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Continuous Deformation

Continuous deformation. A transformation 
which shrinks, stretches, bents, twists, etc. in 
any way without tearing

• Envision a figure drawn on a rubber sheet

• A deformation of the sheet by stretching, 
twisting, bending, etc. which doesn’t tear 
the sheet will change the figure into some 
other shape

Topology. The study of those properties of 
geometric figures or solid bodies that remain 
invariant under certain transformations.



Topological Transformation 
and Equivalence

Topology. The study of those properties of 
geometric figures or solid bodies that remain 
invariant under certain transformations.

Topological transformation. A transformation 
that carries one geometric figure into another 
figure is a topological transformation if the 
following conditions are met:
1) the transformation is one-to-one

2) the transformation is bicontinuous (i.e. 
continuous in both directions)

Topologically equivalent. Two different shapes are topologically equivalent if one 
can be changed to the other by a topological transformation



Basic Definitions in 3-D

26-adjacency 18-adjacency 6-adjacency

• A cubic grid constitutes the set 𝑍𝑍3

• An element of 𝑍𝑍3 is referred to as a point represented by its x-, y-, z-
coordinates

• Each cube centered at an element in 𝑍𝑍3 is referred to as a voxel



Basic Definitions in 3-D

• An 𝛼𝛼-component of a set of voxels 𝑆𝑆 is 
a maximal subset of 𝑆𝑆 where every 
two voxels are 𝛼𝛼-connected in 𝑆𝑆

• An 𝛼𝛼-path 𝜋𝜋, where 𝛼𝛼 ∈ {6, 18, 26}, is 
a nonempty sequence 𝑝𝑝0,⋯ ,𝑝𝑝𝑙𝑙−1 of 
voxels where every two successive 
voxels are 𝛼𝛼-adjacent

26-path 6-path
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Adjacency Pairs in Digital Topology

• Digital topology loosely refers to the use of mathematical topological 
properties and features such as connectedness, topology preservation, 
boundary etc., for images defined in digital grids

Jordan curve



Jordan curve

Adjacency Pairs in Digital Topology

Theorem. Jordan curve 
partitions of a plane 
into inside and outside

• Digital topology loosely refers to the use of mathematical topological 
properties and features such as connectedness, topology preservation, 
boundary etc., for images defined in digital grids

• Adjacency pairs. Rosenfeld’s approach to digital topology is to use a pair of 
adjacency relations 𝜅𝜅1, 𝜅𝜅0 where 𝜅𝜅1 is used for object points while 𝜅𝜅0 is 
used for background points



Why the Adjacency Pair?

Rosenfeld convincingly 
demonstrated that use of a 
proper adjacency pair leads to 
workable framework of digital 
topology, which holds several 
important mathematical 
topological properties, including 
the Jordan curve theorem

• One proper adjacency pair is (26,6)

• (26,6) is the most popular adjacency pairs in 3-D

The modern trend is to use the cubicial complex representation of 
digital images to define topological transformation



Cavities and Tunnels in 3-D

• Cavity. A background or white 
component surrounded by an 
object component

• Tunnel. Difficult to define a tunnel. However, the number of tunnels in an 
object is well-defined - the rank of the first homology group of the object. 

• Intuitively, a tunnel would be the opening in the handle of a coffee mug, 
formed by bending a cylinder to connect the two ends to each other or 
to another connected object

• A hollow torus has two tunnels: the first arises from the cavity inside the 
ring and the second from the ring itself



Euler Characteristic

The Euler characteristic of a polyhedral set 𝑋𝑋, denoted by 𝜒𝜒(𝑋𝑋), is defined as
follows

1) 𝜒𝜒 𝜙𝜙 = 0

2) 𝜒𝜒 𝑋𝑋 = 1, if 𝑋𝑋 is non-empty and convex

3) for any two polyhedral 𝑋𝑋, 𝑌𝑌, 𝜒𝜒 𝑋𝑋 ∪ 𝑌𝑌 = 𝜒𝜒 𝑋𝑋 + 𝜒𝜒 𝑌𝑌 − 𝜒𝜒(𝑋𝑋 ∩ 𝑌𝑌)



Euler Characteristic: Alternative Definitions

The Euler characteristic of a polyhedron with each element being convex

𝜒𝜒 𝑋𝑋 = #points − #edges + #faces − #volumes,

8 ‒ 12 + 6 ‒ 1 = 1

1 ‒ 0 + 0 = 1

16 ‒ 32 + 20 ‒ 4 = 0

1 ‒ 1 + 0 = 0

and

𝜒𝜒 𝑋𝑋 = #components − #tunnels + #cavities



3-D Simple Point

Simple Point. A point whose deletion or addition preserves the topology in the 
local neighborhood in terms of components, tunnels, and cavities

𝑝𝑝 𝑝𝑝 𝑝𝑝

𝑝𝑝 𝑝𝑝

The major challenge. Presence of tunnels in 3-D that is not there in 2-D



3-D Simple Point Characterization 
by Morgenthaler (1981)

A point 𝑝𝑝 ∈ 𝑍𝑍3 is a (26,6) simple point in a 3-D binary image 𝑍𝑍3, 26,6,𝐵𝐵 if 
and only if the following conditions are satisfied

• In 𝑁𝑁26∗ 𝑝𝑝 , the point 𝑝𝑝 is 26-adjacent to exactly one black (object) 
component

• In 𝑁𝑁26∗ 𝑝𝑝 , the point 𝑝𝑝 is 6-adjacent to exactly one white (background) 
component

• 𝜒𝜒 𝑍𝑍3, 26,6, 𝐵𝐵 ∩ 𝑁𝑁 𝑝𝑝 ∪ 𝑝𝑝 = 𝜒𝜒 𝑍𝑍3, 26,6, 𝐵𝐵 ∩ 𝑁𝑁 𝑝𝑝 − 𝑝𝑝

𝜒𝜒 𝑋𝑋 = #components − #tunnels + #cavities



Tunnels on the Surface of 
a Topological Sphere

𝒮𝒮

𝐵𝐵

𝒮𝒮
𝐵𝐵

• Saha, Chanda, Dutta Majumder, "Principles and algorithms for 2D and 3D shrinking,"  Indian Statistical Institute, Calcutta, India, TR/KBCS/2/91, 1991.
• Saha, Chaudhuri, Chanda, Dutta Majumder, "Topology preservation in 3D digital space," Pat Recog, 27:295-300, 1994.
• Saha and Chaudhuri, "Detection of 3-D simple points … with application to thinning," IEEE Trans Pat Anal Mach Intel, 16:1028-1032, 1994.
• Saha and Chaudhuri, "3D digital topology under binary transformation with applications," Comp Vis Imag Und, 63:418-429, 1996



Tunnels on the Surface of 
3x3x3 Neighborhood (Digital Case)

• In a 3 × 3 × 3 neighborhood, if the central voxel is white, all black 
voxels lie on its outer surface

• For computation of tunnels, a white component must be 6-adjacent 
to the central voxel

• Ooops still there is some problem!!



Tunnels on the Surface of 
3x3x3 Neighborhood (Digital Case)
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Tunnels on the Surface of 
3x3x3 Neighborhood (Digital Case)

Theorem. If a voxel or point 𝑝𝑝 ∈ 𝑍𝑍3 has at a white 6-neighbor, the number of
tunnels 𝜂𝜂 𝑝𝑝 in 𝑁𝑁26∗ 𝑝𝑝 is one less than the number of 6-components of white
points in 𝑁𝑁18∗ 𝑝𝑝 that intersect with 𝑁𝑁6∗ 𝑝𝑝 , or, zero otherwise.

• Saha, Chanda, Dutta Majumder, "Principles and algorithms for 2D and 3D shrinking,"  Indian Statistical Institute, Calcutta, India, TR/KBCS/2/91, 1991.
• Saha, Chaudhuri, Chanda, Dutta Majumder, "Topology preservation in 3D digital space," Pat Recog, 27:295-300, 1994.
• Saha and Chaudhuri, "Detection of 3-D simple points … with application to thinning," IEEE Trans Pat Anal Mach Intel, 16:1028-1032, 1994.
• Saha and Chaudhuri, "3D digital topology under binary transformation with applications," Comp Vis Imag Und, 63:418-429, 1996



3-D Simple Point Characterization by 
Saha et al. (1991, 1994)

A point 𝑝𝑝 ∈ 𝑍𝑍3 is a (26,6) simple point in a 3-D binary image 𝑍𝑍3, 26,6,𝐵𝐵 if and only if 
the following conditions are satisfied

• 𝑝𝑝 has a white (background) 6-neighbor, i.e., 𝑁𝑁6∗ 𝑝𝑝 − 𝐵𝐵 ≠ 𝜙𝜙
• 𝑝𝑝 has a black (object) 26-neighbor, i.e., 𝑁𝑁26∗ 𝑝𝑝 ∩ 𝐵𝐵 ≠ 𝜙𝜙
• The set of black 26-neighbors of 𝑝𝑝 is 26-connected, i.e., 𝑁𝑁26∗ 𝑝𝑝 ∩ 𝐵𝐵 is 26-connected
• The set of white 6-neighbors of 𝑝𝑝 is 6-connected in the set of white 18-neighbors, 

i.e., 𝑁𝑁6∗ 𝑝𝑝 − 𝐵𝐵 is 6-connected in 𝑁𝑁18∗ 𝑝𝑝 − 𝐵𝐵

Theorem. If a voxel or point 𝑝𝑝 ∈ 𝑍𝑍3 has at a white 6-neighbor, the number of tunnels
𝜂𝜂 𝑝𝑝 in 𝑁𝑁26∗ 𝑝𝑝 is one less than the number of 6-components of white points in 𝑁𝑁18∗ 𝑝𝑝
that intersect with 𝑁𝑁6∗ 𝑝𝑝 , or, zero otherwise.

• Saha, Chanda, Dutta Majumder, "Principles and algorithms for 2D and 3D shrinking,"  Indian Statistical Institute, Calcutta, India, TR/KBCS/2/91, 1991.
• Saha, Chaudhuri, Chanda, Dutta Majumder, "Topology preservation in 3D digital space," Pat Recog, 27:295-300, 1994.
• Saha and Chaudhuri, "Detection of 3-D simple points … with application to thinning," IEEE Trans Pat Anal Mach Intel, 16:1028-1032, 1994.
• Saha and Chaudhuri, "3D digital topology under binary transformation with applications," Comp Vis Imag Und, 63:418-429, 1996



Local Topological Numbers

• 𝜉𝜉 𝑝𝑝 : the number of objects components in the 3 × 3 × 3 neighborhood 
after deletion of 𝑝𝑝

• 𝜂𝜂 𝑝𝑝 : the number of tunnels in the 3 × 3 × 3 neighborhood after deletion 
of 𝑝𝑝

• 𝛿𝛿 𝑝𝑝 : the number of cavities in the 3 × 3 × 3 neighborhood after deletion 
of 𝑝𝑝

• Saha, Chanda, Dutta Majumder, "Principles and algorithms for 2D and 3D shrinking,"  Indian Statistical Institute, Calcutta, India, TR/KBCS/2/91, 1991.
• Saha and Chaudhuri, "3D digital topology under binary transformation with applications," Comp Vis Imag Und, 63:418-429, 1996



Efficient Computation of 3-D Simple Point 
and Local Topological Numbers

Theorem. 3-D simplicity and local topological numbers of a point is 
independent of its dead points.

Dead surface Dead edge

• Saha, Chanda, Dutta Majumder, "Principles and algorithms for 2D and 3D shrinking,"  Indian Statistical Institute, Calcutta, India, TR/KBCS/2/91, 1991.
• Saha, Chaudhuri, Chanda, Dutta Majumder, "Topology preservation in 3D digital space," Pat Recog, 27:295-300, 1994.
• Saha and Chaudhuri, "Detection of 3-D simple points … with application to thinning," IEEE Trans Pat Anal Mach Intel, 16:1028-1032, 1994.
• Saha and Chaudhuri, "3D digital topology under binary transformation with applications," Comp Vis Imag Und, 63:418-429, 1996



Effective Neighbors

Theorem. Object/background configuration 6-neighbors, effective e- and v-
neighbors is the necessary and sufficient information to decide on 3-D 
simplicity and local topological numbers of a point.

• e (edge)-neighbor: 18-adjacent 
but not 6-adjacent, i.e., share an 
edge with 𝑝𝑝

• Effective e-neighbor: An e-
neighbor not belonging to a 
dead surface

p

• v (vertex)-neighbor: 26-adjacent 
but not 18-adjacent, i.e., share a 
vertex with 𝑝𝑝

• Effective v-neighbor: A v-
neighbor not belonging to a 
dead surface or a dead edge

p



Efficient Algorithm

• Determine the object/background configuration of 6-
neighbors

• Determine the object/background configuration of 
effective e-neighbors

• Determine the object/background configuration of 
effective v-neighbors

• Use look up table to determine 3-D simplicity and the local 
topological numbers 𝜉𝜉 𝑝𝑝 , 𝜂𝜂(𝑝𝑝), and 𝛿𝛿 𝑝𝑝

• Saha, Chanda, Dutta Majumder, "Principles and algorithms for 2D and 3D shrinking,"  Indian Statistical Institute, Calcutta, India, TR/KBCS/2/91, 1991.
• Saha, Chaudhuri, Chanda, Dutta Majumder, "Topology preservation in 3D digital space," Pat Recog, 27:295-300, 1994.
• Saha and Chaudhuri, "Detection of 3-D simple points … with application to thinning," IEEE Trans Pat Anal Mach Intel, 16:1028-1032, 1994.
• Saha and Chaudhuri, "3D digital topology under binary transformation with applications," Comp Vis Imag Und, 63:418-429, 1996



Topology Preservation in 
Parallel Skeletonization

The principal challenge in topology preservation for parallel skeletonization 

• a characterization of simple point guarantees topology preservation when 
one simple point is deleted at a time

• however, these characterizations fail to ensure topology preservation when 
a set of simple points are deleted in parallel



Our Approach

• Sub-iterative scheme. Divide an iteration into subiterations based on 
2 × 2 × 2 subfield partitioning of the image grid

• Saha, Chaudhuri, and Dutta Majumder, "A new shape preserving parallel thinning algorithm for 3D digital images," Patt Recog, 30:1939-1955, 1997



Fuzzy Skeletonization, and its 
Applications
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• Fuzzy Skeletonization

• Applications of Digital Topology and Geometry in 
Object Characterization
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Principle of Skeletonization

• Object: A closed and bounded subset of R3

• Skeleton: Loci of the centers of maximal 
included balls

• Maximal Included Ball: A ball included in the 
object that cannot be cannot be fully included 
by another ball inside the object

• Blum’s Grassfire Transform: A process that 
yields the skeleton of a binary objects



Blum’s Grassfire Propagation

• Blum’s grassfire transform is defined by fire 
propagation on a grass field, where the field 
resembles a binary object. 

– grassfire is simultaneously initiated at all boundary points 

– grassfire propagates inwardly at a uniform speed

– the skeleton is defined as the set of quench points where 
two or more opposite fire fronts meet



Fuzzy Grassfire Propagation

• Fuzzy Object: A membership value is assigned at each voxel

• The membership value is interpreted as the fraction of object 
occupancy in a given voxel or local material density

• Fuzzy Grassfire Propagation

– grassfire is simultaneously initiated at the boundary of the support of a 
fuzzy object

– the speed of fire-front at at given voxel is inversely proportion to its 
material density, i.e., membership value

– grassfire stops at quench voxels when its natural speed of propagation 
is interrupted by colliding impulse from opposing fire-fronts



Outline of the Algorithm

• Primary skeletonization

‒ Locate fuzzy quench voxels in the decreasing order of FDT values and filter 
those using local shape factor

‒ Sequentially remove simple points that are not necessary for topology 
preservation in the increasing order of FDT values

• Final skeletonization

‒ Convert  two-voxel thick structures into single-voxel structures 

‒ Remove voxels with conflicting topological and geometric properties

• Skeleton pruning

‒ Compute global shape factor to detect spurious branches

‒ Delete spurious branches



Simple Points: Topology Preservation

Theorem: A point p is a 3-D simple point if and only if it satisfies 
the following four conditions:

• p has a black 26-neighbor

• p has a white 6-neighbore

• The set of black 26-neighbors of p is26-connected

• The set of white 6-neighbors of p is 6-connected in the set of 
white 18-neighbors of p



Simple Points: Examples

✔

✗ ✗✗

✗✔



Fuzzy Quench or Axial Points

• During fuzzy grassfire propagation, the speed of a fire-front at a 
given voxel equates to the inverse of local material density

• Fuzzy distance transform defines the time when the fire-front 
reaches at a given voxel 

• This process is violated only at quench or axial points where 
the propagation is interrupted by colliding impulse from 
opposite fire-fronts



b2

a2
a1

p2

b1

p1

How to Locate an Axial Point

1. Consider a shape and its axial line

2. Consider a non-axial point 𝑝𝑝1

3. Find the shortest
path 𝑝𝑝1𝑏𝑏1 to
boundary

4. If we extend the
path 𝑝𝑝1𝑏𝑏1 to 𝑝𝑝2
the shortest path
𝑝𝑝2𝑏𝑏1 passes 
through 𝑝𝑝1

5. Now, consider 
an axial point 𝑎𝑎1

6. If extend the
shortest path 𝑎𝑎1𝑏𝑏1
to 𝑎𝑎2, the shortest
path from 𝑎𝑎2 to the 
boundary does not
passes through 𝑎𝑎1

A point 𝑎𝑎 is an axial point if there is no point 𝑎𝑎′
such that a shortest path from 𝑎𝑎′ to the boundary 
passes through 𝑎𝑎



Fuzzy Quench or Axial Points 
• A point 𝑝𝑝 is a quench or axial point if there is no point 𝑝𝑝′ such that a 

shortest path from 𝑝𝑝′ to the boundary passes through 𝑝𝑝.

• Specifically, a point 𝑝𝑝 is a quench or axial point if there is no point 𝑞𝑞 in the 
neighborhood of 𝑝𝑝 such that 

Ω𝒪𝒪 𝑞𝑞 = Ω𝒪𝒪 𝑝𝑝 + 𝜇𝜇𝑑𝑑𝒪𝒪(𝑝𝑝, 𝑞𝑞)
where Ω𝒪𝒪 is the FDT function  and 𝜇𝜇𝑑𝑑𝒪𝒪 is the length of a link 

• Arcelli, Sanniti di Baja, “Finding local maxima in a pseudo-Euclidean distance transform”, Comput Vis Graph Imag Proc, 43: 361-367, 1988
• Borgefors, “Centres of maximal discs in the 5-7-11 distance transform”, Proc of the Scandinavian Conf on Imag Anal ,1: 105-105), 1993
• Saha, Wehrli, “Fuzzy distance transform in general digital grids and its applications”, Proc of 7th Joint Conf Info Sc, Research Triangular Park, NC, 201-213, 2003
• Svensson, “Aspects on the reverse fuzzy distance transform”, Patt Recog Lett 29: 888-896, 2008
• Jin, Saha. "A new fuzzy skeletonization algorithm and its applications to medical imaging." Proc. of 17th Int Conf on Imag Anal Proc (ICIAP), 662-671, 2013. 

• Arcelli and Sanniti di Baja introduced a criterion to detect the centers of 
maximal balls (CMBs) in a binary digital image using 3 × 3 weighted 
distance transform

• Borgefors extended it to 5 × 5 weighted distances
• This concept was generalized to fuzzy sets by Saha and Wehrli, Svensson, 

and Jin and Saha
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Filtering Quench or Axial Voxels

• Too many spurious quench voxels

Support of the 
fuzzy object

An image slice of 
the fuzzy object

All quench 
voxels



Local Shape Factor for Quench Voxels

• At quench voxels, natural speed of fire-front 
propagation is interrupted by colliding impulse from 
opposite fire-fronts

• Local Shape Factor is defined as the measure of this 
“degree of colliding impulse”

• Local shape factor determines the significance of 
individual quench voxels

𝐿𝐿𝑆𝑆𝐿𝐿 𝑝𝑝 = 1 − 𝑓𝑓+ max
𝑞𝑞∈𝑁𝑁∗ 𝑝𝑝

Ω𝒪𝒪 𝑞𝑞 − Ω𝒪𝒪 𝑝𝑝
𝜇𝜇𝑑𝑑𝒪𝒪 𝑝𝑝, 𝑞𝑞



Surface and Curve Quench Voxels

• Surface Quench Voxels
– two opposite fire fronts meet

• Curve Quench Voxels
– fire fronts meet from all 

directions on a plane



Filtering Quench Voxels

• Define a suitable support mask that fits the geometric type of 
the quench voxel

• Determine the significance in terms of LSF over the support 
mask

p p

‒ compute minimum LSF  over the support mask 
or
‒ compute the average LSF over the support mask

Support mask for a 
surface quench 
voxel

Overall significance



Filtered Axial Voxels

Support of the 
fuzzy object

Initial quench voxels; red voxels 
have lower LSF values 
representing noisy quench voxels

Filtered quench 
voxels

10
Local shape factor (LSF)



Skeletal Pruning

• Compute global shape factor of each branch by adding LSF values 
of individual voxels  and prune spurious branches

before after
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Evaluation

• Ground truth: High resolution 3-D binary 
objects with known skeletons

• Test phantoms: Down-sampling binary 
objects and addition of white Gaussian noise 
to generate fuzzy objects

low noise/blur medium noise/blur high noise/blur



Results

• Skeletons at low, medium, and high noise/blur

• Fuzzy skeletonization errors in voxel unit

Downsampling No noise SNR 24 SNR 12 SNR 6
3×3×3 0.49 0.52 0.54 0.58
4×4×4 0.52 0.53 0.54 0.58
5×5×5 0.57 0.58 0.59 0.60



Results of Application on Online 3D Figures



Applications



Local Thickness Computation for 
Fuzzy Objects



Local Width Computation for 
Fuzzy Objects



Fuzzy Skeletonization Improves the 
Sensitivity of Derived Measures
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Summary

• The issues of sequential topological transformation in 3-D cubic grid (3-D simple point) are 
solved

• Local topological properties introduced by Saha et al.  are useful to characterize 1-D and 2-D 
digital manifolds and their junctions embedded in a 3-D digital space

• Topology preservation in parallel skeletonization is effectively solved using a subfield approach

• Digital topology and geometry play important roles in medical image processing 

– solves several classical problems of medical imaging

– expands the scope of target information 

– provides a strong theoretical foundation to a process enhancing its stability, fidelity, and 
efficiency

• A comprehensive framework for fuzzy skeletonization is developed along the spirit of fuzzy 
grassfire propagation

• Experimental results show that the fuzzy skeletons are computed with sub-voxel accuracies 
under various levels of SNR and downsampling rates

• Fuzzy skeletonization improves the performance of individual trabecular thickness and width 
computation at in vivo CT imaging
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