
ORIGINAL PAPER

S. Rahman Æ B. N. Rao

Continuum Shape Sensitivity analysis of a mode-I fracture
in functionally graded materials

Received: 22 July 2004 / Accepted: 28 October 2004/ Published online: 17 December 2004
� Springer-Verlag 2004

Abstract This paper presents a new method for con-
ducting a continuum shape sensitivity analysis of a crack
in an isotropic, linear-elastic, functionally graded mate-
rial. This method involves the material derivative con-
cept from continuum mechanics, domain integral
representation of the J-integral and direct differentia-
tion. Unlike virtual crack extension techniques, no mesh
perturbation is needed to calculate the sensitivity of
stress-intensity factors. Since the governing variational
equation is differentiated prior to the process of dis-
cretization, the resulting sensitivity equations are inde-
pendent of approximate numerical techniques, such as
the meshless method, finite element method, boundary
element method, or others. In addition, since the
J-integral is represented by domain integration, only the
first-order sensitivity of the displacement field is needed.
Several numerical examples are presented to calculate
the first-order derivative of the J-integral, using the
proposed method. Numerical results obtained using the
proposed method are compared with the reference
solutions obtained from finite-difference methods for the
structural and crack geometries considered in this study.

Keywords Crack Æ Functionally graded
materials Æ J-integral Æ Linear-elastic fracture
mechanics Æ Shape sensitivity analysis Æ Material
derivative

1. Introduction

In recent years, functionally graded materials (FGMs)
have been introduced and applied in the development of
structural components subject to non-uniform service
requirements. FGMs, which possess continuously vary-
ing microstructural, mechanical and/or thermal proper-
ties, are essentially two-phase particulate composites,
such as ceramic and metal alloy phases, synthesized such
that the composition of each constituent changes con-
tinuously in one direction to yield a predetermined
composition profile [1]. The absence of sharp interfaces
in FGM greatly reduces material property mismatch,
which has been found to improve resistance to interfa-
cial delamination and fatigue crack propagation [2].
However, because the microstructure of FGM is gener-
ally heterogeneous, its dominant type of failure is crack
initiation and growth from inclusions. The extent to
which constituent material properties and the micro-
structure can be tailored to guard against potential
fracture and failure patterns is relatively unknown. Such
issues have motivated much of the current research into
the numerical computation of stress intensity factors
(SIFs) and its impact on the fracture of FGMs [3, 4].
However, in many applications of fracture mechanics,
derivatives of SIF with respect to crack size are also
needed for predicting stability and the arrest of crack
propagation in FGM. Another major use of SIF deriv-
atives is in the reliability analysis of cracked structures.
For example, first- and second-order reliability methods
[5] frequently used in probabilistic fracture mechanics
[6–12] require the gradient and Hessian of the perfor-
mance function with respect to crack length. In a linear-
elastic fracture, the performance function builds on SIF.
Hence, both first and second-order derivatives of SIF are
needed for probabilistic analysis.

For predicting the sensitivities of SIF under a mode-I
condition, some methods have already appeared for
homogenous materials. In 1988, Lin and Abel [13]
employed a virtual crack extension technique [14–17]
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and the variational formulation in conjunction with the
finite element method (FEM) to calculate the first-order
derivative of SIF for a structure containing a single
crack. Subsequently, Hwang et al. [18] generalized this
method to calculate both first and second-order deriva-
tives for structures involving multiple crack systems, an
axisymmetric stress state, and crack-face and thermal
loading. However, these methods require mesh pertur-
bation, which is a fundamental requirement of all virtual
crack extension techniques. For second-order deriva-
tives, the number of elements surrounding the crack tip
affected by mesh perturbation has a significant effect on
solution accuracy. To overcome this problem, Chen
et al. [19–21] recently applied concepts from shape sen-
sitivity analysis to calculate the first-order derivative of
SIFs. In this new method, the domain integral repre-
sentation of the J-integral (mode-I) or the interaction
integral (mixed-mode) is invoked and the material
derivative concept from continuum mechanics is then
used to obtain the first-order sensitivity of SIFs. How-
ever, the sensitivity equations presently available are
valid only for analyzing cracks in homogenous materi-
als. Hence, there is a clear need to develop new sensi-
tivity equations for cracks in FGMs.

This paper presents a new method for conducting
continuum shape sensitivity analyses of a mode-I crack
in an isotropic, linear-elastic FGM. The method
involves the material derivative concept from continuum
mechanics, domain integral representation of a J-inte-
gral, and direct differentiation. This paper is organized
as follows. Section 2 presents continuum shape sensi-
tivity analysis for non-homogeneous materials. Section 3
explains the J-integral and the sensitivity of J-integral
formulation for FGMs. This section also illustrates the
velocity field that was adopted in this study. Section 4
presents several numerical examples to demonstrate the
performance of the proposed continuum shape sensi-
tivity analysis method for non-homogeneous materials.
Finally, Section 5 presents summaries and conclusions
concerning the proposed formulation. Numerical results
of first-order sensitivities of J-integral or stress intensity
factors obtained using the proposed method are com-
pared with the reference solutions obtained using the
finite-difference method.

2. Shape sensitivity analysis

2.1 Velocity field

Consider a general three-dimensional body with a spe-
cific configuration, referred to as the reference configu-
ration, with domain X, boundary G, and a body material
point identified by position vector x 2 X. Consider the
motion of the body from the configuration with domain
W and boundary G into another configuration with
domain Ws and boundary Gs, as shown in Fig. 1. This
process can be expressed as

T: x! xs; x 2 X ð1Þ

where x and xs are the position vectors of a material
point in the reference and perturbed configurations,
respectively, T is a transformation mapping, and s is a
scalar time-like parameter denoting the amount of shape
change with

xs ¼ T x; sð Þ
Xs ¼ T X; sð Þ
Cs ¼ T C; sð Þ

ð2Þ

A velocity field V can then be defined as

V xs;sð Þ ¼ dxs

ds
¼ dT x; sð Þ

ds
¼ oT x; sð Þ

os
: ð3Þ

In the neighborhood of an initial time s = 0, assuming a
regularity hypothesis and ignoring high-order terms, T
can be approximated by

T x; sð Þ ¼ T x; 0ð Þ þ s
oT x; 0ð Þ

os
þ O s2

� �
ffi xþ sVðx; 0Þ; ð4Þ

where x ¼ T x; 0ð Þ and V xð Þ ¼ V x; 0ð Þ.

2.2 Sensitivity Analysis

The variational governing equation for a non-homoge-
neous or homogeneous structural component with do-
main W can be formulated as [22, 23]

aX z; �zð Þ �
Z

rijðzÞeij �zð ÞdX ¼ ‘X �zð Þ �
Z

X
f b

i �zidX

þ
Z

C
Ti�zidC; for all �z 2 Z ð5Þ

where rijðzÞ and eij �zð Þ are components of the stress and
strain tensors of the displacement z and virtual dis-
placement �z, respectively, f b

i and Ti are the ith compo-
nent of body force and surface traction, respectively, and
�zi is the ith component of �z, Z is the space of kinemat-
ically admissible virtual displacements, and aX z; �zð Þ and
‘X �zð Þ are energy bilinear and load linear forms, respec-
tively. The subscript W in Eq. (5) is used to indicate the
dependency of the governing equation on the shape of
the structural domain.

Fig. 1 Variation of domain

63



The pointwise material derivative at x 2 X is defined
as [22, 23]

_z ¼ lim
s!0

zs xþ sVðxÞð Þ � zðxÞ
s

� �
: ð6Þ

If zs has a regular extension to a neighborhood of Xs,
then

_z xð Þ ¼ z0 xð Þ þ rzTV xð Þ; ð7Þ
where

z0 ¼ lim
s!0

zsðxÞ � zðxÞ
s

� �
ð8Þ

is the partial derivative of z and ~N¼f@=@x1;@=@x2;
@=@x3gT is the vector of gradient operators. One attractive
feature of the partial derivative is that, given the
smoothness assumption, it commutes with the derivatives
with respect to xi , i=1, 2, and 3, since they are derivatives
with respect to independent variables, i.e.,

oz

oxi

� �0
¼ o

oxi
ðz0Þ; i ¼ 1; 2; and 3 : ð9Þ

Let w1 be a domain functional, defined as an integral
over Ws, i.e.,

w1 ¼
Z

Xs

fsðxsÞdXs; ð10Þ

where fs is a regular function defined on Xs. If W is Ck

regular, then the material derivative of w1 at W is [22, 23]

_w1 ¼
Z

X
f 0ðxÞ þ divf ðxÞVðxÞ½ �dX: ð11Þ

For a functional form of

w2 ¼
Z

Xs

gðzs; zsÞdXs ; ð12Þ

the material derivative of w2 at W using Eqs. (10) and
(12) is [23]

_w2 ¼
Z

X
g;zi

_zi � g;zi
ðzi;jVjÞ þ g;zij

_zi; j

h

�g;zi;j
ðzi; jkVkÞ þ divðgVÞ

i
dX; ð13Þ

in which a comma is used to denote partial differentia-
tion, e.g., zi; j ¼ ozi=oxj, zi;jk ¼ o2zi=oxjoxk, _zi;j ¼ o_zi=oxj,
g;zi
¼ og=ozi, g;zi;j

¼ og=ozi;j and Vj is the jth component
of V. In Eq. (13), the material derivative _z is the solution
to the sensitivity equation obtained by taking the
material derivative of Eq. (5).

If no body force is involved, the variational equation
(Eq. 5) can be written as

aXðz; �zÞ �
Z

X
rijðzÞeijð�zÞdX ¼ lXð�zÞ �

Z

C
Ti�zidC; ð14Þ

Taking the material derivative of both sides of Eq. (14)
and using Eq. (9),

aX _z; �zð Þ ¼ ‘0V �zð Þ � a0V z; �zð Þ; 8�z 2 Z ð15Þ
where subscript V indicates the dependency of the terms
on the velocity field. The terms ‘0V �zð Þ and a0V z; �zð Þ can be
further derived as [22, 23]

l0Vð�zÞ ¼
Z

C
�Tið�zi;jVjÞ
�

þðTi�ziÞ; jnj þ jCðTi�ziÞ�ðViniÞ
o
dC ð16Þ

and

a0V ðz; �zÞ ¼ �
Z

X

�
rijðzÞð�zi;kVk; jÞ þ rijð�zÞðzi;kVk; jÞ�
eijð�zÞDijkl;meklðzÞVm � rijðzÞeijð�zÞdivV

� �
dX ; ð17Þ

where ni is the ith component of unit normal vector n, jC

is the curvature of the boundary, zi; j ¼ ozi=oxj,
�zi; j ¼ o�zi=oxj, Vi; j ¼ oVi=oxj, Dijkl is the constitutive
tensor, and Dijkl;m ¼ oDijkl=oxm. Note that the third term
in the integrand on the right hand side of Eq. (17) arises

Fig. 2 J-integral fracture param-
eter; a A mode-I crack in func-
tionally graded material; and
b Arbitrary contour around a
crack
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naturally in the formulation of continuum shape sensi-
tivity analysis for non-homogeneous materials, but
vanishes for homogeneous materials. If the modulus of
elasticity E(x) is the only material property that varies,
then Dijkl;m ¼ oE xð Þ=oxmð ÞDijkl=E xð Þ.

To evaluate the sensitivity expression of Eq. (13), a
numerical method is needed to solve Eq. (14), for which
a standard FEM was used in this study. If the solution z
of Eq. (14) is obtained using an FEM code, the same
code can be used to solve Eq. (15) for _z. This solution of
_z can be obtained efficiently since it only requires the
evaluation of the same set of FEM matrix equations
with a different fictitious load, which is the right hand
side of Eq. (15).

3. The J -integral and its sensitivity

3.1 The J-integral

Consider a two-dimensional, linear-elastic, isotropic
FGM with a rectilinear crack of length 2a, subjected to
external loads S1; S2; . . . ; SM , as shown in Fig. 2(a). It is
assumed that the modulus of elasticity E is the only
material property that varies, according to

E ¼ E x1ð Þ � 0 ð18Þ
and is a continuous, bounded, and at least piecewise
differentiable function on domain W. The x1)x2 co-
ordinate system is defined in Fig. 2(a). In reality, FGMs
are multi-phase materials with general, locally discon-
tinuous material properties. Hence, E x1ð Þ in Eq. (18)
should be viewed as a smoothly varying ‘‘effective’’
material property of FGM. Also, Poisson’s ratio m was
held constant. This is a reasonable assumption, since
variation of Poisson’s ratio is usually small compared
with that of the elastic modulus.

Using an arbitrary counter-clockwise path G around
the crack tip, as shown in Fig. 2(b), the path indepen-
dent J-integral under mode-I condition for a cracked
body is given by [24]

J ¼
Z

C
W d1j � rij

ozi

oxi

� �
njdC; ð19Þ

where W ¼
R

rijdeij is the strain energy density, and nj is
the jth component of the outward unit vector normal to
an arbitrary contour G enclosing the crack tip. For linear
elastic material models it can shown that W ¼
rijeij=2 ¼ eijDijklekl=2. Applying the divergence theorem,
equilibrium and strain-displacement conditions the
contour integral in Eq. (19) can be converted into
equivalent domain forms, given by [4]

J ¼
Z

A
rij

ozi

oxi
� W d1j

� �
oq
oxj

dA ð20Þ

and

J ¼
Z

A
rij

ozi

oxi
� W d1j

� �
oq
oxj

dA

�
Z

A

1
2 eij

oDijkl

ox1
qdA ð21Þ

for homogeneous and functionally graded materials,
respectively, where d1j is the Kronecker delta, A is the
area inside the contour and q is a weight function chosen
such that it has a value of unity at the crack tip, zero
along the boundary of the domain, and is arbitrary
elsewhere. By comparing Eq. (21) to the classical
J-integral in Eq. (20), the presence of material non-
homogeneity results in the addition of a second domain
integral. Although this integral is negligible for a path
very close to the crack tip, it must be accounted for with
relatively large integral domains for the J-integral to be
accurately calculated. The sensitivity formulation pre-
sented in the following section as well as all numerical
results in the subsequent section are based on the
J-integral for FGM from Eq. (21).

3.2 Sensitivity of the J-integral

For two-dimensional plane stress or plane strain prob-
lems, once the stress-strain and strain-displacement
relationships are applied, Eq. (21) can be expressed as

J ¼
Z

A
r11e11 þ r12

oz2
ox1

� �
oq
ox1

dA

þ
Z

A
r12e11 þ r22

oz2
ox1

� �
oq
ox2

dAþ

� 1
2r11e11 þ r12e12 þ 1

2 r22e22
� � oq

ox1
dA

�
Z

A

1
2r11e11qþ r12e12qþ 1

2r22e22q
� � oE

ox1
dA; ð22Þ

which can be further simplified as

J ¼
Z

A
hdA; ð23Þ

where

h ¼ h1 þ h2 þ h3 þ h4 � h5 � h6 � h7 � h8 � h9 � h10:

ð24Þ
with hi, i = 1,…, 10 for those that depend on eij; zi;
q;E x1ð Þ; m; and some of their derivatives. The explicit
expressions of h, i= 1,…,10 are given in Appendix A for
both plane stress and plane strain conditions. In accor-
dance with Eq. (11), the material derivative of the
J-integral can be expressed as

_J ¼ �
Z

A
h0 þ divðhVÞ½ �dA ; ð25Þ

where

h0 ¼ h01 þ h02 þ h03 þ h04 � h05 � h06 � h07 � h08 � h09 � h010
ð26Þ

and V ¼ V1; V2f gT . Assuming crack length a to be the
variable of interest, a change in crack length in the x1
direction (mode-I) only, i.e., V ¼ V1; 0f gT , results in the
expression of Eq. (25) as
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_J ¼
Z

A
H1 þ H2 þ H3 þ H4 � H5ð

�H6 � H7 � H8 � H9 � H10ÞdA; ð27Þ
where

Hi ¼ h0i þ
oðhiV1Þ

ox1
; i ¼ 1; . . . ; 10: ð28Þ

For illustrative purposes, consider the first term

H1 ¼ h01 þ
o h1V1ð Þ

ox1
ð29Þ

under plane stress conditions, which can be expanded as

H1 ¼
1

2 1� m2ð Þ Ee211
oq
ox1

� �0
þ o

ox1
Ee211

oq
ox1

V1

� �� �

¼ E0e211
2 1� m2ð Þ

oq
ox1
þ Ee11e011

1� m2ð Þ
oq
ox1

þ Ee211
2 1� m2ð Þ

oq0

ox1
þ e211V1

2 1� m2ð Þ
oE
ox1

oq
ox1

þ Ee11V1

1� m2ð Þ
oe11
ox1

oq
ox1
þ Ee211V1

2 1� m2ð Þ
o2q
ox21

þ Ee211
2 1� m2ð Þ

oq
ox1

oV1

ox1
: ð30Þ

In this study, velocity field V was chosen such that the
finite element mesh in the domain over which the
J-integral in the Eq. (21) is evaluated has a virtual rigid
body translation along with the crack tip. Velocity field
V is constant in the region over which the J-integral is
evaluated, varies smoothly in the rest of the domain, is
zero along the boundary excluding the crack face and
the essential boundary, and varies smoothly along the
crack face and the essential boundary. The velocity field
will be explained in more detail in a forthcoming section.
Since q is defined around the crack tip in the domain
over which the J-integral is evaluated, if the crack tip
moves, the value of q around the new crack tip will be
same as that of the old crack tip. Hence, _q ¼ 0 .
Therefore,

q0 ¼ _q�rV T qV ¼ �rT qV

¼ � oq
ox1

V1 �
oq
ox2

V2 ¼ �
oq
ox1

V1 : ð31Þ

Also, since velocity field V is constant in the region over
which the J-integral is evaluated,

oVi

oxj
¼ 0; i; j ¼ 1; 2; ð32Þ

which yields

oq0

ox1
¼ � o2q

ox21
V1 ð33Þ

oq0

ox2
¼ � o2q

ox1ox2
V1: ð34Þ

Since E xð Þ is independent of the change in crack length,

E0 ¼ 0: ð35Þ
Hence,

_E ¼ rT EV ¼ oE
ox1

V1: ð36Þ

Using Eq. (7), and the strain-displacement relationship,
it can be shown that

e011 ¼
o_z1
ox1
� o2z1

ox21
V1; ð37Þ

e022 ¼
o_z2
ox2
� o2z2

ox2ox1
V1; ð38Þ

and

e012 ¼ 1
2

o_z1
ox2
� o2z1

ox2ox1
V1 þ o_z2

ox1
� o2z2

ox2
1

V1

� 	
: ð39Þ

Substituting Eqs. (32, 33, 35) and (37) into Eq. (30)
followed by simplification leads to

H1 ¼
Ee11
1� m2ð Þ

o_z1
ox1

oq
ox1
þ e211V1

2 1� m2ð Þ
oE
ox1

oq
ox1

: ð40Þ

A similar procedure can be carried out using Eq. (31–39)
to obtain the remaining expressions of Hi, i = 1,…, 10
for plane stress and plane strain conditions, respectively.
Equations B1–B10 and B11–B20 in Appendix B provide
explicit expressions of Hi, i = 1,…, 10 for plane stress

Fig. 3 A flowchart for continuum sensitivity analysis of crack size

66



and plane strain conditions, respectively. When inserted
into Eq. (27), these expressions yield the first-order
sensitivity of J with respect to crack size. Note that when
the velocity field is unity at the crack tip, _J is equal to
oJ=oa.

The integral in Eq. (27) is independent of the domain
size A and can be calculated numerically using standard
Gaussian quadrature. A 2 · 2 or higher integration rule
is recommended to calculate _J . A flow diagram for cal-
culating the sensitivity of J is shown in Fig. 3.

3.3 Velocity Field Definition

Defining the velocity field is an important step in con-
tinuum shape sensitivity analysis. Applying an inap-
propriate velocity field may yield inaccurate sensitivity
results. The velocity field must meet several stringent
theoretical and practical criteria [26]. A number of
methods have been proposed in the literature to com-
pute the velocity field [26]. The following example
illustrates the one adopted in this study for sensitivity
analysis of a mode-I fracture in FGM.

Consider an edge-cracked plate with length 2L, width
W and crack length a. Due to symmetry of the geometry
only half of the plate has been modeled, as shown in
Fig. 4. In Fig. 4, ABCD is the domain of size 2b1 · b2
over which the J-integral and its sensitivity is evaluated,
�L is equal to half the length of plate (L) minus the
maximum length of the finite element along the natural
boundary in the x2 direction. The velocity field V used in
this study is defined as

V xð Þ ¼ V1 xð Þ
V2 xð Þ


 �
¼ V1;tip

C1 x1ð ÞC2 x2ð Þ
0


 �
; ð41Þ

where

C1 x1ð Þ ¼
1; if x1j j � b1
x1�Wþa
b1�Wþa ; if x1 > b1
x1þa
a�b1

; if x1 < �b1

8
<

:
; ð42Þ

C2 x2ð Þ ¼
1; if x2 � b2
�L�x2
�L�b2

; if b2 < x2 � �L ,

0; if x2 > �L

8
<

:
ð43Þ

and V1;tip ¼ V1 0ð Þ is the x1-component of velocity at the
crack tip. Eq. (41) has been employed in all numerical
examples presented in the next section. This velocity
field ensures that the finite element mesh in the domain
over which the J-integral and its sensitivity is evaluated
have a virtual rigid body translation along with the

Fig. 4 Schematic for velocity field definition for cracked plate

Fig. 5 Edge-cracked plate under mode I loading; a Geometry and
loads for fixed grip loading; b Membrane loading; c Bending; and
d Half model
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crack tip. The velocity field is constant in the region
ABCD, varies bi-linearly in rest of the domain, is zero
along the boundary excluding the crack face and
essential boundary, and varies linearly along the crack
face and essential boundary.

4. Numerical examples

4.1 Example 1: Sensitivity Analysis of Edge-Cracked
Plate

Consider an edge-cracked plate with length L = 8 units,
width W = 1 unit, and crack length a, as shown in
Fig. 5(a). Three loading conditions were considered,
including uniform fixed grip loading (constant strain e0),
membrane loading (constant tensile stress rt), and pure
bending (linear stress rb). Figs. 5a, 5b, and 5c show the
schematics of the three loading conditions. The elastic
modulus was assumed to follow an exponential function,
given by

E x1ð Þ ¼ E1 exp gx1ð Þ; 0 � x1 � W ; ð44Þ
where E1 ¼ Eð0Þ, E2 ¼ EðW Þ, and g ¼ ln E2=E1ð Þ. In
Eq. (44), E1 and g are two independent material
parameters that characterize the elastic modulus varia-
tion. The following numerical values were used: E1 ¼ 1
unit, E2=E1 ¼ expðgÞ ¼ 0:1; 0:2; 5; and 10, and a=W ¼
0:1; 0:2; 0:3; 0:4; 0:5 and 0:6 . Poisson’s ratio was held
constant with m = 0.3. A plane strain condition was
assumed. Erdogan and Wu [27], who originally studied

this example, provided a theoretical solution for nor-
malized mode-I stress intensity factors.

Due to the symmetry of geometry and load, only half
of the plate was analyzed, as shown in Fig. 5(d). FEM
models used in the analysis for a=W ¼ 0:1; 0:2;
0:3; 0:4; 0:5 and 0:6 are shown in Figs. 6 (a–f), respec-
tively. FEM discretization for a/W = 0.1 involves 1421
nodes, 434 eight-noded quadrilateral elements, six
focused quarter-point six-noded triangular elements, for
a/W = 0.2 involves 1193 nodes, 360 eight-noded
quadrilateral elements, six focused quarter-point six-
noded triangular elements, for a/W = 0.3 involves 1205
nodes, 364 eight-noded quadrilateral elements, eight
focused quarter-point six-noded triangular elements, for
a/W = 0.4 involves 1289 nodes, 390 eight-noded
quadrilateral elements, 12 focused quarter-point six-
noded triangular elements, for a/W = 0.5 involves 1361
nodes, 412 eight-noded quadrilateral elements, 16
focused quarter-point six-noded triangular elements and
for a/W = 0.6 involves 1289 nodes, 390 eight-noded
quadrilateral elements, 12 focused quarter-point six-
noded triangular elements. Depending on the a=W ratio,
between six and 12 focused, quarter-point triangular
elements were deployed to represent crack-tip singular-
ity. A 2 · 2 Gaussian integration was employed. The size
of the domain (2b1 · b2) around the crack tip used to
evaluate the J-integral and its sensitivity for
a=W ¼ 0:1; 0:2; 0:3; 0:4; 0:5 and 0:6 are respectively as

Fig. 6 FEM discretization of edge-cracked plate under mode I
loading; a a/W = 0.1; b a/W = 0.2; c a/W = 0.3; d a/W = 0.4;
(e) a/W = 0.5; and f a/W = 0.6

Table 1 Sensitivity of J for an edge-cracked plate by the proposed
and finite-difference methods (E2/E1 = 0.1)

a/W Normalized SIFa Sensitivity of J-integral (@J=@a )

Present
Results

Erodogan
& Wu [27]

Proposed
Method

Finite
Difference

Differenceb

(percent)

a Fixed grip loading (constant strain e0)
0.1 1.1577 1.1648 8.0745 8.0745 0.0002
0.2 1.2892 1.2963 18.0526 18.0527 0.0006
0.3 1.4965 1.5083 41.5662 41.5667 0.0012
0.4 1.8009 1.8246 99.9351 99.9367 0.0016
0.5 2.2583 2.3140 259.7135 259.7208 0.0028
0.6 2.9997 3.1544 772.5495 772.5706 0.0027

b Membrane loading (constant tensile stress rt)
0.1 0.8096 0.8129 5.4641 5.4648 0.0120
0.2 1.2925 1.2965 23.0400 23.0408 0.0038
0.3 1.8488 1.8581 71.7504 71.7516 0.0017
0.4 2.5454 2.5699 206.2253 206.2301 0.0023
0.5 3.5001 3.5701 601.9136 601.9302 0.0028
0.6 4.9645 5.1880 1939.6908 1939.7545 0.0033

c Pure bending (linear stress rb)
0.1 2.0289 2.0427 15.3509 15.3494 )0.0096
0.2 1.8907 1.9040 21.1042 21.1033 )0.0039
0.3 1.8662 1.8859 35.2488 35.2489 0.0005
0.4 1.9437 1.9778 66.9626 66.9627 0.0001
0.5 2.1468 2.2151 145.0595 145.0640 0.0031
0.6 2.5544 2.7170 373.0417 373.0470 0.0014

a Normalized SIF = KI=r0

ffiffiffiffiffiffi
pa
p

, KI=rt
ffiffiffiffiffiffi
pa
p

, KI=rb
ffiffiffiffiffiffi
pa
p

for fixed
grip, membrane, and pure bending loads, respectively
b Difference = (@J=@a by finite-difference method – @J=@a by
proposed method) · @J/@a 100 by finite-difference method
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follows: 0.1 · 0.05, 0.2 · 0.1, 0.4 · 0.2, 0.6 · 0.3, 0.8 ·
0.4, and 0.6 · 0.3 units.

Table 1 shows normalized mode-I stress intensity
factors KI=r0

ffiffiffiffiffiffi
pa
p

, KI=rt
ffiffiffiffiffiffi
pa
p

, KI=rb
ffiffiffiffiffiffi
pa
p

, and oJ=oa
under fixed grip, membrane loading, and bending,
respectively for various a=W ratios and for E2=E1 ¼ 0:1,
where r0 ¼ E1e0= 1� m2

� �
, e0 ¼ 1, rt ¼ rb ¼ 1 unit. Re-

sults show that the predicted, normalized SIF obtained
in the present study agrees very well with the analytical
results of Erdogan and Wu [27] for all three types of
loading and for various a=W ratios. Table 1 also pre-
sents the numerical results of oJ=oa. Two sets of results
are shown for oJ=oa, the first computed using the pro-
posed method and the second calculated using the finite-
difference method. A perturbation of 10)5 times the
crack length was used in the finite-difference calcula-
tions. The results in Table 1 demonstrate that contin-
uum shape sensitivity analysis provides accurate
estimates of oJ=oa when compared with corresponding
results using the finite-difference method. Unlike the
virtual crack extension technique, no mesh perturbation
is required using the proposed method. Similar results
are presented in Table 2 for E2=E1 ¼ 0:2, in Table 3 for
E2=E1 ¼ 5:0, and in Table 4 for E2=E1 ¼ 10:0. The
results in Tables 1–4 demonstrate that continuum shape
sensitivity analysis provides accurate estimates of oJ=oa
for various combinations of loading conditions, a/W,
and E2=E1 ratios. The maximum difference between the

Table 2 Sensitivity of J for an edge-cracked plate by the proposed
and finite-difference methods (E2/E1 = 0.2)

a/W Normalized SIFa Sensitivity of J-integral (@J=@a )

Present
Results

Erodogan
& Wu [27]

Proposed
Method

Finite
Difference

Differenceb

(percent)

a Fixed grip loading (constant strain e0)
0.1 1.1627 1.1670 7.2425 7.2425 0.0003
0.2 1.3020 1.3058 15.1677 15.1678 0.0008
0.3 1.5269 1.5330 33.3988 33.3993 0.0014
0.4 1.8636 1.8751 77.6551 77.6564 0.0017
0.5 2.3775 2.4031 196.5079 196.5134 0.0028
0.6 3.2208 3.2981 571.9119 571.9329 0.0037

b Membrane loading (constant tensile stress rt)
0.1 1.0519 1.0553 6.2970 6.2969 )0.0007
0.2 1.3925 1.3956 18.5807 18.5809 0.0010
0.3 1.8338 1.8395 48.9682 48.9688 0.0012
0.4 2.4314 2.4436 127.5675 127.5700 0.0020
0.5 3.2959 3.3266 348.8805 348.8897 0.0026
0.6 4.6717 4.7614 1073.4914 1073.5312 0.0037

c Pure bending (linear stress rb)
0.1 1.6675 1.6743 9.4842 9.4843 0.0017
0.2 1.5893 1.5952 12.4843 12.4843 0.0003
0.3 1.6037 1.6122 20.2284 20.2288 0.0020
0.4 1.7070 1.7210 37.4875 37.4879 0.0011
0.5 1.9264 1.9534 79.4636 79.4662 0.0033
0.6 2.3419 2.4037 200.3289 200.3363 0.0037

a Normalized SIF = KI=r0

ffiffiffiffiffiffi
pa
p

, KI=rt
ffiffiffiffiffiffi
pa
p

, KI=rb
ffiffiffiffiffiffi
pa
p

for fixed
grip, membrane, and pure bending loads, respectively
b Difference = (@J=@a by finite-difference method – @J=@a by
proposed method) · @J/@a 100 by finite-difference method

Table 3 Sensitivity of J for an edge-cracked plate by the proposed
and finite-difference methods (E2/E1 = 5.0)

a/W Normalized SIFa Sensitivity of J-integral (@J=@a)

Present
Results

Erodogan
& Wu [27]

Proposed
Method

Finite
Difference

Differenceb

(percent)

a Fixed grip loading (constant strain e0)
0.1 1.2407 1.2372 4.9757 4.9757 0.0001
0.2 1.4965 1.4946 8.7112 8.7112 0.0005
0.3 1.9133 1.9118 16.7389 16.7391 0.0011
0.4 2.5748 2.5730 35.3423 35.3429 0.0016
0.5 3.6601 3.6573 83.2082 83.2101 0.0023
0.6 5.5760 5.5704 229.0280 229.0357 0.0034

b Membrane loading (constant tensile stress rt)
0.1 0.9937 0.9908 2.4673 2.4673 0.0002
0.2 1.1334 1.1318 3.5414 3.5414 )0.0004
0.3 1.3709 1.3697 6.0340 6.0341 0.0013
0.4 1.7498 1.7483 11.6301 11.6303 0.0016
0.5 2.3678 2.3656 25.4610 25.4615 0.0021
0.6 3.4494 3.4454 66.0007 66.0028 0.0032

c Pure bending (linear stress rb)
0.1 0.6405 0.6385 0.9514 0.9514 0.0002
0.2 0.6882 0.6871 1.0564 1.0564 )0.0019
0.3 0.7787 0.7778 1.4992 1.4992 0.0017
0.4 0.9246 0.9236 2.4829 2.4830 0.0016
0.5 1.1595 1.1518 4.7736 4.7737 0.0018
0.6 1.5620 1.5597 11.0239 11.0242 0.0029

a Normalized SIF = KI=r0

ffiffiffiffiffiffi
pa
p

, KI=rt
ffiffiffiffiffiffi
pa
p

, KI=rb
ffiffiffiffiffiffi
pa
p

for fixed
grip, membrane, and pure bending loads, respectively
b Difference = (@J=@a by finite-difference method – @J=@a by
proposed method) · 100 by finite-difference method

Table 4 Sensitivity of J for an edge-cracked plate by the proposed
and finite-difference methods (E2/E1 = 10.0)

a/W Normalized SIFa Sensitivity of J-integral (@J=@a )

Present
Results

Erodogan
& Wu [27]

Proposed
Method

Finite
Difference

Differenceb

(percent)

a Fixed grip loading (constant strain e0)
0.1 1.2711 1.2664 4.7261 4.7261 0.0001
0.2 1.5762 1.5740 8.2725 8.2725 0.0006
0.3 2.0739 2.0723 15.7277 15.7279 0.0011
0.4 2.8752 2.8736 33.0064 33.0069 0.0015
0.5 4.2159 4.2140 77.4798 77.4817 0.0024
0.6 6.6340 6.6319 213.0891 213.0965 0.0035

b Membrane loading (constant tensile stress rt)
0.1 0.8664 0.8631 1.6960 1.6960 )0.0015
0.2 1.0035 1.0019 2.2681 2.2681 0.0001
0.3 1.2302 1.2291 3.6603 3.6604 0.0015
0.4 1.5896 1.5884 6.7545 6.7546 0.0007
0.5 2.1775 2.1762 14.2718 14.2722 0.0027
0.6 3.2138 3.2124 35.9205 35.9217 0.0035

c Pure bending (linear stress rb)
0.1 0.5102 0.5082 0.5625 0.5625 )0.0026
0.2 0.5658 0.5648 0.6124 0.6124 )0.0003
0.3 0.6595 0.6588 0.8508 0.8508 0.0021
0.4 0.8050 0.8043 1.3787 1.3787 )0.0004
0.5 1.0358 1.0350 2.5977 2.5978 0.0031
0.6 1.4294 1.4286 5.8906 5.8908 0.0037

a Normalized SIF = KI=r0

ffiffiffiffiffiffi
pa
p

, KI=rt
ffiffiffiffiffiffi
pa
p

, KI=rb
ffiffiffiffiffiffi
pa
p

for fixed
grip, membrane, and pure bending loads, respectively
b Difference = (@J=@a by finite-difference method – @J=@a by
proposed method) · @J=@a 100 by finite-difference method
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results of proposed and finite-difference methods is less
than 0.012 percent.

4.2 Example 2: Sensitivity Analysis of Three-Point Bend
Specimen under Mode-I

Consider a three-point bend specimen with length L =
54 units, depth 2H = 10 units, and thickness t = 1 unit,
as shown in Fig. 7(a). A concentrated load P = 1 unit
was applied at the middle of the beam of span LS = 50
units and two supports were symmetrically placed with
respect to an edge crack of length a. In the depth
direction, the beam consists of 2h units deep FGM
sandwiched between two distinct homogeneous materi-
als, each of which has a depth of H � h . E1 and E2

represent the elastic moduli of the bottom and top lay-
ers. Two types of elastic modulus variations were con-
sidered: linear variation and exponential variation of the
FGM layer, with the end values matching the properties

of the bottom and top layers. Mathematically, linear
variation is defined as

E x1ð Þ ¼
E2; x1 � h
E1þE2

2 þ E2�E1

2h x1; �h � x1 � h
E1; x1 � �h

8
<

:
ð45Þ

and exponential variation is defined as

E x1ð Þ ¼
E2; x1 � hffiffiffiffiffiffiffiffiffiffi

E1E2

p
exp x1

2h ln
�

E2

E1
Þ; �h � x1 � h

E1; x1 � �h

8
<

:
; ð46Þ

where E1, E2, and 2h are material parameters. The fol-
lowing numerical values were chosen: 2h ¼ 1 unit,
E1 ¼ 1 unit, and E2=E1 ¼ 0:05; 0:1; 0:2; 0:5; 1; 2; 5; 10;
and 20. For each E2=E1 ratio, three different crack
lengths with a=2H ¼ 0:45; 0:5 and 0:55 were selected
with crack tips either at the middle of the FGM
layer (a=2H ¼ 0:5), or at the material interfaces

Fig. 7 Three-point bend speci-
men under mode I loading; a
Geometry and loads; and b Half
model

Fig. 8 FEM discretization of
three-point bend specimen with
a/2H = 0.50 under mode I
loading
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(a=2H ¼ 0:45 or 0:55). Poisson’s ratio was held constant
at m = 0.3. A plane stress condition was assumed.

Due to symmetric geometry and loading with respect
to the crack, only a half model of the beam was ana-
lyzed, as shown in Fig. 7(b). FEM discretization of the
half beam model for a=2H ¼ 0:45; 0:5 and 0:55 involves
2669 nodes, 838 eight-noded quadrilateral elements,
eight focused quarter-point six-noded triangular
elements. Typical FEM discretization for a=2H ¼ 0:5
is shown in Figs. 8. A 2 · 2 Gaussian integration
was employed. A domain size of 8 · 5 units around the
crack tip was used to evaluate the J-integral and its
sensitivity.

Table 5 shows the predicted normalized mode-I SIF
KI

ffiffiffiffi
H
p

=P , obtained in the present study for a=2H ¼ 0:45
and various combinations of E2=E1, as well as for linear
and exponential variations of the elastic modulus.
Table 5 also presents the numerical results of oJ=oa for
both linear and exponential elastic modulus variations.
Two sets of results are shown for oJ=oa, the first com-
puted using the proposed method and second calculated
using the finite-difference method. A perturbation of
10)5 times the crack length was used for finite-difference
calculations. The results in Table 5 demonstrate that
continuum shape sensitivity analysis again provides
accurate estimates of oJ=oa as compared with corre-
sponding results from the finite-difference method for
various E2=E1 under both linear and exponential elastic
modulus variations. Similar results are presented in
Table 6 for a=2H ¼ 0:50, and in Table 7 for
a=2H ¼ 0:55. Indeed, the results in Tables 5–7 demon-

strate that continuum shape sensitivity analysis provides
accurate estimates of oJ=oa for various combinations of
elastic modulus variations, E2=E1, and a=2H ratios.

Table 5 Sensitivity of J for three-point bend specimen by the
proposed and finite-difference methods (a/2H = 0.45)

E2/E1 Present
Results

Sensitivity of J-integral (oJ=oa )

(KI
ffiffiffiffi
H
p

=P ) Proposed
Method

Finite
Difference

Differencea

(percent)

a Linear Variation
0.05 32.4069 467.7523 467.7689 0.0035
0.1 23.3146 198.2592 198.2623 0.0016
0.2 17.3461 80.2695 80.2709 0.0017
0.5 11.6568 22.4226 22.4227 0.0004
1 8.1420 7.7004 7.7004 0.0009
2 5.2322 4.3617 4.3617 0.0004
5 2.5268 5.1632 5.1631 )0.0011
10 1.3240 4.9711 4.9709 )0.0027
20 0.6735 3.5769 3.5767 )0.0054

b Exponential Variation
0.05 31.6868 144.2164 144.2212 0.0033
0.1 23.0812 77.7745 77.7763 0.0023
0.2 16.9573 40.1238 40.1240 0.0005
0.5 11.2333 15.8866 15.8869 0.0017
1 8.1420 7.7004 7.7004 0.0009
2 5.8630 3.6311 3.6311 0.0002
5 3.8133 1.1306 1.1306 )0.0008
10 2.7871 0.2980 0.2980 )0.0003
20 2.0593 )0.0417 )0.0417 0.0179

a Difference = (@J=@a by finite-difference method – @J=@a by
proposed method) · @J/@a 100 by finite-difference method

Table 6 Sensitivity of J for three-point bend specimen by the
proposed and finite-difference methods (a/2H = 0.50)

E2/E1 Present
Results

Sensitivity of J-integral (@J=@a)

(KI
ffiffiffiffi
H
p

=P ) Proposed
Method

Finite
Difference

Differencea

(percent)

a Linear Variation
0.05 31.1898 1411.8779 1411.9621 0.0060
0.1 23.9149 555.1371 555.1524 0.0027
0.2 18.3227 204.2048 204.2077 0.0014
0.5 12.5795 40.8503 40.8507 0.0009
1 9.4678 11.2628 11.2628 0.0006
2 7.3161 5.2616 5.2616 )0.0001
5 5.4968 4.4094 4.4093 )0.0008
10 4.6112 3.8706 3.8705 )0.0026
20 4.0328 2.6829 2.6828 )0.0055

b Exponential Variation
0.05 20.2541 369.3652 369.3809 0.0042
0.1 17.2310 169.3468 169.3481 0.0008
0.2 14.5336 75.7558 75.7565 0.0009
0.5 11.4374 25.7051 25.7053 0.0008
1 9.4678 11.2628 11.2628 0.0006
2 7.8416 4.8227 4.8227 0.0007
5 6.2115 1.3712 1.3712 0.0013
10 5.3110 0.3780 0.3780 0.0017
20 4.6126 )0.0024 )0.0024 )0.0987

a Difference = (oJ=oa by finite-difference method – oJ=oa by
proposed method) · oJ/oa 100 by finite-difference method

Table 7 Sensitivity of J for three-point bend specimen by the
proposed and finite-difference methods (a/2H = 0.55)

E2/E1 Present
Results

Sensitivity of J-integral (@J=@a)

(KI
ffiffiffiffi
H
p

=P ) Proposed
Method

Finite
Difference

Differencea

(percent)

a Linear Variation
0.05 15.2836 6695.6345 6696.1466 0.0076
0.1 13.8754 1366.1375 1366.1836 0.0034
0.2 12.8026 295.3975 295.4016 0.0014
0.5 11.7664 49.5108 49.5113 0.0008
1 11.1611 17.2040 17.2042 0.0011
2 10.6297 8.3144 8.3144 0.0009
5 9.9848 4.9074 4.9074 )0.0004
10 9.5873 3.3001 3.3000 )0.0014
20 9.3017 1.7388 1.7388 )0.0020

b Exponential Variation
0.05 11.5808 437.5786 437.5634 )0.0035
0.1 11.4819 208.7195 208.7213 0.0008
0.2 11.3826 99.0466 99.0452 )0.0014
0.5 11.2539 36.6429 36.6432 0.0008
1 11.1611 17.2040 17.2042 0.0011
2 11.0802 8.0782 8.0782 0.0004
5 11.0212 2.9177 2.9177 0.0004
10 11.0423 1.2681 1.2681 0.0002
20 11.1399 0.4919 0.4919 0.0001

a Difference = (@J=@a by finite-difference method – @J=@a by
proposed method) · @J=@a 100 by finite-difference method
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4.3 Example 3: Sensitivity Analysis of Composite Strip

In the final example, consider the square composite strip
configuration studied by Eischen [28] with size L = 1
unit, 2h1 = 0.6 units and 2h2 = 0.4 units, as shown in
Fig. 9(a). A crack of length a = 0.4 units is located on
the line x2 = 0. Poisson’s ratio was held constant at m =
0.3. The elastic modulus was assumed to vary smoothly
according to a hyperbolic-tangent function, given by

E x1ð Þ ¼
E1 þ E2

2
þE1 � E2

2
tanh g x1 þ 0:1ð Þ½ �;

� 0:5 � x1 � 0:5; ð47Þ
where E1 and E2 are the bounds of E x1ð Þ, and g is a non-
homogeneity parameter that controls the variation of
E x1ð Þ from E1 to E2, as shown in Fig. 9(a). When
g!1, a sharp discontinuity occurs in the slope of
E x1ð Þ across the interface at x1 ¼ �0:1. A tensile load
corresponding to r22ðx1; 1Þ ¼ �eE x1ð Þ= 1� m2

� �
was ap-

plied at the top edge, which results in a uniform strain
e22 x1; x2ð Þ¼�e in the corresponding uncracked structure.
The following numerical values were used: E1 ¼ 1 unit,

E2 ¼ 3 units, ga ¼ 0; 2; 4; 6; and 20 units, and �e ¼ 1. A
plane strain condition was assumed.

The FEM discretization used in the analysis is shown
in Figure 9(b). A 2 · 2 Gaussian integration was em-
ployed. A domain of size 2b1 · b2 with b1 = b2 = 0.3
units was used around the crack tip to evaluate the
J-integral and its sensitivity.

Fig. 9 Composite strip under
mode-I loading; a Geometry and
Elastic modulus variation; b
FEM discretization (649 nodes,
190 8-noded quadrilateral ele-
ments, 12 focused quarter-point
6-noded triangular elements)

Table 8 Sensitivity of J for a composite strip configuration by the
proposed and finite-difference methods

ga KI=�e�E �0:5ð Þ
ffiffiffiffiffiffi
pa
p

Sensitivity of J-integral (@J=@a)

Eischen
[28]

Present
Results

Proposed
Method

Finite
Difference

Differencea

(percent)

0.0 2.112 2.1127 79.4463 79.4464 0.0002
2.0 2.295 2.2967 236.3875 236.3879 0.0002
4.0 2.571 2.5732 330.9231 330.9235 0.0001
6.0 2.733 2.7355 398.1568 398.1570 0.0001
20.0 3.228 3.2192 676.6920 676.6838 )0.0012

a Difference = (@J=@a by finite-difference method – @J=@a by
proposed method) · @J=@a 100 by finite-difference method

72



Table 8 compares the predicted normalized mode-I
SIF KI= �eEð�0:5Þ ffiffiffiffiffiffipa

p½ � obtained in the present study
with Eischen’s results [28] for several values of ga. The
normalized SIF results obtained in the present study
agree very well with the reference solution. Table 8 also
presents the numerical results of oJ=oa for several values
of ga. Two sets of results are shown for oJ=oa, the first
computed using the proposed method and second cal-
culated using the finite-difference method. As before, a
perturbation of 10)5 times the crack length was used for
finite-difference calculations. Results in Table 8 dem-
onstrate that continuum shape sensitivity analysis pro-
vides accurate estimates of oJ=oa as compared with
corresponding results from the finite-difference method
for various values of ga. There were no discrepancies in
results even when ga=20, representing sharp disconti-
nuity in the slope of E(x1) at x1 = )0.1 [see Fig. 9(a)].

5. Summary and conclusions

A new method is presented for conducting continuum
shape sensitivity analyses of a crack in isotropic, linear-
elastic, functionally graded materials. This method
involves the material derivative concept from continuum
mechanics, domain integral representation of a J-inte-
gral or an interaction integral, and direct differentiation.
Unlike virtual crack extension techniques, no mesh
perturbation is needed in the proposed method to cal-
culate the sensitivity of stress-intensity factors. Since the
governing variational equation is differentiated prior to
discretization, the resulting sensitivity equations are
independent of approximate numerical techniques, such
as the meshless method, finite element method, bound-
ary element method, or others. Also, since the proposed
method requires only the first-order sensitivity of a dis-
placement field, it is much simpler and more efficient
than existing methods. Numerical results show that first-
order sensitivities of the J-integral obtained using the
proposed method are in excellent agreement with the
reference solutions obtained from finite-difference
methods for the structural and crack geometries con-
sidered.
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In Equations A1–A20, E = E(x1) and m = constant.
When E = constant, h7–h10 vanish, as expected and
h1–h6 degenerate to corresponding equations for
homogeneous materials [19].
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In Equations B1–B20, E = E(x1) and m = constant.
When E = constant, H7–H10 vanish, as expected and
H1–H6 degenerate to corresponding equations for
homogeneous materials [19].
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