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Generalized electronic atlases
of the head, created from MRI
scans and labeled by experts,
are turrently available. The
algorithms in this research
create individualized, subject-
specific atlases.

Computer

odern medical imaging modalities such as computerized
M tomography (CT), magnetic resonanc¢e imaging (MRI), and

positron emission tomography (PET) provide detailed 3D pic-
tures of anatomy and function. Unfortunately, this high-dimensional
voxel-based data must be interpreted manually, and quantitative com-
parison between individuals or across populations is exceedingly-diffi-
cult without extensive manual input or gross simplification. This article
presents methods that overcome these problems by transforming a
generic digital neuroanatomical atlas to closely correspond with a specific
individual’s data set, thus creating an individualized atlas.

An anatomical atlas is an annotated volume of images, charts, ortables
that systematically illustrate an anatomical part. Atlas annotations often
include structure names, descriptions, locations, and functions, as well
as other information specific to the atlas anatomy. Individualized digital
atlases can be generated by using a computer to transform the shape of
the atlas into the shape of images taken of the individual. As shown in
Figure 1, the atlas transformation describes the correspondence between
the coordinate system of the individual’s data set and that of the atlas at
each point. The atlas transformations are constrained to preserve the atlas
neighborhood structure and continuity under the transformation.

Once the deformable atlas is individualized, it can be used to analyze
data sets by querying for regions of interest, structure volumes, locations
and magnitudes of abnormalities, and so on. The inverse transformation
can also be used to map data from the individual’s coordinate system back
to the atlas’ standard coordinate system. Transforming data sets to the shape
of the atlas anatomy removes individual anatomical shape variations, which
is useful in comparing brain function between individuals.

Historically, registration methods have used affine transformations that
account for global translation, rotation, scale, and skew, or nonrigid trans-
formations obtained by matching a small number of lJandmarks. These
approaches account for global shape variations only and ignore small local
variations. Our work extends these methods with a new approach that
accommodates both global and local shape variation.

Potential applications of these techniques include locating areas in the
brain where different functions take place, characterizing shape variations
in diseases such as schizophrenia and Alzheimer’s, and providing patient-
specific data for planning and rehearsing surgical procedures.

PATTERN THEORY
Grenander’s shape models! represent anatomical structure and vari-
ability in a mathematically rigorous framework that evolved from trying
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to represent complex knowledge.> Normal anatomy is rep-
resented by constructing an anatomical atlas through
- exhaustive segmentation and labeling of a single volu-
metric study. Hohne’s Voxel-Man? is an example of an elec-
tronic atlas. Variability of shape between individuals is
accommodated by defining probabilistic transformations
on the atlas coordinate system. By applying high-dimen-
sional local transformations to the atlas, a rich family of
anatomies can be represented using a single atlas (see
Figure 2).

Transformations on the atlas must maintain the topolo-
gy—thatis, the integrity of anatomic structures—and have
high spatial dimension to accommodate complex anatom-
ical details. This is achieved by constraining the set of trans-
formations to be consistent with physical deformations of
real materials such as elastic solids*s and viscous fluids.s”

Mathematical definitions

A deformable atlas or template is a multivalued func-
tion T={T,}), defined on the ideal coordinate system
Q c R®. For convenience, we will assume that Q = [0, 1]3
= {the unit cube}. The template function'T describes how
the coordinate system or tissue of the atlas anatomy looks
when imaged by different imaging modalities such as MRI,
CT, PET, cryosection, and segmentation. That is, T
describes the value of the atlas anatomy for each modal-
ity in the atlas at each location in the coordinate system.
For example, the value of the atlas at coordinate (0.5, 0.5,
0.5) might be expressed as T(0.5, 0.5, 0.5) = (150, 1000,
30, (120, 135, 45), “ventricle”), meaning that this coordi-
nate has intensity 150 in an MRI image, 1,000 in a CT
image, 30 in a PET image, (red = 120, green = 135, blue
= 45) in an RGB cryosection image, and the label “ven-
tricle” in a segmentation.

The target or individual is characterized via a study
$=1{S,}¥, consisting of M characterizing data sets, or
substudies. Each substudy is an examination of the target
brain tissue via the sensing modality. The information in
the atlas is brought into the patient’s coordinates by find-
ing the transformation registering the studies {S,}M,
with the corresponding M modalities from the template
{T,}N,, where M<N.

A new atlas T,,, is generated from the original atlas T
by applying a transformation h(x) = x—u(x) to the coor-
dinate system of T, that is, T\ (X) = T(X — w(x)). The

Figure 1. Two transverse magnetic resonance imag-
ing (MRI) scans showing relatively the same
anatomical structures in two subjects. The arrows
show points of correspondence between the two
images. Algorithms for finding high-dimensional
transformations are parameterized by an arrow of
correspondence at every pixel/voxel location.

function u is called the displacement field and describes
the transformation in terms of a displacement at each
point in the coordinate system. Registration between the
atlas and study is accomplished by minimizing distance
measures D(u) such as the Gaussian sensor model

,}, 2
D(u) = — [ |T(x—u(x))—S(x) dx (o))
2 Ja

where 7 is a constant. (For notational convenience in this
equation, T and S are assumed to be singular valued cor-
responding to the same sensor modality.)

The transformation from the template to the target must
be smooth so that connected sets remain connected, sur-
faces are mapped as surfaces, and the global relationships
between structures are maintained. Such properties cor-
respond to topological properties of the transformation:
continuity, differentiability, positive-definiteness of the
Jacobian, and others. To ensure smoothness, the trans-
formation X — x —u(X) is estimated, which minimizes the
distance measure D(u) while satisfying smoothness con-
straints. These smoothness constraints are enforced on
the transformation by employing a potential function E(u)
that assigns a small penalty to smooth transformations
and a large penalty to nonsmooth transformations. In our
work, we use potential functions based on the kinematics
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Figure 2. An individualized neuroanatomical atlas, one that closely corresponds to an individual’s specific
data set, is generated by transforming the deformable atlas coordinate system until the information in the
atlas corresponds to the subject’s anatomy. This is accomplished automatically by pairwise matching image
volumes from the patient and the atlas. Shape differences between the atlas and subject’s anatomy are con- .

tained in the volume transformation.
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of continuum mechanics.8 For example, E(u) has the form

3.3 Y
_1 A (x) || 9 (x)
Ew=_ > | 1( 5 j[ - ] .
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2
+u [—M () + —@j(x)] dx
ax.
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where A and y are the Lamé elasticity constants for a lin-
ear elastic model.**
The estimation problem becomes that of inferring the

transformation X — X — u(x) of the template that mini--

mizes both the distance measure D(u) and the potential
energy E(u), that is, finding

G = argmin(D(u) + E(u)) (€))

The solution G corresponds to the variational minimizer
of D(u) + E(u) with respect to u.

Equation 3 can be interpreted probabilistically by assum-
ing that D(u) and E(u) are potential energy functions of
Gibbs probability measures, that is, of the type p(u) =
(1/2)e®@ where z is a normalizing constant. D(u) corre-
sponds to the likelihood because it describes the imaging
sensor characteristics and E(u) corresponds to the prior
because it describes a priori knowledge about the smooth-
ness of the transformation. The introduction of the prior
distribution places the minimization problem in the class
of Bayesian inference problems.® With this interpreta-
tion, U is called the Bayesian maximum a posteriori (MAP)
estimate.

Deformation models

For linear elastic solids, the restoring force holding the
template together grows proportionately with the dis-
placement from the original configuration of the template.
The solution of Equation 3 for a linear elastic solid satisfies
the partial differential equation (PDE)

uVia) + A+p VV-ux) =b x-ux) @

with certain boundary conditions such as u(x) = 0 forx
on the boundary of Q (see Christensen, Rabbitt, and
Miller® for other types of boundary conditions).

In Equation 4, the divergence and Laplacian operators
are

vl o a7
o, A, o,
and i
2 . 2 2
V2:£_+8_+a_
oy Iy g

and i, A are the Lamé constants . The left side of Equation
4 corresponds to the variational minimizer with respect
to u(x) of the potential E(u) for a linear elastic solid. The
{ body force b(x —u(x)) is the driving function that deforms
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the template into the shape of the target data set, and it
corresponds to the variational minimizer with respect to
u(x) of the distance function. For the Gaussian distance
measure given in Equation 1, the body force is

bx-u®) = —y(TE-ul)=S&E) VT w )

For viscous fluids, the force holding the template
together grows proportionately to the rate of change of
the transformation of the template. The PDE describing
the fluid transformation of the atlas® is given by

a Vv, D + (0 +B) V (V- vix, 0)=bx-ux, ) (6)

where

3
o) = D L BED Yy M

i=1 . i

is the velocity of the transformation and & and B are vis-
cosity constants. Note that the fluid PDE in Equation 6 was
derived directly (see Christensen, Rabbit, and Miller®) and
does not have an associated potential formulation. For the
work herein, we assume that v(x, t) = 0 on the boundary
of Q. This PDE is almost identical in form to Equation 4,
except that the displacement field u is replaced by the
velocity field v. However, these equations are very differ-
ent, as can seen by substituting Equation 7. int(/b/ Equation
6. The nonlinear relationship between v and u expressed
by Equation 7 allows the fluid model to track long-dis- -
tance, nonlinear deformations of small subregions.
Convergence of the fluid transformation algorithm
oceurs as time goes to infinity. This is because the driving
function or body force (Equation 5) goes to Zero as the
template deforms into the study. As the body force goes to
zero, so does the velocity field (Equation 6). As the veloc-
ity field goes to zero, so does the change in the displace-
ment field (Equation 7), giving convergence. Practically,
the algorithm is stopped after a fixed number of iterations
that give the deformed template and the target image a
similar appearance. The algorithm can also be stopped
when the absolute difference in intensity of the deformed
template and target images falls below a certain value.

3D transformation example

Figures 3-5 show an individualized deformable neu-
roanatomical atlas, in which one 128 x 128 x 100-voxel
MRI volume was fluidly transformed into the shape of
another. The study data set was preprocessed so that its
histogram matched that of the atlas MRI data set. Figure
3 shows the front and side surface renderings of the atlas
(left), the study (middle), and the fluidly deformed atlas
(right). The goalis to deform the coordinate system of the
atlas so that the anatomy of the atlas corresponds to that
of the study. Notice that the deformed atlas and study
appear nearly identical.

We used a multiresolution approach to estimate the
transformation. This increases the convergence rate and
avoids local minimum corresponding to incorrect
matches. Figure 4 shows a sequence of 3D surface-ren-
dered MRI images of the template as it deformed into the



study. The initial or global transformation of the atlas was
estimated assuming that the template was a deformable
cube constructed of a linear elastic material.® The linear
elastic transformation was constrained to give a global
nonrigid transformation by allowing deformations of only
the 192 lowest frequency modes of vibration. The modes
of vibration correspond to the eigenfunctions ®,(x) that
satisfy V2 @, (x) + V(V - ®,(x)) = x,®,(x), where x; are
the eigenvalues corresponding to ®,(x). (See Equation 6
of Christensen, Rabbitt, and Miller.®)

Local deformation of the atlas was performed by assum-
ing that the elastically deformed template could deform
as a cube of compressible fluid material as described by
Equations 6 and 7. The fluid model allowed the template
to fully deform into the shape of the study without being
“held back,” as was the case with the linear elastic model.
The fluid transformation was parameterized by one trans-
lation vector and one velocity vector for each voxel, giv-
ing a total of 6 x 128 x 128 x 100 =~ 9.8 x 10¢ parameters.
This high-dimensional parameterization allows enough
degrees of freedom to accommodate the local anatomical
shape variation. The normalized squared difference was
56,000 initially, 20,000 after the elastic transformation,
and 1,800 after the fluid transformation. (The normalized
squared difference is computed by normalizing the voxel
intensities of the template and study between 0 and 1, sub-
tracting the deformed template from the study, and sum-
ming the squares of the voxel differences.)

The top and bottom rows of Figure 5 show sagittal MRI
slices 74 and 62 from the atlas (left), study (middle), and
fluidly deformed atlas (right). The differences between the
atlas and study for these slices illustrate the need to accom-
modate anatomical shape differences in all three coordi-
nate directions. For example, notice how different the
shapes of the constituent structures of the study (top mid-
dle) are from those in the atlas (top left) and how similar
they are to those in the deformed atlas (top right). Likewise,
the bottom row of Figure 5 shows close correspondence
between the anatomical features after deformation.

The atlas deformation algorithms are computationally
intensive due to the large number of parameters estimated
and the iterative nature of the deformation algorithms.
Therefore, estimating the transformation that individu-
alizes the deformable atlas requires a supercomputer.

MASSIVELY PARALLEL
IMPLEMENTATION

We implemented the elastic and fluid deformation algo-
rithms on a MasPar 128 x 128 massively parallel* SIMD
computer (Model MP2).% This specialized hardware archi-
tecture let us compute the complex atlas transformations
in realistic time frames, that is, a few minutes or hours
instead of a few days or weeks.

Figure 3. Front and side 3D views of facial surfaces
reconstructed from MRI data of the deformable atlas
anatomy (left), the study (middle), and fluidly
deformed atlas (right). Note that a small part of the
ear and scalp were excluded from the sample
volume, which resulted in the rendering artifact on
the side of the head in the study and deformed atlas.

Figure 4. Facial-surface 3D views reconstructed from
MRI data of the deformable atlas anatomy as it is
automatically deformed into the shape of the study
anatomy. The undeformed atlas is shown in the left-
most image, and the final deformed state is shown
at far right.

Figure 5. The top and bottom rows show sagittal
MRI slices 74 and 62 from the MRI atlas (left), study
(middle), and fluidly deformed atlas (right).

*A massively parallel computer has more than 1,000 processor ele-
ments (PEs) and is classified as having either a SIMD or a MIMD par-
allel architecture. SIMD (single instruction, multiple data) systems
are used for problems that require a large number of computations
in which all the PEs perform the same operation in parallel. On each
clock cycle, each PE performs the same operation on its private data.
MIMD (multiple instruction, multiple data) systems are used for algo-
rithms that can be broken up into separate, independent parts to
solve. Each part is assigned to a separate processor and all the parts
are solved simultaneously.

In general, the PEs used in SIMD machines are much less compli-
cated to design than those used in MIMD machines and therefore
require less area on a computer chip for layout. As a result, SIMD
computers generally have more—but simpler—processors than
MIMD computers for the same price. Due to the simplicity of the PE
design, operations take more clock cycles to compute on a SIMD com-
puter than a MIMD computer. However, the speed advantage of the
SIMD computer comes from a large number of processors comput-
ing in parallel.
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Figure 6. MasPar system block diagram. The array
control unit (ACU) executes the same instruction on
each processor element (PE) in the PE array.

The MasPar computer’s 16,384 processors permit break-
ing the algorithm into simple commands that can be exe-
cuted in parallel. The PEs in the MasPar are connected in
a 128 x 128 toroidal mesh for efficient local communica-
tion and by a global router for nonlocal commumnication
(seeFigures 6 and 7). The PE mesh connection, calied the
xnet, allows each PE to send/ receive data (communicate)
to/from its eight nearest neighboring PEs—a valuable fea-
ture for solving problems such as partial differential equa-
tions that require local PE communication. The global
router allows PEs to send/receive data to/from other PEs
that are separated by long distances. It also allows the PEs
to communicate in nonregular patterns in parallel, which
is important for computing the deformed template.

Solving partial differential equations

Partial differential equations (PDEs) are central for
individualizing the atlas because they constrain the trans-
formations to be smooth—that is, they ensure atlas struc-

ture connections and preserve the atlas neighborhood
structure under the transformation.” It turns out that the
PDEs in Equations 4 and 6 must be solved at each itera-
tion of the deformation algorithm.*¢

Mesh-connected, massively parallel computers exploit
the local, regular PE communication required to solve PDEs.
For example, consider the 2D partial differential equation

*u(x, y)
ax?

N *u(x, y)
dy?

= o y) (®)

with constant forcing function f(x, y) defined on the unit
square € = [0, 1]2. Rewriting this equation using symmet-
ric difference formulas™ for the second derivatives gives

Uig, j = 2 5 F Ui,y
AZ \AZ

Uy jpr — 20 5+ Uy

= fi;
9)

where Uy ;= UG, yj);ff,j = flx; _yj); X=1A, y;=JA, Ql‘ld A=
1/N. Solving for u, ; gives the desired result

1 )
U = Z(ui-l-l,j T Ut g T Azfi,j) (10

Equation 8 is solved numerically for u, using Equation

‘10, by repeated calculation of u, ;at eachlocation (i, /) until

the values u; ;converge. This is done by mapping each pair
u;;and f; ; to a separate PE at location (i, j) in the mesh.
Notice that the data required to .compute Equation 10 at
each PEis either stored locally (f, ;) or in aneighboring PE
(Win, jp Up jp Uy j415 Uy j)- The data from neighboring PEs is
fetched by all PEs in parallel by shifting the u array north,
south, east, and west.

Transforming the template
Besides calculating PDEs in parallel, the'MasPar is well

Figure 7. The MasPar is well suited for
solving partial differential equations
because each processor can
send/receive data to/from its eight
nearest neighbors in parallel.

Figure 8. Computing the template
transformation requires a nonregular
pattern of PE communication. The
MasPar’s global router transfers data
from source to destination PEs as indi-
cated by the parallel arrows.

Figure 9. Parallel indirect addressing.
The value of D at each PE'is set equal
to the value of T offset by the index i
in parallel.
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Table 1. Typical program execution times on the 128 x 128 MasPar for 2D and 3D transformations. The
linear elastic transformations were constrained by the number of low- frequency fundamental modes of
vibration equal to the number of parameters estlmated :

suited for transforming the template in parallel. The eval-
uation of the template and its derivatives in the trans-
formed coordinate system is computed on each iteration
of the deformation algorithms. The problem of trans-
forming the template differs from that of solving PDEs
because it requires a nonregular pattern of communica-
tion between the PEs (see Figure 8). Long-distance com-
munication is necessary because of large template
deformations; the nonregular communication pattern is
due to local template deformations.

Normally, a nonregular pattern of communication (ran-
dom access) is very inefficient on a mesh-connected com-
puter because it is not a parallel operation using nearest
neighbor data transfer. Two MasPar features—the global
router (Figure 8) and local PE indirect memory addressing
(Figure 9)—reduce this problem. Together, they provide
random access to the required data. First, each PE calcu-
lates the memory address of the data that it needs to com-
pute its value of the deformed template. This address is
converted into a target PE address and its local memory
address. Using the target PE addresses, the global router
sends the local memory addresses from the requesting PEs
to the target PEs in parallel. Next, all target PEs use indi-
rect addressing to fetch the requested data from their local
memory in parallel. Finally, the target PEs use the global
router to return the data to the requesting PEs in parallel.
Without the global router and PE indirect addressing, the
PEs would be very inefficient at the random access
required to transform the template.

The PEs on the MasPar are divided into 4 x 4 sub-
groupings called clusters. Only one PE per cluster can send
data, and only one PE can receive data during a router data
transfer. Therefore, address contention occurs when two
or more PEs request to send or receive from the same clus-
ter. To handle this contention, the router hardware uses

Table 2. Typical 3D fluid execution time for a 128 x 128 x 100 voxel data set, 100 fluid PDE iterations, and |
250 time steps. The three middle columns correspond to the calculation of Equations 5, 6, and 7, used to
generate the fluid transformation. Execution times for the MIPS 150-MHz R4400 and 75-MHz R8000
sequential processors were generated using a Silicon Graphlcs Indigo? and a Power Challenge computer,
respectlvely‘ and were extrapolated from 32 x 32 x 25 data set /

several router data transfers until all data is transferred.
This reduces parallelism but is faster than nearest neigh-
bor PE communication for long-distance, random-address
data transfers.

Timing information

Table 1 gives typical program execution times for the
linear elastic*s and fluid® algorithms. These entries reflect
typical data sizes and parameters used for 2D and 3D prob-
lems. In theory, the 2D and 3D linear elastic transforma-
tion times could be four times faster, because they were
computed using only a 64 x 64-PE array, one fourth of the
MasPar’s PEs. The column labeled “PDE iterations” corre-
sponds to the number of iterations used to solve the fluid
PDE (Equation 6) at each iteration of the fluid algorithm.
Notice that the execution times of the 2D and 3D algo-
rithms are not linear with respect to the third dimension.
This is due to the increased number of PDE cross-deriva-
tives in-3D as opposed to 2D (see Equations 4 and 6) and
to the increased computations required for trilinear inter-
polation of the template and its derivatives over bilinear
interpolation.

We compared execution times of the 3D fluid algorithm
onMasPar’s 128 x 128 MP2 and on MIPS Technologies’ 150-
MHz R4400 and 75-MHz R8000 sequential processors (see
Table 2). The execution time of the fluid PDE procedure
scales linearly with the number of fluid PDE iterations, and
the total execution time scales linearly with the number of
iterations and the dimensions of the data set. The largest
portion of the execution time for the R4400 and R8000 is
the calculation of the fluid PDE, Equation 6, which is 330
and 57 times slower, respectively, than the same calcula-
tion on the MasPar. The MasPar’s speed advantage is
expected there, since it calculates the fluid PDE in parallel,
but its speed advantage is much less for the body-force cal-
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culation. That’s because the body-force calculation requires
random data access to evaluate the deformed template and
its derivatives. Sequential processors are designed for ran-
dom memory access and therefore are much better suited
for calculating the body force than the global router and
parallel indirect addressing of the MasPar.

SYNTHESIZING INDIVIDUALIZED ATLASES that accurately
accommodate local anatomical shape variability has many
exciting potential applications. For example, these tech-
niques can be used to help locate areas in the brain where
different functions take place. This would be accomplished
by transforming functional data such as PET and func-
tional MRI collected from different individuals to the atlas
brain. Once registered with the atlas, the data can be inter-
preted as if all experiments were performed on the same
individual. Neuromorphometrics, the study of the shape
of neuroanatomical structures, is another important appli-
cation. Segmentations of anatomical structures are used
to characterize normal and abnormal anatomical shapes
and their shape variation in diseases such schizophrenia,
Alzheimer’s, Huntington’s, and Parkinson’s disease.
Finally, individualized atlases will improve patient care
by giving the physician more accurate information to
diagnose and correct problems. Abnormalities will be
flagged in the individualized atlas for further review along
with a list of possible causes and possible treatments.
Individualized atlases will also let physicians plan and
practice surgical operations using the patient’s own
anatomy on the computer before actually making the first
cut in the operating room.
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