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Abstract This paper presents a new continuum shape sen-
sitivity method for calculating mixed-mode stress-intensity
factors for a stationary crack in two-dimensional, linear-
elastic, isotropic FGMs with arbitrary geometry. The method
involves the material derivative concept taken from contin-
uum mechanics, the mutual potential energy release rate, and
direct differentiation. Since the governing variational equa-
tion is differentiated prior to discretization, resulting sensi-
tivity equations are independent of approximate numerical
techniques, such as the finite element method, boundary ele-
ment method, mesh-free method, or others. The discrete form
of the mutual potential energy release rate is simple and easy
to calculate, as it only requires multiplication of displace-
ment vectors and stiffness sensitivity matrices. By judiciously
selecting the velocity field, the method only requires dis-
placement response in a subdomain close to the crack tip,
thus making the method computationally efficient. Seven
finite-element based numerical examples, which comprise
mode-I and mixed-mode deformations and/or single or mul-
tiple interacting cracks, are presented to evaluate the accu-
racy of the fracture parameters calculated by the proposed
method. Comparisons have been made between stress-inten-
sity factors predicted by the proposed method and available
reference solutions in the literature, generated either analyti-
cally or numerically using various other fracture integrals or
analyses. Excellent agreement is obtained between the results
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of the proposed method and previously obtained solutions.
Therefore, shape sensitivity analysis provides an attractive
alternative to fracture analysis of cracks in homogeneous and
non-homogeneous materials.
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1 Introduction

Functionally graded materials (FGMs) that possess a spa-
tially varying microstructure and mechanical/thermal proper-
ties are essentially multi-phase particulate composites,
engineered to meet a predetermined functional performance
[1,2]. In recent years, various theoretical, computational, and
experimental studies have been conducted to understand the
fracture behavior of FGMs. A collection of technical pa-
pers, published in Volume 69, Issues 14–16 of [3] Engineer-
ing Fracture Mechanics (2002) reflects such state-of-the-art
research into FGM fracture. A major component of such
studies involves calculating crack-driving forces in FGMs
accurately and efficiently. Consequently, various numerical
methods have been developed or examined to calculate stress-
intensity factors (SIFs), such as the displacement correla-
tion method, the modified crack-closure integral method, the
J ∗

k -integral method and others [3]. More recently in 2003,
the authors [4,5] developed two new interaction integrals
for mixed-mode fracture analysis of cracks in both isotro-
pic and orthotropic FGMs. In contrast to existing methods, it
is not necessary to perform integration along the crack face
of the discontinuity. Hence, the interaction integral method
is simpler and more efficient than previously existing meth-
ods. Nevertheless, the majority of current numerical methods
for FGM fracture analysis stem from extensions to methods
originally developed for cracks in homogeneous materials.

An alternative approach to previously developed meth-
ods involves shape sensitivity analysis, which is frequently
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employed in structural design optimization. Shape sensitiv-
ity analysis permits direct, analytical evaluation of first-order
(and higher-order, if required) derivatives of potential energy
with respect to crack size. Broadly speaking, there are two
fundamentally different approaches to shape sensitivity anal-
ysis. The first, known as the discrete approach, employs a dis-
cretized numerical model (e.g., finite element method [FEM],
boundary element method [BEM], mesh-free method, etc.) to
approximate the potential energy and then transforms shape
derivatives into differentiations of algebraic equations by
controlling node motions. The second, known as the con-
tinuum approach and adopted in the present work, relies
on the variational formulation used in continuum mechan-
ics [6]. In this approach, shape sensitivity analysis is con-
ducted by introducing a smooth velocity field to simulate
shape change of the initial domain due to the crack advance.
While discrete and continuum approaches are related (the
former is an approximation of the latter), the continuum ap-
proach has two principal advantages: (1) a rigorous math-
ematical theory is obtained, without the uncertainty/errors
associated with finite-dimensional approximation errors; and
(2) explicit relations for sensitivity are obtained in terms of
physical quantities rather than in terms of sums of deriva-
tives of element matrices. These characteristic features of the
continuum approach are of major importance in developing
structural optimization theory [7,8].

For homogeneous materials, several shape sensitivity
methods involving discrete [9–11] and continuum [12–15]
formulations have appeared in calculating SIFs. Both FEM
and BEM have been employed for the shape sensitivity anal-
ysis of cracks. Most of these investigations are applicable
only to linear-elastic fracture-mechanics problems. More re-
cently, continuum shape sensitivity methods have also been
developed for predicting first-order sensitivities of mixed-
mode SIFs for isotropic materials [16–18]. These analytical
sensitivities of SIFs provide a convenient means by which
subsequent fracture reliability analysis can be performed
accurately and efficiently. However, all of the aforementioned
shape sensitivity methods are strictly applicable to homoge-
neous materials.As a result, there is considerable desire to de-
velop shape sensitivity methods for the numerical evaluation
of crack-driving forces in FGM, which is a major motivation
of the present work.

This paper presents a continuum shape sensitivity method
for calculating mixed-mode SIFs for a stationary crack in
two-dimensional, linear-elastic, isotropic FGMs of arbitrary
geometry. The method involves using the material deriva-
tive concept from continuum mechanics, the mutual poten-
tial energy release rate, and direct differentiation. Since the
governing variational equation is differentiated prior to dis-
cretization, resulting sensitivity equations are independent of
approximate numerical techniques, such as FEM, BEM, the
mesh-free method, or others. Seven numerical examples in
conjunction with FEM are presented to evaluate the accuracy
of fracture parameters calculated by the proposed method.
Comparisons have been made between the SIFs predicted by
the proposed method and available reference solutions in the

literature, generated either analytically or numerically using
various other fracture integrals or analyses.

2 Crack tip fields in FGM

Consider a two-dimensional structure with a rectilinear crack
of length 2a, subjected to external loads S1, S2, . . . , SM , as
shown in Fig. 1. It is assumed that the material properties,
such as the modulus of elasticity E and the Poisson’s ratio ν,
vary according to

E = E (x1, x2) = E (x) (1)

and

ν = ν (x1, x2) = ν (x) , (2)

where x = {x1, x2}T ∈ �2, E (x) ≥ 0 and −1 ≤ ν (x) ≤ 1
/

2
are continuous, bounded, and at least piecewise differentia-
ble functions on domain �. The x1 − x2 coordinate system
is defined in Fig. 1. In reality, FGMs are multiphase materi-
als with generally, locally discontinuous material properties.
Hence, E (x) and ν (x) in Eqs. (1) and (2) should be viewed as
smoothly varying “effective” material properties of FGMs.
In this case, FGMs can be modeled as non-homogeneous
materials, for which the elastic constitutive equation is

εij = 1 + ν∗ (x)

E∗ (x)
σij + ν∗ (x)

E∗ (x)
σkkδij , (3)

where εij and σij are the strain and stress components, respec-
tively, and δij is the Kronecker delta. In Eq. (3), E∗ (x) and
ν∗ (x) are given by E (x) and ν (x) under the plane stress
condition and by E (x)

/[
1 − ν (x)2

]
and ν (x)

/
[1 − ν (x)]

under the plane strain condition, respectively. For non-homo-
geneous materials undergoing plane stress or plane strain
linear-elastic deformation in the absence of body forces, the
Airy stress function F(x1, x2) satisfies [19]

∇2

( ∇2F

E∗ (x)

)
− ∂2

∂x2
2

(
1 + ν∗ (x)

E∗ (x)

)
∂2F

∂x2
1

− ∂2

∂x2
1

(
1 + ν∗ (x)

E∗ (x)

)
∂2F

∂x2
2

+2
∂2

∂x1∂x2

(
1 + ν∗ (x)

E∗ (x)

)
∂2F

∂x1∂x2
= 0, (4)

where ∇2 = ∂2
/
∂x2

1 + ∂2
/
∂x2

2 is the two-dimensional La-
placian operator. Eischen [19] showed that upon expanding
Eq. (4), the first term in the governing differential equation for
F involves the biharmonic term identical to the homogeneous
material, while remaining terms involve spatial derivatives of
the elastic moduli. Hence, the elastic stress and displacement
fields in FGM can be derived using the stress function in
variable separable form, identical to the homogeneous case.
Hence, the linear-elastic singular stress field near the crack
tip can be obtained as [19]
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Fig. 1 A crack in a functionally graded material

σ11 = 1√
2πr

[
KIf

I
11 (θ) + KIIf

II
11 (θ)

]

σ22 = 1√
2πr

[
KIf

I
22 (θ) + KIIf

II
22 (θ)

]
, (5)

σ12 = 1√
2πr

[
KIf

I
12 (θ) + KIIf

II
12 (θ)

]

where KI and KII are the mode-I and mode-II SIFs, respec-
tively, and f I

ij (θ) and f II
ij (θ) (i, j = 1, 2) are the standard

angular functions for a crack in a homogeneous elastic
medium. Similarly, the near tip displacement field z =
{z1, z2}T can be obtained as [19]

z1 = 1

µtip

√
r

2π

[
KIg

I
1 (θ) + KIIg

II
1 (θ)

]

z2 = 1

µtip

√
r

2π

[
KIg

I
2 (θ) + KIIg

II
2 (θ)

]
, (6)

where µtip = Etip

/[
2
(

1 + νtip

)]
is the shear modulus,

Etipis the elastic modulus, and νtip is Poisson’s ratio, all

evaluated at the crack tip; gI
i (θ)and gII

i (θ), i = 1, 2 are stan-
dard angular functions for a crack in a homogeneous elastic
medium [20]. Even though the material gradient does not
influence the square-root singularity or the singular stress
distribution, the material gradient does affect the size of the
region in which the homogeneous solution is valid.

3 Shape sensitivity analysis

3.1 Velocity field

Consider a general three-dimensional body with a specific
configuration, referred to as the initial (reference)

Fig. 2 Variation of domain

configuration, with domain �, boundary 	, and a body mate-
rial point identified by position vector x ∈ �. Consider the
body’s motion from an initial configuration with domain �
and boundary 	 into a perturbed configuration with domain
�τ and boundary 	τ , as shown in Fig. 2. This process can be
expressed as

T:x → xτ , x ∈ �, (7)

where xτ is the position vector of the material point in the
perturbed configuration, T is a transformation mapping, and
τ ∈ R

+ is a scalar, fictitious, time-like parameter denoting
the amount of shape change, with

xτ = T (x, τ )

�τ = T (�, τ). (8)

	τ = T (	, τ )

A velocity field can then be defined as

v (xτ ,τ ) ≡ dxτ

dτ
= dT (x, τ )

dτ
= ∂T (x, τ )

∂τ
. (9)

In the neighborhood of the initial time τ= 0, assuming a reg-
ularity hypothesis and ignoring high-order terms,

xτ = T (x, τ ) = T (x, 0) + τ
∂T (x, 0)

∂τ
+ O

(
τ 2
)

∼= x + τv(x, 0), (10)

where x = T (x, 0). For the rest of this paper, the velocity
field v (x, 0) will be denoted by V (x) or V. Thus, a velocity
field characterizes the direction of domain variation, which
implies that for a given V (x), the shape change of � is
uniquely controlled by the scalar parameter τ .

3.2 Sensitivity analysis

The variational governing equation for a linear-elastic, non-
homogeneous or homogeneous solid with domain � can be
formulated as [8]

a� (z, z̄) = �� (z̄) , for all z̄ ∈ Z (11)

where z and z̄ are the actual and virtual displacement fields
of the structure, respectively, Z is the space of kinematically
admissible virtual displacements, and a� (z, z̄) and �� (z̄) are
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energy bilinear and load linear forms, respectively. The sub-
script � in Eq. (11) is used to indicate the dependency of the
governing equation on the shape of the structural domain. If
zτ (xτ ) represents the displacement at xτ = x + τV(x) of the
perturbed domain, the pointwise material derivative at x ∈ �
is defined as [8]

ż (x) ≡ lim
τ→0

[
zτ (x + τV(x)) − z(x)

τ

]

= z′ (x) + ∇zTV (x) . (12)

where

z′ = lim
τ→0

[
zτ (x) − z(x)

τ

]
(13)

is the partial derivative of z and∇ = {
∂
/
∂x1, ∂

/
∂x2,∂

/
∂x3

}T

is the vector of gradient operators.
If no body forces are involved, the variational equation

(Eq. (11)) can be written as

a� (z, z̄) ≡
∫

�

σij (z)εij (z̄)d� = ��(z̄) ≡
∫

	

Ti z̄i d	, (14)

where σij (z) and εij (z̄) are components of the stress and
strain tensors of the displacement z and virtual displacement
z̄, respectively, Ti is the ith component of the surface trac-
tion, and z̄i is the ith component of z̄. Taking the material
derivative of both sides of Eq. (14), it can be shown that [8]

a� (ż, z̄) = �′
V (z̄) − a′

V (z, z̄) , ∀ z̄ ∈ Z (15)

where the subscript V indicates the dependency of the terms
on the velocity field. The terms �′

V (z̄) and a′
V (z, z̄) can be

further derived as [8]

�′
V (z̄) =

∫

	

{−Ti

(
z̄i,jVj

)

+ [
(Ti z̄i),j +nj + κ	(Ti z̄i)

]
(Vini)

}
d	 (16)

and

a′
V (z, z̄) = −

∫

�






εij (z)Dijkl(x)(z̄k,mVm,l)
+εij (z̄)Dijkl(x)(zk,mVm,l)
−εij (z̄)Dijkl,m(x)εkl(z)Vm

−εij (z)Dijkl(x)εkl(z̄)divV




 d�, (17)

where ni is the ith component of unit normal vector n, κ	

is the curvature of the boundary, zi,j = ∂zi

/
∂xj , z̄i,j =

∂z̄i

/
∂xj , Vi,j = ∂Vi

/
∂xj , Dijkl(x) is a component of the

constitutive tensor and Dijkl,m(x) = ∂Dijkl(x)
/
∂xm. If the

modulus of elasticity E(x) is the only material property that
varies, thenDijkl,m(x) = [

∂E(x)
/
∂xm

]
Dijkl(x)

/
E(x). Note

that the third term in the integrand on the right hand side of
Eq. (17) arises naturally in the formulation of a continuum
shape sensitivity analysis for non-homogeneous materials,
but vanishes for homogeneous materials. In addition, Dijkl is
constant for homogeneous materials.

4 Shape sensitivity method for fracture analysis

Mutual potential energy is an effective fracture response for
calculating mixed-mode SIFs in homogeneous materials [4,

5]. In this section, mutual potential energy and its mate-
rial derivative is first derived in conjunction with continuum
shape sensitivity analysis to solve mixed-mode problems in
homogeneous materials. The procedure is then extended for
cracks in FGM. In fact, the study of FGM would enhance the
understanding of a fracture in a generic material, since upon
shrinking the gradient layer in FGM is expected to behave like
a sharp interface, and upon expansion, the fracture behavior
would be analogous to that of a homogeneous material.

4.1 Homogeneous materials

Consider an arbitrary, two-dimensional cracked body of crack
length a, with unit thickness subjected to an arbitrary load-
ing. The total potential energy  of the system in the absence
of body forces is

 ≡ 1

2

∫

�

εij (z)Dijklεkl(z)d� −
∫

	

Tizi d	, (18)

where, for two-dimensional linear elastic material models,
Dijkl , are the components of the constant elasticity matrix

D =






E
1−ν2




1 ν 0
ν 1 0
0 0 1−ν

2



 , for plane stress

E
[1+ν][1−2ν]




1 − ν ν 0
ν 1 − ν 0
0 0 1−2ν

2



 , for plane strain

.(19)

By substituting z̄ with z in Eq. (14) and by using Eq. (18),
the following is produced

 = −1

2
a� (z, z) . (20)

The energy release rate is equal to the derivative of potential
energy with respect to the crack area. For a two-dimensional
cracked structure with unit thickness, the crack area is equal
to crack length a. Assuming crack length a to be the variable
of interest, a change in crack area or crack length involves
a change in the shape of the cracked continuum. In rela-
tion to shape sensitivity theory, such a change implies that
the energy release rate is equal to the material derivative of
potential energy. Hence, for elastic (linear or nonlinear) solids
under mixed-mode loading conditions, the J -integral, which
is equal to the energy release rate, can be derived as

J ≡ −̇ = 1

2

[
a� (ż, z) + a� (z, ż) + a′

V (z, z)
]
, (21)

where the overdot indicates a material derivative. If (1) veloc-
ity field V(x) is defined such that traction-loading boundary
	 is fixed, i.e., V(x) = 0 on the traction-loading boundary 	;
and (2) z̄ is replaced with z in Eq. (15), noting that a� (ż, z) =
a� (z, ż) = −a′

V (z, z), then

J = −1

2
a′

V (z, z) . (22)

Substituting the expression of a′
V (z, z) from Eq. (17) and not-

ing that Dijkl is constant for homogeneous materials
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(Dijkl,m = 0) gives

J = 1

2

∫

�

[
σij (z)(zi,kVk,j ) + σij (z)(zi,kVk,j )

− σij (z)εij (z)div V
]

d�. (23)

Defining W = σij εij

/
2 as the strain energy density and

V(x) = {V1(x), 0}T as the velocity field, with V1(x) having a
value of unity at the crack tip, zero along the boundary of the
domain, and arbitrary elsewhere, the following is produced

J =
∫

�

(
σij

∂zi

∂x1
− Wδ1j

)
∂V1

∂xj

d� (24)

which is the same as the traditional domain form of the J -
integral, with V1 taking the place of weight function q. Hence,
weight function q can be considered the virtual change in
crack length, having a value of unity at the crack tip, zero
along the boundary of the domain, and arbitrary elsewhere.

Now, consider two independent equilibrium states of the
cracked body. Let state 1 correspond to the actual state for
given boundary conditions, and let state 2 correspond to an
auxiliary state, which can be either mode-I or mode-II near
crack tip displacement and stress fields for homogeneous
materials [20]. Superposition of these two states leads to an-
other equilibrium state (state S) for which the total potential
energy (S) is

(S) = 1

2

∫

�

εij

(
z(1) + z(2)

)
Dijklεkl

(
z(1) + z(2)

)
d�

−
∫

	

(
T

(1)
i + T

(2)
i

) (
z
(1)
i + z

(2)
i

)
d	, (25)

where z
(1)
i , T

(1)
i are the components of displacement and

external force vectors, respectively, of the actual state for
given boundary conditions, and z

(2)
i , T (2)

i are the components
of displacement and external force vectors, respectively, of
the auxiliary state. By using the divergence theorem,
∫

	

(
T

(1)
i

) (
z
(1)
i

)
d	 =

∫

�

εij (z(1))Dijklεkl(z(1))d�, (26)

∫

	

(
T

(2)
i

) (
z
(2)
i

)
d	 =

∫

�

εij (z(2))Dijklεkl(z(2))d�, (27)

∫

	

(
T

(1)
i

) (
z
(2)
i

)
d	 =

∫

�

εij (z(1))Dijklεkl(z(2))d�, (28)

and∫

	

(
T

(2)
i

) (
z
(1)
i

)
d	 =

∫

�

εij (z(2))Dijklεkl(z(1))d�, (29)

which, when applied to the expanded form of Eq. (25) yields

(S) = (1) + (2) + (1,2), (30)

where

(1) = −1

2
a�

(
z(1), z(1)

)
, (31)

(2) = −1

2
a�

(
z(2), z(2)

)
, (32)

and

(1,2) = −1

2
a�

(
z(1), z(2)

) − 1

2
a�

(
z(2), z(1)

)
(33)

are various potential energies with

a�

(
z(i), z(j)

) =
∫

�

εij (z(1))Dijklεkl(z(j))d�; i, j = 1, 2.

(34)

Hence, the J -integral for the superposed state, denoted by
J (S), can be obtained as

J (S) ≡ −̇(S) = −̇(1) − ̇(2) − ̇(1,2). (35)

Again, if the velocity field is defined such that V(x) = 0 on
the traction-loading boundary 	 and under similar consider-
ations,a�

(
z(i), z(j)

) = a�

(
z(i), z(j)

) = −a′
V

(
z(i), z(j)

) ; i, j
= 1, 2, yielding

J (S) = −1

2
a′

V

(
z(1), z(1)

) − 1

2
a′

V

(
z(2), z(2)

)

−1

2
a′

V

(
z(1), z(2)

) − 1

2
a′

V

(
z(2), z(1)

)
. (36)

On further expansion, J (S) can be decomposed to

J (S) = J (1) + J (2) + M(1,2) (37)

where

J (1) = −̇(1) = −1

2
a′

V

(
z(1), z(1)

)
(38)

and

J (2) = −̇(2) = −1

2
a′

V

(
z(2), z(2)

)
(39)

are the J -integrals for states 1 and 2, respectively, noting that
a′

V

(
z(1), z(2)

) = a′
V

(
z(2), z(1)

)
,

M(1,2) = −̇(1,2) = −a′
V

(
z(1), z(2)

)
(40)

is the mutual potential energy release rate. By replacing z,
and z̄ in Eq. (17) with z(1), and z(2)respectively, and assuming
V(x) = V1(x) having a value of unity at the crack tip, zero
along the boundary of the domain, and arbitrary elsewhere,
the following is obtained

M(1,2) =
∫

�

[

σij

(
z(1)

) ∂z
(2)
i

∂x1

+ σij

(
z(2)

) ∂z
(1)
i

∂x1
− W(1,2)δ1j

]
∂V1

∂xj

d� (41)

where W(1,2) = [
σij

(
z(1)

)
εij

(
z(2)

) + σij

(
z(2)

)
εij

(
z(1)

)]/
2

is the mutual strain energy density.Again, M(1,2) in Eq. (41) is
same as the domain form of the M-integral (interaction inte-
gral) for the mixed-mode fracture of homogeneous materials,
with V1 taking the place of weight function q. In fact, vari-
ous fracture integrals can be derived using shape sensitivity
analysis.
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4.2 Functionally graded materials

As with the treatment of homogeneous materials, consider
two independent equilibrium states of an FGM cracked struc-
ture. Let state 1 correspond to the actual state for given bound-
ary conditions. Let state 2 correspond to an auxiliary state,
which can be either mode-I or mode-II near tip displacement
and stress fields. Superposition of these two states leads to an-
other equilibrium state (state S) for which the total potential
energy, henceforth referred to as ̃(S), is

̃(S) = 1

2

∫

�

εij

(
z(1) + z(2)

)
Dijkl(x)εkl

(
z(1) + z(2)

)
d�

−
∫

	

(
T

(1)
i + T

(2)
i

) (
z
(1)
i + z

(2)
i

)
d	. (42)

For states 1 and S, Dijkl(x) varies as the function of spatial
location and is given by Eq. (19) with E and ν replaced by
E (x) and ν(x) respectively. However, for state 2, which is
the auxiliary state, a different constitutive matrix that satis-
fies both equilibrium and compatibility conditions must be
defined. For state 2, define a Daux

ijkl that can be obtained from
Eq. (19) with E and ν replaced by Etip and νtip respectively.
It can be easily shown that the divergence theorem yields
equations similar to Eqs. (26)–(29) with Dijkl replaced by
Dijkl(x) which, when applied to the expanded form of Eq.
(42), gives

̃(S) = ̃(1) + ̃(2) + ̃(1,2), (43)

where ̃(1) is same as (1) given in Eq. (31), and

̃(2) = −1

2
aaux

�

(
z(2), z(2)

)
, (44)

̃(1,2) = −a�

(
z(1), z(2)

) − 1

2
a�

(
z(2), z(2)

)

+1

2
aaux

�

(
z(2), z(2)

)
, (45)

with a�

(
z(1), z(2)

)
and a�

(
z(2), z(2)

)
given by Eq. (34) with

Dijkl replaced by Dijkl(x), and aaux
�

(
z(2), z(2)

)
given by Eq.

(34) with Dijkl replaced by Daux
ijkl . Hence, the J -integral for

the superposed state, denoted as J̃ (S), can be obtained from

J̃ (S) ≡ − ˙̃


(S) = − ˙̃


(1) − ˙̃


(2) − ˙̃


(1,2)

. (46)

If the velocity field is defined such that V(x) = 0 on the
traction-loading boundary 	, then a�

(
z(1), z(2)

) = −a′
V

(
z(1),

z(2)
)
, a�

(
z(2), z(2)

) = −a′
V

(
z(2), z(2)

)
, and aaux

�

(
z(2), z(2)

) =
−a′aux

V

(
z(2), z(2)

)
. Hence, J̃ (S) can be decomposed into

J̃ (S) = J̃ (1) + J̃ (2) + M̃(1,2), (47)

in which J̃ (1) and J̃ (2)are the J̃ -integrals for states 1 and 2,
respectively with J̃ (1) being same as J (1) given in Eq. (38),

J̃ (2) = − ˙̃


(2) = −1

2
a′aux

V

(
z(2), z(2)

)
, (48)

M̃(1,2) = − ˙̃


(1,2) = −a′
V

(
z(1), z(2)

)

+1

2

[
a′aux

V

(
z(2), z(2)

) − a′
V
(
z(2), z(2)

)]
(49)

is the mutual potential energy release rate, where

a′
V

(
z(i), z(j)

)

= −
∫

�









εij

(
z(i)

)
Dijkl(x)

(
z
(j)

k,mVm,l

)

+εij

(
z(j)

)
Dijkl(x)

(
z
(i)
k,mVm,l

)

−εij

(
z(j)

)
Dijkl,m(x)εkl

(
z(i)

)
Vm

−εij

(
z(i)

)
Dijkl(x)εkl

(
z(j)

)
divV









d�; i, j = 1, 2 (50)

and

a′aux
V

(
z(2), z(2)

)

= −
∫

�






εij

(
z(2)

)
Daux

ijkl

(
z
(2)
k,mVm,l

)

+εij

(
z(2)

)
Daux

ijkl

(
z
(2)
k,mVm,l

)

−εij

(
z(2)

)
Daux

ijklεkl

(
z(2)

)
divV




 d�,

(51)

To evaluate all three terms of M̃(1,2) in Eq. (49), one needs to
prescribe an appropriate velocity field V(x) and auxiliary dis-
placement field z(2); and calculate actual displacement field
z(1) for the initial shape of the cracked body. In other words, a
single stress analysis employing a suitable numerical method,
such as FEM or the mesh-free method, efficiently evaluates
J̃ - and M̃-integrals. In contrast to Eqs. (22) and (40), which
lead to existing expressions of J - and M-integrals in homo-
geneous materials, respectively, Eq. (49) is new and applica-
ble to general non-homogeneous materials. When both the
elastic modulus and Poisson’s ratio have no spatial variation,
a′aux

V

(
z(2), z(2)

) = a′
V

(
z(2), z(2)

)
, the J̃ - and M̃-integrals in

Eqs. (48)–(49) degenerate into homogeneous solutions, as
expected.

4.3 Stress intensity factors

The mutual potential energy release rate can also be repre-
sented in terms of mixed-mode stress intensity factors as [4,5]

M̃(1,2) = 2

E∗
t ip

[(
K

(1)
I K

(2)
I + K

(1)
II K

(2)
II

)]
, (52)

where E∗
t ip is equal to E∗ evaluated at the crack tip. The indi-

vidual SIFs for the actual state can be obtained by judiciously
choosing the auxiliary state (state 2). For example, if state 2
is chosen to be state I, i.e., Eqs (5) and (6) with K

(2)
I = 1 and

K
(2)
II = 0, then Eq. (52) can be reduced to

M(1,I ) = 2K
(1)
I

E∗ , (53)

from which

K
(1)
I = M(1,I )E∗

2
. (54)
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Similarly, if state 2 is chosen to be state II, i.e., Eqs. (5) and
(6), with K

(2)
I = 0 and K

(2)
II = 1, and similar considerations

are followed, then

K
(1)
II = M(1,I I )E∗

2
. (55)

The mutual potential energy release rate M(1,I ) and M(1,I I ) in
Eqs. (54) and (55) can be evaluated from Eq. (49) by choos-
ing the auxiliary state defined by Eqs. (5) and (6). In general,
a numerical method is required for calculating M(1,I ) and
M(1,I I ).

5 Numerical Implementation

5.1 Finite element method

Consider a finite element discretization of a two-dimensional
FGM cracked body involving N number of nodes. Let z(1)

I ∈
R

2 and z(2)
I ∈ R

2 be the actual and auxiliary displacement

vectors, respectively, at the I th node. If d(1) =
{

z(1)
I

}
∈

R
2N ; I = 1, N and d(2) =

{
z(2)
I

}
∈ R

2N ; I = 1, N repre-

sent global displacement vectors, the mutual potential energy
release rate can be approximated by

M̃(1,2) ∼= d(1)TK′d(2) + 1

2
d(2)T

(
K′ − K′aux)d(2), (56)

where K′ = [
k′

IJ

] ∈ L
(
R

2N × R
2N
) ; I, J = 1, N and

K′aux = [
k′aux

IJ

] ∈ L
(
R

2N × R
2N
)

are two global stiffness
sensitivity matrices with k′

IJ ∈ L
(
R

2 × R
2
)

and k′aux
IJ ∈

L
(
R

2 × R
2
)

representing element-level (domain �e) sensi-
tivity matrices, given by

k′
IJ =

∫

�e

(
BT

I D(x)B′
J + BT

I D(x)B′
J − BT

I D′(x)BJ

− BT
I D(x)BJ divV

)
d�e (57)

k′aux
IJ =

∫

�e

(
BT

I DauxB′
J + BT

I DauxB′
J

− BT
I DauxBJ divV

)
d�e. (58)

In Eqs. (57) and (58),

BI (x) =



�I,1 (x) 0

0 �I,2 (x)
�I,2 (x) �I,1 (x)



 , (59)

B′
I =




�I,1 (x) V1,1 (x) + �I,2 (x) V2,1 (x) 0

0 �I,1 (x) V1,2 (x) + �I,2 (x) V2,2 (x)
�I,1 (x) V1,2 (x) + �I,2 (x) V2,2 (x) �I,1 (x) V1,1 (x) + �I,2 (x) V2,1 (x)



 , (60)

and

D′ (x) = ∂D (x)

∂x1
V1(x) + ∂D (x)

∂x2
V2(x), (61)

with �I,i (x) serving as the partial derivatives of the shape
function corresponding to the I th node in the i direction. Eq.

(56) can be viewed as a discrete analog of the continuum
formulation in Eq. (49). The former involves simple matrix
algebra and, as a result, provides a convenient means for cal-
culating M̃(1,2).

5.2 Velocity field

Defining the velocity field is an important step in any contin-
uum shape sensitivity analysis [21]. For a fracture problem,
the velocity field V(x) is defined with a compact support
�c, i.e., V(x), is non-zero when x ∈ �c and is zero when
x ∈ � − �c, where �c ⊂ � is an appropriately small
subdomain around the crack tip (see Fig. 1). Hence, the
domain � in various integrals (see Eqs. (50)–(51)) can be re-
placed by the subdomain �c. Specifically, consider a rosette
of eight 6-noded quarter-point elements around a crack tip,
as shown in Fig. 3. These quarter-point elements are standard
finite elements commonly employed for fracture analysis of
linear-elastic bodies. Assume that the size of these elements
is small enough that the rosette can be defined as support � c.
Inside �c, the velocity field satisfies the following conditions:
(1) the crack tip is assigned a velocity of unit magnitude, i.e.,

V(0) =
(

1
/√

V2
1,tip + V2

2,tip

){
V1,tip, V2,tip

}T
; (2) the

velocity at a point on the boundary 	c of the rosette is zero;
and (3) velocity at any point between boundary 	c and the
crack tip varies linearly. For example, the velocity V(xi ) at
the ith node of the quarter-point elements in Fig. 3 can be
defined as

V (xi ) =






0, if i is a node on the outer ring
(open circles)

0.75V(0), if i is a quarter-point node
(closed circles)

V(0), if i is the crack-tip node
(closed circle)

(62)

Since the velocity field is zero on and outside the outer bound-
ary of the quarter point elements, Eq. (56) reduces to

M̃(1,2) ∼=
M∑

I,J=1

z(1)T
I K′

IJ z(2)
J

+1

2

M∑

I,J=1

z(2)T
I

(
K′

IJ − K′aux
IJ

)
z(2)
J , (63)

where M is the total number of quarter-point and crack tip
nodes in a rosette of focused quarter-point elements near the
crack tip, as shown by the closed circles in Fig. 3. In other
words, displacement response is only required at an M num-
ber of nodes. Since M � N , the effort in computing M̃(1,2)
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Fig. 3 Rosette of focused quarter-point 6-noded triangular elements near the crack tip

using Eq. (63) is trivial compared to that required for a com-
plete stress analysis.

Compared with existing methods, the proposed method
has several advantages: (1) the calculation of SIFs is sim-
ple and straightforward as it only requires multiplication of
displacement vectors and stiffness sensitivity matrices; (2)
since �c is small and the velocity field outside �c is zero, the
method only requires displacement response in �c, render-
ing it computationally efficient; (3) the accuracy of SIF esti-
mates is not affected by a lack of smooth transition between
mesh resolutions inside and outside �c, as demonstrated by
numerical results; and (4) the method is applicable to multiple
interacting cracks even if crack tips are close to one other.

Unlike in the displacement correlation method, and the
modified crack-closure integral method SIFs are calculated
in the proposed method using displacement response around
the crack tip in an average sense. When compared with exist-
ing integral based methods such as the J -integral, the J ∗

k -
integral, and the interaction integral the proposed method
requires displacement response only in a small portion around
the crack tip. In addition, in case of multiple interacting cracks
with crack tips very close to one other, it is very difficult
to choose a domain around the crack tip with size enough

for accurate evaluation of SIFs using existing integral based
methods and hence, the proposed method provides an alterna-
tive in such cases. Also, in contrast to existing methods, such
as the J ∗

k -integral method [3], there is no need to perform
integration along the crack face of the discontinuity (e.g., in
calculating J ∗

2 ). Hence, the proposed method is also simpler
and more efficient than existing methods.

6 Numerical examples

In conjunction with the newly developed shape sensitivity
method, standard FEM was applied to evaluate the SIFs of
rectilinear cracks in two-dimensional FGM structures. Both
single- (mode I) and mixed-mode (modes I and II) conditions
were considered and seven examples are presented here. In
all seven examples, the elastic modulus varies spatially, while
the Poisson’s ratio ν is held constant. This is a reasonable
assumption, since variation of the Poisson’s ratio is usually
small compared with that of the elastic modulus. In examples
1–6 Poisson’s ratio ν was assumed to be 0.3 and whereas in
example 7 it was taken to be 0.0. For numerical integration,
a 2 × 2 Gauss quadrature rule was used in all examples.
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Fig. 4 Edge-cracked plate under mode I loading; (a) Geometry and loads for fixed grip loading; (b) Membrane loading; (c) Bending; (d) Half
model; and (e) FEM discretization of half model for a/W = 0.4

6.1 Example 1: Edge-cracked plate under mode-I

Consider an edge-cracked plate with length L = 8 units,
width W = 1 unit, and crack length a, as shown in Fig. 4a.
Three loading conditions including the uniform fixed grip
loading (constant strain), the membrane loading (constant

tensile stress), and pure bending (linear stress) were consid-
ered. Figs. 4a–c show the schematics of the three loading
conditions. The elastic modulus was assumed to follow an
exponential function, given by

E (x1) = E1 exp (ηx1) , 0 ≤ x1 ≤ W (64)
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where E1 = E(0), E2 = E(W), and η = ln
(
E2

/
E1

)
. In

Eq. (64), E 1 and η are two independent material parameters
that characterize the elastic modulus variation. The follow-
ing numerical values were used: E1 = 1 unit, E2

/
E1 =

exp(η) = 0.1, 0.2, 5, and 10, and a
/
W = 0.2, 0.3, 0.4, 0.5

and 0.6. A plane strain condition was assumed. Erdogan and
Wu [22], who originally studied this example, also provided
a theoretical solution.

Due to the symmetry of geometry and load, only half of
the plate, as shown in Fig. 4d, was analyzed by FEM. Fig. 4e
shows typical FEM discretization involving 1285 nodes, 388
8-noded quadrilateral (Q8) elements, and 12 focused quarter-
point 6-noded triangular (T6) elements, adopted for a/W =
0.4. A crack tip velocity

{
V1,tip, V2,tip

}T
= {

10−5a, 0
}T

was used in the analysis.
Tables 1–3 show normalized mode-I stress intensity fac-

torsKI

/
σ0

√
πa,KI

/
σt

√
πa, andKI

/
σb

√
πa for fixed grip,

membrane loading, and bending, respectively, where σ0 =
E1ε0

/(
1 − ν2

)
, ε0 = 1, σt = σb = 1 unit. The results

show that the predicted SIF obtained by the proposed method
agrees very well with the analytical results of Erdogan and
Wu [22], for all three types of loading and for various combi-
nations of E2

/
E1 and a

/
W ratios. In addition, Tables 1–3

include some numerical results by Kim and Paulino [23]
and/or Chen et al. [24]. The present results correlate satis-
factorily with the FEM results of Kim and Paulino based on
J ∗

1 -integral, which are only reported for membrane loading
and bending. The mesh-free results of Chen et al., which are
reported for fixed grip and membrane loading, also agree rea-
sonably well with the present results. It is worth noting that
the mesh-free results of Chen et al. are based on the classical
J -integral for homogenous materials.

6.2 Example 2: Three-point bend specimen under mode-I

Consider a three-point bend specimen with length L = 54
units, depth 2H = 10 units, and thickness t = 1 unit, as shown
in Fig. 5a. A concentrated load of P = 1 unit was applied
at the middle of the beam of span L S = 50 units and two
supports were symmetrically placed with respect to an edge
crack of length a. In the depth direction, the beam consists of
2h units deep FGM sandwiched between two distinct homo-
geneous materials, each of which has depth H −h. If E 1 and
E 2 represent the elastic moduli of the bottom and top layers,
the elastic modulus of the FGM layer varies linearly, with
the end values matching the properties of the bottom and top
layers. Mathematically, such a variation can be defined as

E (x1) =






E2, x1 ≥ h
E1+E2

2 + E2−E1
2h

x1, −h ≤ x1 ≤ h

E1, x1 ≤ −h

, (65)

whereE 1,E 2, and 2h are material/geometry parameters. The
following numerical values were chosen: 2h = 1 unit, E1 =
1 unit, and E2

/
E1 = 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20.

For each E2
/
E1 ratio, three different crack lengths with

a
/

2H = 0.45, 0.5 and 0.55 were selected such that the crack
tips were either at the middle of the FGM layer (a

/
2H = 0.5)

or at the material interfaces (a
/

2H = 0.45 or 0.55). A plane
stress condition was assumed.

Due to symmetric geometry and loading with respect to
the crack, only a half model of the beam was analyzed, as
shown in Fig. 5b. Figure 5c shows typical FEM discretiza-
tion involving 2053 nodes, 640 Q8 elements, and 12 focused
quarter-point T6 elements, adopted for a

/
2H = 0.5.A crack

tip velocity
{
V1,tip, V2,tip

}T = {
10−5a, 0

}T
was employed.

Table 4 shows the predicted normalized mode-I SIF KI√
H
/

P , obtained by the proposed method for various com-

binations of E2
/
E1 and a

/
2H . Also presented in Table 4

are the corresponding results by Kim and Paulino [23]. The
SIFs by the proposed method are in good agreement with the
results by Kim and Paulino based on J ∗

1 -integral. Although
not presented here, the graphical results of Gu et al. [25] also
agree well with the present results.

6.3 Example 3: Edge-cracked plate under mixed-mode
loading

This mixed-mode example involves the edge-cracked plate
in Fig. 6a, which is fixed at the bottom and subjected to a far-
field shear stress τ∞ = 1 unit applied on the top. The plate
has length L = 16 units, width W = 7 units, and crack length
a = 3.5 units. The elastic modulus was assumed to follow an
exponential function, given by

E (x1) = E1 exp
(ηx1

W

)
, 0 ≤ x1 ≤ W (66)

where E1 = E(0), E2 = E(W), and η = ln
(
E2

/
E1

)
. In

Eq. (66), E1 and η are two independent material parameters
that characterize the elastic modulus variation. The follow-
ing numerical values were used: E1 = 1 unit, E2

/
E1 =

exp(η) = 0.1, 0.2, 5, and 10, and a
/
W = 0.2, 0.3, 0.4, 0.5

and 0.6. A plane strain condition was assumed. Figure 6b
shows FEM discretization involving 2711 nodes, 832 Q8 ele-
ments, and 48 focused quarter-point T6 elements, adopted to
solve with the proposed method. A velocity field{
V1,tip, V2,tip

}T = {
10−5a, 0

}T
was used in the analysis.

Recently, Rao and Rahman [4] also solved this problem
using two interaction integrals, referred to as Method-I and
Method-II. However, the auxiliary fields employed in [4] are
different from the one defined in the present study. It would be
interesting to compare the results of the present method with
those of Methods-I and II [4]. Table 5 shows the predicted
mixed-mode SIFs for this edge-cracked problem, obtained in
the present study for various values of E2

/
E1 using the pro-

posed method. Table 5 also shows the predicted mixed-mode
SIFs, obtained for various values of E2

/
E1 using Method-I

and Method-II [4]. The results in Table 5 demonstrate that
the present method using continuum shape sensitivity pro-
vides accurate estimates of KI and KII as compared with
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Table 1 Normalized mode-I stress intensity factor for an edge-cracked plate under fixed grip loading

Method E2/E1
KI/σ0

√
πa

a/W = 0.2 a/W = 0.3 a/W = 0.4 a/W = 0.5 a/W = 0.6

Present method

0.1 1.3018 1.5102 1.8161 2.2763 3.0225
0.2 1.3117 1.5376 1.8758 2.3922 3.2398
5 1.4918 1.9089 2.5701 3.6545 5.5685
10 1.5681 2.0656 2.8654 4.2033 6.6158

Erdogan and Wu [22]

0.1 1.2963 1.5083 1.8246 2.3140 3.1544
0.2 1.3058 1.5330 1.8751 2.4031 3.2981
5 1.4946 1.9118 2.5730 3.6573 5.5704
10 1.5740 2.0723 2.8736 4.2140 6.6319

Chen et al. [24]

0.1 1.2961 1.4919 1.7962 2.2594 3.0544
0.2 1.3145 1.5283 1.8659 2.3877 3.2910
5 1.5414 1.9499 2.6238 3.7429 5.7936
10 1.6296 2.1206 2.9398 4.3272 6.9171

Table 2 Normalized mode-I stress intensity factor for an edge-cracked plate under membrane loading

Method E2/E1
KI/σt

√
πa

a/W = 0.2 a/W = 0.3 a/W = 0.4 a/W = 0.5 a/W = 0.6

Present method

0.1 1.3053 1.8647 2.5653 3.5260 5.0000
0.2 1.4028 1.8462 2.4466 3.3153 4.6983
5 1.1285 1.3666 1.7453 2.3629 3.4435
10 0.9958 1.2229 1.5819 2.1687 3.2026

Erdogan and Wu [22]

0.1 1.2965 1.8581 2.5699 3.5701 5.1880
0.2 1.3956 1.8395 2.4436 3.3266 4.7614
5 1.1318 1.3697 1.7483 2.3656 3.4454
10 1.0019 1.2291 1.5884 2.1762 3.2124

Chen et al. [24]

0.1 1.3193 1.8642 2.5588 3.5213 5.0726
0.2 1.4188 1.8497 2.4486 3.3234 4.7860
5 1.1622 1.3899 1.7746 2.4125 3.5736
10 1.0324 1.2499 1.6146 2.2234 3.3371

Kim and Paulino [23] (J ∗
1 )

0.1 1.2840 1.8460 2.5440 3.4960 4.9620
0.2 1.3900 1.8310 2.4310 3.2920 4.6690
5 1.1320 1.3700 1.7490 2.3660 3.4480
10 1.0030 1.2280 1.5880 2.1750 3.2120

Table 3 Normalized mode-I stress intensity factor for an edge-cracked plate under bending

Method E 2/E 1
KI/σb

√
πa

a/W = 0.2 a/W = 0.3 a/W = 0.4 a/W = 0.5 a/W = 0.6

Present method

0.1 1.9075 1.8831 1.9606 2.1649 2.5750
0.2 1.6007 1.6153 1.7188 1.9392 2.3568
5 0.6835 0.7747 0.9208 1.1557 1.5578
10 0.5589 0.6533 0.7990 1.0296 1.4224

Erdogan and Wu [22]

0.1 1.9040 1.8859 1.9778 2.2151 2.7170
0.2 1.5952 1.6122 1.7210 1.9534 2.4037
5 0.6871 0.7778 0.9236 1.1518 1.5597
10 0.5648 0.6588 0.8043 1.0350 1.4286

Kim and Paulino [23] (J ∗
1 )

0.1 1.8880 1.8640 1.9430 2.1450 2.5530
0.2 1.5880 1.6010 1.7060 1.9250 2.3410
5 0.6870 0.7780 0.9240 1.1580 1.5610
10 0.5650 0.6590 0.8040 1.0350 1.4290

corresponding results obtained using previously developed
methods.

Convergence of the results with mesh refinement around
the crack tip is studied by varying the number of square rings
around the crack tip. The following four mesh refinements

were used: (1) 2565 nodes, 784 Q8 elements, and 48 fo-
cused quarter-point T6 elements; (2) 2711 nodes, 832 Q8
elements, and 48 focused quarter-point T6 elements; (3) 2857
nodes, 880 Q8 elements, and 48 focused quarter-point T6 ele-
ments; and (4) 3003 nodes, 928 Q8 elements, and 48 focused
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Fig. 5 Three-point bend specimen under mode I loading; (a) Geometry and loads; (b) Half model; and (c) FEM discretization of half model for
a/2H = 0.5

Table 4 Normalized mode-I stress intensity factor for a three-point bend specimen

E 2/E 1
KI

√
H/P (a

/
2H = 0.45) KI

√
H/P (a

/
2H = 0.5) KI

√
H/P (a

/
2H = 0.55)

Present method Kim and Present method Kim and Present method Kim and
Paulino [23] (J ∗

1 ) Paulino [23] (J ∗
1 ) Paulino [23] (J ∗

1 )

0.05 33.1600 33.04 31.6520 31.12 16.2605 15.21
0.1 23.5562 23.47 24.1546 23.92 14.3199 13.73
0.2 17.4201 17.36 18.4720 18.32 13.0044 12.79
0.5 11.6899 11.65 12.6464 12.57 11.8318 11.76
1 8.1585 8.134 9.4868 9.467 11.1826 11.15
2 5.2318 5.239 7.3024 7.318 10.6301 10.62
5 2.5010 2.540 5.4596 5.496 9.9625 9.963
10 1.2650 1.334 4.5519 4.586 9.5032 9.505
20 0.5505 0.660 3.9202 3.939 9.1194 9.123

quarter-pointT6 elements. Convergence of normalized mode-
I and mode-II stress intensity factors with mesh refinement
was observed as shown in Fig. 7a,b.

6.4 Example 4: Slanted crack in a plate under mixed-mode

Consider a slanted crack in a finite two-dimensional plate
with length L = 2 units, width W = 1 unit and a 45-degree

edge crack of normalized length a
/
W = 0.4

√
2, as shown

in Fig. 8a. The elastic modulus was assumed to follow an
exponential function, given by

E (x1) = Ē exp

[
η

(
x1 − 1

2

)]
, 0 ≤ x1 ≤ W, (67)

where Ē and η are two material parameters. For numerical
values, Ē = 1 unit and η = 0, 0.1, 0.25, 0.5, 0.75, and 1.
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Fig. 6 Edge-cracked plate under mixed-mode loading; (a) Geometry,
loads, and domain size; and (b) FEM discretization

A plane stress condition was assumed. The applied load was
prescribed along the upper edge with normal stress
σ22(x1, 1) = ε̄Ē exp [η (x1 − 0.5)], where ε̄ = 1. The dis-
placement boundary condition was specified such that
u2 = 0 along the lower edge and, in addition, u1 = 0 for
the node on the right side of the lower edge. FEM discretiza-
tion involved 1541 nodes, 460 Q8 elements, and 40 focused
quarter-point T6 elements, as shown in Fig. 8b. A crack tip
velocity

{
V1,tip,V2,tip

}T = {
10−5a cos γ, 10−5a sin γ

}T
was

used in the analysis. Using the same FEM discretization, the
current example was also solved using Methods-I and II by
Rao and Rahman [4], as described in the previous example.

Table 6 shows the predicted normalized SIFsKI

/
ε̄Ē

√
πa

and KII

/
ε̄Ē

√
πa, obtained in the present study for several

values of η using the proposed method. Table 6 also shows
the predicted normalized SIFs obtained by using Methods-I
and II [4] as well as Kim and Paulino’s [23] results for various
values of η. The results in Table 6 demonstrate that the present
method using continuum shape sensitivity provides accurate

Table 5 Stress intensity factors for an edge cracked plate under shear
loading

E2
/
E1

Present method Method-I [4] Method-II [4]

KI KII KI KII KI KII

0.1 49.2461 5.9854 48.8532 6.1650 48.8376 6.1714
0.2 44.0892 5.5538 43.8357 5.6606 43.8260 5.6646
1 34.0791 4.5911 34.0624 4.5898 34.0624 4.5898
5 26.2487 3.7048 26.3785 3.6372 26.3839 3.6352
10 23.3918 3.3454 23.5638 3.2532 23.5705 3.2509

estimates of KI and KII as compared with the correspond-
ing results of Rao and Rahman [4] based interaction inte-
gral and Kim and Paulino [23] based on J ∗

1 -integral. Agree-
ment between the proposed method and reference solutions is
excellent.

6.5 Example 5: Composite strip under mode I

For this example, consider the square composite strip con-
figuration studied by Eischen [19] with size L = 1 unit, 2h 1
= 0.6 units and 2h 2 = 0.4 units, as shown in Fig. 9a. A crack
of length a = 0.4 units is located on the line x 2 = 0. The
elastic modulus was assumed to vary smoothly according to
a hyperbolic-tangent function, given by

E (x1) = E1 + E2

2
+ E1 − E2

2
tanh [η (x1 + 0.1)] ,

−0.5 ≤ x1 ≤ 0.5, (68)

where E1 andE2 are the bounds of E (x1), and η is a non-
homogeneity parameter that controls the variation of E (x1)
from E1 to E2, as shown in Fig. 9a. When η → ∞, a sharp
discontinuity occurs in the slope of E (x1) across the interface
at x1 = −0.1. A tensile load corresponding toσ22(x1, 1) =
ε̄E (x1)

/(
1 − ν2

)
was applied at the top edge, which results

in a uniform strain ε22 (x1, x2) = ε̄ in the corresponding un-
cracked structure. The following numerical values were used:
E1 = 1 unit, E2 = 3 units, ηa = 0, 2, 4, 6, and 20 units, and
ε̄ = 1. A plane strain condition was assumed. FEM discreti-
zation involved 823 nodes, 244 Q8 elements, and 16 focused
quarter-point T6 elements, as shown in Fig. 9b. A crack tip

velocity
{
V1,tip, V2,tip

}T
= {

10−5a, 0
}T

was employed.

Table 7 compares the predicted normalized mode-I SIF
KI

/[
ε̄E(−0.5)

√
πa

]
obtained in the present study with Eis-

chen’s results based on J ∗
k -integral for several values of η

a. The normalized SIF results obtained in the present study
agree very well with the reference solution.

6.6 Example 6: Plate with an interior inclined crack under
mixed-mode

Consider a centrally located inclined crack of length 2a = 2
units and an orientation γ in a finite, two-dimensional square
plate of size 2L = 2W = 20 units, as shown in Fig. 10a.
Plane stress conditions were assumed. The elastic modulus
was assumed to be an exponential function, given by

E (x1) = Ē exp (ηx1) , −W ≤ x1 ≤ W, (69)

where Ē and η are material parameters. The following data
were used for the numerical study: Ē = 1 unit; η = 0.25 and
0.5; and γ /π = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The applied load
corresponds to σ22 (x1, 10) = ε̄Ē exp (ηx1), where ε̄ = 1.
This stress distribution was obtained by applying nodal forces
along the top edge of the plate. The displacement boundary
condition was prescribed such that u2 = 0 along the lower
edge and, in addition, u1 = 0 for the node on the left hand



146 B. N. Rao, S. Rahman et al.

Fig. 7 Convergence of results with mesh refinement near the crack tip; (a) Normalized mode-I stress intensity factor and (b) Normalized mode-II
stress intensity factor

Fig. 8 Slanted Crack in a plate under mixed mode loading; (a) Geom-
etry and loads; and (b) FEM discretization

side of the lower edge. This loading results in a uniform strain
ε22 (x1, x2) = ε̄ in a corresponding uncracked structure. Fig-
ure 10b shows typical FEM discretization involving 2092
nodes, 628 Q8 elements, and 68 focused quarter-point T6
elements, adopted for γ /π = 0.2. In the analysis, a velocity{
V1,tip, V2,tip

}T
= {

10−5a cos γ, −10−5a sin γ
}T

was used

at the right crack tip, while a velocity
{
V1,tip, V2,tip

}T
=

{−10−5a cos γ, 10−5a sin γ
}T

was used at the left crack
tip.

Konda and Erdogan [26] previously investigated an infi-
nite plate with a similar configuration. Although an FEM
model cannot represent the infinite domains addressed in
their analysis, as long as the ratios a

/
W and a

/
L are kept

relatively small (e.g., a
/
W = a

/
L ≤ 1

/
10), the approxi-

mation is acceptable. Tables 8 and 9 provide a comparison
between the predicted normalized SIFs for both crack tips,
KI(+a)

/
Ēε̄

√
πa, KI(−a)

/
Ēε̄

√
πa, KII (+a)

/
Ēε̄

√
πa,

and KII (−a)
/
Ēε̄

√
πa, obtained by the proposed method

and those of Konda and Erdogan [28] for several values of
γ /π , when η = 0.25 and η = 0.5, respectively. A good agree-
ment is obtained between present FEM results and Konda
and Erdogan’s analytical solution.
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Table 6 Normalized stress intensity factors for a slanted crack in a plate

η
Present method Method-I [4] Method-II [4] Kim and Paulino [23] (J ∗

k )

KI

ε̄Ē
√

πa

KII

ε̄Ē
√

πa

KI

ε̄Ē
√

πa

KII

ε̄Ē
√

πa

KI

ε̄Ē
√

πa

KII

ε̄Ē
√

πa

KI

ε̄Ē
√

πa

KII

ε̄Ē
√

πa

0 1.449 0.614 1.448 0.610 1.448 0.610 1.451 0.604
0.1 1.392 0.588 1.392 0.585 1.391 0.585 1.396 0.579
0.25 1.312 0.552 1.313 0.549 1.312 0.549 1.316 0.544
0.5 1.190 0.497 1.193 0.495 1.190 0.495 1.196 0.491
0.75 1.081 0.448 1.086 0.447 1.082 0.446 1.089 0.443
1 0.984 0.405 0.990 0.405 0.986 0.404 0.993 0.402

Fig. 9 Composite strip under mode-I loading; (a) Geometry and Elastic modulus variation; (b) FEM discretization

6.7 Example 7: Plate with two interacting cracks under
mixed-mode loading

Consider a finite two-dimensional square plate of size 2L =
2W = 20 units, containing two cracks of length 2a = 2 units,
oriented with angles θ1 = 300, θ2 = 600, as shown in Fig. 11a.

The distance from the origin to each of the two left crack tips
is 1.0 unit. Plane stress conditions were assumed. The elastic
modulus was assumed to be an exponential function of x2,
given by

E (x2) = Ē exp (βx2) , −L ≤ x2 ≤ L, (70)
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Table 7 Normalized mode-I stress intensity factor for a composite strip
configuration

η a

KI

ε̄E (−0.5)
√

πa

Proposed method Eischen [19]

0 2.1159 2.112
2 2.3027 2.295
4 2.5821 2.571
6 2.7473 2.733
20 3.2485 3.228

where Ē and β are material parameters. The following data
were used for the numerical study: Ē = 1 unit; and β a =
0.0, 0.25, 0.5, 0.75, and 1.0. The applied load corresponds
to σ22 (x1, 10) = σ0 = 1.0. This stress distribution was ob-
tained by applying nodal forces along the top edge of the
mesh. The displacement boundary condition was prescribed
such thatu2 = 0 along the lower edge and, in addition,u1 = 0
for the node on the left hand side of the lower edge. FEM
discretization involved 3093 nodes, 936 Q8 elements, and
64 focused quarter-point T6 elements, as shown in Fig. 11b.

Velocities
{
V1,tip, V2,tip

}T
= {

10−5a cos θ1, 10−5a sin θ1
}T

and
{
V1,tip, V2,tip

}T
= {−10−5a cos θ1, −10−5a sin θ1

}T

were employed at right and left crack tips, respectively, of
the lower crack.

Kim and Paulino [23] investigated this example using
the displacement correlation technique, the modified crack-
closure integral method and the J ∗

k integral method. In addi-
tion, Shbeeb et al. [27,28] provided semi-analytical solutions
obtained using an integral equation method. However, the re-
sults of Shbeeb et al. were only presented in graphical form,
making accurate verification difficult. Nevertheless, Table
10 provides a comparison between the predicted normal-
ized SIFs, KI(+a)

/
σ22

√
πa, KII (+a)

/
σ22

√
πa, KI(−a)

/

σ22
√

πa, and KII (−a)
/
σ22

√
πa, for both crack tips of the

lower crack obtained by the proposed method and those of
Kim and Paulino and Shbeeb et al. for several values of β
a. A good agreement is obtained between the present FEM
results and published solutions of both Kim and Paulino and
Shbeeb et al.

7 Summary and conclusions

A new continuum shape sensitivity method was developed for
calculating mixed-mode stress-intensity factors for a station-
ary crack in two-dimensional, linear-elastic, isotropic FGMs
having an arbitrary geometry. The method involves the mate-
rial derivative concept taken from continuum mechanics, the
mutual potential energy release rate, and direct differentia-
tion. Since the governing variational equation is differentiated
prior to discretization, the resulting sensitivity equations are
independent of approximate numerical techniques, such as
the finite element method, boundary element method,

Fig. 10 Plate with an interior inclined crack under mixed mode loading;
(a) Geometry and loads; and (b) FEM discretization for γ /π = 0.2

mesh-free method, or others. The discrete form of the mutual
potential energy release rate is simple and easy to calculate,
as it only requires multiplication of displacement vectors
and stiffness sensitivity matrices. By judiciously selecting
the velocity field, the method only requires displacement re-
sponse in a subdomain close to the crack tip, thus render-
ing it computationally efficient. Seven finite-element based
numerical examples, which comprise mode-I and mixed-
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Table 8 Normalized stress intensity factors for a plate with an interior inclined crack (η = 0.25)

Method γ / π
KI (+a)

Ēε̄
√

πa

KI (−a)

Ēε̄
√

πa

KII (+a)

Ēε̄
√

πa

KII (−a)

Ēε̄
√

πa

Present method

0 1.216 0.845 0 0
0.1 1.097 0.767 −0.330 −0.254
0.2 0.788 0.561 −0.524 −0.424
0.3 0.415 0.298 −0.512 −0.438
0.4 0.119 0.078 −0.307 −0.281
0.5 0 0 0 0

Konda and Erdogan [26]

0 1.196 0.825 0 0
0.1 1.081 0.750 −0.321 −0.254
0.2 0.781 0.548 −0.514 −0.422
0.3 0.414 0.290 −0.504 −0.437
0.4 0.121 0.075 −0.304 −0.282
0.5 0 0 0 0

Table 9 Normalized stress intensity factors for a plate with an interior inclined crack (η = 0.5)

Method γ / π
KI (+a)

Ēε̄
√

πa

KI (−a)

Ēε̄
√

πa

KII (+a)

Ēε̄
√

πa

KII (−a)

Ēε̄
√

πa

Present method

0 1.433 0.689 0 0
0.1 1.289 0.632 −0.358 −0.206
0.2 0.921 0.472 −0.559 −0.361
0.3 0.483 0.255 −0.539 −0.394
0.4 0.142 0.064 −0.316 −0.266
0.5 0 0 0 0

Konda and Erdogan [26]

0 1.424 0.674 0 0
0.1 1.285 0.617 −0.344 −0.213
0.2 0.925 0.460 −0.548 −0.365
0.3 0.490 0.247 −0.532 −0.397
0.4 0.146 0.059 −0.314 −0.269
0.5 0 0 0 0

Fig. 11 Plate with two interacting cracks under mixed mode loading; (a) Geometry and loads; and (b) FEM discretization
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mode deformations and/or single or multiple interacting
cracks, are presented to evaluate the accuracy of fracture
parameters calculated by the proposed method. Comparisons
have been made between the stress-intensity factors predicted
by the proposed method and available reference solutions in
the literature, generated either analytically or numerically us-
ing various other fracture integrals or analyses. An excellent
agreement is obtained between the results of the proposed
method and previously obtained solutions. Therefore, shape
sensitivity analysis provides an attractive alternative for frac-
ture analysis of cracks in homogeneous and non-homoge-
neous materials.
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