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Abstract This is the first in a series of two papers gener-
ated from a study on probabilistic meshless analysis of
cracks. In this paper (Part I), a Galerkin-based meshless
method is presented for predicting first-order derivatives
of stress-intensity factors with respect to the crack size in a
linear-elastic structure containing a single crack. The
method involves meshless discretization of cracked
structure, domain integral representation of the fracture
integral parameter, and sensitivity analysis in conjunction
with a virtual crack extension technique. Unlike existing
finite-element methods, the proposed method does not
require any second-order variation of the stiffness matrix
to predict first-order sensitivities, and is, consequently,
simpler than existing methods. The method developed
herein can also be extended to obtain higher-order de-
rivatives if desired. Several numerical examples related to
mode-I and mixed-mode problems are presented to illus-
trate the proposed method. The results show that first-
order derivatives of stress-intensity factors using the
proposed method agree very well with reference solutions
obtained from either analytical (mode I) or finite-differ-
ence (mixed mode) methods for the structural and crack
geometries considered in this study. For mixed-mode
problems, the maximum difference between the results of
proposed method and finite-difference method is less than
7%. Since the rates of stress-intensity factors are calculated
analytically, the subsequent fracture reliability analysis can
be performed efficiently and accurately.

Keywords Element-free Galerkin method, Virtual crack
extension, Stress-intensity factor, Rates of stress-intensity
factor, Interaction integral, Linear-eleastic fracture
mechanics

1
Introduction
In recent years, various Galerkin-based meshless methods
have been developed or investigated to solve fracture-
mechanics problems without the use of a structured grid

[1–7]. These meshless methods employ moving least-
squares (MLS) approximation of a function that permits
the resultant shape functions to be constructed entirely in
terms of arbitrarily placed nodes. Since no element con-
nectivity data is required, the burdensome meshing or
remeshing characteristic of finite element methods (FEMs)
is avoided. However, most development in meshless
methods to date has been focused on deterministic prob-
lems. Research in probabilistic meshless analysis has not
been widespread and is only currently gaining attention.
Recently, Rahman and Rao [8, 9] and Rahman and Xu [10]
developed stochastic meshless methods for solving linear-
elastic problems that involve spatially varying random
material properties. The methods provide accurate esti-
mates of second-moment characteristics of structural
response and reliability [8–10]. However, the aforemen-
tioned methods do not include fracture-mechanics theory
and are, therefore, not applicable to probabilistic analysis
of cracks. Hence, there is considerable interest in devel-
oping stochastic meshless methods that are capable of
treating uncertainties in loads, material properties, and
crack geometry and predicting probabilistic fracture re-
sponse and reliability of cracked structures. Such an un-
dertaking represents a qualitatively new theoretical
development, employing meshless methods to account for
probabilistic aspects of fracture processes. To the best
knowledge of the authors, no meshless models for proba-
bilistic fracture-mechanics (PFM) analysis exist in the
current literature.

In PFM, the derivatives of the stress-intensity factor
(SIF) or integral parameters are often required to predict
the probability of fracture initiation and/or instability in
cracked structures. First- and second-order reliability
methods [11], frequently used in PFM [12–18], require the
gradient and/or Hessian of the performance function with
respect to random parameters. In linear-elastic fracture
mechanics (LEFM), the performance function is built on
SIFs. Hence, both first- and/or second-order derivatives of
SIF are needed in PFM. The calculation of these derivatives
with respect to load and material parameters, which con-
stitutes size-sensitivity analysis, is not unduly difficult.
However, the evaluation of response derivatives with
respect to crack size is a challenging task, since shape
sensitivity analysis is required. Using a brute-force type
finite-difference method to calculate shape sensitivities is
often computationally expensive, in that numerous repe-
titions of deterministic meshless analysis may be required
for a complete reliability analysis. Furthermore, if the
finite-difference perturbations are too large relative to
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meshless discretization, the approximations can be inac-
curate, whereas if the perturbations are too small, nu-
merical truncation errors may become significant.
Consequently, analytical methods based on virtual crack
extension [19–24] and continuum shape sensitivity theory
[25–30] have emerged. In 1988, Lin and Abel [19] intro-
duced a virtual crack extension technique that employs a
variational formulation and a FEM to calculate the first-
order derivative of mode-I SIF for a structure containing a
single crack. This method maintains all of the advantages
of similar virtual crack extension techniques introduced
by deLorenzi [20, 21], Haber and Koh [22], and Barbero
and Reddy [23], but adds a capability to calculate the
derivatives of the SIF. Subsequently, Hwang et al. [24]
generalized this method to calculate both first- and sec-
ond-order derivatives for structures with multiple crack
systems, axisymmetric stress states, and crack-face and
thermal loading. However, this method requires mesh
perturbation – a fundamental requirement of all virtual
crack extension techniques. For second-order derivatives,
the number of elements affected by mesh perturbation
surrounding the crack tip has a significant effect on so-
lution accuracy [24]. Recently, Feijóo et al. [25] applied
the concepts of continuum shape sensitivity theory [26] to
calculate the first-order derivative of the potential energy.
Since the energy release rate (ERR) is the first-order de-
rivative of potential energy, the ERR or SIF can be calcu-
lated using this approach, without any mesh perturbation.
Later, Taroco [27] extended this approach to formulate the
second-order sensitivity of potential energy to predict the
first-order derivative of the ERR. However, this presents a
formidable task, since it involves calculation of second-
order stress and strain sensitivities. To overcome this
difficulty, Chen et al. [28, 29] invoked the domain integral
representation of the J-integral and used the material de-
rivative concept of continuum mechanics to obtain first-
order sensitivity of the J-integral for linear-elastic cracked
structures. Since this method requires only the first-order
sensitivity of a displacement field, it is simpler and more
efficient than existing methods. Recently, Chen et al. [30]
extended their continuum shape sensitivity method for
mixed-mode loading conditions. All of these methods,
however, have been developed only in conjunction with
FEM. Consequently, there is a need to develop meshless-
based sensitivity equations for SIFs so that subsequent
stochastic meshless analysis of cracks can be efficiently
performed.

This is the first in a series of two papers generated from
a study on probabilistic fracture mechanics applying
Galerkin-based meshless methods. In this paper (Part I), a
virtual crack extension technique in conjunction with an
element-free Galerkin method (EFGM) is presented for
calculating first-order sensitivities of SIFs in two-dimen-
sional, homogeneous, isotropic, linear-elastic cracked
structures. The proposed method involves meshless dis-
cretization of cracked structures, domain integral repre-
sentation of the fracture integral parameter, and sensitivity
analysis in conjunction with a virtual crack extension
technique. Since the fracture response parameters are
represented by domain integration, only the first-order
sensitivity of displacement field is required. Numerical

examples based on mode-I and mixed-mode problems are
presented to illustrate the proposed method. The proba-
bilistic meshless analysis of cracks using first-order
sensitivities of SIFs is described in the companion paper
(Part II) [31].

2
Element-free Galerkin method

2.1
Variational principle and discretization
Consider a two-dimensional structure with a rectilinear
crack of length 2a and orientation c, subjected to external
loads, S1; S2; . . . ; SM , as shown in Fig. 1. The meshless
discretization of this cracked structure is shown in Fig. 2.
For small displacements in homogeneous, isotropic, lin-
ear-elastic solids, the variational or weak form of equi-
librium equations and boundary conditions areZ
X

rTde dX�
Z
X

bTdu dX�
Z
Ct

�ttTdu dCþ dWu ¼ 0

ð1Þ

Fig. 1. A cracked structure under mixed-mode loading

Fig. 2. Meshless discretization and virtual crack extension
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dWu ¼
X

xJ2Cu

dfTðxJÞ u xJð Þ � �uu xJð Þ½ � þ fTðxJÞdu xJð Þ

ð2Þ
where x ¼ fx1; x2gT 2 <2 is any point in the domain
X � <2, u ¼ fu1; u2gT 2 <2 is the displacement vector,

r ¼ fr1; r2; r12gT 2 <3 is the stress vector,

e ¼ fe1; e2; 2e12gT 2 <3 is the strain vector, b is the body
force vector, �tt and �uu are the vectors of prescribed surface
tractions and displacements, respectively, fTðxJÞ is the
vector of reaction forces at the constrained node J 2 Cu, Ct

and Cu are the portions of boundary C where tractions and
displacements are respectively prescribed, and d is the
variation operator. Consider a single boundary constraint,
�uuiðxJÞ ¼ giðxJÞ applied at node J in the direction of the xi

coordinate. The variational form given by Eqs. (1) and (2)
can then be expressed by [1]Z
X

rTde dXþ fiðxJÞdui xJð Þ ¼
Z
X

bTdu dXþ
Z
Ct

�ttTdu dC

ð3Þ
dfiðxJÞ uiðxJÞ � giðxJÞ½ � ¼ 0 ð4Þ
where fiðxJÞ and uiðxJÞ are the ith components of fðxJÞ and
uðxJÞ, respectively.

Consider an MLS approximation of the displacement at
node J in the xi direction uiðxJÞ, denoted as [1–7]

uh
i ðxJÞ ¼

XN

I¼1

UIðxJÞdi
I ¼ UiT

J d ð5Þ

where

UiT

J ¼
fU1ðxJÞ;0;U2ðxJÞ;0;...;UNðxJÞ;0g; when i¼1
f0;U1ðxJÞ;0;U2ðxJÞ;...;0;UNðxJÞg; when i¼2

�
;

ð6Þ

d ¼

d1
1

d2
1

d1
2

d2
2

..

.

d1
N

d2
N

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð7Þ

is the vector of nodal parameters or generalized dis-
placements, and N is the total number of nodal points in
X. In Eq. (5), UIðxÞ represents the meshless shape function
associated with node I, defined as [1, 2, 4–7]

UIðxÞ ¼ pTðxÞA�1ðxÞCIðxÞ ð8Þ
where

pTðxÞ ¼ p1ðxÞ; . . . ; pmðxÞf g ð9Þ
is a vector of complete basis functions with
piðxÞ; i ¼ 1; . . . ;m representing m monomials in x,

AðxÞ ¼ PTWP ; ð10Þ
CIðxÞ ¼ wIðxÞpðxIÞ ; ð11Þ

P ¼

pTðx1Þ
pTðx2Þ

..

.

pTðxNÞ

2
6664

3
7775 2L <N 
 <m

� �
; ð12Þ

W ¼

w1ðxÞ 0 � � � 0
0 w2ðxÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � wNðxÞ

2
6664

3
7775 2L <N 
<N

� �

ð13Þ
and wIðxÞ is the weight function associated with node I
such that wIðxÞ > 0 for all x in the support Xx � X of
wIðxÞ and zero otherwise. A number of weight functions
are available in the current literature [1, 2, 4]. A weight
function developed by Rao and Rahman [1] was employed
in this study, expressed as

wIðxÞ ¼
1þb2 z2

I
z2
mI

� ��1þb
2

� 1þb2ð Þ�
1þb

2

1� 1þb2ð Þ�
1þb

2

; zI � zmI

0; zI > zmI

8>><
>>: ð14Þ

where b is a shape controlling parameter, zI ¼ kx� xIk
is the distance from a sample point x to a node
xI ¼ x1I ; x2If gT, and zmI is the domain of influence of node
I. To avoid any discontinuities in the shape functions due
to the presence of cracks, a diffraction method [6] can
be used to modify zI in the weight function. According to
this method, zI is modified as [6]

zI ¼
s1 þ s2ðxÞ

s0ðxÞ

� �k

s0ðxÞ ð15Þ

where s1 ¼ kxI � xck; s2ðxÞ ¼ kx� xck;
s0ðxÞ ¼ kx� xIk; xc ¼ x1c; x2cf gT is a vector representing
the coordinates of the crack tip, and 1 � k � 2 is a dif-
fraction parameter.

Applying Eqs. (5–15), the discrete form of Eqs. (3) and
(4) becomes [1, 2]

k Ui
J

UiT

j 0

" #
d

fiðxJÞ

� �
¼ fext

giðxJÞ

� �
ð16Þ

where

k ¼

k11 k12 � � � k1N

k21 k22 � � � k2N

..

. ..
. ..

. ..
.

kN1 kN2 � � � kNN

2
6664

3
7775 2Lð<2N 
 <2NÞ ð17Þ

is the stiffness matrix with

kIJ ¼
Z
X

BT
I DBJ dX 2Lð<2 
 <2Þ ; ð18Þ

fext ¼

fext
1

fext
2

..

.

fext
N

8>>><
>>>:

9>>>=
>>>;
2 <2N ð19Þ
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is the force vector with

fext
I ¼

Z
X

UIbT dXþ
Z
Ct

UI�tt
TdC 2 <2 ; ð20Þ

BI ¼
UI;1 0

0 UI;2

UI;2 UI;1

2
4

3
5 ; ð21Þ

D¼

E
1�m2

1 m 0
m 1 0
0 0 1�m

2

2
4

3
5; for plane stress

E
ð1þmÞð1�2mÞ

1� m m 0
m 1� m 0
0 0 1�2m

2

2
4

3
5; for plane strain

8>>>>>><
>>>>>>:

ð22Þ
is the elasticity matrix, E is the elastic modulus and m is
Poisson’s ratio. The partial derivative of UIðxÞ with respect
to xi, required in Eq. (21), can be obtained as

UI;iðxÞ ¼ pTA�1CI;i þ pTA�1
;i CI þ pT

;iA
�1CI ð23Þ

where

CI;i ¼ wIpT
;i þ wI;ip

T ; ð24Þ

A�1
;i ¼ �A�1A;iA

�1 ; ð25Þ

A;i ¼ PT
;iWPþ PTW;iPþ PTWP;i ; ð26Þ

pT
;i ¼ p1;i; . . . ; pm;i

� �
; ð27Þ

wI;iðxÞ ¼
�1þb

2 1þb2 z2
I

z2
mI

� ��3þb
2

2b2zI
z2
mI

zI;i

1�ð1þb2Þ�
1þb

2

; zI � 0

0; zI > 0

8><
>: ð28Þ

and

zI;i ¼
xi � xiI

zI
; ð29Þ

if zI ¼ kx� xIk. If zI is modified according to Eq. (15),
however,

zI;i ¼ k
s1 þ s2ðxÞ

s0ðxÞ

� �k�1ðxi � xicÞ
s2ðxÞ

þ ð1� kÞ s1 þ s2ðxÞ
s0ðxÞ

� �kðxi � xiIÞ
s0ðxÞ

ð30Þ

where

ð Þ;i¼
oð Þ
oxi

:

Standard Gaussian quadratures can be used to evaluate the
integrals for assembling the stiffness matrix and the force
vector. In general, a 4 
 4 quadrature is adequate, except
in cells surrounding a high stress gradient (e.g., near a
crack tip) where an 8 
 8 quadrature is suggested.

2.2
Essential boundary conditions
The lack of Kronecker delta properties in the meshless
shape functions UI poses some difficulty in imposing
essential boundary conditions in EFGM. As such, consider
a transformation [1, 32, 33]

d̂d ¼ Kd ð31Þ

where

d̂d ¼

uh
1ðx1Þ

uh
2ðx1Þ

uh
1ðx2Þ

uh
2ðx2Þ
..
.

uh
1ðxNÞ

uh
2ðxNÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
2 <2N ð32Þ

is the nodal displacement vector and

K ¼

U1T

1

U2T

1

U1T

2

U2T

2

..

.

U1T

N

U2T

N

2
66666666664

3
77777777775
2Lð<2N 
 <2NÞ ð33Þ

is the transformation matrix. Multiplying the first set of
matrix equations in Eq. (16) by K�T yields [1]

k̂k
T

1 0

..

. ..
.

k̂kT
M�1 0

k̂kT
M 1

k̂kT
Mþ1 0

..

. ..
.

k̂kT
2N 0

UiT

J 0

2
666666666666666664

3
777777777777777775

d

fiðxJÞ

� �
¼

f̂f
ext

1

..

.

f̂f
ext

M�1

f̂f
ext

M

f̂f
ext

Mþ1

..

.

f̂f
ext

2N

giðxJÞ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

 ½2ðJ�1Þþ i�th row

 ð2Nþ1Þth row

ð34Þ

where k̂k
T

i is a vector representing the ith row of

k̂k ¼
k̂kT

1

..

.

k̂kT
2N

2
64

3
75 ¼ K�Tk ; ð35Þ

f̂fext ¼ K�Tfext ; ð36Þ
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and M ¼ ð2J � 1Þ þ i. Exchanging the Mth and the last
row of Eq. (34) leads to

k̂kT
1 0

..

. ..
.

k̂kT
M�1 0

UiT

J 0

k̂kT
Mþ1 0

..

. ..
.

k̂kT
2N 0

k̂kT
M 1

2
666666666666666664

3
777777777777777775

d

fiðxJÞ

� �
¼

f̂f
ext

1

..

.

f̂f
ext

M�1

giðxJÞ
f̂f

ext

Mþ1

..

.

f̂f
ext

2N

f̂f
ext

M

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

 ½2ðJ�1Þþ i�th row

 ð2Nþ1Þth row

ð37Þ
which can then be uncoupled as

Kd ¼ F ð38Þ

k̂kT
Mdþ fiðxJÞ ¼ f̂f

ext

M ð39Þ
where

K ¼ mi
J k̂k
� �
¼

k̂kT
1

..

.

k̂kT
M�1

UiT

J

k̂kT
Mþ1

..

.

..

.

k̂kT
2N

2
666666666666664

3
777777777777775

 ½2ðJ � 1Þ þ i�th row ð40Þ

and

F ¼ ni
J f̂fext
� �

¼

f̂f
ext

1

..

.

f̂f
T

M�1

giðxJÞ
f̂f

ext

Mþ1

..

.

..

.

f̂f
ext

2N

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

 ½2ðJ � 1Þ þ i�th row

ð41Þ
are the modified stiffness matrix and force vectors, re-
spectively.

In Eqs. (40) and (41), mi
J is a matrix operator that re-

places the 2ðJ � 1Þ þ i½ �th row of k̂k with UiT

J and ni
J is the

matrix operator that replaces the 2ðJ � 1Þ þ i½ �th row of
f̂fext with giðxJÞ, resulting from the application of a single
boundary constraint at node J. For multiple boundary
constraints with Nc boundary conditions at nodes
J1; J2; . . . ; JNc applied in the directions i1; i2; . . . ; iNc , re-
spectively, the resulting modified stiffness matrix and
force vector are

K ¼
YNc

l¼1

mil
Jl
ðk̂kÞ ð42Þ

and

F ¼
YNc

l¼1

nil
Jl
ðf̂fextÞ ; ð43Þ

respectively. Using Eqs. (38), (42) and (43) the generalized
displacement vector d can be solved efficiently without the
application of any Lagrange multipliers [1].

2.3
The interaction integral and stress intensity factors
Let KI and KII denote the SIFs for mode-I and mode-II,
respectively. These SIFs can be evaluated using an inter-
action integral [34] converted to a domain form [35, 36].
For example,

KI ¼
E0

2
Mð1;2Þ ð44Þ

where

E0 ¼
E; plane stress

E

1� m2
; plane strain

(
ð45Þ

is the effective elastic modulus and Mð1;2Þ is the interaction
integral. Equation (44) includes the terms from the actual
mixed mode state for the given boundary conditions (su-
perscript 1) and the super-imposed near-tip mode I aux-
iliary state (superscript 2). In Eq. (44), Mð1;2Þ is given by

Mð1;2Þ ¼
Z
A

rð1Þij

ou
ð2Þ
i

ox1
þ rð2Þij

ou
ð1Þ
i

ox1
�Wð1;2Þd1j

" #
oq

oxj
dA

ð46Þ
where A is the area of the integral domain, rij and ui are
the components of stress tensor and displacement vector,
respectively, Wð1;2Þ is the mutual strain energy from the
two states and q is a weight function selected to have a
value of unity at the crack tip, zero along the boundary of
the domain and arbitrary elsewhere. Note that all quanti-
ties are evaluated with respect to the coordinate system
with the crack tip as the origin. Following similar con-
siderations KII can be calculated from Eqs. (44–46), except
the near-tip mode II state is selected as an auxiliary state
while computing Mð1;2Þ.

3
Rates of fracture parameters

3.1
Virtual crack extension
In fracture analysis, the coordinates of all meshless
nodes, or any other arbitrary point are measured using
the crack tip as the origin, where the x1 axis is oriented
along the direction of the crack length and the x2 axis is
perpendicular to the crack length. When the crack tip is
virtually perturbed by a small amount, say
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da ¼ da1; da2f gT for which da1 and da2 represent the
components of virtual crack extension in the x1 and x2

directions, the coordinates of all nodes and any arbitrary
point, except the crack-tip node (the reference point), are
virtually shifted in the opposite direction by the same
amount, as shown in the Fig. 2. In general, da has two
components, da1 and da2, respectively measured along
the crack-length direction and perpendicular to the
crack-length direction. The variation of any arbitrary
point x is then

dx ¼ dxI; if x ¼ xI

�da; otherwise

�
ð47Þ

where

dxI ¼
0; if I ¼ crack-tip node
�da; if I 6¼ crack-tip node

�
ð48Þ

Note that Eq. (47) is valid only when the crack-tip node is
virtually perturbed. If all nodes along the crack length are
virtually perturbed proportionally to their distance from
the crack tip, Eq. (47) can be generalized as

dxI ¼ ��ddcda; if I 2 nodes along crack length
�da; if I =2nodes along crack length

�
ð49Þ

where �ddc is the ratio of the distance between node I and
the crack tip to the length of the crack.

3.2
Variations of basis, weight and shape functions

3.2.1
Variations of basis function and its derivatives
Once the variation dx ¼ dx1; dx2f gT is determined, the
resulting variation of the basis function can be obtained as

dpTðxÞ ¼ fdp1ðxÞ; . . . ; dpmðxÞg ð50Þ

Likewise, the variation of the derivative of the basis
function with respect to xi can also be obtained as

dpT
;iðxÞ ¼ dp1;iðxÞ; . . . ; dpm;iðxÞ

� �
ð51Þ

where dpI;iðxÞ ¼ opIðxÞ=oxi. The explicit expressions of
dpTðxÞ and dpT

;iðxÞ for commonly used (linear and qua-
dratic) and enriched (radially enriched and fully enriched)
basis functions are given as follows:

Linear

pTðxÞ ¼ f1; x1; x2g ð52Þ
dpTðxÞ ¼ f0; dx1; dx2g ð53Þ
dpT

;iðxÞ ¼ f0; 0; 0g ð54Þ

Quadratic
pTðxÞ ¼ f1; x1; x2; x2

1; x1x2; x2
2g ð55Þ

dpTðxÞ ¼ f0; dx1; dx2; 2x1dx1; x1dx2 þ x2dx1; 2x2dx2g
ð56Þ

dpT
;iðxÞ ¼

f0; 0; 0; 2dx1; dx2; 0g; when i ¼ 1
f0; 0; 0; 0; dx1; 2dx2g; when i ¼ 2

�
ð57Þ

Radially enriched
pTðxÞ ¼ f1; x1; x2;

ffiffi
r
p
g ð58Þ

dpTðxÞ ¼ 0; dx1; dx2; d
ffiffi
r
p� �

ð59Þ

dpT
;iðxÞ ¼ 0; 0; 0; d

xi

2r
ffiffi
r
p

� �� �
ð60Þ

Fully enriched

pTðxÞ ¼
�

1; x1; x2;
ffiffi
r
p

cos
h
2
;

ffiffi
r
p

sin
h
2
;

ffiffi
r
p

sin
h
2

sin h;

ffiffi
r
p

cos
h
2

sin h

�
ð61Þ

dpTðxÞ ¼
�

0; dx1; dx2; d
ffiffi
r
p

cos
h
2

� �
; d

ffiffi
r
p

sin
h
2

� �
;

d
ffiffi
r
p

sin
h
2

sin h

� �
; d

ffiffi
r
p

cos
h
2

sin h

� ��
ð62Þ

dpT
;iðxÞ

¼

0
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where x1 ¼ r cos h and x2 ¼ r sin h.

ð63Þ

Detailed variations of dependent quantities in
Eqs. (58–63) are given in Appendix A.

3.2.2
Variations of weight function and its derivatives
The variation of the weight function, defined by Eq. (14),
can be obtained as

dwIðxÞ ¼
�1þb

2 1þb2 z2
I

z2
mI

� ��3þb
2

2b2zI
z2
mI

dzI

1�ð1þb2Þ�
1þb

2

; dzI � 0

0; dzI > 0

8>><
>>: ð64Þ

where

dzI ¼
1

zI
½ðx1 � x1IÞdðx1 � x1IÞ þ ðx2 � x2IÞdðx2 � x2IÞ�

ð65Þ
if zI ¼ kx� xIk. However, if zI is modified according to
Eq. (15),
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dzI ¼ k
s1þ s2 xð Þ

s0 xð Þ

� �k�1 ds1þ ds2 xð Þ
s0 xð Þ � s1þ s2 xð Þ

s2
0 xð Þ ds0 xð Þ

� �


 s0 xð Þ þ s1þ s2 xð Þ
s0 xð Þ

� �k

ds0 xð Þ ð66Þ

where

ds1 ¼
1

s1
ðx1I � x1cÞdðx1I � x1cÞ þ ðx2I � x2cÞdðx2I � x2cÞ½ �

ð67Þ

ds2ðxÞ ¼
1

s2ðxÞ
ðx1 � x1cÞdðx1 � x1cÞ½

þ ðx2 � x2cÞdðx2 � x2cÞ� ð68Þ

ds0ðxÞ ¼
1

s0ðxÞ
ðx1 � x1IÞdðx1 � x1IÞ½

þ ðx2 � x2IÞdðx2 � x2IÞ� ð69Þ
Similarly, the variation of the partial derivative of the
weight function is given by

dwI;i ¼ d
dwI

dzI
zI;i

� �
¼ d

dwI

dzI

� �
zI;i þ

dwI

dzI
dzI;i ð70Þ

where
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>>:

ð71Þ
and

dzI;i ¼
dðxi � xiIÞ

zI
� xi � xiI

z3
I

ðx1 � x1IÞdðx1 � x1IÞ½

þ ðx2 � x2IÞdðx2 � x2IÞ� ð72Þ
if zI ¼ kx� xIk. However, if zI is modified according to
Eq. (15),
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� �
ð73Þ

Equations (64) and (71) assume that the domain of influ-
ence zmI of node I is independent of an infinitesimally small
virtual crack perturbation. This assumption is justified
since any change in the domain of influence of a node is
negligible when the virtual crack perturbation is small.

3.2.3
Variations of shape function and its derivatives
Using Eqs. (8) and (23), the variations of the shape func-
tion UIðxÞ and its partial derivative UI;iðxÞ are

dUI ¼ dpTA�1CI þ pTdA�1CI þ pTA�1dCI ð74Þ
dUI;i ¼ dpT

;iA
�1CI þ dpTA�1

;i CI þ dpTA�1CI;i

þ pT
;idA�1CI þ pTdA�1

;i CI þ pTdA�1CI;i

þ pT
;iA
�1dCI þ pTA�1

;i dCI þ pTA�1dCI;i ð75Þ
where

dCI ¼ dwIðxÞpðxIÞ þ wIðxÞdpðxIÞ ð76Þ
dA ¼ dPTWPþ PTdWPþ PTWdP ð77Þ
dA�1 ¼ �A�1dAA�1 ð78Þ
dCI;i ¼ dwI;i xð Þp xIð Þ þ wI;i xð Þdp xIð Þ

þ dwI xð Þp;i xIð Þ þ wI xð Þdp;i xIð Þ ð79Þ
dA�1

;i ¼ � dA�1A;iA
�1 þ A�1dA;iA

�1 þ A�1A;idA�1
! "

ð80Þ
and

dA;i ¼ dPT
;iWPþ PT

;idWPþ PT
;iWdP

þ dPTW;iPþ PTdW;iPþ PTW;idP

þ dPTWP;i þ PTdWP;i þ PTWdP;i : ð81Þ

3.3
Rates of generalized displacements
Taking the variation on both sides of Eq. (38) yields,

dKdþ Kdd ¼ dF ð82Þ
where from Eqs. (42) and (43),

dK ¼
YNc

l¼1

mil
Jl

dk̂k
� �

ð83Þ

and

dF ¼
YNc

l¼1

nil
Jl

df̂f
ext

� �
ð84Þ

are the variations of modified stiffness matrix and force
vector, respectively. The variation of the generalized dis-
placement vector dd can then be solved from

Kdd ¼ dF� dKd ð85Þ
Note, the solution of dd can be obtained efficiently, since
the same set of linear equations as in Eq. (38), although
with a different fictitious load, i.e., the right hand side of
Eq. (85), is involved. Suppose the crack length is virtually
perturbed by a small arbitrary value da in the original
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direction of the crack length, i.e., da1 ¼ da and da2 ¼ 0 .
The derivative of the generalized displacement d with re-
spect to the crack length a can then be calculated as

od

oa
� dd

da
ð86Þ

Equation (86) was used for all numerical calculations
presented in forthcoming sections.

Note that by assigning appropriate values of da1 and
da2, similar expressions can be derived to calculate rates of
d with respect to crack length extensions in any direction.
For example, if the values of da1 and da2 are arbitrarily
selected, then dd= dak k provides the rate of the generalized

displacement with respect to the crack length extension at
an angle tan�1 da2=da1ð Þ with respect to the direction of
the crack length, where dak k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da2

1 þ da2
2

p
. This issue,

however, was not explored in detail during the course of
this study.

3.4
Rates of stress intensity factors
The derivative of the SIF KI with respect to crack length a
can be calculated from the derivatives of displacement,
strain, and stress with respect to a at all meshless nodes.
Differentiating both sides of Eq. (44) with respect to a
yields

Fig. 3. Rectangular plates
under far-field tension
(mode I); a SE(T) specimen,
b DE(T) specimen, and c
M(T) specimen
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oKI

oa
¼ E0

2

oMð1;2Þ

oa
ð87Þ

where
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¼
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o

oa

�
rij
ð1Þ ou1

ox1

ð2Þ
þrij

ð2Þ oui

ox1
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rij
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ox1

ð2Þ
"

þrij
ð2Þ oui

ox1

ð1Þ
�Wð1;2Þd1j

#
o

oa

oq

oxj

� �
dA ð88Þ

In Eq. (88), the derivatives of stress components rij with
respect to a can be obtained using the derivatives of
generalized displacements and the strain–displacement
relation in conjunction with the stress–strain relation.
Derivatives of the displacement components ui with re-
spect to a can be obtained using the derivatives of the
generalized displacements and the shape function values
of meshless nodes. Similarly, the derivative of KII with
respect to crack size a can also be computed from
Eqs. (87) and (88), given that the near-tip mode II state

is selected as the auxiliary state while computing
oM 1;2ð Þ=oa.

It should be noted that the sensitivity formulation de-
veloped in this study does not require any second-order
variations of the stiffness matrix, unlike existing finite el-
ement methods [19, 24]. As a result, the proposed method
is simpler than existing methods and can be easily ex-
tended to derive higher-order derivatives of stress-inten-
sity factors.

Fig. 5. SIF versus a=W ratio; a SE(T) specimen, b DE(T)
specimen, and c M(T) specimen

Fig. 4. Meshless discretizations; a uniformly spaced 121 nodes,
b additional 15 nodes at crack-tip region
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4
Numerical examples

4.1
Example 1: Mode-I problems
Consider three rectangular plates illustrated in Fig. 3a–c,
comprising single-edge tension [SE(T)], double-edge
tension [DE(T)], and middle tension [M(T)] specimens,
subjected to a far-field remote tensile stress r1 . For nu-
merical analysis, values of W ¼ L ¼ 1 unit and r1 ¼ 1
unit were selected for all three plates. The crack length-to-

width ratio ða=WÞ varied from 0.1 to 0.7. An elastic
modulus of 20:7
 106 units and Poisson’s ratio of 0.30
were used.

Due to symmetry, meshless discretizations were per-
formed for only half the plate for the SE(T) specimen, and
a quarter of the plate for the DE(T) and M(T) specimens,
as depicted by the shaded regions in Fig. 3a–c. A meshless
discretization consisting of 121 uniformly spaced nodes
was used for all three plates, as shown in Fig. 4a. However,
for a=W ¼ 0:1 and 0.2, 15 additional nodes were employed
around the crack tip in the P1P2P3P4 region, as shown in
the Fig. 4b. The domain of the plate in Fig. 4a was divided
by 10
 10 rectangular cells with corner points coincident
with the 121 meshless nodes, solely for the purposes of
numerical integration. The domain Q1Q2Q3Q4 of size
2b
 b with b ¼ minfa; ðW � aÞg was used to calculate the
interaction integral and its derivative, as shown in Fig. 4a.
An 8
 8 Gaussian integration scheme was employed over
the background grid. A fully enriched basis function and
b ¼ 3 were used for meshless analysis. A plane stress
condition was assumed for all three plates.

Figure 5a–c plot the normalized KI versus a=W , as
predicted by the meshless method for SE(T), DE(T), and
M(T) plates, respectively. Also plotted are the corre-
sponding finite element results [19] and other analytical KI

Fig. 6. Rates of SIF versus a=W ratio; a SE(T) specimen,
b DE(T) specimen, and c M(T) specimen

Fig. 7. Meshless discretizations; a uniformly spaced 441 nodes,
b additional 12 nodes at crack-tip region
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solutions available from current literature [37]. The
meshless results compare very well with existing solutions.

Figure 6a–c show a similar comparison of oKI=oa as a
function of a=W for all three plates. The plots in Fig. 6a–c
include meshless results from this study, finite element
results of Lin and Abel [19], and other solutions obtained
by differentiating the analytical expressions of KI as
developed by Gross [37], Tada [37], Irwin [37], and
Feddersen [37]. The oKI=oa results predicted using the
proposed meshless method in conjunction with the virtual
crack extension technique for the plate and crack geom-

etry considered in this study match very well with the
analytical and finite element solutions.

Note that the analytical expressions of KI are available
only for L=W ¼ 1 . Hence, Figs. 5b, c and 6b, c also
present respectively the results (KI and oKI=oa) of mesh-
less analysis for the case L /W = 2.5. For this case, meshless
analysis was performed for a quarter plate with dimen-
sions L = 2.5 units, W ¼ 1 unit and using 256 uniformly
distributed meshless nodes.

Fig. 8. Comparison of SIFs for various nodal refinements;
a SE(T) specimen, b DE(T) specimen, and c M(T) specimen

Fig. 9. Comparison of rates of SIFs for various nodal refine-
ments; a SE(T) specimen, b DE(T) specimen, and c M(T)
specimen
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Effect of nodal refinement and convergence of results
for all three specimens with L=W ¼ 1 were studied using a
finer meshless discretization consisting of 441 uniformly
spaced nodes, as shown in Fig. 7a. However, for a/W = 0.1
and 0.2, 12 additional nodes were employed around the
crack tip in the P1P2P3P4 region, as shown in the Fig. 7b.
Figure 8a–c compare the normalized KI versus a=W plots
for SE(T), DE(T), and M(T) plates, respectively, obtained
by using two meshless discretizations of Figs. 4 and 7.
Figure 9a–c show a similar comparison of oKI=oa as a
function of a=W for all three plates. The agreement
between the results of both discretizations is excellent.

4.2
Example 2: Mixed-mode problem
This mixed-mode example presents an edge-cracked plate,
fixed at the bottom and subjected to a far-field shear stress
s1 ¼ 1 unit applied on the top, as shown in Fig. 10a. The
dimensions of the plate were length 2L = 16 units and
width W = 7 units. The a /W ratio varied from 0.3 to 0.5. A
domain of size 2b1 
 2b2 with b1 ¼ b2 ¼ minfa; ðW � aÞg
was defined around the crack tip, as shown in Fig. 10a, to
calculate the interaction integral and its derivative. Fig-
ure 10b shows the meshless discretization for a/W = 0.5
using 324 uniformly spaced nodes. No nodal refinements
were employed. A background mesh with cell points co-
incident with meshless nodes was used. The elastic mod-
ulus and Poisson’s ratio were 30
 106 units and 0.25,
respectively. A fully enriched basis function, b ¼ 3, and
k ¼ 1 were used for meshless analysis. A plane strain
condition was assumed.

Tables 1 and 2 present, respectively, the predicted re-
sults for KI and oKI=oa and KII and oKII=oa, for the edge-
cracked plate under shear. In addition, both Tables 1 and
2 present finite-difference results for a 1% perturbation of
crack length calculated in conjunction with a standard fi-
nite element method. The results in Tables 1 and 2 show
that the proposed meshless method provides reasonably
accurate estimates for oKI=oa and oKII=oa in comparison
with the corresponding results of the finite-difference
method. The maximum difference between the results of
the proposed method and the finite-difference method is
less than 7%.

5
Conclusions
A Galerkin-based meshfree method was developed for
predicting the first-order derivatives of SIFs with respect
to the crack size in a linear-elastic structure containing a
single crack. The method comprises a meshless discreti-
zation of a cracked structure, a domain integral repre-
sentation of the fracture integral parameter, and a
sensitivity formulation in conjunction with a virtual crack
extension technique. Unlike existing finite element meth-

Table 1. Mode-I SIF and its
first-order derivative a/W SIF (KI) Rate of SIF (oKI/oa)

Proposed
method

FEM Differencea

(%)
Proposed
method

Finite
difference

Differencea

(%)

0.3 19.71 19.82 )0.56 6.671 7.143 )6.6
0.4 25.54 25.68 )0.55 9.662 9.643 +0.2
0.5 33.61 34.09 )1.41 15.73 15.14 )3.9

a Difference = (FEM or Finite difference ) Proposed method) · 100/FEM or finite difference

Table 2. Mode-II SIF and its
first-order derivative a/W SIF (KII) Rate of SIF (oKII/oa)

Proposed
method

FEM Differencea

(%)
Proposed
method

Finite
difference

Differencea

(%)

0.3 2.50 2.46 1.63 1.447 1.476 )1.97
0.4 3.54 3.49 1.43 1.477 1.393 +6.03
0.5 4.61 4.54 1.54 1.476 1.486 )0.67

a Difference = (FEM or Finite difference ) Proposed method) · 100/FEM or finite difference

Fig. 10. Edged-cracked plate under far-field shear (mixed-mode);
a geometry and loads, b meshless discretization for a=W ¼ 0:5
(324 nodes)
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ods, the proposed method does not require any second-
order variation of the stiffness matrix. Hence, the pro-
posed method is simpler than existing methods. The
method developed herein can be extended to obtain
higher-order derivatives of SIFs if desired. Several nu-
merical examples based on mode-I and mixed-mode
problems have been presented to illustrate the proposed
method. The results show that the first-order derivatives of
stress-intensity factors calculated using the proposed
method methods for the structural and crack geometry
considered in this study agree favorably with reference
solutions obtained either analytically (mode I) or using
finite-difference (mixed mode) method. For mixed-mode
problems, the maximum difference between the results of
proposed method and finite-difference method is less than
seven percent. Since the rates of the SIFs are calculated
analytically, the subsequent fracture reliability analysis can
be performed efficiently and accurately.

Appendix A
The variations of dependent quantities in Eqs. (58–63) are
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In Eq. (A.1–A.11),
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