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Abstract

Mathematical techniques are presented for the transformation of digital anatom-
ical textbooks from the ¢deal to the individual, allowing for the representation of the
variabilities manifest in normal human anatomies. The ideal textbook is constructed
on a fixed coordinate system to contain all of the information currently available
about the physical properties of neuroanatomies. This information is obtained via
sensor probes such as magnetic resonance, computed axial and emission tomography,
along with symbolic information such as white and gray matter tracts, nuclei, etc.
Human variability associated with individuals is accommodated by defining prob-
abilistic transformations on the textbook coordinate system, the transformations
forming mathematical translation groups of high dimension. The ideal is applied to
the individual patient by finding the transformation which is consistent with physi-
cal properties of deformable elastic solids and which brings the coordinate system of
the textbook to that of the patient. Registration, segmentation and fusion all result
automatically because the textook carries symbolic values as well as multi-sensor
features.
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1 Global Shape Models and Anatomical Templates

Imaging modalities such as magnetic resonance imaging (MRI), x-ray computed tomog-
raphy (CT) and positron emission tomography (PET) provide exquisitely detailed in vivo
information regarding the anatomy and physiological function of specific subjects. How-
ever, the interpretation of the data has been hindered by the inability to expeditiously
relate such information to specific anatomical regions. The difficulty lies in two areas:
images from atlases and other modalities must be registered; but more fundamentally,
even when registered, normal variation in anatomy makes interpretation extremely diffi-
cult. This paper provides algorithms for representing normal neuroanatomies by precisely
specifying the global anatomical relationships between structures and how they can vary
from one individual to another. The goal is to provide representations which allow for
the generalization of a single ideal electronic anatomical textbook to the individual.

Accommodating the types of variability manifest in human anatomies is clearly an
ambitious, if not somewhat daunting goal. There are no shortage of image processing
algorithms. The literature abounds with computational techniques designed to improve
pictures by noise suppression, or to recognize particular patterns so as to segment pictures
into subpictures. Much of the greatest success to date has been with algorithms that
model sensor variability, such as for x-ray, magnetic resonance, or emission tomography.

But the variability in the anatomical shapes and structures themselves is much less
well understood. The main difficulty is that human anatomies form highly complex sys-
tems. Browsing through an anatomical textbook, one is struck by the awesome amount
of information. The enormous complexity of biological patterns makes the design of
representations of even normal anatomies a difficult, not to say overwhelming endeavor.
Limitations of existing methods become visible for such ambitious tasks as representa-
tion of the shape ensemble itself. Since the mid 1970s researchers have built models that
attempt to incorporate structured variability. The early paper of Besag [1] began the
line of research on the use of probabilistic Markov random fields models (MREF’s) for
texture analysis. The MRF approach has demonstrated a good deal of success in image
restoration and segmentation. But this is not enough for representing the global relations
illustrated by even the typical aforementioned anatomies. Natural textures can be mod-
eled with MRFs since most of their variability is of a very local nature: the probabilistic
dependencies extend over quite a limited range.

To meet the greater challenge of representing the anatomical relations between struc-
tures in human anatomies, global representations must be employed. Mathematical tech-
niques for such representations began to appear in the early 1980’s under the name of
global shape models. The global shape models represent image ensembles in terms of their
typical structure via the construction of templates, and their variabilites by the definition
of probabilistic transformations that are applied to the templates. The transformations
form groups (translation, scale, and rotation) and are applied to the template, in this
case an electronic atlas, so that a rich family of shapes may be generated with the global
properties of the templates maintained.

There has already been a vast body of work on multi-modality image fusion and
registration (see for example the proceedings of a recent workshop [2] for a substantive
introduction). The simplest methods of registration used assume that the images or tis-
sues being matched are highly similar for which only global, course features must be
matched. Transformations of this type consist of rigid global rotation and translation,
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and or simple scaling. We, however, are interested in accounting for very local variability
across disparate anatomies, thereby requiring high dimensional transformations on the
coordinate system, of dimension proportional to the size of the voxel lattice. Alterna-
tively, many investigators have taken the approach of defining a small set of features -
fiducial markers and/or landmarks - which drive the registration. In the method proposed
here, the multi-sensor tomographic data directly provides the driving force for the trans-
formation and alignment of the coordinate systems. If fiducials and landmarks are also
defined, they become powerful boundary conditions for our method, but are not required.

The work proposed herein is most akin to the physically based modelling work of
Terzoupolis (see [3], for example) in which transformations are constructed to obey certain
physical laws. Most relevant is the elegant work of Bajcsy and collaborators [4] which
began in the early 80’s in which deformable volume models were developed. The approach
presented here, while identical in spirit to both, substantially differs and extends the
previous methods. First, the driving force acting throughout the continuum is the non-
linear variation of the distortion between the deforming template and the multi-modality
imaging data. The full non-linear optimization is solved without linearization of the
driving force. Only under the condition that the template and data are sufficiently similar
so that the deformations are small, do the linearized solutions give equivalent results
(see [5]). Secondly, the deformation procedure is accomplished by solving a sequence of
optimization problems from course to fine scale via parametrically defined deformation
fields. This is analogous to multi-grid methods but here the notion of refinement from
course to fine is accomplished by increasing the number of basis components. The final
stage is to use the translation field over the entire continuum.

Our previous work on deformable templates for biological shape representation [6, 7, 8,
9] has involved templates of low complexity which could be constructed with modest effort.
For example, organelles in electron-micrographs such as membranes and mitochondria are
generated as transformations of linear and elliptic shapes. Likewise, amoeba are modeled
as transformations of a sphere. Constructing templates for human anatomies is a task
orders of magnitude larger. The proposed neurological templates consist of megabytes of
constants associated with 3-dimensional images from sensor probes and symbolic textbook
labelling. Until recently the construction of the template itself seemed to be the major
obstacle for the successful application of these methods. It was therefore a welcome
surprise to learn of the The Visible Human [10] project undertaken by the National
Medical Library (NML) in which digital anatomical templates are being constructed for
two complete human beings. We quote from the NML: “This Visible Human project
would include digital images derived from computerized tomography, magnetic resonance
imagery, and photographic images from cryosectioning of cadavers.” Initiatives such as
this one makes the proposed work particularly timely.

2 Anatomical Textbook and Transformations

The anatomical textbook (template) is a vector function defined on the ideal coordinate
system of the textbook. The range of the template is both real as well as symbolic in
value, with the vector of values including measures of the intrinsic composition of the
tissue associated with the various noninvasive sensor modalities, as well as anatomical
label and histological information. The multi-valued vector contains values associated
with various imaging probes, MR spin-density, t1, and t2 images, CT attenuation density
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images, and functional PET images. Symbolic information would include the various
labeled areas: white matter tracts, gray matter nuclei, Broca’s areas, etc.

The textbook is a vector mapping of the coordinate system  C R° according to
T : Q — 7T, with the range space 7, assumed to be an M-fold product of spaces
Ti x T2 X ... Ty, where each component T, € T,, corresponds to a different feature of
the tissue. The triple (Q, T, T) is termed the anatomical textbook (template).

There are two kinds of variations which must be accommodated: normal variation
between humans and diseased or abnormal states. Disease and abnormal variation is not
addressed in this paper. Focusing on normal human variation, a set of transformations
h € H on the ideal coordinate system are defined where H is the set of homeomorphic
maps h : Q@ — Q. The homeomorphisms are generated from translation groups applied
to points Z € Q:

h : %= ($1,$2,$3) — (.’171 - ul(f),.'lfz - UQ(f),.'E3 - u:;(f)) . (].)
The vector field (%) = (u1(Z), u2(Z), us(F)) is called the displacement field. The maps
constructed from these transformations allow for the dilation, contraction, and warping
of the underlying ideal coordinates of the template into the coordinates of the individual
anatomy at a very local level. The set of normal anatomies generated from the textbook
(Q,T,T) becomes {Toh : h € H}, with o the composition operator.

2.1 Applying the Textbook

The anatomical textbook is applied to individual patients as follows. A patient is charac-
terized via a study S, an N-valued vector function consisting of N-characterizing data sets
{Sn Y, , or sub-studies. Each sub-study is an examination of the patients brain tissue via
some sensor. It is assumed that all of the study types already exist in the ideal textbook
which implies S,, : Q — Ty, , for some m,, € {1,2,..., M}. For the work described here,
the study modalities are assumed acquired in register; in general, a second processing step
would be required to register modalities from a single patient. The information in the
anatomical textbook (2, T,T) is brought into the coordinates of the patient by finding
the transformation h € H on Q which registers the studies {S, }_; with the textbook.

Registration between the template and study is defined using a distance measure
between the transformed textbook and the study with the distance equalling zero if
and only if the two are equal. For all of the MR data, the squared-error distance
s fQ 1 | Tn(Z— (&) — Sp(Z)|?dZ , is used which is consistent with Gaussian models
of noise in MR imaging.

2.2 Mechano-elastic Energy Density:

To ensure that the vector field of (1) results in transformations which are physically
smooth, so that structures are not broken apart, it is assumed that they arise from a
prior distribution with potential determined by the kinematics of elastic solids [11]. This
”Bayesian view” of the estimation problem gives rise to an associated potential of the
posterior distribution, the sum of the distance and elasticity potentials

H@) = 202/Z|T (7 — (7)) — Su(@)2d7 @)
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where A, and p are the Lame elasticity constants and « is a Lagrange multiplier.

3 Algorithm: stochastic gradient search

The method of solution is to generate the tranformation field @ which is the mean of
the posterior distribution induced by the potential of (2). For this stochastic gradient
algorithms are proposed which follow gradients of the potential H(@) with an additive
noise term. Under proper conditions ! [7] averages of the parameter estimates generated
from the gradient algorithm converge to the mean which becomes the estimated transfor-
mation field shown in all of the results below. We note that because of finite averaging we
are only assured that the mean of the posterior distribution is computed locally around
the large energy minima. For all of the results, the 3-dimensional prior is reduced to
the 2-dimensional prior in the following standard way. Assume that the stresses in the
Z3-direction, and the shear stresses in the Z; 3 and #» 3 directions are zero, which implies

S — — %8 and § = — 5% and § = — J:‘2u(g_:1+g_;i)‘ In 2-dimensions the constants
m = 3>‘f\‘+i“, Ny = m will be extremely helpful. The estimation is accomplished in

two steps: first through a low-dimensional parametric basis [7], and second through a
high-dimensional parameterization which corresponds to estimating the translation field
over the continuum.

3.1 Low-dimensional course refinement:

The basis representation of the transformation field becomes

Z 5 Wi 18, <f>+m,j,2ez,j,2<f>) (3)
1,7=0 +'7 <

with the pair of basis functions

&1 (F) = 1 Sin Tixy COS TJ T2 & () = —J sin miT1 COSTIX (4)
wil jcosTizy sinmjzy » Thi2 i cos iz, Sin Tj T ’

chosen to diagonalize the covariances associated with the elasticity operator. The stochas-
tic algorithm searches through the expansion coefficient set {y; ; 1, ﬂi,j,2}g’j:0 according

to
_10H(u(t))

7J’p
for p = 1,2 where w; ; ,(t) is a Wiener process. The gradient of the potential with respect
to the expansion coefficients becomes

0
3Ni,j,p

H(@) = ——/ Z (7 = 6(#,1)) = Sp(@) ) VT(@ — (1)) - &,3,p(7)dT

+ afp(i®+ )m,j,p( ) (6)

!Grenander, U. and Miller, M.I. Representations of Knowledge in Complex Systems. Journal of the
Royal Statistical Society, submitted February 1992




Miller, Christensen, Amit, and Grenander 7

tha- b ; — [2T T 7y
with @ - b denoting dot product, VT' = [5-, 5--], and p = 2(1 n"’)’ B2 = 4(1+n2)

3.2 High-dimensional fine search:

The full optimization is solved at the highest resolution supported by the textbook, in this
case the MR data is on a 256 x 256 pixel lattice £. The continuous displacement field @
is approximated by the set {ﬁ(l_j}fe . at each of the 2567 lattice sites. The transformation
field is estimated using stochastic gradient search according to

o 1 0H (a(t))

dup(l,t) = — 2 o0} ———=dt + dwy (1) )

where the parametric solution from Eqn. (5) is used as the starting point from which for

the Eqn. (7). The partial derivatives, %L%?), are obtained from the variational calculus
Up

gradient
N o= M v m 2. Bu,(, 1)
SH(@) = WV @z, t) + mv (Zl 37%)
T2 Z ( (% —a(&,t)) — Sn(f))VTn(f—ﬁ(iz’,t)) : (8)
OH(i(t))

Here V2 is the Laplacian operator. The lattice partial derivatives W,p = 1,2 are
P

obtained via discretization of the P.D.E. Eqn. (8), using standard symmetric difference
lattice approximations.

For all of the results shown, d was systematically increased from 1 to 5 with 20
iterations of the stochastic gradient search run for each dimension. The standard deviation
o and simulation time step were 0.01 and 10~%, respectively. The parametrically defined
transformation field was then used as initial conditions to the high 2 x 2562 dimensional
search. Eqn. (7) was run to equilibrium over 250 iterations, and then 50 iterations were
used to generate the empirically averaged  field. The standard deviation was kept the
same, with the step size increased to 10~°. The constants az; = 0.01 and 72 = 0.0 were
used for all of the experiments.

4 Results

4.1 Constructing and generalizing the textbook:

A 2-dimensional textbook was constructed from an MR study collected at Duke Uni-
versity of a normal patient using standard magnetic resonance spin-echo sequences to
generate a spin-density, t1-weighted, and t2-weighted series. A hand segmentation was
also performed of the 2-D scans into the various gray matter nuclei regions: thalamus,
putamen, head of caudate nucleus, ventricle, other brain matter, and background. The
textbook consists of a 4-tuple of 3 magnetic resonance images, and a hand labeled seg-
mentation. These are shown in Figure (1). The hand segmented labeling of the textbook
shown in the lower right panel was generated using all three MR images, along with the
detailed horizontal brain section on page 28 of the DeArmond et al. [12] anatomy atlas.
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Two different patient studies, A and B, were analyzed. Study A consisted of N = 3
sub-studies (spin-density, t1-weighted, and t2-weighted MR images) and study B consisted
of N = 2 sub-studies (spin-density and t2-weighted MR images). The studies were
selected because of their similar orientations and level in the brain and not for their
closeness in brain size or similarity to the textbook.

The result of estimating the transformation h4 from the first experiment is shown
in Figure (2). The top row shows the spin-density (left), t1-weighted (middle) and t2-
weighted images (right) from patient A. Shown in the middle row is the MR textbook
of Figure (1), transformed to patient A: the spin-density T} o hy (left), the t1 image
Tyoh4 (middle), and the t2 image T30 h4 (right). Notice the remarkable correspondence
between the transformed textbook and the destination patient A. Shown in the bottom
row is the magnitude of the difference images between the transformed textbook and the
sub-studies (top row minus the middle row).

Figure (3) shows the result of estimating hp for patient B. The left column shows the
MR spin-density (top) and t2 (bottom) images of patient B. The middle column shows
the transformed textbook: Tj o ﬁB and T3 o h B- The right column shows the difference
images demonstrating the near perfect alignment.

Figure (4) demonstrates the course to fine procedure, showing both the global as well
as local flow of information as the t2 component of the textbook aligns with patient
A. The left panel of Figure (4) shows the magnitude difference between the textbook
t2 component and patient A before any transformation. Notice the large disparity in
global as well as local structure. The middle panel shows the correspondence after the
application of the global transformation alone. The right panel shows the difference after
both the global and local transformations are applied. Notice, the local transformations
allow for small adjustments of the fine substructures.

Having found the transformations, hy and hp from the ideal coordinate system of
the textbook to the studies of patients A and B, the symbolic label information can be
automatically mapped to the patients coordinate system. Shown in Figure (5) is the
result of applying the anatomically labeled gray matter nuclei and ventricle information
in the Ty component of the textbook to the brain slices of patients A and B. The top
row shows hand labeled structures of patients A and B with the bottom row showing the
automated segmentation and labeling of both patients A (T4 o ha left) and B (T4 0 hp
right).

4.2 Fusing Modalities

All of the information in the textbook becomes available in the patient study, allowing
for the high resolution anatomical information of the textbook to be fused with the
physiologic studies of brain activity [13, 14]. Figure (6) demonstrates the fusion of the
anatomical textbook information into the emission tomographic physiologic studies. For
this fusion study a new simulated textbook and simulated patient study was generated. The
simulated textbook consisted of a segmented image, a spin-density, and t2-weighted MR
image corresponding to the hand segmentation of the textbook of Figure (1). Standard
tissue parameters were taken to represent cerebrospinal fluid, gray matter, and white
matter, with the images generated using the spin-echo sequence used in the Duke study.

Three images were generated from the segmentation of patient B, the first and second
being spin-density and t2-weighted images. The third component of the patient study
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was a positron emission tomography (PET) scan simulated to correspond to the Super
PET time-of-flight imager [15]. Figure (6) shows the result of incorporating the anatomic
information of the deformed textbook—via the MR images—into the PET reconstruction.
Shown in the left panel is the true PET tracer distribution used for the study. The middle
panel shows use of the anatomic information obtained via registration of the MR textbook
with the patient for the calculation of the maximum a posteriori estimate of the PET
tracer distribution. For this, a Good’s roughness Markov random field prior [16] was used
to locally smooth independently over the nuclei and ventricle areas. Notice the exquisite
detail and tracer accuracy in the PET reconstruction. The right panel shows the result of
the same PET reconstruction algorithm with Good’s smoothing globally applied across
the boundaries of the anatomically distinct nuclei, without the use of the anatomic MR
information. Notice how much anatomical detail, or resolution is lost.

5 Conclusions

Projects such as the NML’s Visible Human project for the construction of digital anatom-
ical libraries for two complete humans has to a large part motivated the work proposed
herein. Thus far, only normal neuroanatomy has been discussed, although the meth-
ods must be extended to include the abnormal variation associated with disease. Again
quoting from the NML: “NML should expand upon initial image libraries comprised of
normal structure to encompass specialized image collections which represent structural
informations, such as embryological development, normal and abnormal variations and
disease-related images”.

The construction of digital anatomical textbooks is quickly becoming a reality. Being
able to transform the coordinate system of the textbook into that of any patient allows for
sensor fusion as well as segmentation. All of the anatomic, histologic and pharmacologic
information in the textbook then becomes available in the study of the individual.
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7 Figure Captions

Figure 1: Textbook components: spin-density (top-left), t1-weighted (top-right), t2-
weighted (bottom-left) MR images, and a hand segmentation (bottom-right).
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Figure 2: Top row shows the spin-density (left), t1-weighted (middle) and t2-weighted
(right) images of patient A; middle row shows the transformed textbook; bottom row
shows the magnitude difference images between the transformed textbook and the patient.
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Figure 3: Left column shows the spin-density (top) and t2 (bottom) of patient B; middle
column shows the transformed textbook; right column shows the magnitude difference
images between the textbook and the patient.

Figure 4: Magnitude difference images between the t2 component of patient A and the
textbook (left), the globally deformed textbook (middle), and the locally deformed text-
book (right).
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Figure 5: Top row shows the hand labeled structures of patients A (left) and B (right);
the bottom row shows the automatic labeled structures of patients A (left) and B (right).

Figure 6: The left panel shows the true PET tracer distribution. The middle panel shows
the smoothed maximum a posteriori PET reconstruction incorporating the anatomical
MR information. The right panel shows the smoothed estimate generated without using
the anatomical information.



