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Abstract. A fundamental problem with a large class of image registra-
tion techniques is that the estimated transformation from image A to B
does not equal the inverse of the estimated transform from B to A. This
inconsistency is a result of the matching criteria’s inability to uniquely
describe the correspondences between two images. This paper seeks to
overcome this limitation by jointly estimating the transformation from
A to B and from B to A while enforcing the consistency constraint that
these transforms are inverses of one another. The transformations are
further restricted to preserve topology by constraining them to obey the
laws of continuum mechanics. A new parameterization of the transfor-
mation based on a Fourier series in the context of linear elasticity is
presented. Results are presented using both Magnetic Resonance and X-
ray Computed Tomography Imagery. It is shown that joint estimation of
a consistent set of forward and reverse transformations constrained by
linear-elasticity gives better registration results than using either con-
straint alone or none at all.

1 Introduction

A reasonable but perhaps not always desirable assumption is that the mapping of
one anatomical image (source) to another (target) is diffeomorphic, i.e., continu-
ous, one-to-one, onto, and differentiable. By definition, a diffeomorphic mapping
has an unique inverse that maps the target image back onto the source image.
Thus, it is reasonable goal to estimate a transformation from image A to B that
should equal the inverse of the transformation estimated from B to A assuming
a diffeomorphic mapping exists between the images. However, this consistency
between the forward and reverse transformations is not guaranteed with many
image registration techniques.

Depending on the application, the diffeomorphic assumption may or may not
be valid. This assumption is valid for registering images collected from the same
individual imaged by two different modalities such as MRI and CT, but it is not
necessarily valid when registering images before and after surgery. Likewise, a
diffeomorphic mapping assumption may be valid for registering MRI data from
two different normal individuals if the goal is to match the deep nuclei of the
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brain, but it may not be valid for the same data sets if the goal is to match the
sulcal patterns.

Alternatively, diffeomorphic transformations may be used to identify areas
where two image volumes differ topologically by analyzing the properties of the
resulting transformation. For example, consider the problem of matching an
MRI image with a tumor to one without a tumor. A possibly valid diffeomor-
phic transformation would be one that registers all of the corresponding brain
structures by shrinking the tumor to a small point. Such a transformation would
have an unusually small Jacobian which could be used to detect or identify the
location of the tumor. Conversely, consider the inverse problem of matching the
image without the tumor to the one with the tumor. A valid registration in this
case may be to register all of the corresponding brain structures by allowing the
transformation to “tear” (i.e., not be diffeomorphic) at the site of the tumor.
Just as valid could be a diffeomorphic transformation that registers all of the
corresponding brain structures by allowing the transformation to stretch at the
site of the tumor.

As in the previous examples, we will assume that a valid transformation
is diffeomorphic everywhere except possibly in regions where the source and
target images differ topologically, e.g., in the neighborhood of the tumor. For
the remainder of the this paper, we will consider registration problems that the
diffeomorphic transformation assumption is valid. These ideas can be extended to
certain non-diffeomorphic mapping problems by including boundary conditions
to model, isolate or remove regions that differ topologically.

Transformations that are diffeomorphic maintain topology guaranteeing that
connected subregions remain connected, neighborhood relationships between
structures are preserved, and surfaces are mapped to surfaces. Preserving topol-
ogy is important for synthesizing individualized electronic atlases; the knowledge
base of the atlas maybe transferred to the target anatomy through the topol-
ogy preserving transformation providing automatic labeling and segmentation.
If total volume of a nucleus, ventricle, or cortical sub region are an important
statistic it can be generated automatically. Topology preserving transformations
that map the template to the target also can be used to study the physical
properties of the target anatomy such as mean shape and variation. Likewise,
preserving topology allows data from multiple individuals to be mapped to a
standard atlas coordinate space [1]. Registration to an atlas removes individ-
ual anatomical variation and allows information from many experiments to be
combined and associated with a single conical anatomy.

The forward transformation h from image T to S and the reverse transfor-
mation g from S to T are pictured in Fig. [l Ideally, the transformations h and g
should be uniquely determined and should be inverses of one another. Estimating
h and ¢ independently very rarely results in a consistent set of transformations
due to a large number of local minima. As a result, we propose to jointly esti-
mate h and g while constraining these transforms to be inverses of one another.
The joint estimation makes intuitive sense in that the invertibility constraint
will reduce the number of local minima because the problem is being solved
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from two different directions. Although uniqueness is very difficult to achieve in
medical image registration, the joint estimation should lead to more consistent
and biologically meaningful results.
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Fig. 1. The transformation h maps the image volume 7" to S and the transformation g
maps S to T'. In order for the mappings to be biologically meaningful, h and g should
be inverses of one another

The need to impose the invertibility consistency constraint depends on the
particular application and on the correspondence model used for registration. In
general, registration techniques that do not uniquely determine the correspon-
dence between image volumes should benefit from the consistency constraint.
This is because such techniques often rely on minimizing/maximizing a similar-
ity measure which has a large number of local minima/maxima due to correspon-
dence ambiguity. Examples include similarity measures based on features in the
source and target images such as image intensities, object boundaries/surfaces,
etc. In theory, similarity measures have more local minima as the dimension of
the transformation increases. A registration method that determines the corre-
spondence between images by minimizing an image intensity similarity measure
is considered in this paper.

Methods that use specified correspondences for registration will benefit less
or not at all from the invertibility consistency constraint. For example, landmark
based registration methods implicitly impose an invertibility constraint because
the correspondence defined between landmarks is the same for estimating the
forward and inverse transformations. However, the drawbacks of specifying cor-
respondences include requiring user interaction to specify landmarks, unique cor-
respondences can not always be specified, and such methods usually only provide
coarse registration due to the small number of correspondences specified.

2 Registration Algorithm

2.1 Problem Statement

The image registration problem is usually stated as: Find the transformation h
that maps the template image volume T into correspondence with the target
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image volume S. Alternatively, the problem can be stated as: Find the trans-
formation ¢ that transforms S into correspondence with T'. For this paper, the
previous two statements are combined into a single problem and restated as:

Problem Statement: Jointly estimate the transformations h and g
such that h maps T to S and g maps S to T subject to the constraint
that h =g~ 1.

It is assumed that the 3D image volumes T and S are medical imaging
modalities such as MRI, fMRI, CT, cryosection imagery, etc. collected from
similar anatomical populations. Each image is defined as a function of z € 2 =
[0, 1] where (2 is called the image coordinate system. The transformations are
vector-valued functions that map the image coordinate system (2 to itself, i.e.,
h: 2~ (2 and g : 2 — 2. Diffeomorphic constraints are placed on h and g
so that they preserve topology. Throughout it is assumed that h(z) = = + u(z),
h=1(x) = z+1(z), g(x) = v +w(x) and g~ (x) = v +w(x) where h(h~ (z)) = =
and g(g~*(z)) = x. All of the fields h, g, u, @, w, and W are (3 x 1) vector-valued
functions of x € (2.

Registration is defined using a symmetric cost function C(h, g) that describes
the distance between the transformed template T'(h) and target S, and the dis-
tance between the transformed target S(g) and template T'. To ensure the desired
properties, the transformations h and g are jointly estimated by minimizing the
cost function C(h, g) while satisfying diffeomorphic constraints and inverse trans-
formation consistency constraints. The diffeomorphic constraints are enforced by
constraining the transformations to satisfy laws of continuum mechanics [2].

2.2 Symmetric Cost Function

The main problem with image similarity registration techniques is that mini-
mizing the similarity function does not uniquely determine the correspondence
between two image volumes. In addition, similarity cost functions generally have
many local minima due to the complexity of the images being matched and the
dimensionality of the transformation. It is these local minima (ambiguities) that
cause the estimated transformation from image T to S to be different from the
inverse of the estimated transformation from S to T. In general, this becomes
more of a problem as the dimensionality of the transformation increases. To
overcome this problem for 3 x 3 linear transformations, Woods et al. [3] averages
the forward and inverse linear transformations to reconcile differences between
pairwise registrations.

To overcome correspondence ambiguities, we jointly estimate the transforma-
tions from image 7" to S and from S to T'. This is accomplished by defining a cost
function to measure the shape differences between the deformed image T'(h(x))
and image S(x) and the differences between the deformed image S(g(z)) and im-
age T'(x). Ideally, the transformations h and g should be inverses of one another,
i.e., h(z) = g~ (x). The transformations h and g are estimated by minimizing
a cost function that is a function of (T'(h(z)) — S(z)) and (S(g(z)) — T(x). The
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cost function used in this work is given by

C1(T(h), S) + C1(S / T(h(z)) — S(x)|*dx + /Q 1S(g(z)) — T(x)|dx.
(1)

Alternatively, the mutual information cost function given in [45] could be used.
Notice that this joint estimation approach applies to both linear and non-linear
transformations.

2.3 Transformation Parameterization

A 3D Fourier series representation is used to parameterize the forward and in-
verse transformations. This parameterization is simpler than the parameteriza-
tions used in our previous work [6I7/8] and each basis coefficient can be inter-
preted as the weight of a harmonic component in a single coordinate direction.
The displacement fields are constrained to have the form

N—-1N-1N-1 R N—-1N—-1N-1 .
u(x — Mijkej<ai7wijk> and w § : § : § mjkej<:1:,w7:jk>
k=0 j=0 =0 k=0 j=0 i=0

where p;55 and 7,1 are (3x 1), complex-valued vectors and wj;, = [2]7\;1, 2]7{,] , 217\“/“]

Notice that this parameterization is periodic in  and therefore has cyclic bound-
ary conditions for  on the boundary of {2 . The coefficients p;;, and n;;, are
constrained to have complex conjugate symmetry during the estimation proce-
dure.

Proposition 1. Fach displacement field in (3) is real and can be written as

2
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if the (3 x 1) vector piji = @ijk +jbijk has complex conjugate symmetry.

Proof. Notice that () can be written as
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because the p;;;, are complex conjugate symmetric. Simplifying the summand
gives the result. O
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2.4 Inverse Transformation Consistency Constraint

Minimizing the cost function in () is not sufficient to guarantee that the trans-
formations h and ¢ are inverses of each other. The inverse transformation con-
sistency constraint is enforced by minimizing the squared difference between the
transformation h and and the inverse transformation of g, and vice versa. To
state this mathematically we define the following relationships: h(z) = x +u(z),
h=Y(z) = x + a(x), g(x) = 2 + w(z) and g~'(z) = x + w(z). The consistency
constraint is enforced by minimizing

Co(u, ©) + Ca(w, ) = /Q u(z) — @(x)|Pde + /Q (@) — (@) |Pde. (4)

The inverse transformation h~! is estimated from h by solving the minimiza-
tion problem h~!(y) = argmin ||y — h(z)||* for each y on a discrete lattice in £2.
x

The inverse h~! exists and is unique if & is a diffeomorphic transformation, i.e.,
continuous, one-to-one, and onto.

2.5 Diffeomorphic Constraint

Minimizing the cost function in () does not ensure that the transformations h
and g are diffeomorphic transformations except for when Cy(u, w)+Cs(w, @) = 0.
To enforce the transformations to be diffeomorphic, we use continuum mechan-
ical models such as linear elasticity [79] and viscous fluid [Ol[10]. For this paper,
a linear-elastic constraint of the form

Cs(u) + Cs(w /||Lu )| dm+/||Lw )|[2dx (5)

was used to enforce the diffeomorphic property where h(z) = x4u(x) and g(z) =
x+w(x). The operator L has the form Lu(z) = —aV?u(z) —V(V-u(z))+7 for
linear elasticity, but in general can be any nonsingular linear differential operator
8]

Following the approach in [§], the operator L can be considered a (3 x 3)
matrix operator. Discretizing the continuous partial derivatives of L, it can be
shown that (&) has the form

N—

O (1) + Ca(w) = N? uUkD”kumk + 0l Dk (6)
k=0 j
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where 1 is the complex conjugate transpose. D;j is a real-valued, (3 x 3) matrix
with elements

=15 + (1 =om (30) « (-cn ()]
=l (1 (5)) 2 0om ()« (—cx ()]
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2.6 Minimization Problem

By combining (@), @), and (), the image registration problem becomes
hw),5(@) = srgmin | [T(0@) = S +18(6(@) ~T(@)Pds

h(z),g9(x)
/ lu(e) - B@I? + () - a@Pdr ()

7). 1 Lu(@)|]? + || Lw(z)||*da

where the constants A and p are Lagrange multipliers used to enforce/balance
the constraints.

2.7 Estimation Procedure

The transformations h and g that satisfy (7)) were estimated using a gradient
descent algorithm to determine the basis coefficients {,uijk, mjk}. The estimation
was accomplished by solving a sequence of optimization problems from coarse to
fine scale via increasing the number of the basis coefficient vectors {1k, ik}
during the estimation. This is analogous to multi-grid methods but here the
notion of refinement from coarse to fine is accomplished by increasing the number
of basis components. As the number of basis functions is increased, smaller and
smaller variabilities between the template and target images are accommodated.

3 Results

Two MRI and two CT image volumes were used to evaluate the registration al-
gorithm. The data sets were collected from different individuals using the same
MR and CT machines and the same scan parameters. The MRI data sets corre-
spond to two normal adults and the CT data sets correspond to two 3-month-old
infants, one normal and one abnormal (bilateral coronal synostosis). The MRI
and CT data sets were chosen to test registration algorithm when matching
anatomies with similar and dissimilar shapes, respectively.

The MRI data were preprocessed by normalizing the image intensities, cor-
recting for translation and rotation, and segmenting the brain from the head
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using Analyze™™ . The translation aligned the anterior commissure points, and
the rotation aligned the corresponding axial and sagittal planes containing the
anterior and posterior commissure points, respectively. The data sets were then
down-sampled and zero padded to form a 64 x 64 x 64 voxel lattice. The CT
data sets were corrected for translation and rotation and down-sampled to form
a 64 x 64 x 50 voxel lattice. The translation aligned the basion skull landmarks,
and the rotation aligned the corresponding Frankfort Horizontal and midsagittal
planes, respectively.

The data sets were registered initially with zero and first order harmonics.
After every 40th iteration, the maximum harmonic was increased by one. The
MRI-to-MRI registration was terminated after 300 iterations and the CT-to-CT
registration was terminated after 200 iterations. Tables [, Bl and [3 show the
results of four MRI experiments and four CT experiments. In order to isolate
the contribution of each term of (7)), one experiment was done with no priors,
one with the linear-elastic model, one with the inverse consistency constraint,
and one with both priors. The four MRI experiments used the parameters 1.
A=p=0,22.2x=0and p =50,3. A\ =0.07 and p = 0, and 4. A = 0.07 and
p = 50; and four CT experiments used the parameters: 1. A =p=0,2. A =0
and p = 25,3. A =0.02 and p =0, and 4. A = 0.02 and p = 25. The labels MRI1
and CT1 are used to refer to results from the Case 1 experiments, and likewise
for 2 to 4.

Table 1. Cost Terms Associated with Transforming Image Volume T to S

Experiment | C1(T'(h), S) | AC2(u, w) | pCs3(u) | Total
orig. [ final final final
MRI1 1980 | 438 0 0 438
MRI2 1980 | 606 0 85.7 | 692
MRI3 1980 | 482 334 0 516
MRI4 1980 | 639 13.0 4.6 | 727
CT1 454 | 27.0 0 0 27.0
CT2 454 | 38.8 0 28.1 | 66.9
CT3 454 | 28.5 3.15 0 31.6
CT4 454 | 40.8 3.34 28.3 | 724

Case 1. corresponds to unconstrained estimation in which h and ¢ are esti-
mated independently. The numbers in the tables are consistent with this obser-
vation. First, Cy(u,w) and Cs(w, @) show the largest error between the forward
and inverse mapping for each group of experiments. Secondly, the Jacobian for
these cases are the lowest in their respective groups. This is expected because the
unconstrained experiments find the best match between the images without any
constraint preventing the Jacobian from going negative (singular). This is fur-
ther supported by the fact that the final values of Cy(T'(h),S) and C1(S(g),T)
are the lowest in there groups.
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Table 2. Cost Terms Associated with Transforming Image Volume S to T

Experiment | C1(S(g),T) | A\C2(w, @) | pCs(w) | Total
orig. ‘ final final final
MRI1 1980 | 512 0 0 512
MRI2 1980| 660 0 78.3 | 738
MRI3 1980 | 539 33.6 0 573
MRI4 1980 | 676 13.0 73.7 | 727
CT1 454 | 30.6 0 0 30.6
CT2 454 | 477 0 324 | 80.1
CT3 454 | 34.6 3.43 0 38.0
CT4 454 | 50.8 3.78 319 | 86.5

Case 2. corresponds to independently estimating h and g while requiring
each transformation to satisfy the diffeomorphic constraint enforced by linear
elasticity. Just as in Case 1, the large difference between the forward and reverse
displacement fields as reported by Cs(u,w) and Cy(w, @) confirms that linear
elasticity alone is not sufficient to guarantee that h and g are inverses of one
another. We do however, see that the linear elasticity constraint did improve the
transformation over the unconstrained case because the minimum Jacobian and
the inverse of the maximum Jacobian is far from being singular.

Case 3. corresponds to the estimation problem that is constrained only by the
inverse transformation consistency constraint. The Cy(u,w) and Cz(w, @) values
for these experiments are much lower than those in Cases 1. and 2. because
they are being minimized. The transformations h and ¢ are inverses of each
other when Cs(u,w) + Co(w, @) = 0 so that the smaller the costs Cs(u,w) and
Cy(w, u) are, the closer h and g are to being inverses of each other.

Table 3. Transformation Measurements

Experiment | Jacobian(h) | Jacobian(g) |C2(u,w) | C2(w, )
min ‘l/max min ‘l/max
MRI1 0.257| 0.275 {0.100| 0.261 | 28,300 | 29,500
MRI2 0.521| 0.459 |0.371| 0.653 | 10,505 | 10,460
MRI3 0.315] 0.290 |0.226| 0.464 478 479
MRI4 0.607 | 0.490 |0.410| 0.640 186 186
CT1 0.340( 0.325 {0.200| 0.49 | 73,100 | 76,400
CT2 0.552| 0.490 |0.421| 0.678 | 28,700 | 28,300
CT3 0.581| 0.361 |0.356| 0.612 158 171
CT4 0.720 | 0.501 |0.488]| 0.725 167 189

Case 4. is the joint estimation of h and g with both the inverse consistency
constraint and the linear-elastic constraint. We can see that this produced the
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best results because the differences between the inverse transformations were so
small, i.e., C2(u, w) and Cy(w, @). Also, the minimum Jacobian of & is nearly the
inverse of the maximum Jacobian of g, and vice versa. In addition, the minimum
and one over the maximum Jacobian of h and g have their largest values for
this experiment (excluding one entry from MRI2). The MRI4 experiment shows
a better than twofold improvement over MRI3 with respect to the difference in
the inverse transformations, while the the inverse transformations difference for
the CT4 and CT3 experiments are nearly equal. This may suggest that the in-
verse consistency constraint may be used without the linear-elasticity constraint.
However, the minimum and one over the maximum Jacobian values are larger
for CT4 than CT3 and similarly for MRI4 and MRI3 suggesting less distortion.
The closer the minimum Jacobian is to one, the smaller the distortion of the
images.

Figure[2 shows three slices from the 3D result of Case 4 for both the MRI and
CT experiments. The first two columns show the template T and target S images
before transformation. The third and forth columns show the transformed tem-
plate T'(h) and target S(g). Columns 5,6, and 7 show the x-,y-, and z-components
of the displacement field u used to deform the template and columns 8,9, and 10
show the same for the displacement field w. The near invertibility in gray-scale
between the displacement fields v and w gives a visual impression that h and g
are nearly inverses of each other.

The time series statistics for MRI4 and CT4 experiments are shown in Figs. Bl
and[l These graphs show that the gradient descent algorithm converged for each
set of transformation harmonics. In both cases, the cost functions Cy(7'(h), S)
and C1(S(g),T) decreased at each iteration while the prior terms increased be-
fore decreasing. Notice that the inverse consistency constraint increased as the
images deformed for each particular harmonic resolution. Then when the number
of harmonics were increased, the inverse constraint decreased before increasing
again. This is due to the fact that a low-dimensional Fourier series does not have
enough degrees of freedom to faithfully represent the inverse of a low-dimensional
Fourier series. This is easily seen by looking at the high dimensionality of a Tay-
lor series representation of the inverse transformation. Finally, notice that the
inverse consistency constraint caused the extremal Jacobian values of the for-
ward and reverse transformations to track together. This is easiest to see in the
CT4 experiment. Note that these extremal Jacobian values correspond to the
worst case distortions produced by the transformations.

4 Discussion

The experiments presented in this paper were designed to test the validity of the
new inverse transformation consistency constraint as applied to a linear-elastic
transformation algorithm. As such, there was no effort made to optimize the
rate of convergence of the algorithm. The convergence rate of the algorithm can
be greatly improved by using a more efficient optimization technique than gra-
dient descent such as conjugate gradient at each parameterization resolution. In
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Fig. 2. Images associated with the MRI4 and CT4 experiments

addition, a convergence criteria can be used to determine when to increment
the number of parameters in the model. The CT data used in the experiments
was selected to stress the registration algorithm. The convergence of the algo-
rithm would have been much faster if the data sets were adjusted for global scale
initially.

It is important to track both the minimum and maximum values of the Ja-
cobian during the estimation procedure. The Jacobian measures the differential
volume change of a point being mapped through the transformation. At the start
of the estimation, the transformation is the identity mapping and therefore has
a Jacobian of one. If the minimum Jacobian goes negative, the transformation is
no longer a one-to-one mapping and as a result folds the domain inside out [TT].
Conversely, the reciprocal of the maximum value of the Jacobian corresponds
to the minimum value of the Jacobian of the inverse mapping. Thus, as the
maximum value of the Jacobian goes to infinity, the minimum value of the Ja-
cobian of the inverse mapping goes to zero. In the present approach, the inverse
transformation consistency constraint was used to penalize transformations that
deviated from their inverse transformation. A limitation of this approach is that
cost function in (@) is an average metric and can not enforce the pointwise con-
straints that mwin{J(h)} = 1/m3X{J(g)} and mmin{J(g)} = 1/m3x{J(h)}. This
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Fig. 3. Statistics associated with the MRI4 experiment

point is illustrated by Table [ by the fact that the minimum values of J(h)
and J(g) differ from the reciprocal of the maximum values of J(g) and J(h),
respectively, However, these extremal Jacobian values do give an upper-bound
on the worst case distortions produced by the transformations demonstrating
the consistency between the forward and reverse transformations.

5 Summary and Conclusions

This paper presented a new algorithm for jointly estimating a consistent set of
transformations that map one image to another and vice versa. A new param-
eterization based on the Fourier series was presented and was used to simplify
the discretized linear-elasticity constraint. The Fourier series parameterization
is simpler than our previous parameterizations and each basis coefficient can be
interpreted as the weight of a harmonic component in a single coordinate direc-
tion. The algorithm was tested on both MRI and CT data. It was found that
the unconstrained estimation leads to singular or near transformations. It was
also shown that the linear-elastic constraint alone is not sufficient to guarantee
that the forward and reverse transformations are inverses of one another. Results



236 G. E. Christensen

C1(T(h),S) and C1(S(9).T) C3(u) and Cz(w)
500 40
400
30
[} [}
B 300 g
s ‘€ 20
g g
< 200 g
10
100
0 0
0 50 100 150 200 0 50 100 150 200
Iterations Iterations
Cz(u,\X/) and Cz(w,ﬁ) minJ(h), minJ(g), 1/maxJ(h), /maxJ(g)
40 1
0.9
30 1/max J(g)
© o 087
o ° \
2 2 \
c 20 c 0.7 ’
§ § \ min J(h)
0.6
1/max J(h
" Af . (h)
0.5 R —
min J(g)
0 0.4
0 50 100 150 200 0 50 100 150 200
Iterations Iterations

Fig. 4. Statistics associated with the CT4 experiment

were presented that suggest that even thought the inverse consistency constraint
is not guaranteed to generate nonsingular transformations, in practice it may be
possible to use the inverse consistency as the only constraint. Finally, it was
shown that the most consistent transformations were generated using both the
inverse consistency and the linear-elastic constraints.
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