
Topologic and Geometric Approaches for 
In Vivo Quantitative Assessment of 

Trabecular Bone Micro-Architecture

Punam Kumar Saha
Professor

Departments of ECE and Radiology
University of Iowa

pksaha@engineering.uiowa.edu

10/15/2017 1



Overview

2

• Osteoporosis

• Osteoporosis Imaging

• Trabecular Plate Rod Microarchitecture

• Bone Measures using Multi-row Detector CT 
Imaging

• Results from Human Studies

10/15/2017



Overview

3

• Osteoporosis

• Osteoporosis Imaging

• Trabecular Plate Rod Microarchitecture

• Bone Measures using Multi-row Detector CT 
Imaging

• Results from Human Studies

10/15/2017



• The word osteoporosis literally means “porous bones”

• Over time, osteoporosis reduces bone mass and degenerates bone 
structure, and therefore bone strength is decreased 

• Thus, bone becomes fragile and easy to break

• For someone with severe osteoporosis, even a sudden movement may 
cause bone fracture

Osteoporosis
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Normal bone in vertebrae Same bone location in a osteoporosis patient

http://www.bonedisease.info/disease/osteoporosis/which-bone-affected-by-osteoporosis-the-most/

http://www.bonedisease.info/disease/osteoporosis/which-bone-affected-by-osteoporosis-the-most/


• Osteoporosis affects nearly half of the men and 
women over the age of 75

• About 44 million people in the United States are at risk 
for osteoporosis causing 1.5 million fragility fractures 
annually

• Nearly, 40% of women and 13% of men suffer a 
fragility fracture in their lifetimes

• The estimated number of hip fractures worldwide will 
rise from 1.66 million in 1990 to 6.26 million in 2050

• Major osteoporosis fractures occur at hip, spine and 
forearm

• Osteoporotic hip fractures are especially devastating, 
reducing life expectancy by 10-20%

• More than three-quarters of all hip fractures occur in 
women

Osteoporosis and Fractures
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Major fracture sites
http://www.vidasaludynegocios.com/index.php?dispatc
h=products.view&product_id=30529

forearm

vertebrae

hip

http://www.vidasaludynegocios.com/index.php?dispatch=products.view&product_id=30529


• Treatment includes medication, healthy diet, and weight-bearing exercise 
to help prevent bone loss and strengthen already weak bones

• Self-care
 Healthy diet
 Physical exercise
 Stop smoking

• Medications
 Vitamin
 Dietary supplement
 Antacid
 Bone health
 Hormone

Treatments
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• Therapeutic treatments for osteoporosis are 
expensive with associated side effects

• Accurate assessment of fracture risk, and 
clear guidelines to initiate preventive 
interventions and monitor treatment 
response, are urgent needs in public health

• Osteoporotic imaging plays a central role in 
that process
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• At present, dual-energy X-ray absorptiometry 
(DXA) measured areal BMD is used to diagnose 
osteoporosis

• DXA measures of whole body, hip and spine are 
popularly used

• Being an areal 2-D measure, DXA has several 
limitations
 sensitivity to bone size, thus overestimating 

fracture risk in individuals with small body 
size

 lack of accuracy in the setting of 
degenerative changes in the hip and spine

• It is known that the majority of individuals who 
suffer fragility fractures are misclassified by DXA 
as not having osteoporosis, i.e., their T-scores are 
actually > -2.5

Dual-Energy X-Ray Absorptiometry (DXA)
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http://www.ncra-ottawa.com/

DEXA assessment of BMD of the femoral 
neck (A) and the lumbar spine (B)
https://en.wikipedia.org/wiki/Dual-energy_X-
ray_absorptiometry

http://www.ncra-ottawa.com/
https://en.wikipedia.org/wiki/Dual-energy_X-ray_absorptiometry


There are two types of bone

• Cortical bone (Cb) is the hard outer layer of the bone 

• Trabecular bone (Tb) is the sponge-like internal 
structure of the bone

• Cb is denser, stronger, and stiffer for more strenuous 
activities

• Cb can sustain greater stress but less strain before 
failure

• Tb can sustain larger strains before failing 

• Tb has a greater capacity to store energy since it is 
porous and filled with fluid

• Osteoporosis can lead to thinning of both types of bone 
which makes bones more susceptible to breaks

Osteoporosis and Bone Structure

Cortical 
bone

Trabecula
r bone
Trabecular 
bone

Cortical 
bone
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Bone Mineral Density and Mechanics

• Meta analysis
• N=38 (1985-2000)
• Various parameters of “strength”
• Mean r2 = 0.64±0.17
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How Predictive is bone mineral density 
(BMD) of the Bone’s Mechanical
Behavior?
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BMD only accounts for approximately 60 to 70% of the 
variability in bone strength



Bone Mineral Density and Structure

• Although osteoporosis is defined by low BMD, BMD explains 
60-70% of the variability in bone strength

• The remaining variability due to the cumulative and 
synergistic effects of other factors, including geometry and 
micro-architecture of Cb and Tb

• Several clinical studies have reported that cortical bone 
thinning and high porosity is associated with increased risk 
of osteoporotic low-trauma fractures

• A large number of histologic studies have confirmed the 
relationship between erosion of trabeculae from plates to 
rods and fracture risk

• Reduced trabecular connectivity are observed in patients 
with vertebral crush fractures 

• There is evidence suggesting that reduced transverse 
trabeculae are associated with decreased bone strength 
leading to failure due to buckling of longitudinal trabeculae
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Hildebrand et al, JBMR, 1999

Normal

Osteoporosis



Bone Biopsy

Quantifying Architecture via Bone Biopsy

• Iliac crest or rib
• Painful, risky, and limited retests
• Not suitable for controls or time-series analysis
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Distal tibia

In Vivo Imaging Offers an Opportunity for 
Virtual Bone Biopsy

Topology, Scale, 
Orientation

Challenges
• Reduced resolution
• Limited signal-to-noise ratio 

Virtual core

• Analogous to bone biopsy
• Virtual core is isolated from 3D 

image data sets.
• Core is subjected to analysis

Features
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Topology of Trabecular Networks
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SMI µ (∂S/∂r)

r

Structure-Model Index (SMI)

S

SMI=relative 
change in 

surface area (S) 
upon radial (r) 

expansion

calcaneus

SMI = 2.3 SMI = 1.1

Hildebrand et al, J Bone Miner Res, 1999

3D Euler Poincaré Formula:
𝜒𝜒 = objects - tunnels + cavities 

= nodes - edges + faces

Connectivity Index = 1 − 𝜒𝜒

Topological analysis of line 
skeletonized structure

# objects: 1 
# tunnels: 1 
# cavities: 0 

# nodes: 17
# edges: 19 
# faces: 2

𝜒𝜒 = 0



Trabecular Plate-Rod Characterization using 
Digital Topological Analysis

• Topological class (curve, surface junctions) at any 
location may be unambiguously determined from the 
topological numbers (#objects (ξ), #tunnels (η), and 
#cavities (δ)) 
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• Curve Interior: ξ = 2; η = 0; δ = 0

• Edge: ξ = 1; η = 0; δ = 0

• Surface Interior: ξ = 1; η = 1; δ = 0

• Curve-Curve junction: ξ > 2; η = 0; δ = 0

• Surface-Curve junction: ξ > 1; η = 1; δ = 0

• Surface-Surface junction: ξ = 1; η > 1; δ = 0



Digital Topological Analysis

• Identifies plates/rods and other topological 
entities

• Able to distinguish between fracture/ non-
fracture groups via in vivo MRI

• Being used by several leading research groups 

Surface = plate
Rod = curve

Junction

Age and disease-related 
topological changes58.1 15.7 9.8 3.5

Surface/Curve(Plate/Rod) Ratio

young adult osteoporotic
old age

plate-like rod-like
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Volumetric Topological Analysis

• Quantify trabecular bone architecture at in vivo resolution
• Plateness and rodness on the continuum between perfect plates and 

perfect rods
• More accurately captures gradual conversion from Tb plates to rods at the 

level of individual trabeculae

plates

rods
VTADTA
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Tensor Scale Analysis

• Quantify trabecular bone architecture at in vivo resolution
• Plateness and rodness on the continuum between perfect plates and 

perfect rods
• Local trabecular orientation classifying longitudinal (vertical) and 

transverse (horizontal) structures
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Trabecular Plate-Rod Measures and Bone Strengths

Modulus: 1.5 GPa
BMD: 1.20 gm/cm3

Tb.PW: 340 µm
Tb.PR: 0.26

Modulus: 2.2 GPa
BMD: 1.27 gm/cm3

Tb.PW: 385 µm
Tb.PR: 0.38

Modulus: 3.3 GPa
BMD: 1.31 gm/cm3

Tb.PW : 464 µm
Tb.PR: 0.58

8% reduction in BMD 
reduced bone strength to 
half and manifest a 50% 
alteration in micro-
architecture
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Ability To Predict Mechanical Properties

Bone mass distribution at different plate 
width: a new class of information
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High predictability of experimental 
biomechanical properties.

Tb.PW (µm)



Bone Micro-Architecture among 
Eugonadal and Hypogonadal Men

• 44 %  (p = 0.001) greater Tb plates in eugonadal men than hypogonadal men
• No significant difference in rod volume

Bone mass distribution at different 
plate width: a new class of information

N = 20   MRI Study (age and race-matched)

Trabecular bone plate-rod micro-architecture 
among hypogonadal and eugonadal men
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Treatment Effects Hypogonadal Men

Treatment effects in trabecular bone plate-rod micro-architecture in hypogonadal men

N = 10    Two year follow-up MRI study

• 6.5 %  (p = 0.06) increase in trabecular bone plate volume after 6 months
• 16.2 %  (p = 0.003) increase in trabecular bone plate volume after 24 months
• No significant difference in rod volume even after 24 months of treatment
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Major Advantages of Modern MDCT Scanners

• High spatial resolution: State-of-the-art CT scanners provide high spatial 
resolution allowing segmentation and quantitative assessment of TB micro-
architecture

 The Siemens Force scanner achieves 167 µm (10% MTF) in-plane 
resolution and 282 µm (10% MTF) z-plane resolution

• Ultra-high speed scanning: Modern CT scanners are capable of acquiring a 10 
cm scan-length at a peripheral site using an UHR mode in just 6.8 sec

• Ultra-low radiation: Modern MDCT scanners allow high resolution Tb imaging 
at less than 50 µSv radiation dose

• Large scan-length: Useful for automatic selection of anatomically consistent 
regions-of-interest (ROIs)

 Positioning error is a serious challenge for HR-pQCT

 A positioning error by 0.5 mm may result in a 2% error in bone measures 
at the distal tibia
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MDCT Scan Protocol

• Single X-ray source spiral acquisition at 120 kV, 100 effective mAs, 1sec 
rotation speed, pitch factor: 1.0

• Number of detector rows: 64

• Scan time: 5.8 seconds, collimation: 64× 0.6 mm

• Total effective dose equivalent: 50 µSv ≈ 5 days of environmental radiation in 
the United States

• Siemens z-UHR scan mode is applied enabling Siemens double z sampling 
technology

• Images are reconstructed at 400 µm slice-thickness with 200 µm slice-spacing 
and 150 µm pixel-size using Siemens’s special kernel Ur77u with Edge 
Technology to achieve high spatial resolution
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In Vivo MDCT Scan Setup

• Laser beam projections are 
used to align the tibial long 
axis with the central z axis of 
the scanner 

• This alignment step is 
important to achieve the 
highest image resolution and 
to standardize trabecular 
bone measures

• The distal tibial end-plateau 
is included in the FOV used as 
reference to determine 
different tibial locations for 
ROI selection
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The List of MDCT Derived Tb Measures 
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Parameter (unit) Description 
vBMD (mg/cm3) Volumetric trabecular bone mineral density 
tBMD (mg/cm3) Volumetric trabecular bone mineral density contributed by 

transverse trabeculae characterized by tensor scale analysis 
Tb.NA (cm2/cm3) Trabecular bone network area density, i.e., the average area of the 

medial surface of segmented bone per unit VOI 
Tb.PW (µm) Mean trabecular plate-width computed by tensor scale analysis 

Tb.PR (no unit) Ratio of total plateness and rodness counts over a VOI computed by 
tensor scale analysis 

Tb.Th (µm) Mean trabecular thickness computed by star-line analysis 
Tb.Sp (µm) Mean trabecular separation, i.e., the space between trabecular 

structures computed by star-line analysis 
EI (no unit) Erosion index—a summary measure of digital topological analysis of 

TB aimed to represent the extent of bone erosion 
SMI (no unit) An indicator of the structure of trabeculae; SMI is ‘0’ for parallel 

plates and ‘3’ for cylindrical rods 
 



Repeatability of MDCT Tb Measures 
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Repeat scan reproducibility of Tb measures on an MDCT scanner using 
cadaveric ankle specimens (n = 25)
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• Tb plate-rod and orientation characterization using micro-CT (top row) and MDCT 
scanners (bottom row)

• Although, the effects of resolution difference between the two scanners are 
apparent, regional agreement of microstructural characterization is notable



Validation of MDCT Tb Measures 
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Correlation analysis of the values of Tb measures derived from micro-CT 
and MDCT imaging of cadaveric ankle specimens (n = 25)
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Correlation and mean values of Tb measures derived from micro-CT and MDCT 
imaging of cadaveric ankle specimens at VOI size of 5.25 mm (n = 25)

TB measure Correlation 
Coefficients (r) 

micro-CT 
(mean value) 

MDCT 
(mean value) 

vBMD (mg/cm3) 0.88 1158 993 
tBMD (mg/cm3) 0.86 194 120 
Tb.NA (cm2/cm3) 0.92 0.10 0.07 
Tb.PW (µm) 0.87 541 861 
Tb.PR (no unit) 0.85 2.85 7.02 
Tb.Th (µm) 0.71 133 160 
Tb.Sp (µm) 0.81 348 468 
EI (no unit) 0.63 0.20 0.67 
SMI (no unit) 0.78 0.76 2.23 

 



Ability of MDCT Tb Measures to Predict 
Mechanical Properties
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Strains were recorded using an extensometer reading

strain = ∆L / L

Young's Modulus (YM)
= slope

yield stress

Fracture
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Correlation of different MDCT and micro-CT TB measures with yield stress 
and Young’s modulus of TB cores from cadaveric ankle specimens determined 
by mechanical testing (n = 25)

 Pearson correlation coefficient (r) 
 MDCT bone measures 

versus bone strength 
micro-CT bone measures 

versus bone strength 

TB measure Yield 
stress 

Young’s 
modulus 

Yield 
stress 

Young’s 
modulus 

vBMD (mg/cm3) 0.785 0.698 0.763 0.738 
tBMD (mg/cm3) 0.861 0.813 0.872 0.791 
Tb.NA (cm2/cm3) 0.855 0.712 0.838 0.807 

Tb.PW (µm) 0.893 0.757 0.902 0.802 
Tb.PR (no unit) 0.838 0.722 0.854 0.820 

Tb.Th (µm) 0.849 0.765 0.817 0.685 
Tb.Sp (µm) 0.851 0.730 0.848 0.764 
EI (no unit) 0.780 0.536 0.781 0.670 

SMI (no unit) 0.786 0.541 0.821 0.743 
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• Osteoporosis

• Osteoporosis Imaging

• Trabecular Plate Rod Microarchitecture

• Bone Measures using Multi-row Detector CT 
Imaging

• Results from Human Studies
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Aim: To determine whether MDCT bone data from 
multiple scanners can be used in large multi-site or 
longitudinal studies

10/15/2017



Data-Continuity for Tb Measures from Two 
MDCT Scanners (n = 20)

• A pertinent challenge with MDCT for bone research emerges due to wide 
variation in imaging and reconstruction features from different vendors and 
rapid upgrades in technology

• This raises concerns of data uniformity in large-scale multi-site or longitudinal 
studies that typically involve data from multiple scanners

• the distal tibia of twenty volunteers (age: 26.2 ± 4.5 Y, 10 female) was 
scanned using the Siemens SOMATOM Definition Flash and the higher 
resolution Siemens SOMATOM Force scanners with an average 45-day time 
gap between scans. 
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   10% MTF (lp/cm) 
Scanner Kernel CT parameters xy-plane z-direction 

Siemens Flash U70u 120 kV, 200mAs, pitch : 1 16.2 17.9 
Siemens Force Ur77u 120 kV, 100 mAs, pitch : 1 24.8 21.0 
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(a) (b)

(c) (d)

MDCT images of the lower portion 
of the left leg of a healthy volunteer 
scanned using the Siemens Flash 
(low resolution) (upper row) and 
Force (high resolution) (lower row) 
scanners


Axial of old scanner

Sagittal of old scanner

Axial of new scanner

Sagittal of new scanner











(a)

(b)

(c)

(d)







1



image1.png







image2.png







image3.png

CDTFF-17-V2 ANKLE-UHR~0

1om







image4.png

1om

i
E
2
El
5
H
2
z
H
8














Correlation for Tb measures obtained from 
the Two Siemens Flash scanners

10/15/2017 40

inner region 4 to 6% tibia
inner region 6 to 8% tibia
outer region 4 to 6% tibia
outer region 6 to 8% tibia

Pe
ar

so
n 

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t (

r)

Tb Measures

0.70

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1.00


vBMD

Tb.PW

Tb.PR

Tb.Sp

Tb.Th

Tb.NA

tBMD

SMI

EI

inner region 4 to 6% tibia

inner region 6 to 8% tibia

outer region 4 to 6% tibia

outer region 6 to 8% tibia

Pearson Correlation Coefficient (r)

Tb Measures

0.70

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1.00







1



1	2	3	4	5	6	7	8	9	0.93300000000000005	0.89500000000000002	0.85799999999999998	0.87	0.90600000000000003	0.95699999999999996	0.91500000000000004	0.84599999999999997	0.85399999999999998	1	2	3	4	5	6	7	8	9	0.92100000000000004	0.92100000000000004	0.872	0.91	0.94299999999999995	0.96899999999999997	0.94199999999999995	0.92400000000000004	0.88500000000000001	1	2	3	4	5	6	7	8	9	0.98499999999999999	0.97499999999999998	0.94699999999999995	0.97899999999999998	0.97499999999999998	0.97099999999999997	0.92900000000000005	0.94799999999999995	0.96199999999999997	1	2	3	4	5	6	7	8	9	0.97599999999999998	0.97	0.90700000000000003	0.98	0.97899999999999998	0.98499999999999999	0.92600000000000005	0.96499999999999997	0.95299999999999996	















Discussion

10/15/2017 41

• Tb micro-architectural measures estimated from the two different MDCT scanners 
possess high linear correlation (r > 0.9)

• Higher correlations of Tb measures from the two scanners were observed for the outer 
region at both the 4-6 % and 6-8% distal tibia

• In vivo measures of TB micro-architecture from two scanners can be used in a cross-
sectional or longitudinal study after adjustments using calibration equations, if needed 
The calibration equations will be useful in multi-center studies to distinguish whether an 
observed difference in a parameter is associated with scanner differences or “real” 
difference between measured bones

• A non-significant interaction effect for distal tibial location of TB measures and slope 
showed that, for a TB measure, similar calibration is required independently of the 
location used for measurement

• All measures with lower CCCs would require some kind of calibration. 
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Aim: To determine differences in bone structures 
in different human study groups
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Results of a Human Pilot Study

Average differences of bone measures in athlete (N=10), cystic fibrosis (N=11),
selective serotonin reuptake inhibitor (N=12), and anorexia nervosa (N=4) groups as
compared to age-sex-BMI-similar healthy controls from the Iowa Bone Development
Study (N=102). Age-sex-height matching was used for the anorexia nervosa group.

Cb,Th Cb.Pror vBMD Tb.PW           Tb.NA            Tb.Th Tb.Sp DXA BMD
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Aim: To determine bone structural differences in 
fracture vs non0-fracture groups
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Bone Structural Differences 
in vertebral Fracture vs Non-Fracture Groups 

• The patient without a vertebral fracture has ≈ 50% more Tb plates (green)

• The difference in Tb volumetric BMD between the two male patients is only 3.5%

• 30 patients (13 male) with COPD GOLD status between 1 and 4

• age: 70.6±8.1 years          BMI: 27.5±4.2              

• 23 patients with at one vertebral fracture 



Bone Structural Differences 
in vertebral Fracture vs Non-Fracture Groups 

The difference (%) in MDCT-based bone measures between fracture (n = 23) and
non-fracture (n = 7) groups of patients with COPD

• 30 patients (13 male) with COPD GOLD status between 1 and 4

• age: 70.6±8.1 years          BMI: 27.5±4.2              

• 23 patients with at one vertebral fracture 

 

 CB Th 
(µm) 

CB 
Poro 

v-BMD 
(mg/cc) 

pBMD 
(mg/cc) 

tBMD 
(mg/cc) 

TB NA 
(mm2/mm3) 

TB PW 
(µm) 

TB Th 
(µm) 

TB Sp 
(µm) 

Non-fracture 1862 0.20 1101 818 222 0.47 995.0 120.5 513.5 
Fracture 1745 0.21 1088 723 181 0.41 889.3 121.6 571.6 

Difference 6.3% -6.4% 1.2% 11.6% 18.3% 13.6% 10.6% -0.9% -11.3% 
p-value 0.328 0.226 0.147 0.056 0.054 0.058 0.090 0.427 0.279 



Study 4

48

Aim: To determine the normative distribution of 
MDCT bone measures and their relationships with 
DXA
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Normative Distribution of MDCT Bone Measures 
and their Relationships with DXA

• Healthy volunteers (N = 324) from the Iowa Bone Development Study

• Age: 19.8 ± 0.7 years 

• 178 females and 146 males

• Cb measures were computed over 14-16% of tibia, while Tb measures were 
computed over 4-6% of tibia with a 30% peel (Table 1)

• Whole-body, hip, spine, and left-leg DXA areal BMD measures were obtained 
on a Hologic Discovery A model densitometer



Normative Distribution of Bone Measures

Variables Males (n=146) Females (n = 178) 
Scan-age (Y) 19.77 ( 0.74) 19.77 ( 0.69) 
Height (cm) 180.2 ( 7.7)** 166.4 ( 6.9) 
Weight (kg) 84.74 ( 19.90)** 70.64 ( 19.31) 

BMI 26.05 ( 5.60) 25.44 ( 6.49) 
DXA aBMD   
Whole-body 1.283 ( 0.099)** 1.165 ( 0.090) 

Hip 1.174 ( 0.165)** 1.031 ( 0.132) 
Spine 1.099 ( 0.119)** 1.054 ( 0.130) 

Left leg 1.390 ( 0.125)** 1.205 ( 0.103) 
MDCT Cortical   

Cb.poro 0.219 ( 0.022)** 0.205 ( 0.042) 
Cb.Th (mm) 2.319 ( 0.269)** 2.006 ( 0.236) 

MDCT Trabecular   
Tb.vBMD (mg/cc) 1182.9 ( 27.7)** 1164.4 ( 32.1) 
Tb.tBMD (mg/cc) 360.4 ( 74.2)** 312.1 ( 86.3) 
Tb.pBMD (mg/cc) 1005.0 ( 103.1)** 928.2 ( 120.9) 
Tb.NA (mm2/mm3) 0.063 ( 0.013)** 0.050 ( 0.013) 

Tb.PW (µm) 1375.7 ( 300.2)** 1211.0 ( 315.9) 
Tb.Th (µm) 173.2 ( 24.9)** 161.6 ( 23.8) 
Tb.Sp (µm) 398.0 ( 63.9)** 439.6 ( 85.1) 

 



Correlations for MDCT Cortical and Trabecular 
Bone Outcomes with DXA Areal BMD

Female 
Variable Cb.poro Cb.Th Tb.vBMD Tb.tBMD Tb.pBMD Tb.NA Tb.PW Tb.Th Tb.Sp 

Whole-body -0.08 0.39** 0.64** 0.61** 0.58** 0.64** 0.61** 0.53** -0.57** 
Hip -0.06 0.44** 0.61** 0.60** 0.56** 0.63** 0.58** 0.50** -0.54** 

Spline -0.08 0.29** 0.49** 0.46** 0.40** 0.46** 0.44** 0.36** -0.43** 
Left leg -0.07 0.60** 0.64** 0.65** 0.64** 0.69** 0.65** 0.61** -0.57** 

          
Male 

Variable Cb.poro Cb.Th Tb.vBMD Tb.tBMD Tb.pBMD Tb.NA Tb.PW Tb.Th Tb.Sp 
Whole-body 0.20* 0.41** 0.48** 0.48** 0.41** 0.55** 0.40** 0.36** -0.50** 

Hip 0.08 0.41** 0.55** 0.54** 0.48** 0.59** 0.48** 0.43** -0.53** 
Spline 0.17* 0.29** 0.34** 0.34** 0.30** 0.37** 0.26** 0.25** -0.34** 
Left leg 0.18* 0.51** 0.57** 0.54** 0.52** 0.61** 0.52** 0.50** -0.52** 

 
Moderate correlations between MDCT and DXA outcomes suggest uniqueness 
of bone structural properties captured by MDCT measures as compared to DXA



Conclusions
• Advanced quantitative characterization of bone micro-architecture are 

suited for medical imaging research and clinical studies.

• Multi-detector CT is a potential imaging modality for in vivo assessment of 
human trabecular bone micro-architecture

• Bone data from multiple MDCT scanners can be used in large studies after 
adjustment using proper calibration equation

• Normative distributions of MDCT bone measures are define disease 
groups 

• Low to moderate correlation for MDCT bone measures with DXA 
outcomes suggests uniqueness of MDCT measures

• Bone structural differences in different human groups may provide new 
insights of the etiology of bone diseases

• MDCT bone measures may be useful to predict fracture risk
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