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Abstract This is the second in a series of two papers
generated from a study on probabilistic meshless analysis
of cracks. In this paper, a stochastic meshless method is
presented for probabilistic fracture-mechanics analysis of
linear-elastic cracked structures. The method involves an
element-free Galerkin method for calculating fracture re-
sponse characteristics; statistical models of uncertainties
in load, material properties, and crack geometry; and the
first-order reliability method for predicting probabilistic
fracture response and reliability of cracked structures. The
sensitivity of fracture parameters with respect to crack
size, required for probabilistic analysis, is calculated using
a virtual crack extension technique described in the
companion paper [1]. Numerical examples based on
mode-I and mixed-mode problems are presented to illus-
trate the proposed method. The results show that the
predicted probability of fracture initiation based on the
proposed formulation of the sensitivity of fracture pa-
rameter is accurate in comparison with the Monte Carlo
simulation results. Since all gradients are calculated ana-
lytically, reliability analysis of cracks can be performed
efficiently using meshless methods.

Keywords Probabilistic fracture mechanics, Stochastic
meshless method, Element-free Galerkin method, Stress-
intensity factor, J-integral, Probability of failure

1
Introduction
Probabilistic fracture mechanics (PFM) is becoming
increasingly popular for realistic evaluation of fracture
response and reliability of cracked structures. Using PFM,
statistical uncertainties can be incorporated in engineering
design and evaluation, a long-standing need in the sto-
chastic–mechanics community. The theory of fracture me-
chanics provides a mechanistic relationship between the
maximum permissible load acting on a structural compo-

nent to the size and location of a crack – either real or
postulated – in that component. Probability theory deter-
mines how the uncertainties in crack size, loads, and ma-
terial properties, when modeled accurately, affect the
integrity of cracked structures. PFM, which blends these two
theories, accounts for both mechanistic and stochastic as-
pects of the fracture problem, and hence, provides a more
rational means to describe the actual behavior and reliability
of structures than traditional deterministic methods [2].

While development is ongoing, a number of methods
have been developed or implemented for estimating sta-
tistics of various fracture response and reliability. Most of
these methods are based on linear-elastic fracture me-
chanics (LEFM) and a finite element method (FEM) that
employs the stress-intensity factor (SIF) as the primary
crack-driving force [2–7]. For example, using SIFs from an
FEM code, Grigoriu et al. [3] applied first- and second-
order reliability methods (FORM/SORM) to predict the
probability of fracture initiation and a confidence interval
of the direction of crack extension. The method can ac-
count for random loads, material properties, and crack
geometry. However, the randomness in crack geometry was
modeled by response surface approximations of SIFs as
explicit functions of crack geometry. Similar response-
surface-based methods involving elastic–plastic fracture
mechanics and the J-integral-based ductile tearing theory
have also appeared [8–10]. For example, a stochastic model
based on an engineering approximation of the J-integral
and FORM/SORM have been developed by Rahman and co-
workers for fracture analysis of cracked tubular structures
[8]. Based on this model, the probability of fracture initi-
ation and subsequent fracture instability can be predicted
under elastic–plastic conditions. The response surface ap-
proximation used in these PFM analyses significantly re-
duces the complexity in calculating the derivatives of the
SIF or the J-integral. Essentially, this presents a primary
rationale for successful development of FORM/SORM al-
gorithms for probabilistic analysis of cracked structures.
However, the usefulness of response-surface-based meth-
ods is limited, since they cannot be applied to general
fracture-mechanics analysis. Because of the complexity in
crack geometry, external loads, and material behavior,
more advanced computational tools, such as FEMs or
meshless methods, must be employed to provide the nec-
essary computational framework for analysis of general
cracked structures. Furthermore, due to various approxi-
mations in response-surface methods, one needs to evalu-
ate their accuracy by comparing with generally more
accurate FEM- or meshless-based probabilistic analysis [7].
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Although FEM-based methods are well developed,
research in probabilistic meshless analysis has not been
widespread and is only currently gaining attention.
Recently, Rahman and Rao [11, 12] and Rahman and
Xu [13] developed stochastic meshless methods to solve
linear-elastic problems involving spatially varying random
material properties. The methods provide accurate esti-
mates of second-moment characteristics of response and
reliability of uncertain structures [11–13]. However, the
aforementioned methods do not include fracture-mechan-
ics theory and are, therefore, not applicable to probabilistic
analysis of cracks. Hence, there is considerable interest in
developing stochastic meshless methods that are capable of
treating uncertainties in loads, material properties, and
crack geometry and predicting probabilistic fracture
response and reliability of cracked structures. To the best
knowledge of the authors, no meshless-based PFM methods
exist in the current literature.

This paper (Part II) presents a stochastic meshless
method for probabilistic fracture-mechanics analysis of
linear-elastic cracked structures. The method comprises an
element-free Galerkin method as the deterministic kernel to
calculate fracture response characteristics; statistical mod-
els of uncertainties in load, material properties, and crack
geometry; and the first-order reliability method (FORM) to
predict probabilistic fracture response and reliability of
cracked structures. The sensitivity of fracture parameters
with respect to crack size, required for probabilistic analy-
sis, is calculated using a virtual crack extension technique,
as described in the companion paper [1]. Numerical ex-
amples based on mode-I and mixed-mode loaded cracked
structures are presented to illustrate the proposed method.

2
Rates of fracture parameters

2.1
The interaction integral and stress intensity factors
Consider a two-dimensional structure with a rectilinear
crack of length 2a, orientation c, subjected to external
loads, S1; S2; . . . ; SM, as shown in Fig. 1. Let KI and KII be

the stress-SIFs for mode-I and mode-II, respectively. The
SIFs can be evaluated as [14–17]
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E0

2
Mð1;IÞ ð1Þ
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E0

2
Mð1;IIÞ ð2Þ
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are the interaction integrals. Equations (4) and (5) include
the terms from the actual mixed mode state for the given
boundary conditions (superscript 1) and the super-imposed
near-tip mode I or mode II auxiliary state (superscript I or
II). In Eqs. (4) and (5), A is the area of integral domain, rij

and ui are the components of stress tensor and displacement
vector, respectively, Wð1;IÞ or Wð1;IIÞ is the mutual strain
energy from the two states and q is a weight function se-
lected such that it has a value of unity at the crack tip, zero
along the boundary of the domain and arbitrary elsewhere.
Note that all the quantities are evaluated with respect to a
coordinate system with the crack tip as the origin.

2.2
Rates of stress intensity factors
The rates of the SIFs KI and KII with respect to crack size a
can be obtained as [1]
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Fig. 1. Generalized cracked body under mixed-mode loading
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In the companion paper (Part I), a sensitivity formulation
in conjunction with a virtual crack extension technique is
described to calculate the derivatives of the generalized
displacement with respect to crack size. Using the deriva-
tive of the generalized displacement, the derivatives of
Mð1;IÞ and Mð1;IIÞ and hence, of KI and KII can be calculated.
Further details are presented in the companion paper [1].

3
Probabilistic fracture mechanics and reliability

3.1
Random parameters and fracture response

Mode-I problem
Consider a mode-I loaded linear-elastic cracked structure
under uncertain mechanical and geometric characteristics
that is subject to random loads. Denote by X an N-di-
mensional random vector with components X1;X2; . . . ;XN

characterizing uncertainties in the load, crack geometry,
and material properties. For example, if the crack size a,
elastic modulus E, Poisson’s ratio m, far-field applied stress
magnitude r1, and mode-I fracture toughness at crack
initiation JIc are modeled as random input variables, then
X ¼ a;E; m; r1; JIcf gT. Let the J-integral ðJÞ be the relevant
crack-driving force that can be calculated from meshless
analysis [17]. Note that J ¼ K2

I =E0 ¼ Mð1;IÞ2

E0=4 under
pure mode-I loading condition. Suppose the structure fails
when J > JIc. This requirement cannot be satisfied with
certainty, because J depends on input vector X, which is
random, and JIc itself is a random variable. Consequently,
the performance of the cracked structure should be eval-
uated using the reliability PS, or its complement, the
probability of failure PFðPS ¼ 1 � PFÞ, defined as

PF ¼def
Pr½gðXÞ < 0� ¼def

Z
gðxÞ<0

fXðxÞdx ; ð10Þ

where fXðxÞ is the joint probability density function of X,
and

gðxÞ ¼ JIcðxÞ � JðxÞ ð11Þ
is the performance function. Note that PF in Eq. (10)
represents the probability of initiation of crack growth
and provides a conservative estimate of structural
performance. A less conservative evaluation requires
calculation of failure probability based on crack-insta-
bility criterion. The latter probability is more difficult to

compute, since it must be obtained by incorporating
crack-growth simulation in a finite element or mesh-
less analysis. However, if suitable approximations of J
can be developed analytically, the failure probability
due to crack-instability can be easily calculated as well
[8–10].

Mixed mode problem
Consider a mixed-mode loaded linear-elastic cracked
structure under uncertain mechanical and geometric
characteristics that is subject to random loads. Let
X ¼ fa; c;KIc; S1; S2; . . . ; SMgT denote an N-dimensional
random vector with crack geometry ðaÞ, crack orientation
(c), mode-I plane-strain fracture toughness at crack initi-
ation ðKIcÞ, and loads ðS1; S2; . . . ; SMÞ – all modeled as
potential random variables. Suppose the structure fails
when crack propagation is initiated. A number of criteria
are available to predict such initiation of fracture. They are
based on: (1) maximum circumferential stress [18], (2)
minimum strain energy density [19], (3) maximum energy
release rate [20], and (4) vanishing in-plane SIF in shear
mode for an infinitesimally small crack extension [21]. The
first two criteria predict crack initiation from a stress state
prior to the crack extension. The remaining two criteria
require stress analysis for virtually extended cracks in
various directions to determine the appropriate crack-
growth directions. In this study, fracture initiation is based
on the first criterion only. Other criteria, not considered
here, can be easily implemented into the proposed
method.

Let KI and KII be the relevant crack-driving forces that
can be calculated using standard meshless analysis. By
superposition,

KI ¼
XM

i¼1

kIiða; cÞSi ð12Þ

KII ¼
XM

i¼1

kIIiða; cÞSi ð13Þ

where Si is the ith load and kIiða; cÞ and kIIiða; cÞ are
mode-I and mode-II SIFs, respectively, when Si ¼ 1 and
all other loads are equal to zero. According to the max-
imum circumferential stress theory, the performance
function is

gðxÞ ¼ KIc � KI cos2 H
2
� 3

2
KII sin H

� �
cos

H
2

ð14Þ

where H, the initial direction of crack propagation, is the
solution of the nonlinear equation [18], given by

KI sin H þ KIIð3 cos H � 1Þ ¼ 0 : ð15Þ

3.2
Reliability analysis by FORM
The generic expression for the failure probability in Eq.
(10), for which the performance function is represented by
either Eq. (11) or (14), involves a multi-dimensional
probability integration for evaluation. In this study, FORM
[22] was used to compute this probability. It is briefly
described here to compute the probability of failure PF in
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Eq. (10) assuming a generic N-dimensional random vector
X and the performance function gðxÞ defined by Eqs. (11)
or (14).

The first-order reliability method is based on linear
(first-order) approximation of the limit state surface
gðxÞ ¼ 0 tangent to the closest point of the surface to the
origin of the space. The determination of this point in-
volves nonlinear constrained optimization and is usually
performed in the standard Gaussian image of the original
space. The FORM algorithm involves three major steps.
First, the space x of uncertain parameters X is trans-
formed into a new N-dimensional space u consisting of
independent standard Gaussian variables U. The original
limit state gðxÞ ¼ 0 then becomes mapped into the new
limit state gUðuÞ ¼ 0 in the u space. Second, the point on
the limit state gUðuÞ ¼ 0 having the shortest distance to
the origin of the u space is determined using an appro-
priate nonlinear optimization algorithm. This point is
referred to as the design point, or beta point, and has a
distance bHL (known as reliability index) to the origin of
the u space. Third, the limit state gUðuÞ ¼ 0 is approxi-
mated by a hyperplane gLðuÞ ¼ 0, tangent to it at the
design point. The probability of failure PF (Eq. 11) is thus
approximated by PF;1 ¼ Pr½gLðuÞ < 0� in FORM and is
given by [22]

PF;1 ¼ U �bHLð Þ ð16Þ
where

UðuÞ ¼ 1ffiffiffiffiffi
2p

p
Zu

�1

exp � 1

2
n2

� �
dn ð17Þ

is the cumulative probability distribution function of a
standard Gaussian random variable.

In this study, a recursive quadratic-programming
algorithm [23, 24] was used to solve the associated
optimization problem. The first-order sensitivities were
calculated analytically and are described as follows.

3.3
Analytical gradients
In the u space, the objective function is quadratic; hence,
calculating its first-order derivative with respect to
uk; k ¼ 1; 2; . . . ;N is trivial. For the constraint function,
i.e., the performance function, one must also calculate its
derivative with respect to uk. Assume that a transforma-
tion of x 2 <N to u 2 <N , given by

x ¼ xðuÞ ; ð18Þ
exists. Hence, the performance function in the u space can
then be written as

gUðuÞ ¼ gðxðuÞÞ : ð19Þ
Using the chain rule of differentiation, the first-order
derivative of gUðuÞ with respect to uk is

ogUðuÞ
ouk

¼
XN

j¼1

og

oxj

oxj

ouk
¼

XN

j¼1

og

oxj
Rjk ; ð20Þ

where Rjk ¼ oxj=ouk, which can be obtained from the
explicit form of Eq. (18).

Mode-I problem
In mode-I fracture with X ¼ fa;E; m; r1; JIcgT, the partial
derivatives of g in the x space can be obtained as
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Using the shape sensitivity formulation presented in the
companion paper [1], the partial derivative of Mð1;IÞ, or J,
with respect to crack size can be easily calculated. For a
given u or x, all gradients of gUðuÞ can then be evaluated
analytically. FORM or any other gradient-based reliability
analysis can therefore be performed efficiently.

Mixed mode problem
In mixed-mode fracture with X ¼ fa; c;KIc; S1; S2;. . . ;
SMgT, the partial derivatives of g in the x space can be
obtained as follows.
Crack size (a)
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Fracture toughness ðKIcÞ
og

oKIc
¼ 1 ð30Þ
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Loads ðSiÞ
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Equations (26–29) involve partial derivatives of SIFs
with respect to a and c, which constitute shape sensi-
tivity analysis. From Eqs. (12) and (13), they can be
obtained as

oKI
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XM
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okIi
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Si ; ð33Þ
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oc
Si ð36Þ

and can be calculated using the sensitivity equations pre-
sented in the companion paper [1]. As a result, for a given
u or x, all gradients of gUðuÞ can be determined analyti-
cally. Figure 2 depicts a flowchart for meshless-based
reliability analysis.

4
Numerical examples
Based on the first-order sensitivities computed using the
meshless method, as described in the companion paper
[1], FORM was employed to conduct probabilistic frac-
ture-mechanics analysis. Both single- (mode I) and
mixed-mode (modes I and II) conditions were consid-
ered. A fully enriched basis function, weight function
parameter b ¼ 3, and diffraction parameter k ¼ 1 were
used for all meshless calculations [1, 17]. An 8 � 8 Gauss
quadrature rule was used for numerical integration in the
meshless method.

4.1
Example 1: Reliability analysis of DE(T) specimen (Mode-I)
Consider a double-edge tension [DE(T)] specimen with
width 2W ¼ 1:016 m (40 in), length 2L ¼ 5:08 m
(200 in), and crack length a ¼ 0:254 m (10 in), as shown
in Fig. 3a. The specimen is subject to a far-field tensile
stress r1. The load, crack size, and material properties

were treated as statistically independent random vari-
ables. Table 1 lists the means, coefficients of variation
(COV), and probability distributions of these random
parameters. Some of the statistical properties in Table 1
are from statistical characterization of actual material
property data [25]. Both plane stress and plane strain
conditions were studied. For the plane stress condition,
the Poisson’s ratio was assumed to be deterministic with
m ¼ 0:3.

Due to symmetry, meshless discretization was per-
formed on only one-fourth of the model, as shown in
Fig. 3b. The discretization involves 286 regularly distrib-
uted nodes, however, in the vicinity of the crack-tip region
Q1Q2Q3Q4, [see Fig. 3b] additional 63 nodes were used, as
shown in the Fig. 3c, for a total of 349 meshless nodes. A
domain of size 2b � b, where b ¼ minfa; ðW � aÞg, was
used to calculate the J-integral.

A number of probabilistic analyses were performed
using the proposed sensitivities of J to calculate the
probability of failure PF as a function of the mean
far-field tensile stress E r1½ �, in which E½�� is the expec-
tation (mean) operator. Figure 4 plots the results in the
form of PF vs. E r1½ � for ma=W ¼ 20% and plane stress
condition, where ma=W is the COV of the normalized
crack length a=W . The probability of failure was calcu-
lated using both FORM and Monte Carlo simulation. For
the simulation, the sample size varied and was at least
10 times the inverse of the failure probability being
estimated. Figure 4 demonstrates good agreement
between the FORM probability of failure and the simu-
lation results.

Using FORM, Fig. 5a and b plot PF vs. E r1½ � for
plane stress and plane strain conditions, respectively, for
both deterministic ðma=W ¼ 0Þ and random ðma=W ¼ 10,
20, and 40 percent) crack sizes. As expected, the results
indicate that the failure probability increases with the
COV (uncertainty) of a=W . The failure probability can
be much larger than the probabilities calculated for a
deterministic crack size, particularly when the uncer-
tainty of a=W is large. The probability of failure in
plane stress is slightly larger than in plane strain,
regardless of the load intensity, since J for plane stress
is ð1 � m2Þ�1 times larger than J for plane strain. The
difference in the resultant failure probabilities, however,
is small for the value of m ¼ 0:3 used. In addition, the
same fracture toughness value was used for both plane
stress and plane strain calculations. Consequently, the
results must be interpreted with caution. It should be
noted that all FORM failure probabilities were calculated
with the shape sensitivities obtained using the virtual
crack extension technique described in the companion
paper [1].

4.2
Example 2: Reliability analysis of edge-cracked plate
under shear (mixed-mode)
This example involves an edge-cracked plate (Fig. 6a),
fixed at the bottom and subjected to a far-field shear stress
s1 applied at the top. The plate has length 2L ¼ 16 units,
width W ¼ 7 units, and crack length a ¼ 3:5 units. The
2b1 � 2b2 domain required to calculate the Mð1;IÞ and
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Fig. 2. A flowchart for probabilistic meshless analysis of cracks
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Fig. 3. DE(T) specimen under mode-I loading; a geometry and
loads; b meshless discretization for a=W ¼ 0:5 (349 nodes);
c nodal refinement near crack tip
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Mð1;IIÞ integrals is also shown in Fig. 6a. The domain size
was selected such that b1 ¼ b2 ¼ fminða; ðW � aÞÞg.
Figure 6b illustrates the meshless discretization for

a=W ¼ 0:5 using 385 meshless nodes. The elastic modulus
and Poisson’s ratio were 30 � 106 units and 0.25, respec-
tively. A plane strain condition was assumed.

Fig. 4. Failure probability of DE(T)
specimen by FORM and simulation

Fig. 5. Failure probability of DE(T) spec-
imen by FORM for various uncertainties
in crack size; a plane stress; b plane strain
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The random variables involved in this example are
a=W , s1 and KIc, with arbitrarily selected statistical
properties, as listed in Table 2. The normalized crack
length a=W was modeled as a uniformly distributed ran-
dom variable a=W � Uð0:5 � D=2; 0:5 þ D=2Þ, where D is
the spread of uniform distribution and 0:5 � D=2 repre-
sent the bounds of a=W .

Using FORM and the analytical sensitivities of SIFs, a
number of probabilistic meshless analyses were performed
to calculate the probability of failure PF as a function of the
mean far-field shear stress E½s1�. Figure 7 plots PF vs.
E½s1� for three cases of random crack length corre-
sponding to D ¼ 0:2, 0.4, and 0.6. A large D value repre-
sents large uncertainty in a=W . As expected the results in
Fig. 7 show that the failure probability increases with the
spread D of the distribution of a=W .

Note that the approximate results of the failure
probability presented in Fig. 7 were not compared with

simulation results. This was due to the high cost of
the numerous meshless simulations needed to
calculate the small probability of failure predicted in
this example.

5
Conclusions
A stochastic meshless method was developed for prob-
abilistic fracture-mechanics analysis of linear-elastic
cracked structures. The method involves an element-free
Galerkin method for calculating fracture response char-
acteristics; statistical models of uncertainties in load,
material properties, and crack geometry; and the first-
order reliability method (FORM) for predicting proba-
bilistic fracture response and reliability of cracked
structures. The sensitivity of fracture parameters with
respect to crack size, required for probabilistic analysis,
is calculated using a virtual crack extension technique
described in the companion paper [1]. Numerical
examples based on mode-I and mixed-mode problems
are presented to illustrate the proposed method. The
results show that the predicted probability of fracture
initiation based on the proposed formulation of the
sensitivity of fracture parameter are accurate when
compared with the Monte Carlo simulation results. Since
all gradients are calculated analytically, the reliability
analysis of cracks can be performed efficiently using
meshless methods.

Fig. 6. Edge-cracked plate under remote shear; a geometry and
loads; b meshless discretization for a=W ¼ 0:5 (385 nodes)

Table 2. Statistical properties of random input for edge-cracked
plate

Random
variable

Mean COVa Probability
distribution

Normalized crack
length (a/W)

0.5 D=
ffiffiffi
3

p b
Uniformb

Far-field
shear stress (s1)

Variablec 0.1 Gaussian

Initiation stress
intensity factor (KIc)

200 units 0.1 Lognormal

a Coefficient of variation (COV) = standard deviation/mean
b a/W is uniformly distributed as: U(0.5)D/2, 0.5)D/2);
0.2 £ D £ 0.6
c Arbitrarily varied

Table 1. Statistical properties
of random input for DE(T)
specimen

Random
variable

Mean COVa Probability
distribution

Reference

Normalized crack
length (a/W)

0.5 Variableb Lognormal –c

Elastic modulus (E) 206.8 GPa 0.05 Gaussian –c

Poisson’s ratio (m) 0.3 0.05 Gaussian –c

Initiation fracture
toughness (JIc)

1242.6 kJ/m2 0.47 Lognormal 25

Far-field tensile stress (r1) Variableb 0.1 Gaussian –c

a Coefficient of variation (COV) = standard deviation/mean;
b arbitarily varied;
c arbitrarily assumed
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