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CHAPTER 10

MESHFREE METHODS IN COMPUTATIONAL
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E-mail: rahman@engineering.uiowa.edu

This chapter provides an exposition of stochastic meshfree methods that involves deter-
ministic meshfree formulation, spectral representation of random fields, multivariate
function decomposition, statistical moment analysis, and reliability analysis. Numer-
ical results indicate that stochastic meshfree methods, employed in conjunction with
dimension-reduction and decomposition methods, yield accurate and computationally
efficient estimates of statistical moments and reliability. Although significant strides
have been made, breakthrough research on enhancing speed and robustness of meshfree
methods is essential for their successful implementation into stochastic mechanics.

1. Introduction

During the last decade, much attention has been focused on collocation1,2- or
Galerkin-based3–8 meshfree or meshless methods to solve computational mechanics
problems without using a structured grid. Among these methods, the element-free
Galerkin method (EFGM)4 is particularly appealing, due to its simplicity and use
of a formulation that corresponds to the well-established finite element method
(FEM). Similar to other meshfree methods, EFGM employs moving least-squares
approximation9 that permits the resultant shape functions to be constructed
entirely in terms of arbitrarily placed nodes. Since no element connectivity data
are needed, burdensome meshing or remeshing required by FEM is avoided. This
issue is particularly important for crack propagation in solids for which FEM may be
ineffective in addressing substantial remeshing.10–15 Hence, EFGM and other mesh-
free methods provide an attractive alternative to FEM in solving computational-
mechanics problems.

However, most meshfree development has focused on deterministic problems.
Research in probabilistic modeling using EFGM or other meshfree methods
has not been widespread and is only now gaining attention.16–20 For example,
using the perturbation and first-order reliability methods, Rahman and Rao16,17

developed stochastic meshless formulations to predict both the second-moment
and reliability of stochastic structures. An alternative approach involving spec-
tral representation of random fields and Neumann series expansion has also
appeared for second-moment meshless analysis.18 Due to their inherent advantages,
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most stochastic meshless development has been focused on linear-elastic19,20 and
nonlinear21 fracture-mechanics problems. More recently, new stochastic solutions
integrating meshfree formulation and dimension-reduction techniques and decom-
position methods have been reported.22–24 Nevertheless, meshfree methods for
probabilistic analysis present a rich and relatively unexplored area for future
research in computational stochastic mechanics.

This chapter provides an exposition of meshfree methods for stochastic mechan-
ics and reliability applications. Section 2 reviews deterministic formulation of
EFGM. Section 3 discusses the Karhunen-Loève representation of a random field,
meshfree solution of an integral equation, and modeling of Gaussian and translation
fields. Section 4 informs the reader on function decomposition that facilitates lower-
variate approximations of a general multivariate function. Using function decompo-
sition, dimension-reduction methods for statistical moment analysis are presented
in Sec. 5. A Monte Carlo simulation using response surface models of lower-variate
approximations is examined in Sec. 6. Several numerical examples are presented to
illustrate various methods developed. Finally, Sec. 7 concludes the chapter with the
impact of current research and future research needs in stochastic meshfree analysis.

2. The Element-Free Galerkin Method

2.1. Moving least squares and meshless shape function

Consider a real-valued, continuous, differentiable function u(x) over a domain
D ⊂ R

K , where K = 1, 2, or 3. Let Dx ⊆ D denote a subdomain describing
the neighborhood of a point x ∈ D ⊂ R

K . A moving least-squares (MLS) approxi-
mation uh(x) of u(x) is9

uh(x) =
m∑

i=1

pi(x)ai(x) = pT (x)a(x), (1)

where pT (x) =
{
p1(x), . . . , pm(x)

}
is a vector of complete basis functions of length

m and a(x) =
{
a1(x), . . . , am(x)

}T is a vector of unknown parameters that depend
on x. For example, basis functions commonly used in two-dimensional (K = 2)
solid mechanics with x1 − x2 coordinates are pT (x) =

{
1, x1, x2

}
; m = 3 and

pT (x) =
{
1, x1, x2, x

2
1, x1x2, x

2
2

}
; m = 6, which represent linear and quadratic

basis functions, respectively. The basis functions need not be polynomial. When
solving problems involving cracks, trigonometric basis functions consistent with sin-
gular crack-tip fields have been developed for both linear-elastic11 and nonlinear14

fracture-mechanics applications.
The coefficient vector a(x) in Eq. (1) is determined by minimizing a weighted

error norm, defined as:

J(x) ≡
l∑

I=1

wI(x)
[
pT (xI)a(x) − dI

]2 = [Pa(x) − d]T W [P a(x) − d], (2)
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Fig. 1. A schematic illustration of meshfree discretization and weight functions with compact
support.

where xI denotes the coordinates of node I, dT =
{
d1, . . . , dl

}
with dI representing

the nodal parameter for node I, W = diag
[
w1(x), . . . , wl(x)

]
with wI(x) being the

weight function associated with node I, such that wI(x) > 0 for all x in the support
Dx of wI(x) and zero otherwise, l is the number of nodes in Dx for which wI(x) > 0,
and P = [pT (x1), . . . , pT (xl)] ∈ L

(
R

l × R
m
)
. The weight function has a compact

support and is schematically depicted in Fig. 1. A number of weight functions are
available in the current literature.3–21 For example, a weight function proposed by
Rao and Rahman is12

wI(x) =




„
1+β2 z2

I
z2

mI

«−( 1+β
2 )

−(1+β2)−( 1+β
2 )

1−(1+β2)
−( 1+β

2 ) , zI ≤ zmI

0, zI > zmI

, (3)

where β is a shape controlling parameter, zI = ||x−xI ||, and zmI is the domain of
influence of node I. The stationarity of J(x) with respect to a(x) yields

A(x)a(x) = C(x)d, (4)

where

A(x) =
l∑

I=1

wI(x)p(xI)pT (xI) = P T WP , (5)

and

C(x) =
[
w1(x)p(x1), · · · , wl(x)p(xl)

]
= P T W . (6)

Solving for a(x) in Eq. (4) and then substituting into Eq. (1) yields

uh(x) =
l∑

I=1

ΦI(x)dI = ΦT (x)d, (7)
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where

ΦT (x) =
{
Φ1(x), . . . , Φl(x)

}
= pT (x)A−1(x)C(x) (8)

is a vector with its Ith component

ΦI(x) =
m∑

j=1

pj(x)
[
A−1(x)C(x)

]
jI

, (9)

representing the shape function of the MLS approximation corresponding to node I.
The partial derivatives of ΦI(x) can also be obtained as

ΦI,i(x) =
m∑

j=1

{
pj,i(A−1C)jI + pj(A−1

,i C + A−1C ,i)jI

}
, (10)

where A−1
,i = −A−1A,iA

−1 and
()

,i
= ∂
()

/∂xi. From Eqs. (6) and (9), ΦI(x) = 0
when wI(x) = 0. In other words, ΦI(x) vanishes for x not in the support of nodal
point xI , thus preserving the local character of the MLS approximation.

2.2. Variational formulation and discretization

For small displacements in two-dimensional, isotropic, and linear-elastic solids, the
equilibrium equations and boundary conditions are

∇ · σ + b = 0 in D and (11)

σ · n = t̄ on Γt (natural boundary conditions)
u = ū on Γu (essential boundary conditions)

, (12)

respectively, where σ = Dε is the stress vector, D is the material property matrix,
ε = ∇su is the strain vector, u is the displacement vector, b is the body force
vector, t̄ and ū are the vectors of prescribed surface tractions and displacements,
respectively, n is a unit normal to the domain D, Γt and Γu are the portions of
boundary Γ where tractions and displacements are respectively prescribed, ∇T =
{∂/∂x1, ∂/∂x2} is the vector of gradient operators, and ∇su is the symmetric part
of ∇u. The variational or weak form of Eqs. (11) and (12) is∫

D
σT δεdD −

∫
D

bT δudD −
∫

Γ

t̄
T
δudΓt

+
∑

xk∈Γu

fT (xk)δu(xk) +
∑

xk∈Γu

δfT (xk)
[
u(xk) − ū(xk)

]
= 0,

(13)

where fT (xk) is the vector of reaction forces at the constrained node k on Γu

and δ denotes the variation operator. From Eq. (7), the MLS approximation of
u(x) =

{
u1(x), u2(x)

}T in two dimensions is

uh(x) = ΦT d, (14)

where

ΦT (x) =

[
Φ1(x) 0 · · · ΦM (x) 0

0 Φ1(x) · · · 0 ΦM (x)

]
, (15)
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d = {d1
1, d

2
1, . . . , d

1
M , d2

M}T ∈ R
2M is the vector of nodal parameters or generalized

displacements, and M is the total number of nodal points in D. Applying the
MLS approximation of Eq. 14 to discretization of Eq. 13 yields a linear system of
equilibrium equations

KY = F , (16)

or [
k G

GT 0

]
︸ ︷︷ ︸

K

{
d

fR

}
︸ ︷︷ ︸

Y

=
{

f ext

g

}
︸ ︷︷ ︸

F

, (17)

where

k =




k11 k12 · · · k1M

k21 k22 · · · k2M

...
...

...
...

kM1 kM2 · · · kMM


 ∈ L

(
R

2M × R
2M
)

(18)

is the stiffness matrix with

kIJ =
∫
D

BT
I DBJdD ∈ L

(
R

2 × R
2
)
, (19)

GT =




Φ1(x1) 0 · · · Φ1(xM ) 0

0 Φ1(x1) · · · 0 Φ1(xM )
...

...
. . .

...
...

ΦL(x1) 0 · · · ΦL(xM ) 0

0 ΦL(x1) · · · 0 ΦL(xM )




(20)

is a matrix comprising shape function values of nodes at which the displacement
boundary conditions are prescribed, L is the total number of nodes on Γu, fR =
{f(xk1), . . . , f (xkL)}T ∈ R

2L is the vector of reaction forces on Γu,

fext =
∫
D

ΦT bdD +
∫

Γt

ΦT t̄dΓt ∈ R
2M (21)

is the force vector, g = {ū(xk1), . . . , ū(xkL)}T ∈ R
2L is the vector of prescribed

displacements on Γu, and

BI =


ΦI,1 0

0 ΦI,2

ΦI,2 ΦI,1


 . (22)

To perform numerical integrations in Eqs. (19) and (21), a background mesh is
required, which can be independent of the arrangement of meshfree nodes. However,
in forthcoming numerical examples, the nodes of the background mesh coincide with
the meshless nodes. Standard 4× 4 Gaussian quadratures are used to evaluate the
integrals for assembling the stiffness matrix and the force vector.



October 26, 2005 11:28 WSPC/SPI-B307-Recent Development in Reliability-Based Civil Engineering ch10

192 S. Rahman

2.3. Essential boundary conditions

In solving for d, the essential boundary conditions must be enforced. The lack of
Kronecker delta properties in meshless shape functions presents some difficulty in
imposing essential boundary conditions in EFGM. Nevertheless, several methods
are currently available for enforcing essential boundary conditions. In this work, a
full transformation method12,25 is employed for stochastic applications.

It should be noted that the generalized displacement vector d represents the
nodal parameters, and not the actual displacements at meshfree nodes. Let d̂ =
{uh(x1), . . . , uh(xM )}T ∈ R

2M represent the vector of nodal displacements. From
Eq. (14)

d̂ = Λd, (23)

where Λ = [ΦT (x1), . . . ,ΦT (xM )]T ∈L
(
R

2M × R
2M
)

is the transformation matrix.
Hence, d̂ can be easily calculated when d is known.

In summary, shape functions and resultant matrix equilibrium equations have
been created without using any structured mesh, a key advantage of meshfree
methods over FEM. However, the computational effort in generating these matrix
equations is typically higher than that required by low-order FEM. Therefore,
breakthrough research focused on enhancing speed and robustness of meshfree
methods is required for their effective implementation.

3. Random Field and Parameterization

3.1. Karhunen-Loève representation

Let (Ω,F , P ) be a probability space, where Ω is the sample space, F is the σ-algebra
of subsets of Ω and P is the probability measure. Defined on the probability space
and indexed by a spatial coordinate x ∈ D ⊂ R

K , K = 1, 2, or 3, consider a real-
valued random field α(x) with mean zero and covariance function Γ(x1, x2) ≡
E
[
α(x1)α(x2)

]
, which is continuous over D. Denote by L2(Ω,F , P ) or simply L2

a collection of random variables α for each x ∈ D such that E[|α|2] < ∞, where E

represents the expectation operator. If α is in L2, then Γ(x1, x2) is square integrable
and hence a bounded function.

Let {λi, fi(x)}, i = 1, 2, . . . ,∞, be the eigenvalues and eigenfunctions of
Γ(x1, x2), which satisfy the integral equation26

∫
D

Γ(x1, x2)fi(x2)dx2 = λifi(x1), ∀i = 1, 2, . . . ,∞. (24)

The eigenfunctions are orthogonal in the sense that∫
D

fi(x)fj(x)dx = δij , ∀i, j = 1, 2, . . . ,∞, (25)
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with δij representing the Kronecker delta. The Karhunen-Loève (K-L) representa-
tion of α(x) is26

α(x) =
∞∑

i=1

Vi

√
λifi(x), (26)

where Vi, i = 1, . . . ,∞ is an infinite sequence of uncorrelated random variables,
each of which has zero mean and unit variance. In practice, the infinite series of
Eq. (26) must be truncated, yielding a K-L approximation or expansion

α̂M (x) =
N∑

i=1

Vi

√
λifi(x), (27)

which approaches α(x) in the mean square sense for x ∈ D as N → ∞. According
to Eq. (27), the K-L expansion provides a parametric representation of a random
field with N random variables.

3.2. Gaussian and translation random fields

The K-L approximation captures only the second-moment properties of a random
field. Hence, a random field that is completely described by its second-moment
properties, such as a Gaussian random field, can be effectively approximated by
K-L expansion. For example, if a random field is Gaussian, its K-L approxima-
tion in Eq. (27) forms a zero-mean, independent sequence of standard Gaussian
random variables Vi, i = 1, . . . , N . For a general non-Gaussian field, K-L represen-
tation cannot provide complete characterization and therefore may not be appli-
cable. However, one class of non-Gaussian random fields for which the use of K-L
expansion can be readily exploited is the class of translation random fields, where
a non-Gaussian random field is defined as a nonlinear, memoryless transformation
of a Gaussian random field.27

Let Z(x) be a homogenous, non-Gaussian translation random field with mean
µZ , standard deviation σZ , covariance function ΓZ(ξ) ≡ E[(Z(x)−µZ)(Z(x+ξ)−
µZ)], and marginal distribution F that has no atoms, and let α(x) be a homoge-
neous, zero-mean, Gaussian random field with unit variance and covariance function
Γα(ξ) ≡ E[α(x)α(x + ξ)]. If G is a real-valued, monotonic, differentiable function,
then,

Z(x) = G[α(x)] (28)

can be viewed as a memoryless transformation of the Gaussian image field α(x).
From the condition that the marginal distribution and the covariance function of
Z(x) coincide with specified target functions F and ΓZ , respectively, it can be
shown that28,29

G(α) = F−1[Φ(α)], (29)
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and

µ2
Z + ΓZ(ξ) =

∫ ∞

∞

∫ ∞

∞
(G(α1) − µz)(G(α2) − µz)φ2(α1, α2, Γα(ξ))dα1dα2, (30)

where Φ is the distribution function of a standard Gaussian variable and
φ2(α1, α2, Γα(ξ)) is the bivariate standard Gaussian density function with correla-
tion coefficient Γα. For given µZ , ΓZ(ξ), and F , G can be calculated from Eq. (29)
and the required covariance function Γα(ξ) of α(x) can be solved from Eq. (30), if
the target scaled covariance function ΓZ(ξ)/ΓZ(0) is in the range (Γ̄∗, 1), where29

Γ̄∗ =
E [G(α)G(−α)] − E [G(α)]2

E [G(α)2] − E [G(α)]2
. (31)

Once Γα(ξ) is determined, the parameterization of Z(x) is achieved by K-L expan-
sion of its Gaussian image, i.e.

Z(x) 	 G

[
N∑

i=1

Vi

√
λifi(x)

]
, (32)

where Vi, i = 1, . . . , N are independent standard Gaussian random variables, and
{λi, fi(x)}, i = 1, . . . , N are eigenvalues and eigenfunctions of Γα(ξ).

3.3. Meshfree method for solving integral equation

The K-L expansion requires solution of an integral eigenvalue problem (Eq. (24)),
which is not an easy task in general. Closed-form solutions are only available when
the covariance kernel has simpler functional forms, such as exponential and lin-
ear functions, or domain D is rectangular. For arbitrary covariance functions or
arbitrary domains, numerical methods are often needed to solve the eigenvalue
problem. In this section, meshfree shape functions from EFGM are employed to
solve the eigenvalue problem.18

For a random field α(x) indexed by x ∈ D ⊂ R
K , K = 1, 2, or 3, consider an

MLS approximation of the eigenfunction fi(x), given by

fi(x) =
M∑

I=1

f̂iIΦI(x), (33)

where f̂iI is the Ith nodal parameter for the ith eigenfunction, ΦI(x) is the meshless
shape function of the Ith node (see Sec. 2), and M is the total number of nodes.
Hence, Eq. (24) becomes

M∑
I=1

f̂iI

∫
D

Γ(x1x2)ΦI(x2)dx2 − λi

∑
I=1

f̂iIΦI(x1). (34)

Define

εM =
M∑

I=1

f̂iI

(∫
D

Γ(x1, x2)ΦI(x2)dx2 − λiΦI(x1)
)

(35)
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as the residual error, which is associated with meshless discretization involving an
M number of nodes. Following Galerkin approximation,∫

D
εMΦJ(x1)dx1 = 0, ∀J = 1, . . . , M, (36)

which, when combined with Eq. (35) can be expanded to yield the following matrix
equation

λiRf̂ i = Sf̂ i, (37)

where f̂ i = {f̂i1, . . . , f̂iM}T is the ith eigenvector, R = [RIJ ], S = [SIJ ],

RIJ =
∫
D

∫
D

Γ(x1, x2)ΦI(x2)ΦJ (x1)dx1dx2, ∀I, J = 1 . . . , M, (38)

and

SIJ =
∫
D

ΦI(x)ΦJ (x)dx, ∀I, J = 1, . . . , M. (39)

Equation (37) represents the matrix analog of the integral eigenvalue problem for
a multi-dimensional random field with an arbitrary domain. Equation (37) can be
formulated for any covariance function or domain and can be easily solved by stan-
dard methods. Hence, the meshfree method can solve problems involving a multi-
dimensional random field with an arbitrary covariance function and an arbitrary
domain. Once the eigenvector f̂ i is calculated, Eq. (33) can be used to determine
the eigenfunction fi(x).

Note that the meshless discretization proposed here is only intended for solv-
ing the integral eigenvalue problem, not for discretizing the random field. Matri-
ces R and S, which involve 2K- and K-dimensional integration, respectively, can
be computed using standard numerical quadrature. Integration involves meshless
shape functions, which are already calculated and stored for meshless stress anal-
ysis. Hence, matrices R and S can be generated with little extra effort. However,
for a large K, the computational effort in performing numerical integration can
become intensive. Also note that for meshless stress analysis it is not necessary
that the number and spatial distribution of nodes coincide with those for eigen-
function approximation. Different and selective discretizations can be employed, if
necessary. However, in this study the same discretization is used for both meshless
stress analysis and for solving the eigenvalue problem.

3.4. Example 1: Eigensolution for a two-dimensional domain

Consider a two-dimensional domain D that is constructed by subtracting a quarter
of a circle of radius a = 1 unit from a square of size L = 20 units, as depicted by
Fig. 2. A homogeneous Gaussian random field α(x) defined over D has mean zero
and a bounded covariance function

Γα(ξ) = σ2
α exp

(
−‖ξ‖

bL

)
, ∀x, x + ξ ∈ D, (40)



October 26, 2005 11:28 WSPC/SPI-B307-Recent Development in Reliability-Based Civil Engineering ch10

196 S. Rahman

Fig. 2. A two-dimensional domain D for random field α(x), x ∈ D ⊂ R
2.

where σα = 0.1 unit and b = 0.5. Since the domain is not rectangular, no analytical
solution of eigenvalues and eigenfunctions exists for the above covariance function.
Therefore, the meshfree method is needed to find a numerical solution. Figures 3(a)
though 3(e) show five meshfree discretizations of D with total number of nodes
M = 9, 20, 30, 56, and 90, respectively, which represent progressively increasing
degrees of refinement.18

Figure 4 shows several eigenvalues calculated using the meshfree method
(Eqs. 33–39) for M = 9, 20, 30, 56, and 90, for the given covariance kernel. Clearly,
the eigenvalues converge with respect to M , as expected. Similar comparisons of the
first four eigenfunctions f1(x), f2(x), f3(x), and f4(x), presented in Figs. 5(a), 5(b),

(a) (b)

(e)(d)(c)

Fig. 3. Various meshfree discretizatons; (a) M = 9; (b) M = 20; (c) M = 30; (d) M = 56;
(e) M = 90.18
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6(a), and 6(b), respectively, also demonstrate the convergence of eigenfunctions with
respect to M . These convergent solutions of eigenvalues and eigenfunctions provide
confidence in the following probabilistic results.

4. Multivariate Function Decomposition

Consider a continuous, differentiable, real-valued multivariate function y(v) that
depends on v = {v1, · · · , vN}T ∈ R

N . Suppose, y(v) has a convergent Taylor expan-
sion at an arbitrary reference point c = {c1, · · · , cN}T . Applying the Taylor series
expansion of y(v) at v = c, y(v) can be expressed by

y(v) = y(c) +
∞∑

j=1

1
j!

N∑
i=1

∂jy

∂vj
i

(c)(vi − ci)j + R2, (41)

or

y(v) = y(c) +
∞∑

j=1

1
j!

N∑
i=1

∂jy

∂vj
i

(c)(vi − ci)j

+
∞∑

j1,j2>0

1
j1!j2!

∑
i1<i2

∂j1+j2y

∂vj1
i1

∂vj2
i2

(c)(vi1 − ci1)
j1(vi2 − ci2)

j2 + R3, (42)

where the remainder R2 denotes all terms with dimension two and higher and the
remainder R3 denotes all terms with dimension three and higher.
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Fig. 5. First and second eigenfunctions by meshfree method; (a) f1(x); (b) f2(x).18

4.1. Univariate approximation

Consider a univariate approximation of y(v), denoted by

ŷ1(v) ≡ ŷ1(v1, . . . , vN ) =
N∑

i=1

y(c1, . . . , ci−1, vi, ci+1, . . . , cN ) − (N − 1)y(c), (43)

where each term in the summation is a function of only one variable and can be
subsequently expanded in a Taylor series at v = c yielding
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Fig. 6. Third and fourth eigenfunctions by meshfree method; (a) f3(x); (b) f4(x).18

ŷ1(v) = y(c) +
∞∑

j=1

1
j!

N∑
i=1

∂jy

∂vj
i

(c)(vi − ci)j . (44)

Comparison of Eqs. (41) and (44) indicates that the univariate approximation leads
to the residual error y(v) − ŷ1(v) = R2, which includes contributions from terms
of dimension two and higher. For a sufficiently smooth y(v) having a convergent
Taylor series, the coefficients associated with higher-dimensional terms are usually
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much smaller than those associated with one-dimensional terms. As such, higher-
dimensional terms contribute less to the function, and therefore, can be neglected.
Furthermore, Eq. (43) exactly represents y(v) =

∑
yi(vi), i.e. when y(v) can be

additively decomposed into functions yi(xi) of single variables.

4.2. Bivariate approximation

In a similar manner, consider a bivariate approximation

ŷ2(v) =
∑

i1<i2

y(c1, . . . , ci1−1, vi1 , ci1+1, . . . , ci2−1, vi2 , ci2+1, . . . , cN )

− (N − 2)
N∑

i=1

y(c1, . . . , ci−1, vi, ci+1, . . . , cN ) +
(N − 1)(N − 2)

2
y(c) (45)

of y(v), where each term on the right hand side is a function of at most two variables
and can be expanded in a Taylor series at v = c, yielding

ŷ2(v) = y(c) +
∞∑

j=1

1
j!

N∑
i=1

∂jy

∂vj
i

(c)(vi − ci)j

+
∞∑

j1,j2>0

1
j1!j2!

∑
i1<i2

∂j1+j2y

∂vj1
i1

∂vj2
i2

(c)(vi1 − ci1)
j1 (vi2 − ci2)

j2 . (46)

Again, the comparison of Eqs. (42) and (46) indicates that the bivariate approx-
imation leads to the residual error y(v) − ŷ2(v) = R3, in which the remainder
R3 includes terms of dimension three and higher. The bivariate approximation
includes all terms with no more than two variables, thus yielding higher accu-
racy than the univariate approximation. Furthermore, Eq. (45) exactly represents
y(v) =

∑∑
yij(vi, vj), i.e. when y(v) can be additively decomposed into functions

yij(vi, vj) of at most two variables.

4.3. Generalized S-variate approximation

The procedure for univariate and bivariate approximations described in the preced-
ing can be generalized to an S-variate approximation for any integer 1 ≤ S ≤ N .
The generalized S-variate approximation of y(v) is22–24

ŷS(v) ≡
S∑

i=0

(−1)i

(
N − S + i − 1

i

)
yS−i(v), (47)

where

yR =
R∑

k=0

(
N − k

R − k

)
tk; 0 ≤ R ≤ S, (48)
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with

t0 = y(c)

t1 =
∑
j1

1
j1!

N∑
i1=1

∂j1y

∂vj1
i1

(c) (vi1 − ci1)
j1

t2 =
∑
j1,j2

1
j1!j2!

∑
i1<i2

∂j1+j2y

∂vj1
i1

∂vj2
i2

(c) (vi1 − ci1)
j1

(vi2 − ci2)
j2

...
...

...

tS =
∑

j1,...,jS

1
j1! · · · jS !

∑
i1<···<iS

∂j1+···+jS y

∂vj1
i1
· · · ∂vjS

iS

(c) (vi1 − ci1)
j1 · · · (viS − ciS )jS .

(49)

Using a multivariate function decomposition theorem, developed by the author’s
group, it can be shown that ŷS(v) in Eq. (47) consists of all terms of the Taylor series
of y(v) that have less than or equal to S variables.23 The expanded form of Eq. (47),
when compared with the Taylor expansion of y(v), indicates that the residual error
in the S-variate approximation is y(v)− ŷS(v) = RS+1, where the remainder RS+1

includes terms of dimension S + 1 and higher. When S = 1, Eq. (47) degenerates
to the univariate approximation (Eq. (43)). When S = 2, Eq. (47) becomes the
bivariate approximation (Eq. (45)). Similarly, trivariate, quadrivariate, and other
higher-variate approximations can be derived by appropriately selecting the value
of S. In the limit, when S = N , Eq. (47) converges to the exact function y(v).
In other words, the decomposition technique generates a convergent sequence of
approximations of y(v).

5. Statistical Moment Analysis

5.1. General stochastic response

Consider a mechanical system subject to a zero-mean independent random input
vector V = {V1, . . . , VN}T ∈ R

N , which characterizes uncertainty in loads, mate-
rial properties, and geometry. Let g(V ) represent a general stochastic response of
interest, for which the lth statistical moment

ml ≡ E
[
gl(V )

]
=
∫

RN

gl(v)fV (v)dv (50)

is sought, where fV (v) is the joint probability density function of V . If y(V ) =
gl(V ), the lth moment can also be evaluated from

ml = E[y(V )] =
∫

RN

y(v)fV (v)dv. (51)
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Following the S-variate approximation procedure discussed in Eqs. (47)–(49) and
using c = 0 (mean input),

ml
∼= E [ŷS(V )] =

S∑
i=0

(−1)i

(
N − S + i − 1

i

)
×

∑
k1<k2<···<kS−i

E
[
y
(
0, . . . , 0, Vk1 , 0, . . . , 0, Vk2 , 0, . . . , 0, VkS−i , 0, . . . , 0

)]
. (52)

If fVkj
(vkj ) represents the marginal density of Vkj , then by definition

E
[
y
(
0, . . . , 0, Vk1 , 0, . . . , 0, Vk2 , 0, . . . , 0, VkS−i , 0, . . . , 0

)]
≡
∫ ∞

−∞
y
(
0, . . . , 0, vk1 , 0, . . . , 0, vk2 , 0, . . . , 0, vkS−i , 0, . . . , 0

) S−i∏
j=1

fVkj
(vkj )dvkj ,

(53)

which is valid for any independent random vector V . If V comprises dependent
variables, an appropriate transformation, such as the Rosenblatt transformation,30

should be applied to map the dependent random vector V to an independent
standard Gaussian random vector U . Note that Eq. (53) only requires at most
S-dimensional deterministic integration, which can be more easily evaluated using
standard quadrature rules if S � N . For example, Gauss-Legendre and Gauss-
Hermite quadratures are frequently used when Vj follows uniform and Gaussian
distributions, respectively.31 For an arbitrary distribution of Vj , a moment-based
quadrature rule developed by the author can be used to evaluate the integral.23

The moment equation entails evaluating at most S-dimensional integrals, which
is substantially simpler and more efficient than performing one N -dimensional inte-
gration when S � N . For practical problems involving a large number of input ran-
dom variables (e.g. N > 30), the moment equation presents a promising method.
The method does not require calculation of any partial derivatives of response and
inversion of random matrices as compared with, respectively, the commonly used
Taylor/perturbation and Neumann expansion methods. Hence, the computation
effort in conducting statistical moment analysis is significantly reduced using the
function decomposition technique. The method is coined “S-variate or multivari-
ate dimension-reduction method,” since calculation of an N -dimensional integral is
essentially reduced to that of an at most S-dimensional integral.23 When S = 1, the
method degenerates to the univariate dimension-reduction method involving only
one-dimensional integrations.22 When S = 2, the method becomes the bivariate
dimension-reduction method entailing at most two-dimensional integrations. Sim-
ilarly, trivariate, quadrivariate, and other higher-variate methods can be derived
by appropriately selecting the value of S. In the limit, when S = N , there is no
dimension reduction and the method yields the exact solution.

5.2. Discrete equilibrium equations

Consider a linear mechanical system subject to a vector of input random parameters
V ∈ R

N → (µ, γ) characterizing uncertainty in the system and loads. Following
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discretization, let Y ∈ R
L → (mY , γY

)
represent a displacement (response) vector

associated with L degrees of freedom of the system, satisfying the linear equilibrium
equation

K(V )Y (V ) = F (V ), (54)

in which the stiffness matrix K and force vector F depend on V and were defined
in Sec. 2 in the review of meshfree formulation for linear elasticity. Equation (54)
is common in mesh-free methods when the system, loads, or both, are uncertain.
The solution

Y (V ) = K(V )−1F (V ) (55)

is random and depends on V . Using the S-variate dimension-reduction method,
the mean vector mY and covariance matrix γY of Y can be derived as

mY
∼= E[Ŷ ] =

S∑
i=0

(−1)i

(
N − S + i − 1

i

) ∑
k1<k2<···<kS−i

E

[
K(Ṽ i)−1F (Ṽ i)

]
,

(56)

γY = E

[
Y Y T

]
− mY mT

Y , (57)

where Ṽ i = {0, . . . , 0, Vk1 , 0, . . . , 0, VkS−i , 0, . . . , 0}T and

E
[
Y Y T

] ∼= S∑
i=0

(−1)i

(
N − S + i − 1

i

)

×
∑

k1<k2<...<kS−i

E

[
K(Ṽ i)−1F (Ṽ i)F (Ṽ i)T K(Ṽ i)−T

]
. (58)

Note that the calculation of expected values on the right hand side of Eqs. (56)–(58)
involves at most S-dimensional integrations.

5.3. Example 2: Response statistics of a plate with a hole

Consider a square plate with a circular hole, as shown in Fig. 7. The plate has
dimension 2L = 40 units, a hole with diameter 2a = 2 units, and is subjected to a
far-field, uniformly distributed stress of magnitude σ∞ = 1 unit. The Poisson’s
ratio ν = 0.3. The elastic modulus is a homogeneous Gaussian random field
E(x) = µE [1 + α(x)]; x ∈ D ⊂ R

2, where µE = 1 unit is the constant mean
over domain D and α(x) is a homogeneous Gaussian random field with mean zero
and covariance function defined by Eq. (40) in Example 1.a Furthermore, the mod-
ulus of elasticity is assumed to be symmetrically distributed with respect to x1- and
x2-axes (see Fig. 7). Therefore, only a quarter of the plate needs to be analyzed.

aThe Gaussian random field is adopted in Example 2 to allow direct comparison between
dimension-reduction methods and Neumann expansion method,32 of which the latter method
entails the Gaussian assumption. The dimension-reduction methods do not require any specific
distribution of random fields or variables.23
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Fig. 7. A square plate with a hole subjected to uniform tension.

Figures 3(a)–3(e) show several meshfree discretizations of the quarter plate with
various degrees of refinement. A plane stress condition is assumed.

Based on the correlation parameter b = 0.5, a value of N = 12 was selected for
the K-L approximation of α(x). The meshfree method using the finest discretization
(i.e. M = 90; see Fig. 3(e) in Example 1) was employed to obtain both the stress field
and eigensolutions {λj , φj(x)}, j = 1, . . . , 12. Hence, the input random vector V =
{V1, . . . , V12}T becomes a twelve-dimensional standard Gaussian random vector.

Table 1 presents standard deviations of displacements and strains at points A,
B, C, D, and E (see Fig. 7), predicted by the univariate and bivariate dimension-
reduction methods, as well as results of a fourth-order Neumann expansion method
and a Monte Carlo simulation (5000 samples).23 The Neumann expansion solu-
tions are obtained by following the development of Spanos and Ghanem.32 As
can be seen in Table 1, the Neumann expansion and dimension-reduction meth-
ods provide satisfactory results for prediction of standard deviations in comparison
with simulation results. The accuracy of the response statistics from the bivariate
dimension-reduction method is similar to the Neumann expansion method, and is
slightly higher than the univariate dimension-reduction method. More importantly,
however, a comparison of CPU times, shown in Fig. 8, indicates that the univari-
ate dimension-reduction method is far more efficient than the Neumann expansion
method. From Fig. 8, it can be seen that the bivariate dimension-reduction method
also surpasses the computational efficiency of the fourth-order Neumann expansion
method.
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Table 1. Standard deviations of displacements and strains by various methods.23

Location Response Standard deviation of response
variable

4th-order Univariate Bivariate Monte Carlo
Neumann dimension- dimension- simulation
expansion reduction reduction (5000
method method method samples)

A u1 1.17×10−1 1.15×10−1 1.17×10−1 1.19×10−1

ε11 2.78×10−2 2.72×10−2 2.78×10−2 2.79×10−2

ε22 2.57×10−1 2.51×10−1 2.57×10−1 2.58×10−1

ε12 3.52×10−2 3.45×10−2 3.52×10−2 3.54×10−2

B u1 4.92×10−1 4.83×10−1 4.93×10−1 4.95×10−1

ε22 8.58×10−2 8.41×10−2 8.59×10−2 8.49×10−2

C u2 2.64×10−1 2.58×10−1 2.64×10−1 2.66×10−1

ε11 9.12×10−2 8.92×10−2 9.13×10−2 9.28×10−2

ε22 1.38×10−2 1.35×10−2 1.38×10−2 1.41×10−2

ε12 4.06×10−2 3.97×10−2 4.07×10−2 4.13×10−2

D u2 1.44 1.41 1.44 1.44
ε22 8.76×10−2 8.53×10−2 8.77×10−2 8.52×10−2

E u1 6.03×10−1 5.91×10−1 6.04×10−1 5.98×10−1

u2 1.46 1.44 1.47 1.46
ε22 8.74×10−2 8.53×10−2 8.76×10−2 8.59×10−2

Note: u1 and u2 are horizontal and vertical displacements, respectively; ε11 and ε22 repre-
sent normal tensorial strains; and ε12 represents tensorial shear strain.
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Fig. 8. Comparison of CPU times for moment analysis by various methods.23

6. Reliability Analysis

A fundamental problem in time-invariant reliability analysis entails calculation of
a multi-fold integral33–35

PF ≡ P (V ∈ ΩF ) =
∫

Ωf

fV (v)dv, (59)
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where ΩF ⊂ Ω defines the failure domain and PF is the probability of failure.
For component reliability analysis, ΩF = {v : y(v) < 0}, where y(v) represents a
single performance function. For system reliability analyses involving r performance
functions, ΩF = {v :

⋃r
k=1 y(k)(v) < 0} and ΩF = {v :

⋂r
k=1 y(k)(v) < 0} for series

and parallel systems, respectively, where y(k)(v) represents the kth performance
function. Nevertheless, for most practical problems, the exact evaluation of this
integral, either analytically or numerically, is not possible since N is large and y(v)
or y(k)(v) are highly nonlinear functions of v.

The most common approach to compute the failure probability in Eq. (59)
involves the first- and second-order reliability methods (FORM/SORM),33–35 which
are based on linear (FORM) or quadratic approximation (SORM) of the limit-state
surface at a most probable point (MPP). Experience has shown that FORM/SORM
are sufficiently accurate for engineering purposes, provided that the limit-state sur-
face at the MPP is close to being linear or quadratic, and no multiple MPPs exist.35

Otherwise, the results of FORM/SORM should be interpreted with caution. Simu-
lation methods involving sampling and estimation are well known in the statistics
and reliability literature.36–38 While simulation methods do not exhibit the limi-
tations of approximate reliability methods, such as FORM/SORM, they generally
require considerably more extensive calculations than the latter methods. Conse-
quently, simulation methods are useful when alternative methods are inapplicable
or inaccurate, and have been traditionally employed as a yardstick for evaluating
approximate methods.

In this work, innovative response-surface approximations using multivariate
function decomposition, which provides accurate and computationally efficient reli-
ability estimates, are presented in the following subsection.

6.1. Response surface generation

Consider the univariate terms yi(vi) ≡ y(c1, . . . , ci−1, vi, ci+1, . . . , cN ) in Eqs. (43)
and (45). If for vi = v

(j)
i , n function values

yi(v
(j)
i ) = y(c1, . . . , ci−1, v

(j)
i , ci+1, . . . , cN ); j = 1, 2, . . . , n (60)

are given, the function value for arbitrary vi can be obtained using the Lagrange
interpolation as

yi(vi) =
n∑

j=1

φj(vi)yi

(
v
(j)
i

)
, (61)

where the Lagrange shape function φj(vi) is defined as

φj(vi) =

∏n

k=1,k �=j

(
vi − v

(k)
i

)
∏n

k=1,k �=j

(
v
(j)
i − v

(k)
i

) . (62)

Using Eq. (61), arbitrarily numerous function values of yi(vi) can be gener-
ated if n function values are given. This is defined as the univariate method.24
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The same concept can be applied to the bivariate terms yi1i2(vi1 , vi2) ≡
y(c1, . . . , ci1−1, vi1 , ci1+1, . . . , ci2−1, vi2 , ci2+1, . . . , cN) in Eq. (45). If for vi1 = v

(j1)
i1

and vi2 = v
(j2)
i2

, n2 function values

yi1i2

(
v
(j1)
i1

, v
(j2)
i2

) ≡ y
(
c1, . . . , ci1−1, v

(j1)
i1

, ci1+1, . . . , ci2−1, v
(j2)
i2

, ci2+1, . . . , cN

)
;

j1 = 1, 2, . . . , n; j2 = 1, 2, . . . , n (63)

are given, the function value yi1i2(vi1 , vi2 ) for arbitrary point (vi1 , vi2) can be
obtained using the Lagrange interpolation as

yi1i2(vi1 , vi2 ) =
n∑

j2=1

n∑
j1=1

φj1 (vi1)φj2 (vi2)yi1i2

(
v
(j1)
i1

, v
(j2)
i2

)
, (64)

where shape functions φj1 (vi1 ) and φj2(vi2 ) are already defined in Eq. (62). The
resulting approximation is defined as the bivariate method.24 Note that there are
n and n2 performance function evaluations (e.g. meshfree analyses) involved in
Eqs. (61) and (64), respectively. Therefore, the total maximum cost for univariate
method entails nN + 1 function evaluations, and for bivariate method, N(N −
1)n2/2 + nN + 1 maximum function evaluations are required. More accurate mul-
tivariate methods, such as an S-variate (S > 2) decomposition method, can be
developed in a similar manner.

6.2. Monte Carlo simulation

For component reliability analysis, the Monte Carlo estimate of the failure proba-
bility employing S-variate response surface method is24

PF
∼= 1

NS

NS∑
j=1

I

[
ŷS

(
v(j)
)

< 0
]
, (65)

where v(j) is the jth realization of V , NS is the sample size, and I[·] is an indicator
function such that I = 1 if v(j) is in the failure set (i.e. when ŷS

(
v(j)
)

< 0) and
zero otherwise.

For system reliability analysis involving the union and intersection of r failure
sets, similar response surface approximations can be developed for the kth perfor-
mance function y(k)(v). Hence, the Monte Carlo estimate of the failure probability
employing S-variate response surface method for series and parallel systems is

hi
∼=




1
NS

NS∑
j=1

I

[
r⋃

k=1

ŷ
(k)
S

(
v(j)
)

< 0

]
, series system

1
NS

NS∑
j=1

I

[
r⋂

k=1

ŷ
(k)
S

(
v(j)
)

< 0

]
, parallel system

, (66)

where I[·] is another indicator function such that I = 1 if v(j) is in the system
failure domain and zero otherwise. By setting S = 1 or 2, univariate or bivariate
decomposition methods can be generated.
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6.3. Example 3: Reliability analysis of a plate with a hole

Consider again the problem of a square plate with a hole under tension, as
described in Example 2. In Example 3, the modulus of elasticity E(x) is defined
as a homogeneous, lognormal translation field E(x) = cα exp[α(x)], which has
mean µE = 1 unit and standard deviation σE = 0.2 or 0.5 unit. The image
field α(x) is a zero-mean, homogeneous, Gaussian random field with standard
deviation σα =

√
ln(1 + σ2

E/µ2
E), cα = µ2

E

√
µ2

E + σ2
E , and covariance function

Γα(ξ) = σ2
α exp[−|ξ1|/(bL) − |ξ2|/(bL)] with b = 0.5 unit. All other input parame-

ters are the same as in Example 2.
The random field α(x) is parameterized using N = 8 in the K-L approximation.

Hence, the input random vector V = {V1, . . . , V8}T becomes an eight-dimensional
standard Gaussian random vector. The failure condition is defined when the von
Mises equivalent stress σA(V1, . . . , V8) at point A exceeds the uniaxial yield strength
Sy of the material.24

Figures 9(a) and 9(b) present failure probabilities for various yield strengths, pre-
dicted by the mean-point-based univariate and bivariate methods (c = 0), as well
as by the direct Monte Carlo simulation (105 samples). As can be seen in Fig. 9(a),
when the uncertainty of elastic modulus is lower (σE = 0.2 unit), both univariate
and bivariate methods provide satisfactory results in comparison with the simulation
results. However, when a higher uncertainty is considered (σE = 0.5 unit), Fig. 9(b)
indicates that the accuracy of the failure probability from the bivariate method is
slightly higher than that from the univariate method. The number of function evalu-
ations (i.e. meshfree analyses) for the proposed method with univariate and bivariate
methods are only 33 and 481, respectively, when n = 5 and N = 8.

A comparison of total CPU times, shown in Fig. 10, indicates that both response
decomposition methods are far more efficient than the Monte Carlo simulation. In
calculating the CPU times, the overhead cost due to random field discretization,
random number generation, and response surface approximations are all included.
The overhead cost is comparable to the cost of conducting meshfree stress analysis
in this particular problem. For this reason, the ratios of CPU times by bivariate and
univariate methods and by Monte Carlo and univariate methods are respectively
only 8 and 1080, as compared with 15 (= 481/33) and 3030 (= 1 000 000/33), when
function evaluations alone are compared. For complex problems requiring more
expensive response evaluations, the overhead cost is negligible. In that case, the
CPU ratio should approach the ratio of function evaluations. Hence, the response
decomposition methods are effective when a response evaluation entails costly mesh-
free or other numerical analysis.

The numerical results indicate that stochastic meshfree methods can generate
accurate estimates of response moments and reliability. Although the same results
can be produced using the well-established stochastic FEM, meshfree methods pre-
sented here do not require a structured mesh — a key advantage over FEM. It is
generally recognized that successful meshing of complex geometric configurations
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Fig. 9. Failure probability of square plate with a hole; (a) σE = 0.2; (b) σE = 0.5.24

can be difficult, time consuming, and expensive. This issue is further exacerbated
when solving solid-mechanics problems characterized by a continuous change of the
domain geometry, such as crack propagation in solids and metal forming, where
a large number of automated remeshings are required due to moving cracks or
mesh distortion. Stochastic meshfree methods are ideal candidates for solving these
special classes of problems. Nevertheless, the computational cost of determinis-
tic meshfree method is still much higher than that required by low-order FEM.
Therefore, breakthrough research focused on enhancing speed and robustness of
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meshfree methods is required for their effective implementation into stochastic
mechanics.

7. Conclusions and Outlook

This article has focused on meshfree methods for potential applications in stochas-
tic mechanics and reliability. An exposition involving a brief summary of meshfree
formulation, spectral representation of random field, multivariate function decom-
position, statistical moment analysis, and reliability analysis has been presented.
By avoiding burdensome meshing or remeshing required by the commonly-used
finite element method, meshfree methods provide an attractive alternative to the
finite element method for solving computational mechanics problems. For the same
reason, the meshfree methods are effective in solving integral equations for spec-
tral representation of a random field over a complex arbitrary domain. Numerical
results indicate that stochastic meshfree methods, employed in conjunction with
dimension-reduction and response-decomposition methods, yield accurate and com-
putationally efficient estimates of statistical moments and reliability.

Although significant strides have been made, stochastic meshfree methods still
require considerable improvement before they equal the prominence of the stochas-
tic finite element method. Breakthrough research on enhancing speed and robust-
ness of meshfree methods is essential for their successful implementation into
stochastic mechanics.
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