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Abstract This paper presents a stochastic mesh-free
method for probabilistic fracture-mechanics analysis of
nonlinear cracked structures. The method involves
enriched element-free Galerkin formulation for calculat-
ing the J-integral; statistical models of uncertainties in
load, material properties, and crack geometry; and the
first-order reliability method (FORM) for predicting
probabilistic fracture response and reliability of cracked
structures. The sensitivity of fracture parameters with
respect to crack size, required for probabilistic analysis,
is calculated using a virtual crack extension technique.
Numerical examples based on mode-I fracture problems
have been presented to illustrate the proposed method.
The results from sensitivity analysis indicate that the
maximum difference between sensitivity of the J-integral
calculated using the proposed method and reference
solutions obtained by the finite-difference method is
about three percent. The results from reliability analysis
show that the probability of fracture initiation using the
proposed sensitivity and meshless-based FORM are very
accurate when compared with either the finite-element-
based Monte Carlo simulation or finite-element-based
FORM. Since all gradients are calculated analytically, the
reliability analysis of cracks can be performed efficiently
using meshless methods.

Keywords Probabilistic fracture mechanics, Mesh-free
method, Element-free galerkin method, J-integral,
Sensitivity of J-integral, Probability of failure

1
Introduction
Probabilistic fracture mechanics (PFM) is becoming
increasingly popular for realistic evaluation of fracture
response and reliability of cracked structures. The theory
of fracture mechanics provides a mechanistic relationship
between the maximum permissible load acting on a

structural component to the size and location of a crack –
either real or postulated – in that component. Probability
theory determines how the uncertainties in crack size,
loads, and material properties, when modeled accurately,
affect the reliability of cracked structures. PFM, which
blends these two theories, accounts for both mechanistic
and stochastic aspects of the fracture problem, and hence,
provides a more rational means to describe the actual
behavior and reliability of structures than traditional
deterministic methods [1].

While development is ongoing, a number of methods
have been developed for estimating statistics of various
fracture response and reliability. Most of these methods
are based on linear-elastic fracture mechanics (LEFM) and
the finite element method (FEM) that employs the stress-
intensity factor (SIF) as the primary crack-driving force
[1–5]. For example, using SIFs from an FEM code, Gri-
goriu et al. [2] applied first- and second-order reliability
methods (FORM/SORM) to predict the probability of
fracture initiation and a confidence interval of the direc-
tion of crack extension. The method can account for
random loads, material properties, and crack geometry.
However, the randomness in crack geometry was modeled
by response surface approximations of SIFs as explicit
functions of crack geometry. Similar response-surface-
based methods involving elastic-plastic fracture mechanics
and the J-integral-based ductile tearing theory have also
appeared [6–9]. For example, a stochastic model based on
an engineering approximation of the J-integral and FORM/
SORM have been developed by Rahman and co-workers
for fracture analysis of cracked tubular structures [9].
Based on this model, the probability of fracture initiation
and subsequent fracture instability can be predicted under
elastic–plastic conditions. The response surface approxi-
mation used in these PFM analyses significantly reduces
the complexity in calculating the derivatives of the SIF or
the J-integral. Essentially, this presents a primary rationale
for successful development of FORM/SORM algorithms for
probabilistic analysis of cracked structures. However, the
usefulness of response-surface-based methods is limited,
since they cannot be applied to general fracture-mechanics
analysis. Because of the complexity in crack geometry,
external loads, and material behavior, more advanced
computational tools, such as FEMs or meshless methods,
must be employed to provide the necessary computational
framework for analysis of general cracked structures [6].

In recent years, various Galerkin-based meshless meth-
ods have been developed or investigated to solve fracture-
mechanics problems without the use of a structured grid
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[10–19]. These gridless or meshless methods employ
moving least-squares (MLS) approximation of a function
that permits the resultant shape functions to be constructed
entirely in terms of arbitrarily placed nodes. Since no ele-
ment connectivity data is required, burdensome meshing
or remeshing characteristic of the FEM is avoided. By
sidestepping remeshing requirements, crack-propagation
analysis can be significantly simplified. However, most
mesh-free development in fracture analysis to date has
been focused on either deterministic [10–16] or some
probabilistic [17, 18] LEFM problems. Research in non-
linear fracture mechanics using meshless methods has not
been widespread and is only currently gaining attention.
For probabilistic fracture, Rao and Rahman [17] and
Rahman and Rao [18] recently developed a stochastic
meshless method for sensitivity and reliability analyses of
linear-elastic cracked structures. The method comprises an
element-free Galerkin method (EFGM) as the deterministic
kernel to calculate fracture response characteristics; virtual
crack extension technique to calculate sensitivities; statis-
tical models of uncertainties in load, material properties,
and crack geometry; and FORM to predict probabilistic
fracture response and reliability of cracked structures.
More recently, Rao and Rahman [20] developed an en-
riched meshless method for fracture analysis of cracks in
nonlinear-elastic materials. The method involves two new
enriched basis functions to capture the Hutchinson–Rice–
Rosengren (HRR) [21, 22] singularity field in nonlinear
fracture mechanics. The boundary layer analysis indicates
that the crack-tip field predicted by using these enriched
basis functions matches with the theoretical solution very
well in the whole region considered, whether for the
near-tip asymptotic HRR field or for the far-tip elastic field.
Numerical analyses of standard fracture specimens using
the enriched basis functions also yield accurate estimates of
the J-integral. However, the aforementioned method is
strictly deterministic. Hence, the next stage for further
development should include stochastic meshless methods
that are capable of treating uncertainties in loads, material
properties, and crack geometry and predicting probabilis-
tic fracture response and reliability of nonlinear cracked
structures. Such an undertaking represents a qualitatively
new development, employing meshless methods to account
for both probabilistic and nonlinear aspects of fracture
processes. To the best knowledge of the authors, no
nonlinear meshless models for PFM analysis exist in the
current literature.

This paper presents a stochastic meshless method for
probabilistic fracture-mechanics analysis of homogeneous,
isotropic, nonlinear-elastic, two-dimensional solids, sub-
ject to mode-I loading conditions. The method involves a
nonlinear EFGM formulation for calculating fracture
response characteristics; a virtual crack extension tech-
nique for sensitivity analysis; statistical models of uncer-
tainties in load, material properties, and crack geometry;
and FORM for fracture reliability analysis. Enriched basis
functions are employed to capture the HRR singularity
field of nonlinear fracture mechanics. Two numerical
examples are presented to illustrate both the sensitivity
and reliability aspects of the proposed method.

2
The element-free Galerkin Method

2.1
Moving least squares and meshless shape function
Consider a function uðxÞ over a domain X � <2. Let
Xx � X denote a sub-domain describing the neighborhood
of a point x 2 <K located in X. According to the MLS [23]
method, the approximation uhðxÞ of u (x) is

uhðxÞ ¼
Xm

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ ; ð1Þ

where pTðxÞ ¼ p1ðxÞ; � � � ; pmðxÞf g is a vector of complete
basis functions of order m and aðxÞ ¼ a1ðxÞ; . . . ; amðxÞf g
is a vector of unknown parameters that depend on x. The
coefficient vector a(x) is determined by minimizing a
weighted discrete L2 norm, defined as

JðxÞ ¼
Xn

I¼1

wIðxÞ pTðxIÞaðxÞ � dI

� �2

¼ PaðxÞ � d½ �TW PaðxÞ � d½ � ; ð2Þ
where xI denotes the coordinates of node I,
dT ¼ d1; d2; . . . ; dnf g with dI representing the nodal
parameter for node I , W ¼ diag w1ðxÞ;w2ðxÞ; . . . ;wnðxÞ½ �
with wIðxÞ being the weight function associated with node
I, such that wIðxÞ > 0 for all x in the support Xx of wIðxÞ
and zero otherwise, n is the number of nodes in Xx for
which wIðxÞ > 0 , and P ¼ pTðx1Þ; . . . ; pTðxnÞ½ � 2
L <n � <mð Þ . In this study, a weight function proposed by
Rao and Rahman [15] was used, which is

wIðxÞ ¼
1þb2 z2

I
z2
mI

� �� 1þb
2ð Þ
� 1þb2ð Þ�

1þb
2ð Þ

1� 1þb2ð Þ�
1þb

2ð Þ ; zI � zmI ;

0; zI > zmI

ð3Þ

where b is a shape controlling parameter, zI ¼kx� xI k ,
and zmI is the domain of influence of node I . The sta-
tionarity of JðxÞ with respect to aðxÞ yields

AðxÞaðxÞ ¼ CðxÞd ; ð4Þ
where

AðxÞ ¼
Xn

I¼1

wIðxÞpðxIÞpTðxIÞ ¼ PTWP ð5Þ

and

CðxÞ ¼ w1ðxÞpðx1Þ; . . . ;wnðxÞpðxnÞ½ � ¼ PTW : ð6Þ
Solving for aðxÞ in Eq. (4) and then substituting into
Eq. (1) yields

uhðxÞ ¼
Xn

I¼1

UIðxÞdI ¼ UTðxÞd ; ð7Þ

where

UTðxÞ ¼ fU1ðxÞ;U2ðxÞ; . . . UnðxÞg
¼ pTðxÞA�1ðxÞCðxÞ ð8Þ
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is a vector with its Ith component,

UIðxÞ ¼
Xm

j¼1

pjðxÞ A�1ðxÞCðxÞ
� �

jI
; ð9Þ

representing the shape function of the MLS approximation
corresponding to node I. The partial derivatives of UIðxÞ
can also be obtained as

UI;iðxÞ ¼
Xm

j¼1

pj;iðA�1CÞjI þ pjðA�1
;i Cþ A�1C;iÞjI

n o
;

ð10Þ
where A�1

;i ¼ �A�1A;iA
�1 and ðÞ;i ¼ oðÞ=oxi:

2.2
Variational formulation and discretization
For small displacements in two-dimensional, homoge-
neous, isotropic solids, the equilibrium equations and
boundary conditions are

$ � rþ b ¼ 0 in X ð11Þ
and

r � n ¼ �tt on Ct (natural boundary conditions)

u ¼ �uu on Cu (essential boundary conditions)
;

ð12Þ
respectively, where r is the stress vector, � ¼ $s u is the
strain vector, u is the displacement vector, b is the body
force vector, �tt and �uu are the vectors of prescribed surface
tractions and displacements, respectively, n is a unit
normal to the domain, X;Ct and Cu are the portions of
boundary C where tractions and displacements are pre-
scribed, $T ¼ fo=ox1; o=ox2g is the vector of gradient
operators, and $su is the symmetric part of $u. The
variational or weak form of Eqs. (11) and (12) is

Z

X

rTd� dX�
Z

X

bTdu dX�
Z

X

�ttTdu dC

þ
X

xK2Cu

fTðxKÞduðxKÞ

þ
X

xK2Cu

dfTðxKÞ½uðxKÞ � �uuðxKÞ� ¼ 0 ; ð13Þ

where fT xKð Þ is the vector of reaction forces at the con-
strained node K on Cu and d denotes the variation operator.
Note, Eq. (13) is nonlinear with respect to displacement u,

because of the nonlinearity in the stress–strain relationship.
From Eq. (7), the MLS approximation of
uðxÞ ¼ u1ðxÞ; u2ðxÞf gT in two dimensions is

uhðxÞ ¼ UTd ; ð14Þ
where

UTðxÞ ¼ U1ðxÞ 0 U2ðxÞ 0 � � � UNðxÞ 0
0 U1ðxÞ 0 U2ðxÞ � � � UNðxÞ

� �
;

ð15Þ
d ¼ fd1

1; d
2
1; . . . d1

N ; d
2
Ng

T 2 <2N is the vector of nodal
parameters or generalized displacements, and N is the total
number of nodal points in X. Applying the MLS approx-
imation of Eq. (14) into Eq. (13) yields nonlinear algebraic
equations, which must be solved by iterative methods. The
standard Newton–Raphson method was used to solve
these nonlinear equations, as follows.

Let dr denote the nodal parameter vector at the rth
iteration. Upon Taylor series expansion at dr and retaining
only the linear term, Eq. (13) leads to

k drð Þ G
GT 0

� �
Ddr

fR

� �
� fext � f int drð Þ

g� h drð Þ

� �
¼ 0 ; ð16Þ

where Ddr ¼ drþ1 � dr is the incremental solution,

k ¼ ½kr
IJ � ¼

kr
11 kr

12 � � � kr
1N

kr
21 kr

22 � � � kr
2N

..

. ..
. ..

. ..
.

kr
N1 kr

N2 � � � kr
NN

2
6664

3
7775 2 L <2N � <2N

	 


ð17Þ
is the tangent stiffness matrix at dr with

kr
IJ
¼
Z

X

BT
I

o�

or

����
dr

� ��1

BJdX 2 L <2 � <2
	 


; ð18Þ

is a matrix comprising shape functions of L nodes at which
the displacement boundary conditions are prescribed on
Cu; fR ¼ ff1 xK1

ð Þ; f2 xK1
ð Þ; . . . f1 xKL

ð Þ; f2 xKL
ð ÞgT 2 <2L is the

vector of all reaction forces on Cu,

fext ¼
Z

X

UTb dXþ
Z

Ct

UT�tt dC 2 <2N ð20Þ

is the external force vector. Noting that
dr

J ¼ dr
J1; d

r
J2

� T 2 <2 , f intðdrÞ ¼ f int
1 ðdrÞ; . . . ; f int

N ðdrÞ
� T

2 <2N is the internal force vector with

GT ¼

U1ðx1Þ 0 U1ðx2Þ 0 � � � U1ðxNÞ 0
0 U1ðx1Þ 0 U1ðx2Þ � � � 0 U1ðxNÞ

U2ðx1Þ 0 U2ðx2Þ 0 � � � U2ðxNÞ 0
� � � U2ðx1Þ 0 U2ðx2Þ � � � 0 U2ðxNÞ
..
. ..

. ..
. ..

. ..
. ..

. ..
.

ULðx1Þ 0 ULðx2Þ 0 � � � ULðxNÞ 0
0 ULðx1Þ 0 ULðx2Þ � � � 0 ULðxNÞ

2
6666666664

3
7777777775

2 Lð<2L � <2NÞ ð19Þ
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f int
I ðd

rÞ ¼
Z

X

BT
I

o�

or

����
dr

� ��1

BJdr
J dX 2 <2 ; ð21Þ

g ¼ �uuðxK1
Þ; . . . ; �uuðxKLÞf gT 2 <2L is the vector of all

prescribed displacements on Cu, hðdrÞ
¼ UTðxK1

Þdr; . . . ;UTðxKLÞdr
� T 2 <2L , and

BI ¼
UI;1 0

0 UI;2

UI;2 UI;1

2
64

3
75 : ð22Þ

Equation 16 represents a system of linear equations in Ddr

and can be easily solved using standard numerical meth-
ods. Hence, the total solution at the (r+1)th iteration is

drþ1 ¼ dr þ Ddr : ð23Þ
The iteration in Eq. (23) is continued until both conver-
gence criteria, defined by

Ddrk k
drþ1
�� �� � e1 ð24Þ

and

DRrk k
Rrþ1k k � e2 ; ð25Þ

are satisfied, where Rr ¼ fext � f intðdrÞ is the residual at
the ith iteration, DRr ¼ Rrþ1 � Rr , and e1 and e2 are the
pre-selected tolerances.

To perform numerical integration in Eqs. (18), (20) and
(21), a background mesh is required, which can be
independent of the arrangement of the meshless nodes.
However, in this study, the nodes of the background mesh
coincide with the meshless nodes. Standard Gaussian
quadratures were used to evaluate the integrals for
assembling the stiffness matrix and the force vector. In
general, a 4 � 4 quadrature is adequate, except in the cells
surrounding a high stress gradient (e.g., near a crack tip)
where a 8 � 8 quadrature is suggested.

In solving for Ddr, the essential boundary conditions
must be enforced. The lack of Kronecker delta properties
in the meshless shape functions presents some difficulty in
imposing the essential boundary conditions in EFGM.
Nevertheless, several methods are currently available for
enforcing essential boundary conditions. A full transfor-
mation method [15, 24] was used in this work.

It should be noted that the generalized displacement
vector d represents the nodal parameters, not the actual
displacements at the meshless nodes. However, the actual
displacement vector d̂d ¼ fuðx1Þ; . . . ; uðxNÞgT 2 <2N can
be easily calculated from

d̂d ¼ ^d ð26Þ
where ^ ¼ ½Uðx1Þ; . . . ;UðxNÞ�T 2 Lð<2N � <2NÞ is the
transformation matrix.

3
The J integral and HRR field
Consider a two-dimensional structure with a rectilinear
crack of length 2a, orientation c, subjected to external
loads, S1; S2; � � � ; SM , as shown in Fig. 1. Under quasi-static

condition, in the absence of body forces, thermal strains,
and crack-face tractions, the domain form of the J-integral
for a two-dimensional problem is

J ¼
Z

A

rij
oui

ox1
�Wd1j

� �
oq

oxj
dA ; ð27Þ

where W ¼
R

rij deij is the strain energy density, ui and
Ti ¼ rijnj are the ith component of displacement and
traction vectors, A is the area inside an arbitrary contour
around the crack tip, and q is a weight function that has a
value of unity at the outer boundary of A and zero at the
crack tip.

Consider a power-law hardening material with a
uniaxial stress-strain (r� e) relation as

e
e0
¼ a

r
r0

� �n

; ð28Þ

where r0 is the reference stress, e0 ¼ r0=E is the
reference strain with E representing Young’s modulus, a
is a material constant, and n is the material hardening
exponent. When n = 1 and 1, Eq. (28) represents linear-
elastic and rigid-perfectly plastic materials, respectively.
In reality, however, the Ramberg–Osgood law [25] is
employed to describe nonlinear stress-strain curve, which
is

e
e0
¼ r

r0
þ a

r
r0

� �n

: ð29Þ

For multiaxial stress state, the Ramberg–Osgood law can
be generalized as

eij ¼ ee
ij rij

	 

þ ep

ij rij

	 

; ð30Þ

where

ee
ij ¼

1þ m
E

sij þ
1� 2m

3E
rkkdij ð31Þ

and

ep
ij ¼

3

2
ae0

re

r0

� �n�1 sij

r0
ð32Þ

are the elastic and plastic components of strain, respec-
tively, m is the Poisson’s ratio, sij ¼ rij � rkkdij=3 is the
deviatoric stress, re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

p
is the von Mises effective

Fig. 1. A cracked structure under mixed-mode loading
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stress, and dij is the Kronecker delta. If elastic strains are
negligible compared with plastic strains (i.e., eij ’ ep

ij),
Eq. (32) represents a pure power-law-strain-hardening
material, for which the asymptotic crack-tip fields under
mode-I loading are [26, 27]

rij ¼ r0
J

ar0e0Inr

� � 1
nþ1

~rrij h; nð Þ ; ð33Þ

eij ¼ ae0
J

ar0e0Inr

� � n
nþ1

~eeij h; nð Þ ; ð34Þ

and

ui ¼ ae0r
J

ar0e0Inr

� � n
nþ1

~uui h; nð Þ ; ð35Þ

where r and h are the polar coordinates with the origin at
the crack tip, In is a dimensionless constant that depends
on n, and ~rrij;~eeij, and ~uui are dimensionless angular
functions of h and n. The parameters In, ~rrij;~eeij, and ~uui

also depend on the state of stress. Eqs. (33)–(35) repre-
sent the well-known HRR field under mode-I deforma-
tion [26, 27]. Note, the same HRR field also exists in
mixed-mode fracture, in which case the dimensionless
angular functions also depend on the magnitude of
mode-mixity [28].

Although the HRR solution describes the nature of the
dominant singularity, higher order terms may have an
important effect on the constraint of plane strain crack-tip
fields [29–32]. The HRR field is thus not the only possible
crack-tip field, but should be regarded as an important
limiting case of a family of fields, which arise when higher
order terms are insignificant.

4
Enriched basis functions
When solving problems involving cracks, a convenient way
of capturing stress-singularity at a crack tip is by using
appropriately defined enriched basis functions. Existing
enriched basis functions, typically used to capture the
LEFM singularity [12], may not be appropriate for solving
nonlinear fracture-mechanics problems. The singularity of
crack-tip field in nonlinear fracture is different than that in
LEFM and depends on the material hardening character-
istics. In a recent study, Rao and Rahman [20] developed
two new enriched basis functions for fracture analysis of
cracks in nonlinear-elastic materials.

There are several ways to enrich the EFGM formulation to
capture the HRR stress singularity in elastic-plastic mate-
rials. One approach involves augmenting the EFGM trial
functions by the near-tip displacement field, thereby
including additional unknown coefficients for each crack
tip. Hence, both the stiffness matrix and the force vector
need to be augmented leading to a larger system of equa-
tions. Furthermore, the computer programming can be ra-
ther involved. An alternative approach entails expanding
the EFGM basis functions directly to include terms from the
near-tip displacement field. The enrichment based on
expanded basis functions requires simpler computer pro-
gramming, but can become expensive for multiple cracks.
The enrichment based on expanded basis functions was

developed by Rao and Rahman [20]. In this section, both the
enrichment for LEFM basis functions and the enrichment
for nonlinear fracture mechanics are briefly summarized.

4.1
Linear-elastic fracture mechanics
In LEFM, the asymptotic near tip displacement field
u ¼ u1; u2f gT is given by

u1 ¼
1

l

ffiffiffiffiffi
r

2p

r
KIg

I
1 hð Þ þ KIIg

II
1 hð Þ

� �
ð36Þ

and

u2 ¼
1

l

ffiffiffiffiffi
r

2p

r
KIg

I
2 hð Þ þ KIIg

II
2 hð Þ

� �
; ð37Þ

where l ¼ E= 2 1þ mð Þ½ � is the shear modulus,

gI
1 hð Þ ¼ j� cos

h
2
þ sin h sin

h
2

gI
2 hð Þ ¼ jþ sin

h
2
� sin h cos

h
2

gII
1 hð Þ ¼ jþ sin

h
2
þ sin h cos

h
2

gII
2 hð Þ ¼ j� cos

h
2
� sin h sin

h
2

ð38Þ

are the well-known angular functions of LEFM, KI and KII

are mode-I and mode–II SIFs, and the Kolosov constant
j ¼ 3� mð Þ= 1þ mð Þ for plane stress and j ¼ 3� 4m for
plane stress. Using trigonometric identities, it can be
shown that the basis, given by

pTðxÞ¼

1;x1;x2;
ffiffi
r
p

cos
h
2
;
ffiffi
r
p

sin
h
2
;
ffiffi
r
p

sin
h
2

sinh;
ffiffi
r
p

cos
h
2

sinh

� �
;

ð39Þ
spans the LEFM crack-tip displacement field in Eqs. (36)
and (37) exactly [12]. Indeed, the enriched basis in Eq. (39)
has been successfully used in meshless analysis of linear-
elastic cracked structures [12, 15–18], including analysis of
cracks in functionally graded materials [19]. However, the
HRR field is different from the LEFM crack-tip field.
Hence, there is a need of new basis functions for nonlinear
fracture-mechanics analysis.

4.2
Nonlinear fracture mechanics
According to Eqs. (33)–(35), the HRR field is a known
field. Hence, by embedding the HRR displacement field,
enriched basis functions similar to Eq. (39) can be
developed for its use in nonlinear fracture mechanics.
However, the angular functions ~uui h; nð Þ in Eq. (35) can-
not be obtained in closed-form. An eigenvalue problem
needs to be solved numerically to determine ~uui h; nð Þ [33].
As an alternative, simpler functional forms that can
approximate the HRR field can be potentially used to
form the enriched basis.

Consider two approximations of ~uui h; nð Þ, given by
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Approximation I:

~uui h; nð Þ ’ ~aa0iðnÞ þ ~aa1iðnÞ cos
h
2
þ ~aa2iðnÞ sin

h
2

þ ~aa3iðnÞ sin
h
2

sin hþ ~aa4iðnÞ cos
h
2

sin h

ð40Þ
and

Approximation II:

~uui h; nð Þ ’ ~aa0iðnÞ þ ~aa1iðnÞ cos
h
2
þ ~aa2iðnÞ sin

h
2

þ ~aa3iðnÞ sin
h
2

sin hþ ~aa4iðnÞ cos
h
2

sin h

þ ~aa5iðnÞ sin
h
2

sin 3hþ ~aa6iðnÞ cos
h
2

sin 3h :ð41Þ

The first equation (Eq. (40)) involves a linear combination
of components of the basis function vector in Eq. (39)
(minus the linear terms). The second equation (Eq. (41))
entails adding two arbitrarily chosen terms, sin h=2 sin 3h
and cos h=2 sin 3h , to Eq. (40) for a better approximation.
To evaluate these two approximations, Shih’s [33] HRR
field data of ~uui h; nð Þ; i ¼ 1; 2 , obtained by solving the
eigenvalue problem numerically, were fitted with Eqs. (40)

and (41). Note that Shih’s [33] HRR field data was reported
in polar coordinate system, so a polar to rectangular
coordinate system transformation was performed before
fitting the HRR data using Eqs. (40) and (41). Figure 2a
shows the plots of ~uui h; nð Þ from Eq. (40), as a function of h
for materials with high-hardening n = 3), medium-hard-
ening (n = 10), and low-hardening (n = 50) characteristics
for the plane stress condition. The comparison with Shih’s
HRR field data indicates that Eq. (40), obtained from the
LEFM basis function, provides a reasonably good
approximation of ~uui h; nð Þ . Similar comparisons in Fig. 2b,
which involve plots of Eq. (41), show slightly improved
results in fitting Shih’s numerical results. The above
observations also hold true for the plane strain condition,
the results of which are shown in Fig. 3a and 3b, involving
plots of Eqs. (40) and (41), respectively. Hence, both Eq.
(40) and (41) can be used to approximate ~uui h; nð Þ for
nonlinear-fracture mechanics analysis. Consequently, two
types of enriched basis functions are proposed, which are

Type I: pTðxÞ ¼
n

1; x1; x2; r
1

nþ1 cos
h
2
; r

1
nþ1 sin

h
2
; r

1
nþ1

� sin
h
2

sin h; r
1

nþ1 cos
h
2

sin h
o
;

ð42Þ

Fig. 2. Approximations of
HRR displacement field for
plane stress: a Approximation I
[Eq. (40)], b approximation II
[Eq. (41)]
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and

Type II: pTðxÞ¼
1;x1;x2;r

1
nþ1 cosh

2 ;r
1

nþ1

�sinh
2 ;r

1
nþ1 sinh

2 sin h;r
1

nþ1 cosh
2 sin h;

r
1

nþ1 sinh
2 sin 3h;r

1
nþ1 cosh

2 sin 3h

8
><

>:

9
>=

>;
:

ð43Þ
Note, the linear terms in both enriched bases are not
related to crack-tip fields, but are needed for linear com-
pleteness of EFGM. The Type I enriched basis function in
Eq. (42) can be viewed as a generalized enriched basis
function, which degenerates to the LEFM basis function
(Eq. (39)) when n = 1 (linear-elastic). Both types of basis
functions have been successfully utilized to predict
accurate elastic–plastic crack-tip fields [20].

5
Rates of fracture parameters

5.1
Virtual crack extension
In fracture analysis, the coordinates of all meshless nodes,
or any other arbitrary point are measured using the crack

tip as the origin, where the x1 axis is oriented along the
direction of the crack length and the x2 axis is perpen-
dicular to the crack length. When the crack tip is virtually
perturbed by a small amount, say da ¼ da1; da2f gTfor
which da1 and da2 represent the components of virtual
crack extension in the x1 and x2 directions, the coordinates
of all nodes and any arbitrary point, except the crack-tip
node (the reference point), are virtually shifted in the
opposite direction by the same amount, as shown in the
Fig. 4. In general, da has two components, da1 and da2,
respectively measured along the crack-length direction
and perpendicular to the crack-length direction. The var-
iation of any arbitrary point x is then

dx ¼
dxI; if x ¼ xI

�da; otherwise

�
; ð44Þ

where

dxI ¼
0; if I ¼ crack-tip node

�da; if I 6¼ crack-tip node

�
: ð45Þ

Note that Eq. (45) is valid only when the crack-tip node is
virtually perturbed. If all nodes along the crack length are

Fig. 3. Approximations of
HRR displacement field for
plane strain: a Approximation I
[Eq. (40)], b approximation II
[Eq. (41)]
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virtually perturbed proportionally to their distance from
the crack tip, Eq. (45) can be generalized as

dxI ¼ ��ddcda; if I 2 nodes along crack length
�da; if I =2 nodes along crack length

�
;

ð46Þ
where �ddc is the ratio of the distance between node I and the
crack tip to the length of the crack.

5.2
Variations of shape function and its derivatives
Using Eqs. (9) and (10), the variations of the shape
function UIðxÞ and its partial derivative UI;iðxÞ are

dUI ¼ dpTA�1CI þ pTdA�1CI þ pTA�1dCI ð47Þ
and

dUI;i ¼ dpT
;i A�1CI þ dpTA�1

;i CI þ dpTA�1CI;i

þ pT
;idA�1CI þ pTdA�1

;i CI þ pTdA�1CI;i

þ pT
;i A�1dCI þ pTA�1

;i dCI þ pTA�1dCI;i

;

ð48Þ
where variations dp, dp;i, dCI , dCI;i, dA, dA;i, dA�1, and
dA�1

;i can be obtained from the EFGM formulation
described in a previous section. See Rao and Rahman
[17] for explicit details of these variations.

5.3
Sensitivity of generalized displacement
When the converged solution is reached, Eq. (16) leads to

k dð Þ G
GT 0

� �
d
fR

� �
¼ fext

0

� �
: ð49Þ

Taking the variation on both sides of Eq. (49) yields

k dð Þ G
GT 0

� �
dd
dfR

� �
¼ � dk dð Þ dG

dGT 0

� �
d
fR

� �
; ð50Þ

which is a linear system of equations with respect to dd.
Note, the solution of dd can be obtained efficiently, since
the same set of linear equations is obtained at the con-
verged state, although a different fictitious load, i.e., the
right hand side of Eq. (50), is involved.

Suppose the crack length is virtually perturbed by a
small arbitrary value da in the original direction of the

crack length, i.e., da1 ¼ da and da2 ¼ 0. The derivative of
the generalized displacement d with respect to the crack
length a can then be approximated by

od

oa
� dd

da
: ð51Þ

Equation 51 was used for all numerical calculations
presented in forthcoming sections.

Note that by assigning appropriate values of da1 and da2,
similar expressions can be derived to calculate rates of d
with respect to crack length extensions in any direction. For
example, if the values of da1 and da2 are arbitrarily selected,
then dd= dak k provides the rate of the generalized dis-
placement with respect to the crack length extension at an
angle tan�1 da2=da1ð Þ with respect to the direction of the

crack length, where dak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da2

1 þ da2
2

p
. This issue, how-

ever, was not explored in detail during the course of this
study.

5.4
Sensitivity of the J-integral
The derivative of the J-Integral with respect to crack length
a can be calculated from the derivatives of displacement,
strain, and stress with respect to a at all meshless nodes.
Differentiating both sides of Eq. (27) with respect to a yields

oJ

oa
¼
Z

A

o

oa
rij

oui

ox1
�Wd1j

� �
oq

oxj
dA

þ
Z

A

rij
oui

ox1
�Wd1j

� �
o

oa

oq

oxj

� �
dA : ð52Þ

In Eq. (52), derivatives of stress components rij with respect
to a can be obtained using the derivatives of generalized
displacements and the strain-displacement relation in
conjunction with the stress–strain relation. Derivatives of
the displacement components ui with respect to a can be
obtained using the derivatives of the generalized displace-
ments and the shape function values of meshless nodes.

6
Probabilistic fracture mechanics and reliability

6.1
Random parameters and fracture response
Consider a mode-I loaded nonlinear-elastic cracked
structure under uncertain mechanical and geometric
characteristics that is subject to random loads. Denote by
X an N-dimensional random vector with components
X1;X2; . . . ;XN characterizing uncertainties in the load,
crack geometry, and material properties. For example, if
the crack size a, elastic modulus E, far-field applied stress
magnitude r1, Ramberg-Osgood parameters a and n, and
mode-I fracture toughness at crack initiation JIc are
modeled as random input variables, then
X ¼ a;E; r1; a; n; JICf gT . Let the J-integral (J) be the
relevant crack-driving force that can be calculated from
nonlinear meshless analysis. Suppose the structure fails
when J > JIc . This requirement cannot be satisfied with
certainty, because J depends on input vector X, which is
random, and JIc itself is a random variable. Consequently,
the performance of the cracked structure should be

Fig. 4. Meshless discretization and virtual crack extension
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evaluated using the reliability PS, or its complement, the
probability of failure PF PS ¼ 1� PFð Þ , defined as

PF¼
def

Pr gðXÞ < 0½ �¼def
Z

gðxÞ<0

fXðxÞdx ; ð53Þ

where fXðxÞ is the joint probability density function of X,
and

gðxÞ ¼ JIcðxÞ � JðxÞ ð54Þ
is the performance function. Note that PF in Eq. (53) rep-
resents the probability of crack-growth initiation and pro-
vides a conservative estimate of structural performance. A
less conservative evaluation requires calculation of failure
probability based on crack-instability criterion. The latter
probability is more difficult to compute, since it must be
obtained by incorporating crack-growth simulation in a
finite element or meshless analysis. However, if suitable
approximations of J can be developed analytically, the
failure probability due to crack-instability can be easily
calculated as well [6, 34].

6.2
Reliability analysis by FORM
The generic expression for the failure probability in
Eq. (53), for which the performance function is repre-
sented by Eq. (54) involves multi-dimensional probability
integration for evaluation. In this study, FORM [35] was
used to compute this probability. It is briefly described
here to compute the probability of failure PF in Eq. (53)
assuming a generic N -dimensional random vector X and
the performance function g (x) defined by Eq. (54).

The first-order reliability method is based on linear
(first–order) approximation of the limit state surface g (x) =
0 tangent to the closest point of the surface to the origin of
the space. The determination of this point involves non-
linear constrained optimization and is usually performed in
the standard Gaussian image of the original space. The
FORM algorithm involves three major steps. First, the space
x of uncertain parameters X is transformed into a new
N-dimensional space u consisting of independent standard
Gaussian variables U. The original limit state g (x) = 0 then
becomes mapped into the new limit state gU uð Þ = 0 in the u
space. Second, the point on the limit state gU uð Þ = 0 having
the shortest distance to the origin of the u space is deter-
mined using an appropriate nonlinear optimization algo-
rithm. This point is referred to as the design point, or beta
point, and has a distance bHL (known as reliability index) to
the origin of the u space. Third, the limit state gU uð Þ = 0 is
approximated by a hyperplane gLðuÞ ¼ 0 , tangent to it at the
design point. The probability of failure PF [Eq. (53)] is thus
approximated by PF;1 ¼ Pr gLðuÞ < 0½ � in FORM and is
given by [35]

PF;1 ¼ U �bHLð Þ ð55Þ

where

UðuÞ ¼ 1ffiffiffiffiffi
2p
p

Zu

�1

exp � 1

2
n2

� �
dn ð56Þ

is the cumulative probability distribution function of a
standard Gaussian random variable. A recursive qua-
dratic-programming algorithm [36, 37] was employed to
solve the associated optimization problem in this work.
The first-order sensitivities were calculated analytically
and are described as follows.

6.3
Analytical gradients
In the u space, the objective function is quadratic; hence,
calculating its first-order derivative with respect to uk ,
k = 1,2, . . ., N is trivial. For the constraint function, i.e., the
performance function, one must also calculate its deriva-
tive with respect to uk. Assume that a transformation of
x 2 <N to u 2 <N , given by

x ¼ xðuÞ ; ð57Þ
exists. Hence, the performance function in the u space can
then be written as

gUðuÞ ¼ gðxðuÞÞ ¼ JIcðxðuÞÞ � JðxðuÞÞ : ð58Þ
Using the chain rule of differentiation, the first-order
derivative of with gU uð Þ respect to uk is

ogUðuÞ
ouk

¼
XN

j¼1

og

oxj

oxj

ouk
¼
XN

j¼1

og

oxj
Rjk ; ð59Þ

where Rjk ¼ oxj=ouk, which can be obtained from the
explicit form of Eq. (57).

In mode-I fracture with X ¼ a;E; r1; a; n; JICf gT , the
partial derivatives of g in the x space can be obtained as

og

oa
¼ �oJ

oa
; ð60Þ

og

oE
¼ � oJ

oE
¼ J

E
ðsince J / 1=EÞ ; ð61Þ

og

oJIC
¼ 1 : ð62Þ

For the partial derivatives of the J-Integral with respect to
a and r1, it is assumed that the plastic component of J is
much larger than the elastic component of J. This is true
when the elastic strains are much smaller than the plastic
strains, which is characteristic of moderate to high loads in
a nonlinear-elastic material. Accordingly,

og

oa
¼ � oJ

oa
¼ � J

a
ð63Þ

og

or1
¼ � oJ

or1
¼ �ðnþ 1ÞJ

r1
: ð64Þ

When the assumption above is not valid, the partial
derivatives of the J with respect to a and r1 can no longer
be approximated using Eqs. (63) and (64). In this case, size
sensitivity analysis method must be applied. If required,
the derivative of the J with respect to n can also be cal-
culated by size sensitivity analysis. Size sensitivity analysis,
which is simpler than the shape sensitivity analysis
developed herein, is not considered in this study.

Using the shape sensitivity formulation presented in a
past section, the partial derivative of J with respect to crack
size can be easily calculated. For a given u or x, all
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gradients of gU uð Þ can then be evaluated analytically.
FORM or any other gradient-based reliability analysis can
therefore be performed efficiently.

7
Numerical examples
Three numerical examples involving mode-I loading con-
ditions are presented in this section. The first example is
presented to assess the performance of the nonlinear EFGM
formulation for evaluating the elastic-plastic fracture
parameters. The next two examples demonstrate the capa-
bility of the proposed stochastic meshless method in eval-
uating the sensitivity and reliability of cracked structures.

7.1
Example 1: J-integral evaluations for SE(T), DE(T),
and M(T) specimens
Consider three rectangular plates illustrated in Fig. 5a–c,
comprising single-edge tension [SE(T)], double-edge

tension [DE(T)], and middle tension [M(T)] specimens
[25], subjected to a far-field remote tensile stress r1. For
numerical analysis, values of width 2W = 1.016 m, length
2L = 5.08 m, crack length a = 0.254 m. The material
parameters involved: E = 206.8 GPa, m = 0.3,
r0 = 154.8 MPa, a = 3.8, and n = 8.073.

Due to symmetry, meshless discretizations were per-
formed for only half the plate for the SE(T) specimen, and
a quarter of the plate for the DE(T) and M(T) specimens,
as depicted by the shaded regions in Fig. 5a–c. The dis-
cretization involves 286 regularly distributed nodes, how-
ever, in the vicinity of the crack-tip region Q1Q2Q3Q4, [see
Fig. 6a] additional 63 nodes were used, as shown in the
Fig. 6b, for a total of 349 meshless nodes. A domain of size
2b� b; with b = 0.254 m, was used to calculate the
J-integral. The domain of the plate in Fig. 6a was divided
by 10� 25 rectangular cells with corner points coincident
with the 286 meshless nodes, solely for the purpose of
numerical integration. An 8� 8 Gaussian integration

Fig. 5. Fracture specimens under far-field
tension: a SE(T) specimen, b DE(T)
specimen and c M(T) specimen
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scheme was employed over the background grid. The
weight function parameter b ¼ 3 was used for meshless
analysis. Both plane stress and plane strain conditions
were employed.

Figure 7a–c show plots of J-integral versus r1 for the
plane stress condition, as predicted by the meshless method
for SE(T), DE(T), and M(T) plates, respectively using both
Type I and Type II basis functions. A domain form of
Eq. (27) was used in calculating the J-integral [15]. Also
plotted in the same figures are the corresponding analytical
J-integral solutions, which are described in Appendix A.
Similar comparisons between meshless and analytical re-
sults are shown in Fig. 8a–c for the plane strain condition.
In both stress states, the meshless results using proposed
basis functions match very well with the analytical solu-
tions for load intensities and material constants considered.

The CPU time required for meshless methods in-
creases with the length of basis functions, because the
dimension of the matrix that needs to be inverted for the
construction of meshless shape function is directly pro-
portional to the square of the length of basis function.
Hence, the CPU time using the Type II enriched basis is
slightly higher than that using the Type I enriched basis.
This numerical example shows that in terms of accuracy,
the performance of the Type I enriched basis function is
comparable to the Type II enriched basis function.

7.2
Example 2: sensitivity analysis of M(T) and SE(T) specimens
Consider a middle-tension [M(T)] and a single-edged-
tension [SE(T)] specimens with width 2W = 1.016 m
(40 inches), and length 2L = 5.08 m (200 inches), that are
subject to a far-field tensile stress r1 = 172.4 MPa. Three
distinct crack sizes with normalized crack lengths
a=W ¼ 0:3, 0.4 and 0.5 were considered for both M(T) and
SE(T) specimens. The material properties of both
specimens were: reference stress r0 = 154.8 MPa; elastic
modulus E = 207 GPa; Poisson’s ratio m = 0.3; and Ram-
berg–Osgood parameters a = 8.073 and n = 3.8. A plane
stress condition was assumed.

Fig. 6. Meshless discretization of fracture
specimens for a=W ¼ 0:5: a Half (SE(T))
and Quarter (DE(T)) model, b Closeup of
Q1Q2Q3Q4 region

Fig. 7. J-integral versus r1 for all the three specimens under
plane stress: a SE(T) specimen, b DE(T) specimen and c M(T)
specimen
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Figure 5a and c depict geometry and loads of the SE(T)
and M(T) specimens, respectively. Due to symmetry,
meshless discretization was performed on only a half
SE(T) specimen model (single symmetry) and a quarter
M(T) specimen model (double-symmetry). Figure 6a
shows the meshless discretization for a=W ¼ 0:5. The
discretization involved 286 regularly distributed nodes,
however, in the vicinity of the crack-tip region Q1Q2Q3Q4,
[see Fig. 6a] additional 63 nodes were used, as shown in
the Fig. 6b, for a total of 349 meshless nodes. The domain
of the plate in Fig. 6a was divided by 10� 25 rectangular
cells with corner points coincident with the 286 meshless
nodes, solely for the purpose of numerical integration. A
domain of size 2b� b; where b ¼ minfa; ðW � aÞg, was
used to calculate the J-integral. An 8� 8 Gaussian inte-
gration scheme was employed over the background grid.
The enriched basis function described by Eq. (42) and
weight function parameter b = 3 were used for meshless
analysis.

Tables 1 and 2 present, respectively, the predicted re-
sults of J and oJ=oa for the M(T) and SE(T) specimens,
respectively. Two sets of results are shown. One involves
the proposed nonlinear meshless method and the virtual
crack extension method for sensitivity analysis. The other
entails nonlinear finite element method using the ABAQUS
commercial code [38] and finite-difference method for
sensitivity analysis. A one-percent perturbation of crack
length was employed in the finite-difference method. The
results in Tables 1 and 2 show that the proposed meshless
method provides reasonably accurate estimates for oJ=oa
in comparison with the corresponding results of the finite-
difference method. The maximum difference between the
results of the proposed method and the finite-difference
method is about three percent.

7.3
Example 3: reliability analysis of DE(T) specimen
Consider a double-edge tension [DE(T)] specimen with
width 2W = 1.016 m (40 inches), length 2L = 5.08 m
(200 inches), and crack length a = 0.254 m (10 inches), as
shown in Fig. 5b. The specimen is subject to a far-field

Fig. 8. J-integral versus r1 for all the three specimens under
plane strain: a SE(T) specimen, b DE(T) specimen and c M(T)
specimen

Table 1. Sensitivity of J for
M(T) specimen by the propo-
sed and finite difference
methods

a/W J-Integral J, kJ/m2 Sensitivity of J-Integral dJ/da, kJ/m3

Proposed
method

FEM Difference
percent

Proposed
method

Finite
difference

Difference
percent

0.3 2.6 · 103 2.7 · 103 +3.70 36.5 · 103 35.8 · 103 )1.95
0.4 5.1 · 103 5.1 · 103 0.0 70.9 · 103 69.64 · 103 )1.81
0.5 10.9 · 103 11.2 · 103 +2.68 18.1 · 104 17.6 · 104 )2.84

Table 2. Sensitivity of J for
SE(T) specimen by the propo-
sed and finite difference
methods

a/W J-Integral J, kJ/m2 Sensitivity of J-Integral dJ/da, kJ/m3

Proposed
method

FEM Difference
percent

Proposed
method

Finite
difference

Difference
percent

0.3 1.1 · 104 1.1 · 104 0.00 29.2 · 104 30.2 · 104 +3.31
0.4 5.4 · 104 5.2 · 104 )3.85 18.5 · 105 18.1 · 105 )2.21
0.5 3.6 · 105 3.7 · 105 +2.70 17.6 · 106 16.8 · 106 )2.38
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tensile stress r1. The load r1, crack size a=W , and
material properties E, a and JIc were treated as statistically
independent random variables. Table 3 lists the means,
coefficients of variation (COV), and probability distribu-
tions of these random parameters. The Poisson’s ratio
m = 0.3, and the Ramberg–Osgood exponent n = 3.8 were
assumed to be deterministic. A plane stress condition was
assumed.

Due to symmetry, meshless discretization was per-
formed on only one-fourth of the model, as shown in
Fig. 6a. The discretization involves 286 regularly distrib-
uted nodes, however, in the vicinity of the crack-tip region
Q1Q2Q3Q4, [see Fig. 6a] additional 63 nodes were used, as
shown in the Fig. 6b, for a total of 349 meshless nodes. The
domain of the plate was divided by 10� 25 rectangular
cells with corner points coincident with the 286 meshless
nodes, solely for the purpose of numerical integration. A
domain of size 2b� b; where b ¼ minfa; ðW � aÞg, was
used to calculate the J-integral. An 8� 8 Gaussian inte-
gration scheme was employed over the background grid.
The enriched basis function described by Eq. (42) and
weight function parameter b = 3 were used for meshless
analysis.

A number of probabilistic analyses based on meshless
methods were performed to calculate the probability of
failure PF as a function of the mean far-field tensile stress
E½r1�, in which E[�] is the expectation (mean) operator.
Figure 9 shows the results in the form of PF vs. E½r1� plots
for va=W = 10 percent, where va=W is the COV of the
normalized crack length a=W. The probability of failure
was calculated using both meshless-based FORM and
FEM-based Monte Carlo simulation. For FORM, the pro-
posed virtual crack extension method was used to obtain
sensitivities of J. For the simulation method, the sample
size was 10,000. Figure 9 demonstrates good agreement
between the FORM-based probability of failure and the
simulation results.

Using meshless-based FORM, Figure 10 plots PF vs.
E½r1� for both deterministic ðva=W ¼ 0Þ and random
ðva=W = 10 and 20 percent) crack sizes. As expected, the
results indicate that the failure probability increases with
the COV (uncertainty) of a=W . The failure probability can
be much larger than the probabilities calculated for a
deterministic crack size, particularly when the uncertainty
of a=W is large. Figure 10 also contains results of
FEM-based FORM involving continuum shape sensitivity
analysis [39]. Failure probabilities predicted using the
proposed meshless method match very well with those
obtained by FEM.

8
Conclusions
A stochastic meshless method was developed for probabi-
listic fracture-mechanics analysis of nonlinear cracked
structures. The method involves enriched element-free
Galerkin formulation for calculating the J-integral; statis-
tical models of uncertainties in load, material properties,
and crack geometry; and the first-order reliability method
(FORM) for predicting probabilistic fracture response and
reliability of cracked structures. The sensitivity of fracture
parameters with respect to crack size, required for proba-
bilistic analysis, is calculated using a virtual crack exten-
sion technique. Numerical examples based on mode-I
fracture problems have been presented to illustrate the

Table 3. Statistical properties
of random input for DE(T)
specimen

Random Variable Mean COVa Probability
distribution

Normalized crack length (a/W) 0.5 Variableb Lognormal
Elastic modulus (E) 207 GPa 0.05 Gaussian
Yield offset (a) 8.073 0.1439 Gaussian
Initiation fracture toughness (JIc) 1243 kJ/m2 0.47 Lognormal
Far-field tensile stress (r�) Variableb 0.1 Gaussian

a Coefficient of variation (COV) = standard deviation/mean
b Arbitrarily varied

Fig. 9. Failure probability of DE(T) specimen by FORM and
simulation

Fig. 10. Failure probability of DE(T) specimen by FORM for
various uncertainties in crack size
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proposed method. The results from sensitivity analysis
indicate that the maximum difference between sensitivity
of the J-integral calculated using the proposed method and
reference solutions obtained by the finite-difference
method is about three percent. The results from reliability
analysis show that the probability of fracture initiation
using the proposed sensitivity and meshless-based FORM
are very accurate when compared with either the finite-
element-based Monte Carlo simulation or finite-element-
based FORM. Since all gradients are calculated analytically,
the reliability analysis of cracks can be performed effi-
ciently using meshless methods.

Appendix A

J-integral for SE(T), DE(T), and M(T) specimens
Consider SE(T), DE(T), and M(T) specimens subjected to
quasi-static far-field tension stress r1. The geometrical
parameters of these specimens are defined in Fig. 5a–c.
The total J-integral can be obtained from

J ¼ Je þ Jp ð65Þ
where Je and Jp are the elastic and plastic solutions,
respectively, and are defined as follows.

A.1 SE(T) specimen [25]
The elastic J is

Je ¼
r1

2
pa

E0
0:265ð1� a=WÞ4
�

þð0:857þ 0:265 a=WÞ=ð1� a=WÞ1:5
�2
: ð66Þ

The plastic J is

Jp ¼
ar2

0

E
ðW � aÞh1ða=W; nÞ P

P0

� �nþ1

; ð67Þ

where P ¼ r1WB is the far-field tensile load,

P0 ¼
1:072gBða�WÞr0; plane stress
1:455gBða�WÞr0; plane strain

�
ð68Þ

is the reference load, and h1ða=W; nÞ is a dimensionless
plastic influence function that are tabulated in Ref. [25].

A.2 DE(T) specimen [25]
The elastic J is

Je ¼
r1

2
pa

E0
1:12þ 0:2ða=WÞ � 1:2ða=WÞ2
�

þ1:93ða=WÞ3
�2
: ð69Þ

The plastic J is

Jp ¼
ar2

0

E
ðW � aÞh1ða=W; nÞ P

P0

� �nþ1

; ð70Þ

where P ¼ r12WB is the far-field tensile load,

P0 ¼
4ffiffi
3
p r0ðW � aÞB; plane stress

0:72þ 1:82 1� a
W

	 
� �
r0WB; plane strain

(

ð71Þ

is the reference load, and h1ða=W; nÞ is a dimensionless
plastic influence function that are tabulated in Ref. [25].

A.3 M(T) specimen [25]
The elastic J is

Je ¼
r1

2
pa

E0
1þ 0:128a=W � 0:288ða=WÞ2
�

þ1:525ða=WÞ3
�2
: ð72Þ

The plastic J is

Jp ¼
ar2

0

E
ðW � aÞh1ða=W; nÞ P

P0

� �nþ1

; ð73Þ

where P ¼ r12WB is the far-field tensile load,

P0 ¼
2Bða�WÞr0; plane stress
4ffiffi
3
p Bða�WÞr0; plane strain

�
ð74Þ

is the reference load, and h1ða=W; nÞ is a dimensionless
plastic influence function that are tabulated in Ref. [25].

In Eqs. (68), (71), and (74),

E0 ¼ E; plane stress
E

1�m2 ; plane strain

�
ð75Þ

is the effective modulus of elasticity, and m is the Poisson’s
ratio.
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