞ=r22

ffiffiffiffiffiffi
pa
p

; KIð�aÞ=r22

ffiffiffiffiffiffi
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ffiffiffiffiffiffi
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, for both crack tips of the lower crack obtained
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Fig. 9. Plate with an interior crack perpendicular to material gradation: (a) geometry and loads and (b) FEM discretization (2808 nodes, 864 8-noded
quadrilateral elements, and 32 focused quarter-point 6-noded triangular elements).



Table 6
The effect of the non-homogeneity parameter on the normalized stress-intensity factors for an orthotropic plate under uniform crack face pressure loading
(d4 = 0.25, m = 0.3, j = 0.5)

ba Proposed method Ozturk and Erdogan [29]

KIðaÞ
r0

ffiffiffiffiffiffi
pa
p KIIðaÞ

r0
ffiffiffiffiffiffi
pa
p KIðaÞ

r0
ffiffiffiffiffiffi
pa
p KIIðaÞ

r0
ffiffiffiffiffiffi
pa
p

0.0 1.0057 �0.0030 1.0 0.0
0.1 1.0126 0.0220 1.0115 0.0250
0.25 1.0423 0.0629 1.0489 0.0627
0.50 1.1257 0.1285 1.1351 0.1263
1.00 1.3464 0.2640 1.3494 0.2587
2.00 1.8720 0.5643 1.8580 0.5529

Table 7
The effect of the non-homogeneity parameter on the normalized stress-intensity factors for an orthotropic plate under uniform crack face shear loading
(d4 = 0.25, m = 0.3, j = 0.5)

ba Proposed method Ozturk and Erdogan [29]

KIðaÞ
s0

ffiffiffiffiffiffi
pa
p KIIðaÞ

s0
ffiffiffiffiffiffi
pa
p KIðaÞ

s0
ffiffiffiffiffiffi
pa
p KIIðaÞ

s0
ffiffiffiffiffiffi
pa
p

0.0 0.0077 0.9914 0.0 1.0
0.1 �0.0347 0.9905 �0.0494 0.9989
0.25 �0.1085 0.9854 �0.1191 0.9968
0.50 �0.2126 0.9794 �0.2217 0.9965
1.00 �0.3786 0.9898 �0.3862 1.0071
2.00 �0.6203 1.0371 �0.5725 1.0499

Table 8
The effect of the Poisson�s ratio on the normalized stress-intensity factors for an orthotropic plate under uniform crack face pressure loading (j = 5.0)

ba d4 = 0.25 Proposed method Ozturk and Erdogan [29]

m 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=r0
ffiffiffiffiffiffi
pa
p

1.2388 1.2466 1.2543 1.2516 1.2596 1.2674
KIIðaÞ=r0

ffiffiffiffiffiffi
pa
p

0.1246 0.1252 0.1258 0.1259 0.1259 0.1259

1.0 KIðaÞ=r0
ffiffiffiffiffiffi
pa
p

1.5552 1.5704 1.5851 1.5589 1.5739 1.5884
KIIðaÞ=r0

ffiffiffiffiffiffi
pa
p

0.2587 0.2595 0.2602 0.2555 0.2557 0.2558

Table 9
The effect of the Poisson�s ratio on the normalized stress-intensity factors for an orthotropic plate under uniform crack face pressure loading (j = 5.0)

ba d4 = 10 Proposed method Ozturk and Erdogan [29]

m 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=r0
ffiffiffiffiffiffi
pa
p

1.0601 1.0634 1.0665 1.0748 1.0776 1.0804
KIIðaÞ=r0

ffiffiffiffiffiffi
pa
p

0.1204 0.1223 0.1243 0.1252 0.1252 0.1251

1.0 KIðaÞ=r0
ffiffiffiffiffiffi
pa
p

1.1792 1.1861 1.1928 1.1892 1.1955 1.2017
KIIðaÞ=r0

ffiffiffiffiffiffi
pa
p

0.2521 0.2541 0.2561 0.2511 0.2512 0.2512

Table 10
The effect of the Poisson�s ratio on the normalized stress-intensity factors for an orthotropic plate under uniform crack face shear loading (j = 5.0)

ba d4 = 0.25 Proposed method Ozturk and Erdogan [29]

m 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=s0
ffiffiffiffiffiffi
pa
p

�0.1920 �0.1911 �0.1901 �0.1980 �0.1971 �0.1963
KIIðaÞ=s0

ffiffiffiffiffiffi
pa
p

0.9607 0.9621 0.9634 0.9898 0.9915 0.9931

1.0 KIðaÞ=s0
ffiffiffiffiffiffi
pa
p

�0.3181 �0.3162 �0.3144 �0.3203 �0.3186 �0.3169
KIIðaÞ=s0

ffiffiffiffiffiffi
pa
p

0.9567 0.9598 0.9627 0.9888 0.9921 0.9953
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Table 11
The effect of the Poisson�s ratio on the normalized stress-intensity factors for an orthotropic plate under uniform crack face shear loading (j = 5.0)

ba d4 = 10 Proposed method Ozturk and Erdogan [29]

m 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=s0
ffiffiffiffiffiffi
pa
p

�0.0328 �0.0328 �0.0328 �0.0366 �0.0365 �0.0365
KIIðaÞ=s0

ffiffiffiffiffiffi
pa
p

0.9453 0.9453 0.9453 0.9956 0.9961 0.9965

1.0 KIðaÞ=s0
ffiffiffiffiffiffi
pa
p

�0.0624 �0.0623 �0.0621 �0.0660 �0.0657 �0.0654
KIIðaÞ=s0

ffiffiffiffiffiffi
pa
p

0.9397 0.9405 0.9413 0.9913 0.9925 0.9938

Fig. 10. Four-point bend specimen under mixed mode loading: (a) geometry and loads, (b) half model and (c) FEM discretization (1357 nodes, 396
8-noded quadrilateral elements, and 32 focused quarter-point 6-noded triangular elements).
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by the proposed method and those of Kim and Paulino and Shbeeb et al. for several values of ba. A good agreement is
obtained between the present FEM results and published solutions of both Kim and Paulino and Shbeeb et al.

5.5. Example 5: Plate with an interior crack perpendicular to material gradation (mixed mode)

Consider an orthotropic square plate of dimensions 2L = 2W = 20 units (L/W = 1) with a central crack of length
2a = 2.0 units, as shown in Fig. 9(a). The displacement boundary condition is prescribed, such that u1 = u2 = 0 for the node
in the middle of the left edge, and u2 = 0 for the node in the middle of the right edge. FEM discretization involves 2808
nodes, 864 8-noded quadrilateral elements, and 32 focused quarter-point 6-noded triangular elements in the vicinity of each
crack tip, as shown in Fig. 9(b). Both crack-face pressure loading and crack-face shear loading were considered separately.
The following material property data were employed for FEM analysis: E11ðx2Þ ¼ E0

11ebx2 ; E22ðx2Þ ¼ E0
22ebx2 ; G12ðx2Þ ¼

G0
12ebx2 , where the average modulus of elasticity is Eðx2Þ ¼ E0ebaðx2

a Þ, with E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

11E0
22

q
. The non-homogeneity parameter

ba is varied from 0.0 to 2.0. Two different values of the shear parameterj = 0.5 and 5.0 and two different stiffness ratios
d4 = 0.25, and 10 were employed in the FEM analysis. Three different values of the average Poisson�s ratio m = 0.15,0.30,
and 0.45 were used in computations. A plane stress condition and a crack-tip velocity {V1,tip, V2,tip}T = {10�5a, 0}T were
also assumed.

For crack-face pressure loading the applied load corresponds to r22(�1 6 x1 6 1, ±0) = ±r0 = ±1.0 and for crack-face
shear loading the applied load corresponds to r12(�1 6 x1 6 1, ±0) = ±s0 = ±1.0 along the top and bottom crack faces.

The effect of the non-homogeneity parameter ba and the average Poisson�s ratio m on normalized SIFs for both crack-
face pressure loading and crack-face shear loading were studied. The results obtained by using the proposed method is
compared with those reported by Ozturk and Erdogan [29], who investigated an infinite plate with the same configuration.
Tables 6 and 7 provide a comparison between predicted normalized SIFs KIðaÞ=r0

ffiffiffiffiffiffi
pa
p

and KIð�aÞ=r0

ffiffiffiffiffiffi
pa
p

under uniform
crack-face pressure loading and uniform crack-face shear loading, respectively, obtained by using the proposed method,
and those of Ozturk and Erdogan [29] for various values of non-homogeneity parameter ba, and d4 = 0.25; m = 0.3; and
j = 0.5. Tables 8 and 9 provide a comparison between predicted normalized SIFs under uniform crack face pressure load-
ing for d4 = 0.25, and d4 = 10 respectively, obtained by the proposed method, and those of Ozturk and Erdogan [29] for
m = 0.15, 0.3, and 0.45 and ba = 0.5, and 1.0. Tables 10 and 11 provide a similar comparison for an orthotropic plate under
uniform crack face shear loading. The agreement between the results of the proposed method and Ozturk and Erdogan�s
[29] analytical solution is excellent.

5.6. Example 6: Four-point bending specimen under mixed-mode loading

Gu and Asaro [33] investigated the effect of material orthotropy on mixed-mode SIFs in FGMs by considering a four-
point bending specimen with exponentially varying Young�s moduli, shear modulus, and Poisson�s ratio. Fig. 10(a) shows
the geometry and boundary conditions of the four-point bending specimen. Due to symmetric geometry and loading with
respect to the crack, only a half model of the beam was analyzed, as shown in Fig. 10(b). Fig. 10(c) shows details of FEM
mesh discretization for the half beam model involving 1357 nodes, 396 8-noded quadrilateral elements, and 32 focused
quarter-point 6-noded triangular elements in the vicinity of the crack tip. Point loads of magnitude P are applied at the
nodes (x1, x2) = (10, �1.0) and (x1, x2) = (11, 1.0). Displacement boundary conditions are prescribed such that (u1, u2) =
(0, 0) for the node at (x1, x2) = (0, �1.0), and u1 = 0 for the node at (x1, x2) = (0, 0). Young�s moduli, the shear modulus,
and Poisson�s ratio are exponential functions of x2 given by: E11ðx2Þ ¼ E0

11ebx2 ; E22ðx2Þ ¼ E0
22ebx2 ; m12ðx2Þ ¼ m0

12ð1þ ex2Þebx2 ;
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Fig. 11. Four-point bend specimen under mixed mode loading: (a) normalized mixed-mode SIFs jKjh3=2
1 =Pl and (b) phase angle w = tan�1(KII/KI).
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m21ðx2Þ ¼ m0
21ð1þ ex2Þebx2 , and G12ðx2Þ ¼ E22ðx2Þ=½2ð

ffiffiffi
k
p
þ m21ðx2ÞÞ�, where k = E22(x2)/E11(x2). Notice that k = 1/d4, as

explained in Eqs. (57) and (58). The following data were used for the FEM analysis: a = 3.0, h1/h2 = 1.0, e = �0.9, and
P = 1.0. A plane stress condition and a crack-tip velocity {V1,tip, V2,tip}T = {10�5a, 0}T were also assumed.

Fig. 11(a) and (b) provide a comparison of the SIF jKjh3=2
1 =Pl with jKj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

q
, and the phase angle w = tan�1(KII/

KI), respectively, obtained by the proposed method with those values reported by Gu and Asaro [33]. There is quite good
agreement between the two solutions, although Gu and Asaro [33] did not provide geometry data. Notice that as bh1

increases, both the SIF and the phase angle w increase, and the material orthotropy (measured by k = E22/E11) shows sig-
nificant influence on the results. Moreover, for a fixed bh1, as k increases the SIF increases; however, the phase angle
decreases.

6. Summary and conclusions

A new continuum shape sensitivity method was developed for calculating mixed-mode SIFs for a stationary crack in
two-dimensional, linear-elastic, FGMs having an arbitrary geometry. The method involves the material derivative concept
taken from continuum mechanics, potential energy release rate, and direct differentiation. Compared with existing meth-
ods, the proposed method has several advantages: (1) the calculation of SIFs is simple and straightforward as it only
requires multiplication of displacement vectors and stiffness sensitivity matrices; (2) since Xc is small and the velocity field
outside Xc is zero, the method only requires displacement response in Xc, rendering it computationally efficient; (3) the
accuracy of SIF estimates is not affected by a lack of smooth transition between mesh resolutions inside and outside
Xc, as demonstrated by numerical results; and (4) the method is applicable to multiple interacting cracks even if crack tips
are close to one other. An excellent agreement is obtained between the results of the proposed method and previously
obtained solutions. Therefore, shape sensitivity analysis provides an attractive alternative for fracture analysis of cracks
in homogeneous and non-homogeneous materials.
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