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This article presents a polynomial dimensional decompositionmethod for calculating the probability distributions

of random eigenvalues commonly encountered in dynamic systems. The method involves a hierarchical decom-

position of a multivariate function in terms of variables with increasing dimensions, a broad range of orthonormal

polynomial bases consistent with the probability measure for a Fourier-polynomial expansion of component

functions, and an innovative dimension-reduction integration for calculating the expansion coefficients. The new

decomposition does not require sample points, yet it generates a convergent sequence of lower-variate estimates of

the probability distributions of eigensolutions. Numerical results, including frequency distributions of a piezoelectric

transducer, indicate that the decomposition method developed provides accurate, convergent, and computationally

efficient estimates of the tail probabilistic characteristics of eigenvalues.

Nomenclature

Aj = jth random coefficient matrix

BN , L2 = Borel � field on RN and Hilbert space,
respectively

Ci1 ���iSj1 ���jS = coefficient for S-variate component function
c, �X = mean and covariance of X, respectively
E = expectation operator
f = general nonlinear function
fi�xi� = marginal probability density of Xi
fX�x� = joint probability density of X
K�X� = random stiffness matrix
Ki�X� = ith random stiffness of spring
k� = truncation parameter
L = size of random coefficient matrices
m = mass matrix
m = degree of orthonormal polynomial basis
N = number of random variables
n = number of Gaussian quadrature points
R = positive integer ranging from S to N
RN , CN = N-dimensional real and complex vector spaces,

respectively
S = positive integer ranging from 1 to N
X = input random vector
Xi = ith random variable
�ij = coefficient for univariate component function

of �
�i1i2j1j2 = coefficient for bivariate component function of �
��X� = random eigenvalue function

�i1i2i3j1j2j3 = coefficient for trivariate component function
of �

�I;i = imaginary part of ith component of �
�i1 ���iS = S-variate component function of �
�R;i = real part of ith component of �
�̂R�X� = R-variate approximation of �
~�S�X� = S-variate polynomial approximation of �
�0 = first coefficient of polynomial decomposition

of �

 ij = jth univariate polynomial basis for ith variable
��;F ; P� = probability space of X
��i;F i; Pi� = probability space of Xi

I. Introduction

T HE evaluation of natural frequencies and mode shapes of
uncertain dynamic systems requires the solution of random

eigenvalue problems, comprising stochastic matrix, differential, or
integral operators. Classical methods for solving random eigenvalue
problems are dominated by the perturbation method [1], a long-
standing staple, but no longer considered state of the art as it is limited
to problemswith small uncertainties or small nonlinearities.Methods
other than the perturbation method include the iteration method [1],
the Ritz method [2], the crossing theory [3], the stochastic reduced
basis [4], the asymptotic method [5], the polynomial chaos expan-
sion [6], and the recently developed dimensional decomposition
method [7,8]. However,most existingmethods delve into calculating
the statistical moments of eigensolutions. A few of these methods
also address how to calculate probability distributions of eigen-
values, for example, by fitting classical distribution functions from
predicted second- or higher-order moments [5], but the resultant tail
probabilistic characteristics, highly important for reliability analysis
and design, have not been adequately scrutinized.

Recently, the author developed a dimensional decomposition
method for calculatingmoments and probability distributions of real-
[7] or complex-valued [8] eigensolutions. However, the existing
decomposition method requires a reference point, commonly as-
sumed to be the mean value of the random input and sample points
surrounding that reference point. Based on these sample points,
deterministic calculations of eigenvalues, either exactly or numeri-
cally, are conducted to generate Lagrangian interpolations of various
component functions embedded in the decomposition. There are two
weaknesses in this procedure. First, the decomposition constructed
above depends on the selected reference point, which, if improperly
selected, can spoil the approximation. Second, and more important,
the sample points are vaguely selected with no strict guidelines. If an
input variable is strictly positive or strictly negative, or follows a
probability density with compact support, the resultant sample
points may fall outside the physical domain; in this case, existing
decomposition methods may produce unrealistic sample properties
of a random eigensolution. Therefore, alternative means of approxi-
mating the component functions by dropping the sample points
altogether are desirable.

This paper presents a polynomial dimensional decomposition
method for calculating the probability distributions of random
eigenvalues frequently encountered in dynamic systems. The
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method is based on 1) a hierarchical decomposition of a multivariate
function in terms of variables with increasing dimensions, 2) a broad
range of orthonormal polynomial bases consistent with the prob-
ability measure for a Fourier-polynomial expansion of component
functions, and 3) an innovative dimension-reduction integration for
calculating the expansion coefficients. Section II formally defines the
random eigenvalue problem, including citations of a few prominent
applications. Section III describes the polynomial decomposition
method, comprising multivariate function decomposition, Fourier-
polynomial expansion, and dimension-reduction integration, and
then discusses computational effort. Three numerical examples
illustrate the accuracy, convergence, and computational efficiency of
the proposedmethod in Sec. IV. Finally, the conclusions are drawn in
Section V.

II. Random Eigenvalue Problems in Dynamics

Let ��;F ; P� be a complete probability space, where � is a
sample space,F is a � field on�, and P: F ! �0; 1� is a probability
measure. LetRN andCN be N-dimensional real and complex vector
spaces, respectively, and RN�N a set of all N � N, real-valued
matrices. With BN representing a Borel � field on RN and E
the expectation operator on ��;F ; P�, consider an RN-valued,
independent, input random vector fX� fX1; . . . ; XNgT :��;F � !
�RN;BN�g, which has mean c :� E�X� 2 RN , covariance matrix
�X :� E��X 	 c��X 	 c�T � 2 RN�N , and joint probability density
function fX�x� ��i�N

i�1 fi�xi�, where fi�xi� is the marginal prob-
ability density function of Xi defined on the probability triple
��i;F i; Pi�. In most dynamic systems, the vector X represents
uncertainties in material parameters (e.g., mass, damping, stiffness),
geometry (e.g., size, shape, topology), and constraints (e.g., initial
and boundary conditions).

Consider a family of L � L, real-valued, random coefficient
matrices Aj�X� 2 RL�L, j� 1; . . . ; J, where J is a positive integer
and a general nonlinear function f. The probabilistic characteristics
of Aj�X� can be derived from the known probability law of X.
A nontrivial solution of

f���X�;A1�X�; . . . ; AJ�X����X� � 0 (1)

if it exists, defines the random eigenvalue ��X� 2 R or C and the
random eigenvector ��X� 2 RL or CL of a general nonlinear
eigenvalue problem. Depending on the type of application, a
wide variety of functions f, hence, eigenvalue problems exist.
Table 1 shows a few examples of eigenvalue problems frequently
encountered in dynamic systems. In general, the eigensolutions
depend on the random input X via solution of the matrix char-
acteristic equation

det�f���X�;A1�X�; . . . ;AJ�X��� � 0 (2)

and subsequent solution of Eq. (1). A major objective in solving a
random eigenvalue problem is tofind the probabilistic characteristics
of eigenpairs f��i��X�;��i��X�g, i� 1; . . . ; L, when the probability
law of X is arbitrarily prescribed. Crude Monte Carlo simulation,
which can solve any random eigenvalue problem in Table 1, is
computationally inefficient, because it requires solving the matrix
characteristic equation for every realization of random matrices
A1�X�; . . . ; AJ�X�.

III. Polynomial Dimensional Decomposition

Let ��X�, a real-valued, measurable transformation on ��;F �,
define a relevant eigenvalue of a stochastic dynamic system. In
general, the multivariate function �: RN ! R is implicit, is not
analytically available, and can only be viewed as a high-dimensional
input–output mapping, where the evaluation of the output function �
for a given input x requires expensive finite element analysis (FEA).
Therefore, methods employed in stochastic analysis must be capable
of generating accurate probabilistic characteristics of ��X� with an
acceptably small number of output function evaluations.

A. Multivariate Function Decomposition

Consider a continuous, differentiable, real-valued, eigenvalue
��x� that depends on x� fx1; . . . ; xNgT 2 RN . The dimensional
decomposition of ��x�, also known as analysis of variance [9] or
high-dimensional model representation [10,11], represents a finite,
hierarchical, convergent expansion of [12]

��x� � �0

XN
i�1
�i�xi� 


XN
i1 ;i2�1;i1<i2

�i1i2�xi1 ; xi2�



XN

i1 ;i2;i3�1;i1<i2<i3

�i1i2i3�xi1 ; xi2 ; xi3� 
 � � �



XN

i1 ;���;iS�1;i1<���<iS
�i1 ���iS �xi1 ; � � � ; xiS � � � � 
 �12���N�x1; � � � ; xN� (3)

in terms of input variables with increasing dimensions, where �0 is a
constant, �i�xi� is a univariate component function representing
individual contribution to ��x� by input variable xi acting
alone, �i1i2�xi1 ; xi2� is a bivariate component function describing
the cooperative influence of two input variables �i1 and �i2 ,
�i1i2i3�xi1 ; xi2 ; xi3� is a trivariate component function describing
the cooperative influence of three input variables xi1 , xi2 , and xi3 ,
�i1 ���iS �xi1 ; . . . ; xiS� is an S-variate component function quantifying
the cooperative effects of S input variables xi1 ; . . . ; xiS , and so on.
(For a complex eigenvalue, ��x� represents either the real or the
imaginary part.) The last term in Eq. (3) represents any residual
dependence of all input variables cooperatively locked together to
affect the output function �. If

~�S�x� � �0 

XN
i�1

�i�xi� 

XN

i1 ;i2�1;i1<i2
�i1i2�xi1 ; xi2�



XN

i1;i2 ;i3�1;i1<i2<i3
�i1i2i3�xi1 ; xi2 ; xi3 � 
 � � �



XN

i1;...;iS�1;i1<���<iS
�i1 ���iS�xi1 ; . . . ; xiS� (4)

represents a general S-variate approximation of ��x�, the univariate
(S� 1), bivariate (S� 2), and trivariate (S� 3) approximations,
~�1�x�, ~�2�x�, and ~�3�x�, respectively, provide two-, three-, and four-
term approximants of the finite decomposition in Eq. (3). Similarly,
quadrivariate and other higher-variate approximations can be
derived by appropriately selecting the value of S. The fundamental
conjecture underlying this decomposition is that component

Table 1 Random eigenvalue problems in dynamic systems

Eigenvalue problema Problem type and application(s)

�	��X�M�X� 
K�X����X� � 0 Linear; undamped or proportionally damped systems
��2�X�M�X� 
 ��X�C�X� 
K�X����X� � 0 Quadratic; nonproportionally damped systems; singularity problems
���X�M1�X� 
M0�X� 
MT

1 �X�=��X����X� � 0 Palindromic; acoustic emissions in high-speed trains
�
P

k�
k�X�Ak�X����X� � 0 Polynomial; control and dynamics problems

���X�M�X� 	 K�X� 

P

k
�q�X�Ck�X�
ak	��X� ���X� � 0 Rational; plate vibration (q� 1), fluid-structure vibration (q� 2), vibration of viscoelastic materials

aM�X�, C�X�, and K�X� are the mass, damping, stiffness matrices, respectively;M0�X�,M1�X�, Ak�X�, and Ck�X� are various coefficient matrices.
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functions arising in the function decomposition will exhibit insig-
nificant S-variate effects cooperatively when S! N, leading to

useful lower-variate approximations of ��x�. When S� N, ~�S�x�
converges to the exact function ��x�. In other words, Eq. (4)
generates a hierarchical and convergent sequence of approximations
of ��x�. Theoretical details of this decomposition are available
elsewhere [9–13].

B. Fourier-Polynomial Expansion

LetL2��i;F i; Pi� be a Hilbert space that is equipped with a set of
complete orthonormal bases f ij�xi�; j� 0; 1; � � �g, which is con-
sistent with the probability measure of Xi. For example, classical
orthonormal polynomials, including Hermite, Legendre, and Jacobi
polynomials, can be used when Xi follows Gaussian, uniform,
and Beta probability distributions, respectively [14]. Defined on the
product probability triple ��k�Sk�1�ik

;�k�Sk�1F ik
;�k�Sk�1Pik �, denote the

space of square integrable S-variate component functions of � by

L2��k�Sk�1�ik
;�k�Sk�1F ik

;�k�Sk�1Pik�

:�
�
�i1 ���iS�Xi1 ; . . . ; XiS�:

Z
RS
�2i1 ���iS �xi1 ; . . . ; xiS�

�
YS
k�1

fik�xik � dxik <1
�

(5)

which is also a Hilbert space. Because the joint probability density of
fXi1 ; . . . ; XiSgT is separable (independence), the tensor product

f
YS
k�1

 ikjk�xik �g

constitutes an orthonormal polynomial basis in L2��k�Sk�1�ik
;

�k�Sk�1F ik
;�k�Sk�1Pik�. Therefore, there exists a Fourier-polynomial

expansion

�i1 ���iS �xi1 ; . . . ; xiS� �
X1
jS�1
� � �
X1
j1�1

Ci1 ���iSj1 ���jS

YS
k�1

 ikjk�xik � (6)

with

Ci1 ���iSj1 ���jS �
Z
RS
�i1 ���iS�xi1 ; . . . ; xiS �

YS
k�1

 ikjk �xik �fik�xik� dxik (7)

representing the expansion coefficient for the S-variate component
function. By minimizing an error functional associated with a given
��x� and the joint probability density of fXi1 ; . . . ; XiSgT , the
coefficients �0 and Ci1 ���iSj1 ���jS can be expressed by N-dimensional
integrals [12]

�0 �
Z
RN
��x�fX�x� dx (8)

and

Ci1 ���iSj1 ���jS �
Z
RN
��x�

YS
k�1

 ikjk �xik�fX�x� dx (9)

Because the right side of Eq. (6) is an infinite series, it must be
truncated, say, by m terms in each variable, yielding a Fourier-
polynomial approximation

�i1 ���iS�xi1 ; . . . ; xiS � �
Xm
jS�1
� � �
Xm
j1�1

Ci1 ���iSj1 ���jS

YS
k�1
 ikjk�xik� (10)

which approaches �i1 ���iS�xi1 ; . . . ; xiS � in Eq. (6) in the mean square
sense as m!1.

The Fourier-polynomial approximation is valid for any finite-
dimensional Hilbert space L2��k�Sk�1�ik

;�k�Sk�1F ik
;�k�Sk�1Pik � with

1 � S � N. In other words, Eq. (10) can represent all component

functions of the multivariate function decomposition in Eq. (3).
In particular, when S� 1, 2, and 3, Eq. (10) reduces to

�i�xi� �
Xm
j�1

�ij ij�xi� (11)

�i1i2 �xi1 ; xi2 � �
Xm
j2�1

Xm
j1�1

�i1i2j1j2 i1j1 �xi1� i2j2�xi2� (12)

and

�i1i2i3�xi1 ; xi2 ; xi3�

�
Xm
j3�1

Xm
j2�1

Xm
j1�1

�i1i2i3j1j2j3 i1j1�xi1� i2j2�xi2 � i3j3 �xi3� (13)

where

�ij :�
Z
RN
��x� ij�xi�fX�x� dx (14)

�i1i2j1j2 :�
Z
RN
��x� i1j1�xi1� i2j2�xi2 �fX�x� dx (15)

and

�i1i2i3j1j2j3 :�
Z
RN
��x� i1j1 �xi1� i2j2�xi2� i3j3�xi3�fX�x� dx (16)

are the corresponding expansion coefficients. ApplyingEqs. (10–16)
to an S-variate approximation of Eq. (3) yields

~�S�X� � �0 

XN
i�1

Xm
j�1

�ij ij�Xi�



XN

i1;i2�1;i1<i2

Xm
j2�1

Xm
j1�1

�i1i2j1j2 i1j1�Xi1� i2j2�Xi2� 
 � � �



XN

i1;���;iS�1;i1<���<iS

Xm
jS�1
� � �
Xm
j1�1

Ci1 ���iSj1 ���jS

YS
k�1

 ikjk�Xik� (17)

which, for S� N, converges to ��X� in the mean square sense as
m!1. Once the embedded coefficients �0, �ij, �i1i2j1j2 , and
Ci1 ���iSj1 ���jS are calculated, as described in a forthcoming section,

Eq. (17) furnishes an approximate but explicit map ~�S: RN ! R that
can be viewed as a surrogate of the exact map �: RN ! R, which
describes the input–output relation from a complicated numerical
simulation. Therefore, any probabilistic characteristic of ��X�,
including its statistical moments and probability distribution, can be

easily estimated by performing a Monte Carlo simulation of ~�S�X�
rather than of ��X�. The simulation of ~�S�X�, which entails eval-
uation of simple analytical functions, can be performed for an
arbitrarily large sample size. In contrast, the simulation of ��X�,
referred to as crude Monte Carlo simulation in this paper, requires
expensive numerical calculations and can therefore be prohibitive
when estimating tail probabilities.

C. Dimension-Reduction Integration for Calculating Expansion
Coefficients

The determination of the expansion coefficients, which involve
N-dimensional integrals over RN , is computationally prohibitive
when N is large. Instead, a dimension-reduction integration,
presented as follows, can be applied to estimate the coefficients
efficiently.

Let c� fc1; . . . ; cNgT be the mean value of X and ��c1; . . . ;
ck1	1; xk1 ; ck1
1; . . . ; ckR	k	1; xkR	k ; ckR	k
1; . . . ; cN� represent an
(R 	 k)th dimensional component function of ��x�, where S � R �
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N and k� 0; . . . ; R. For example, when R� 1, the zero-
dimensional component function, which is constant, is ��c� and
the one-dimensional component functions are ��x1; c2; . . . ; cN�;
��c1; x2; . . . ; cN�; . . . ; ��c1; c2; . . . ; xN�. Using Xu and Rahman’s
[13] multivariate function theorem, it can be shown that a special R-
variate approximation of ��x�, defined by

�̂ R�x� :�
XR
k�0
�	1�k N 	 R
 k 	 1

k

� �
�

XN
k1;...;kR	k�1;k1<���<kR	k

� ��c1; . . . ; ck1	1; xk1 ; ck1
1; . . . ; ckR	k	1; xkR	k ; ckR	k
1; . . . ; cN�
(18)

consists of all terms of the Taylor series of ��x� that have less than or
equal toR variables. The expanded form of Eq. (18), when compared
with the Taylor expansion of ��x�, reveals that the residual error in
�̂R�x� includes terms of dimensions R
 1 and higher. All higher-
order R- and lower-variate terms of ��x� are included in Eq. (18),
which should therefore generally provide a higher-order approxi-
mation of amultivariate function than equations derived fromfirst- or
second-order Taylor expansions. Therefore, for R < N, an N-
dimensional integral can be efficiently estimated by at most R-
dimensional integrations, if the contributions from terms of
dimensions R
 1 and higher are negligible.

Substituting ��x� in Eqs. (8) and (9) by �̂R�x�, the coefficients can
be estimated from

�0�
XR
k�0
�	1�k

N	R
k	1
k

 ! XN
k1 ;���;kR	k�1;k1<���<kR	k

�
Z
RR	k

��c1;. ..;ck1	1;xk1 ;ck1
1; . ..;ckR	k	1;xkR	k ;ckR	k
1;. ..;cN�

�
YR	k
s�1
fks�xks�dxks (19)

and

Ci1 ���iSj1 ���jS�
XR
k�0
�	1�k

N	R
k	1
k

 ! XN
k1 ;...;kR	k�1;k1<���<kR	k

�
Z
RR	k

��c1;. ..;ck1	1;xk1 ;ck1
1; . ..;ckR	k	1;xkR	k ;ckR	k
1;. ..;cN�

�
YS
s�1
 isjs�xis �

YR	k
s�1
fks�xks �dxks (20)

which require evaluating at most R-dimensional integrals. The
proposed equations, Eqs. (19) and (20), are substantially simpler
and more efficient than performing one N-dimensional integration,
as in Eqs. (8) and (9), particularly when R N. Hence, the com-
putational effort in calculating the coefficients is significantly
lowered using the dimension-reduction integration. When R� 1, 2,
or 3, Eqs. (19) and (20) involve one-, at most two-, and at most
three-dimensional integrations, respectively. Nonetheless, numer-
ical integration is still required for a general function �. The
integration nodes and associated weights, which depend on the
probability distribution of Xi, can be obtained from Gaussian
quadrature rules. In performing the dimension-reduction integration,
the value of R should be selected in such a way that it is either
equal to or greater than the value of S, which defines the truncation of
Eq. (3). Then, all expansion coefficients of S- or lower-variate
approximations of ��x� will have nontrivial solutions [12].

D. Computational Effort

The S-variate approximation in the polynomial decomposition
method requires evaluation of the deterministic coefficients �0 and
Ci1 ���iSj1 ���jS . If these coefficients are estimated by at most R-
dimensional (R � S � 1) numerical integration with an n-point
quadrature rule in Eqs. (19) and (20), the following deterministic

responses (eigenvalue evaluations) are required: ��c�, ��c1; . . . ;
ck1	1; x

�j1�
k1
; ck1
1; . . . ; ckR	1; x

�jR�
kR
; ckR
1; . . . ; cN� for k1; . . . ; kR �

1; . . . ; N and j1; . . . ; jR � 1; . . . ; n, where the superscripts to the
variables indicate corresponding integration points. Therefore, the
total cost for an S-variate polynomial dimensional decomposition
entails a maximum of

Xk�R
k�0

N
R	 k

� �
nR	k

eigenvalue evaluations. For example, the univariate (S� R� 1),
bivariate (S� R� 2), and trivariate (S� R� 3) approximations
require nN 
 1 (linear), N�N 	 1�n2=2
 nN 
 1 (quadratic), and
N�N 	 1��N 	 2�n3=6
 N�N 	 1�n2=2
 nN 
 1 (cubic) eigen-
value evaluations, respectively. If the integration points include a
common point in each coordinate xi, as in the forthcoming example
section, then the numbers of eigenvalue evaluations reduce to

Xk�R
k�0

N
R	 k

� �
�n 	 1�R	k

Consequently, the univariate (S� R� 1), bivariate (S� R� 2),
and trivariate (S� R� 3) approximations require �n 	 1�N 
 1,
N�N 	 1��n 	 1�2=2
 �n 	 1�N 
 1, and N�N 	 1��N 	 2��n 	
1�3=6
 N�N 	 1��n 	 1�2=2
 �n 	 1�N 
 1 eigenvalue evalua-
tions, respectively.

Because the decomposition in Eq. (17) is structuredwith respect to
the degree of cooperativity between a finite number of random
variables, the exponential complexity associated with the curse of
dimensionality has been reduced to a polynomic complexity
with respect to N or n. If a response is highly nonlinear, but
contains rapidly diminishing cooperative effects of multiple random
variables, the polynomial dimensional decomposition is effective.
This is because the lower-variate (univariate, bivariate, etc.) terms of
the decomposition can be nonlinear by selecting appropriate orders
of orthogonal polynomials.

IV. Numerical Examples

Three numerical examples demonstrating the polynomial dimen-
sional decomposition method for obtaining the probability distri-
butions of natural frequencies or eigenvalues are presented.
Comparisons have beenmadewith select existingmethods and crude
MonteCarlo simulation to evaluate the accuracy and efficiency of the
decomposition method. For the first two examples, the eigenvalues
were calculated by a hybrid double-shifted LR–QRalgorithm [15].A
Lanczos algorithm embedded in the commercial code ABAQUS
(version 6.8) [16] was employed for the third example. For the
non-Gaussian random input, all original random variables were
transformed into standard Gaussian random variables, employing
Hermite orthonormal polynomials as bases and the Gauss–Hermite
quadrature rule for calculating the expansion coefficients. The
expansion coefficients were estimated by dimension-reduction inte-
gration with R� S, so that an S-variate decomposition method
requires atmostS-variate numerical integration. In examples 1 and 2,
the sample sizes for crudeMonte Carlo simulation and the embedded
Monte Carlo simulation of the decomposition method are both 106.
The respective sample sizes are 5000 and 106 in example 3. The
polynomial orderm varies depending on the example, but in all cases
the number of integration points n�m
 1.

Fig. 1 A 2-degree-of-freedom, undamped, spring-mass system.
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A. Example 1: Undamped, Spring-Mass System

Consider a 2-degree-of-freedom, undamped, spring-mass system,
shown in Fig. 1, with deterministic mass and random stiffness
matrices

m � m1 0

0 m2

� �
2 R2�2 and

K�X� � K1�X� 
 k3 	k3
	k3 K2�X� 
 k3

� �
2 R2�2

(21)

respectively, where m1 � 1 kg, m2 � 1:5 kg, K1�X� � 1000�1

0:25X1� N=m, K2�X� � 1100�1
 0:25X2� N=m, and k3�
100 N=m [5]. The random variables X1 and X2 are independent

(N � 2), each following standard Gaussian distribution with zero
mean and unit variance [5]. From the size of the matrices, there exist
two real-valued random eigenvalues, �1�X� and �2�X�, which are
sorted into an ascending order.

Because the eigenvalues are nonpolynomial functions of input, a
convergence study with respect to S and m is required to calculate
their probability distributions accurately. Figure 2a presents the
marginal probability distributions of �1�X� and �2�X� by the
univariate (S� 1) and bivariate (S� 2) polynomial decomposition
methods for several values of m. The figure also includes cor-
responding distributions generated by crude Monte Carlo simu-
lation, providing benchmark solutions. The tail probabilities from
both versions of the decomposition method converge when m
reaches 5 or 6, but the Monte Carlo solutions at low probabilities are
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better predicted by the bivariate method than the univariate method.
This is primarily due to the absence of cooperative terms in the
univariate approximation. The results from an existing decom-
position method employing sample points and a sixth-order
Lagrange interpolation [7], shown in Fig. 2b, reveal the same
trend, except at the tail end, where the probability distributions are
less accurate. The accuracy should increase by raising the order of
Lagrange interpolations, but such improvements will require
more computational effort. In contrast, the proposed decomposition
method yields more accurate tail probabilities than the existing
decomposition method for the same order and, more important,
does not require sample points. It is worth noting that the orders of
polynomials required for calculating tail probabilities depend on
the computed probability and are usually larger than those required
for calculating moments [7].

Because X� fX1; X2gT 2 R2 is Gaussian, the stiffness matrix
K�X� may become negative definite. Therefore, there exists a finite
probability, regardless how small, that the resultant eigenvalues may
be negative. Indeed, the results of Fig. 2a (left panel) confirm this
assertion, yielding negative samples of the first eigenvalue by all
threemethods, although the probability of such an occurrence should
diminish with lower standard deviations ofKi. Because of the larger
mean, no negative second eigenvalues were detected, at least for
probabilities greater than 10	5. AGaussian description of the random
input is unrealistic, but it was still selected in this example to compare
the results with those from the existing methods that require or
employ the Gaussian assumption [5,6].

Figure 2c plots the marginal probability densities or histograms of
�1�X� and �2�X� calculated by a number of methods, including
the univariate (S� 1, m� 6) and bivariate (S� 2, m� 6) poly-
nomial decomposition methods, first- and second-order perturbation
methods, the asymptotic method, and crudeMonte Carlo simulation.
Compared with the Monte Carlo result, the proposed decomposition
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methods, especially the bivariate version, provide tail characteristics
of both eigenvaluesmore accurately than other approximatemethods
examined.

For a more realistic input, consider truncated Gaussian distri-
butions of random stiffnesses Ki, expressed by ���ki 	 �i�=
�i� 	 ��ai 	 �i�=�i��=���bi 	 �i�=�i� 	��ai 	 �i�=�i��, i� 1,
2, where ���� is the cumulative distribution function of a standard
Gaussian variable, and �1 � 1000 N=m, �2 � 1100 N=m, �1�
250 N=m, �2 � 275 N=m, and ai and bi are the lower and upper
bounds, respectively, of Ki. Let the standardized bounds be
	�ai 	 �i�=�i� � �bi 	 �i�=�i� � k�, where k� � 0 is a truncation
parameter, defining the support �	��i 
 k��i�;
��i 
 k��i�� of the
probability density function of Ki. By transforming truncated
Gaussian to standard Gaussian variables and then employing
Fourier–Hermite expansions, the tail probability distributions of

the resultant eigenvalues were calculated by a sixth-order bivariate
polynomial decomposition and crude Monte Carlo simulation (106

samples) for several values of k�: 1, 2, and 3. The comparative results
in Fig. 3a continue to demonstrate the high accuracy of the
decomposition method for all three values of k�. As long as the
transformation between Ki and its standard Gaussian image Ui
does not induce overly large nonlinearity, as is the case in this
problem and plotted in Fig. 3b, the proposed method should also be
applicable to non-Gaussian random input.

B. Example 2: Freestanding Beam

The second example involves the free vibration of a tall, free-
standing beam, shown in Fig. 4a [8]. Figure 4b represents a lumped-
parameter model of the beam,which comprises seven rigid, massless
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links hinged together. The mass of the beam is represented by seven
random point masses located at the center of each link. No damping
was assumed except at the bottom joint, where the random,
rotational, viscous damping coefficient due to the foundation
pad is C. The random rotational stiffness at the bottom of the beam,
controlled by the lower half of the bottom link and the flexibility of
the foundation pad, is K. The independent random variables
M, C, and K are lognormally distributed with respective means
3000 kg, 2 � 107 N �m � s=rad, and 2 � 109 N �m=rad and have a
20% coefficient of variation. The flexural rigidity of the beam is
represented by six rotational springs between links with stiffnesses
k�x� � k�xi�, i� 1; . . . ; 6, where xi � il i� 1; . . . ; 6, and l� 6 m.
The spatially varying spring stiffness k�x� � c� exp���x�� is an
independent, homogeneous, lognormal random field with mean
�k � 2 � 109 N �m=rad and coefficient of variation vk � 0:2,

where c� � �k=
��������������
1
 v2k

p
and ��x� is a zero-mean, homogeneous,

Gaussian random field with variance �2� � ln �1
 v2k� and co-
variance function ���u� :� E���x���x
 u�� � �2� exp�	juj=l�. A
discretization of ��x� yields the zero-mean Gaussian random
vector �� f�1; . . . ; �6gT :� f��l�; . . . ; ��6l�gT 2 R6 with cova-
riance matrix �� :� �E��p�q��, p, q� 1; . . . ; 6, where E��p�q��
E���pl���ql�� � ����q 	 p�l�, providing complete statistical
characterization of spring stiffnesses ki � c� exp��i�. Therefore,
the input random vector X� fM;C;K; �1; . . . ; �6gT 2 R9 includes
nine random variables in this example. Further details of the
dynamic system, including mass, damping, and stiffness matrices,
are given in [8].

Because of nonproportional damping, the discrete beam model

yields 14 complex eigenvalues�i�X� � �R;i�X� �
�������
	1
p

�I;i�X�, i�
1; . . . ; 7 in conjugate pairs, where the real parts �R;i�X� and
imaginary parts �I;i�X� are both stochastic. Figure 5 plots the
marginal probability distributionsFI;i��I;i� and their complementary
probabilities 1 	 FI;i��I;i�, i� 1; . . . ; 7 of all seven imaginary parts,
which also represent the natural frequencies of the beam. The
distributionsFI;i��I;i� and 1 	 FI;i��I;i� at low probabilities describe
the tail characteristics of �i at the left and right ends, respectively.
Each subfigure of Fig. 5 contains four plots: one obtained from
crude Monte Carlo simulation and the remaining three generated
from the univariate (S� 1), bivariate (S� 2), and trivariate (S� 3)
polynomial decomposition methods, employing m� 4 and n� 5.
The tail probability distributions at both ends converge rapidly with
respect to S, regardless of the mode. Compared with the Monte
Carlo simulation, all three versions of the decomposition method
provide satisfactory to excellent estimates of the tail distributions.
The bivariate solution, which captures the cooperative effects of
any two variables, is remarkably close to the Monte Carlo result.
The tail probabilities from the trivariate decomposition and crude
Monte Carlo simulation are practically coincident. The probability
distributions of the real parts of the eigenvalues reveal the same trend,
but they are not reported for brevity.

The univariate, bivariate, and trivariate decomposition methods
require 37, 613, and 5989 solutions, respectively, of the matrix
characteristic equation, whereas 106 (sample size) such solutions are
involved in crude Monte Carlo simulation. Clearly, the univariate
method is inexpensive, but it is not as accurate as the other
two decomposition methods. Nonetheless, all three versions of
the decomposition method are far less expensive than crude
Monte Carlo simulation.

C. Example 3: Piezoelectric Transducer

The final example entails eigenspectrum analysis of a
piezoelectric transducer commonly used for converting electrical
pulses to mechanical vibrations and vice versa. Figure 6a shows a
25-mm-diam cylinder made of a piezoelectric ceramic PZT4 (lead
zirconate titanate) with brass end caps. The thicknesses of the
transducer and end caps are 1.5 and 3mm, respectively. The cylinder,
25 mm long, was electroded on both the inner and outer surfaces.
The random variables include 1) ten nonzero constants defining
elasticity, piezoelectric coupling, and dielectric properties of PZT4,
which are described in the Appendix; 2) elastic modulus and

Poisson’s ratio of brass; and 3) mass densities of brass and PZT4.
The statistical properties of all 14 random variables are listed in
Table 2. The randomvariables are independent and follow lognormal
distributions. Because of axisymmetry, a 20-noded finite element
model of a slice of the transducer, shown in Fig. 6b, was created.
The model was considered to be open circuited. All natural fre-
quencies calculated correspond to antiresonant frequencies.

In calculating eigenvalues, both deterministic and stochastic
analyses were performed. For the deterministic eigenvalue analysis,
all random input parameters were fixed at their mean values. Based
on the mean input, Fig. 7 portrays the first six mode shapes of the
transducer with corresponding natural frequencies of 19.75, 42.90,

Fig. 6 Piezoelectric transducer: a) geometry, and b) finite element

model.

Table 2 Statistical properties of random input

for piezoelectric cylinder

Random variable Propertya Mean Coefficient of variation

X1, GPa D1111 115.4 0.15
X2, GPa D1122, D1133 74.28 0.15
X3, GPa D2222, D3333 139 0.15
X4, GPa D2233 77.84 0.15
X5, GPa D1212, D2323, D1313 25.64 0.15
X6, C=m

2 e111 15.08 0.1
X7, C=m

2 e122, e133 	5:207 0.1
X8, C=m

2 e212, e313 12.71 0.1
X9, nF=m D11 5.872 0.1
X10, nF=m D22, D33 6.752 0.1
X11, GPa Eb 104 0.15
X12 �b 0.37 0.05
X13, g=m

3 	b 8500 0.15
X14, g=m

3 	c 7500 0.15

aDijkl are elasticmoduli of ceramic; eijk are piezoelectric coupling constants of ceramic;
Dij are dielectric constants of ceramic; Eb, �b, 	b are elastic modulus, Poisson’s ratio,
and mass density of brass; 	c is mass density of ceramic.
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60.70, 66.70, 92.03, and 100.32 kHz. These frequencies agree
excellently with other numerical results and the experimental data
from Mercer et al. [17], both reported in the ABAQUS User’s
Manual [16].

Figures 8a and 8b present marginal probability densities and
distributions, respectively, of the first six natural frequencies, �i,
i� 1; . . . ; 6, of the transducer by the univariate and bivariate
polynomial decomposition methods. These probabilistic character-
istics, obtained by setting m� 3 and n� 4, are judged to be
converged responses, as their changes due to further increases in m
and n are negligibly small. Therefore, only 43 and 862 ABAQUS-
aided FEAwere required in generating all six probability densities or
distributions by the univariate and bivariate methods, respectively.
Because of expensive FEA, crude Monte Carlo simulation was
feasible only up to 5000 realizations, producing only rough estimates
of the histograms or cumulative distributions. Given the low sample
size, the histograms and distributions, also plotted in Figs. 8a and 8b,

respectively, are not expected to provide accurate tail characteristics.
Nonetheless, the overall shapes of all six probability densities
generated by both decomposition methods match these histograms
quite well. For the same reason, theMonte Carlo results are restricted
to probabilities approximately equal to or larger than 10=5000. The
accuracy of the decomposition method is further verified in Table 3,
which reveals excellent agreement between the second-moment
properties of all six frequencies obtained by the decomposition
methods and Monte Carlo simulation. This example demonstrates
the nonintrusive nature of the proposed stochasticmethod,which can
be easily integrated with external commercial codes.

Finally, Figs. 9a and 9b display the joint probability density
function of two arbitrarily chosen frequencies, �3 and �4, by the
bivariate method and crude Monte Carlo simulation, respectively.
Although visually comparing two three-dimensional plots is not
simple, the joint distributions from both methods agree well. Similar
results can be generated by the univariate method or for other natural
frequencies if desired.

Fig. 7 Mode shapes of a piezoelectric transducer at mean input.

Table 3 Second-moment properties of natural frequencies of piezoelectric transducer

Mean Standard deviation

Frequency Univariate Bivariate Monte Carlo Univariate Bivariate Monte Carlo

�1, kHz 19.45 19.38 19.39 2.30 2.54 2.66
�2, kHz 42.31 42.27 42.30 7.03 7.09 7.25
�3, kHz 59.23 59.42 59.35 6.65 6.82 6.94
�4, kHz 67.44 67.21 67.24 6.94 7.09 7.02
�5, kHz 90.57 90.60 90.71 7.38 7.58 7.58
�6, kHz 101.69 101.66 101.72 9.43 9.24 9.29

0 20 40 60 80 100 120 140

ωi, kHz

0.00

0.06

0.12

0.18

f i( ω
i)

f
1

f2
f
3

f
4

Monte Carlo (5000)

Univariate (m=3)

Bivariate (m=3)

f
5 f

6

0 20 40 60 80 100 120 140

ω
i
, kHz

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

F
i( ω

i)

F1

F2

F3

F
4

Monte Carlo (5000)

Univariate (m=3)

Bivariate (m=3)

F
5

F6

a)

b)

Fig. 8 Marginal probabilistic characteristics of natural frequencies of

the piezoelectric transducer by various methods: a) probability densities
and histograms, and b) cumulative distribution functions.
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V. Conclusions

A polynomial dimensional decomposition method was developed
for calculating the probability distributions of random eigenvalues
frequently encountered in dynamic systems. The method is based on
a hierarchical decomposition of a multivariate function in terms of
variables with increasing dimensions, a broad range of orthonormal
polynomial bases consistent with the probability measure for a
Fourier-polynomial expansion of component functions, and an
innovative dimension-reduction integration for calculating the ex-
pansion coefficients. The new decomposition method does not
require sample points around the mean input to approximate the
component functions. Instead, orthogonal polynomial basis func-
tions in the Hilbert space, such as Hermite polynomials, were
employed, yielding the Fourier-polynomial expansion of the com-
ponent functions. Because of the nonintrusive evaluation of the
expansion coefficients, the method can be easily adapted to solving
complex stochastic problems requiring external deterministic codes.

Three dynamic systems were analyzed to evaluate the probability
distributions of their eigenvalues, including the frequency distri-
butions of a piezoelectric transducer. The results indicate that the
polynomial decomposition method developed, in particular the
bivariate and trivariate versions, provides accurate and convergent
estimates of the tail distributions of eigenvalues. The orders of
polynomials required for calculating tail probabilities accurately
depend on the computed probability. The computational effort by the
univariate method varies linearly with respect to the number of
random variables or the number of integration points; therefore, the

univariate method is economical. In contrast, the bivariate and
trivariate methods, which are generally superior to the univariate
method, demand a quadratic or cubic cost scaling, making either
method more expensive than the univariate method. Nonetheless, all
three versions of the decomposition method are significantly more
economical than crude Monte Carlo simulation.

For input random variables with an arbitrary probability measure,
independent or dependent, a direct approach to polynomial dimen-
sional decomposition requires constructing measure-consistent
nonclassical orthonormal polynomials, including cases in which a
random input comprises both discrete and continuous probability
measures. Using these nonclassical orthonormal polynomials, one
will be able to determine how a choice of transformation commonly
employed in the indirect approach affects the smoothness of an
eigenvalue function and to evaluate the accuracy and convergence
properties of a stochastic solution against those obtained from the
direct approach.Although theS-variate Fourier-polynomial approxi-
mation can be invoked for a discontinuous function (due to the
completeness of polynomials in L2), its convergence rate may be
significantly degraded. Therefore, the decomposition method
developed needs to be extended by improving convergence prop-
erties for discontinuous or nonsmooth stochastic responses found in
some random eigenvalue problems. These are subjects of future
research.

Appendix A: Piezoelectric Analysis
and System Equations

The piezoelectric effect is governed by coupled stress and
electrical field and requires the solution of the mechanical equi-
librium equationZ

V

�: 
� dV �
Z
S

t � 
u dS

Z
V

f � 
u dV (A1)

and the electric flux equationZ
V

q: 
E dV �
Z
S

qS � 
’ dS

Z
V

qV � 
’ dV (A2)

simultaneously, where � is the Cauchy stress tensor, t is the traction
vector with surface area S, f �		 �u is the d’Alembert force vector
with 	 denoting mass density of the body with volume V, 
u is the
virtual displacement, 
� is the virtual strain, q is the electric flux
(electrical displacement) vector, qS is the electric flux per unit
area entering the body,qV is the electricflux per unit volume entering
the body, 
’ is the virtual electric potential, and 
E is the virtual
potential gradient (electrical field). The constitutive behavior of the
piezoelectric media is described by

�ij �Dijkl�kl 	 emijEm (A3)

and

qi � eijk�jk 
DijEj (A4)

where Dijkl, emij, and Dij are the elastic moduli, piezoelectric
constants, and dielectric constants, respectively, and the subscripts
indicate appropriate components. Further details are available
elsewhere [18].

Consider a finite element discretization, where U and � denote
vectors of displacements and electric potentials at the nodal loca-
tions. Then, the approximate system of matrix equations becomes

M �U 
KuuU
K’u�� P (A5)

and

K ’uU 	 K’’��	Q (A6)

whereM is themassmatrix,Kuu is the displacement stiffnessmatrix,
K’u is the piezoelectric couplingmatrix,K’’ is the dielectric stiffness
matrix, P is the mechanical force vector, and Q is the electrical

Fig. 9 Joint probability density of third and fourth natural frequencies

of piezoelectric transducer: a) bivariate method, and b) crude

Monte Carlo simulation.
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charge vector. These coefficient matrices, which comprise elastic
moduli, coupling constants, and dielectric constants, also depend on
the shape function of an element.
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