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Abstract

Two new consistent image registration algorithms are presented: one is based on

matching corresponding landmarks and the other is based on matching both land-

mark and intensity information. The consistent landmark and intensity registration

algorithm produces good correspondences between images near landmark locations

by matching corresponding landmarks and away from landmark locations by match-

ing the image intensities. In contrast to similar unidirectional algorithms, these new

consistent algorithms jointly estimate the forward and reverse transformation be-

tween two images while minimizing the inverse consistency error—the error between

the forward (reverse) transformation and the inverse of the the reverse (forward)

transformation. This reduces the ambiguous correspondence between the forward

and reverse transformations associated with large inverse consistency errors. In both

algorithms a thin-plate spline model is used to regularize the estimated transforma-

tions. Examples are presented that show the inverse consistency error produced

by the traditional unidirectional landmark thin-plate spline algorithm can be rela-

tively large and that this error is minimized using the consistent landmark algorithm.

Results using MRI data are presented that demonstrate that using landmark and in-

tensity information together produce better correspondence between medical images

than using either landmarks or intensity information alone.

Keywords: image registration, correspondence, inverse transformation, deformable

templates, landmark registration,

1 Introduction

There are many image registration algorithms based on the exact matching of correspond-

ing landmarks in two images [7]. The unidirectional landmark thin-plate spline image

(UL-TPS) registration technique pioneered by Fred Bookstein [1, 4, 2] is the most com-

monly used landmark driven image registration algorithm. Generalizations of UL-TPS

procedure include Krieging methods [14, 13] that use regularization models other than
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the thin-plate spline (TPS) model, anisotropic landmark interactions [16], and directed

landmarks [3].

Most landmark based registration algorithms, including the ones described in this pa-

per, assume that a small deformation is sufficient to register a set of images. In cases

where the small deformation assumption holds, registration algorithms may efficiently es-

timate diffeomorphic transformations in a solution space that contain non-diffeomorphic

transformations. The small deformation limitation is not universally applicable, and work

by Joshi et. al.[11, 15, 12] estimates large deformation transformations in a solution space

of diffeomorphisms by constraining the transformations to obey diffeomorphic fluid prop-

erties.

The UL-TPS algorithm (see Section 2.2) defines a unique smooth registration from a

template image to a target image based on registering corresponding landmarks. Corre-

spondence away from the landmark points is defined by interpolating the transformation

with a thin-plate spline model. Although thin-plate spline interpolation produces a smooth

transformation from one image to another, it does not define a consistent correspondence

between the two images except at the landmark points. This can be seen by comparing

the transformation generated by matching a set of template landmarks to a set of target

landmarks with the transformation generated by matching the target landmarks to the

template landmarks. If the correspondence is consistent then the forward and reverse

transformations will be inverses of one another. This is not the case as shown by the

examples in Section 3.

In this paper, the idea of consistent image registration [5, 10, 6] is combined with the

thin-plate spline algorithm [1, 4, 2, 8, 16] to overcome the problem that the forward and

reverse transformations generated by the thin-plate spline algorithm are not inverses of

one another. In the consistent image registration approach, the forward and reverse trans-

formations between two images are jointly estimated subject to the constraints that they

minimize the thin-plate spline bending energy and that they are inverses of one another.

The merger of these two approaches produced a landmark-based consistent thin-plate

spline (CL-TPS) and a landmark and intensity-based consistent thin-plate spline (CLI-

3



TPS) image registration algorithms. The CL-TPS algorithm (see Section 2.3) provides a

means to estimate a consistent pair of forward and reverse transformations given a set of

corresponding points. The CLI-TPS algorithm (see Section 2.1) combines both landmark

and intensity information to estimate a consistent pair of forward and reverse transforma-

tions.

2 Methods

2.1 Consistent Landmark and Intensity-based Registration

The consistent landmark and intensity image registration algorithm is outlined in Fig. 1.

It is assumed that the images being registered have been rigidly rotated and translated

to put them into a standard orientation, such as the Talairach coordinate system[17],

before applying this procedure. The first step of the algorithm is to produce a good

initial nonrigid registration using a landmark initialization step. This step consists of (1)

picking corresponding landmarks in the two images, (2) solving the unidirectional TPS

algorithm modified to produce periodic boundary conditions for the forward and reverse

transformations, and (3) averaging the forward transformation with the inverse of the

reverse transformation, and vice versa. The full details of the landmark initialization are

described in Section 2.2.

After the landmark initialization step, the iterative consistent landmark thin-plate spline

algorithm described in Section 2.3 is used to produce a consistent set of forward and reverse

transformations. This algorithm jointly estimates a set of transformations that minimize

both the inverse consistency error and the bending energy of the thin-plate spline model

while maintaining exact correspondence at the landmarks. The resulting forward and

reverse transformations have orders of magnitude less inverse consistency error than the

original unidirectional TPS transformations as shown by the experiments in the Results

Section.

The last step of the algorithm is to use the consistent intensity registration algorithm[5,

10, 6], that is briefly described in Appendix B, to refine the transformations based on
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Figure 1: Flow chart describing the steps of the Consistent Landmark and Intensity Image
Registration algorithm. The images being registered are assumed to be rigidly aligned
before starting this procedure.

matching the intensities of the images. This step matches the images in regions away

from the landmarks by minimizing the intensity differences in these regions. The intensity

matching does little in regions near corresponding landmarks since these regions have

similar intensity patterns that have all ready been matched by the landmark registration.

During the intensity matching step, the landmark correspondence error increases in regions

where there are bad landmark initializations. The landmark correspondence error also

increases in this step due to the TPS regularization model that can pull corresponding

landmarks apart. The landmark registration error can be minimized by applying the

consistent landmark registration step followed again by the intensity registration step.

The process of alternating between matching the landmarks and then the image in-

tensities is repeated until an appropriate stopping criteria is met. In this work, a fixed

number of iterations was used as the stopping criteria. Alternatively, the algorithm could
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be stopped after an acceptable intensity similarity and landmark error cost is achieved.

The optimal strategy for stopping the algorithm can be quite complex and will be studied

in future work.

The consistent landmark and intensity-based TPS algorithm can be thought of as esti-

mating a consistent set of forward and reverse transformations that minimize the intensity

differences between two images while being guided by the landmark correspondences. The

landmarks guide the solution by initializing the consistent intensity registration algorithm

with transformations that are nearly inverse consistent and have exact correspondence at

the landmarks. This initialization helps the consistent intensity registration avoid some

local minima and therefore produce more biologically relevant correspondence maps.

Due to the difficulty of defining exact landmark correspondences, the final solution is

determined from the intensity information alone. The choice not to use the landmarks for

the final registration can be justified by the fact that the landmarks are selected from the

intensity data and are therefore implicitly contained in the intensity data.

The following notation will be used throughout the rest of the paper. The variables qi

and pi, for i = 1, . . . ,M , denote the M corresponding landmarks in the template T and

target S images, respectively. The domain of the template image T and target image S

is denoted by Ω. The forward transformation h : Ω → Ω is defined as the mapping that

transforms T into the shape of S and the reverse transformation g : Ω→ Ω is defined as the

mapping that transforms S into the shape of T . The forward and reverse displacement

displacement fields are defined as u(x) = h(x) − x and w(x) = g(x) − x, respectively.

The inverse of the forward and reverse transformations denoted by h−1(x) and g−1(x),

respectively, can be expressed in terms of the displacement fields ũ(x) = h−1(x) − x and

w̃(x) = g−1(x)− x, respectively.

2.2 Unidirectional Landmark Thin-Plate Spline Registration

The unidirectional landmark-based, thin-plate spline (UL-TPS) image registration algo-

rithm [1, 4, 2] registers a template image T (x) with a target image S(x) by matching

corresponding landmarks identified in both images. Registration at non-landmark points
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is accomplished by interpolation such that the overall transformation smoothly maps the

template into the shape of the target image.

The unidirectional landmark image registration problem can be thought of as a Dirichlet

problem [13] and can be stated mathematically as finding the displacement field u that

minimizes the cost function

C =

∫
Ω

||Lu(x)||2dx (1)

subject to the constraints that u(pi) = qi − pi for i = 1, . . . ,M . The operator L denotes
a symmetric linear differential operator [9] and is used to interpolate u away from the

corresponding landmarks. When L = ∇2, the problem reduces to the thin-plate spline

image registration problem given by

C =

∫
Ω

||∇2u(x)||2dx =
2∑

i=1

∫
Ω

(
∂2ui(x)

∂2x1

)2

+ 2

(
∂2ui(x)

∂x1∂x2

)
+

(
∂2ui(x)

∂2x2

)2

dx1dx2 (2)

subject to the constraints that u(pi) = qi − pi for i = 1, . . . ,M .

It is well known [1, 4, 2] that the thin-plate spline displacement field u(x) that minimizes

the bending energy defined by Eq. 2 has the form

u(x) =
M∑
i=1

ξiφ(x− pi) + Ax+ b. (3)

where φ(r) = r2 log r and ξi are 2 × 1 weighting vectors. The 2 × 2 matrix A = [a1, a2]

and the 2× 1 vector b define the affine transformation where a1 and a2 are 2× 1 vectors.
The procedure used to determine these unknown constants is described in Appendix A.

The thin-plate spline interpolant φ(r) = r2 log r is derived assuming infinite boundary

conditions, i.e., Ω is assumed to be the whole plane R2. The thin-plate spline transforma-

tion is truncated at the image boundary when it is applied to an image. This presents a

mismatch in boundary conditions at the image edges when comparing forward and reverse

transformations between two images. It also implies that a thin-plate spline transfor-

mation is not a one-to-one and onto mapping between two image spaces. To overcome
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this problem and to match the periodic boundary conditions assumed by the intensity-

based consistent image registration algorithm [5, 6], we use the following procedure to

approximate periodic boundary conditions for the thin-plate spline algorithm.

Figure 2 illustrates the concept of periodic boundary conditions for the landmark thin-

plate spline registration problem. Cyclic boundary conditions implies a toroidal coordinate

system such that the left-right and top-bottom boundaries of the domain Ω are mapped

together. Modifying the boundary conditions in this manner causes an infinite number

of interactions between landmarks for a given finite set of landmark points. Panel (b)

shows two such interactions between landmark points p1 and p2; one within the domain Ω

and another between adjacent image domains. We approximate the solution of Laplace’s

Equation with periodic boundary conditions by solving the TPS registration problem with

replicated the landmark locations in the eight adjacent domains as shown in panel (b) of

Fig. 2. This provides a good approximation to periodic boundary conditions since the

the kernel function, φ(r) = r2 log r, causes interactions between landmarks to decrease

rapidly as the distance between landmarks increases. In our tests, there were differences

p1 p2

p3

d2 d1

d3

d4
p
1

p
3

p
2

d3

d4

d2 d1

(a) (b)

Figure 2: Diagrams describing the coordinate system and points used to ensure that the
resulting displacement field demonstrates continuous periodic boundary conditions. The
left panel is a depiction of the toroidal coordinate system. The right panel shows the layout
of the point used to solve the thin-plate spline with approximate circular boundaries.

between the transformations found using infinite and periodic boundary conditions but

there was nearly no difference in terms of the magnitude of the fiducial landmark errors.
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The major differences between the two sets of boundary conditions was in the location

of the maximum inverse consistency error. The maximum inverse consistency error was

located on the image boundaries in the case of infinite boundary conditions while it was

away from the boundaries for the case of periodic boundary conditions.

The inverse consistency error of the forward and reverse transformations generated by

the UL-TPS can be made smaller by averaging the forward transformation with the inverse

of the reverse transformation. This averaging will be referred to as the averaged unidirec-

tional landmark-based thin-plate spline (AUL-TPS) algorithm and is used to initialize the

consistent landmark TPS algorithm described in the next section. Note that this procedure

does not significantly effect the fiducial error at the landmarks since the displacement at

the landmark locations in the forward, reverse, inverse-forward, and inverse-reverse trans-

formations are nearly zero as computed by the UL-TPS algorithm.

2.3 Consistent Landmark Thin-Plate Spline Registration

The averaged unidirectional landmark-based thin-plate spline (AUL-TPS) image registra-

tion algorithm produces consistent correspondence only at the landmark locations. The

consistent landmark-based, thin-plate spline (CL-TPS) image registration algorithm is de-

signed to align the landmark points and minimize the consistency errors across the entire

image domain.

The CL-TPS algorithm is solved by minimizing the cost function given by

C = ρ

∫
Ω

||Lu(x)||2 + ||Lw(x)||2dx

+ χ

∫
Ω

||u(x)− w̃(x)||2 + ||w(x)− ũ(x)||2dx
subject to pi + u(pi) = qi for i = 1, . . . ,M. (4)

The first integral of the cost function defines the bending energy of the thin-plate spline

for the displacement fields u and w associated with the forward and reverse transforma-

tions, respectively. This term penalizes large derivatives of the displacement fields and

provides the smooth interpolation away from the landmarks. The second integral is called
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the inverse consistency constraint (ICC) and is minimized when the forward and reverse

transformations are inverses of one another. This integral couples the estimation of the

forward and reverse transformations together and penalizes transformations that are not

inverses of one another. The constants ρ and χ define the relative importance of the bend-

ing energy minimization and the inverse consistency terms of the cost function. Notice that

this problem is a nonlinear minimization problem since the inverse consistency constraint

is a function of the inverse-forward h−1(x) = x+ũ(x) and inverse-reverse g−1(x) = x+w̃(x)

transformations.

Equation 4 is minimized numerically using the CL-TPS algorithm described in Figure 3.

The algorithm is initialized with the forward and reverse displacement fields u and w

either set to zero as in Figure 3 or with the result of a previous registration algorithm.

The temporary variables rl and sl are initially set equal to the landmark locations ql and

pl, respectively, for l = 1, . . .M . The value of rl converges from ql to pl as the algorithm

converges, and in similar fashion, the value of sl converges from pl to ql.

At each iteration of the algorithm, the unidirectional landmark thin-plate spline (UL-

TPS) algorithm with periodic boundary conditions is used to solve for the perturbation

field f1 that minimizes the distance between the current position of rl and its final position

pl. The perturbation field f1 times the step size α is added to the current estimate of the

forward displacement field u where α is a positive number less than one. This procedure is

repeated to update the reverse displacement field w. Next, the forward displacement field

u is updated with the step size β times the gradient of the inverse consistency constraint

with respect to u assuming that w̃ is constant. The displacement field w̃ is computed by

taking the inverse of the transformation g(x) = x+w(x) as described in our previous paper

describing the consistent intensity registration algorithm [6]. This step is repeated in the

reverse direction to update the displacement field w(x). These steps are repeated until the

landmark error and the inverse consistency error fall below problem specific thresholds or

until a specified number of iterations are reached. In practice, this algorithm converges

to an acceptable solution within five to ten iterations and therefore we use a maximum

number of iterations as our stopping criteria.
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Consistent Landmark Thin-plate Spline (CL-TPS) Registration

Algorithm

1. Initialization: Set u(x) = 0, w(x) = 0, rl = ql, and sl = pl.

2. Compute f1(x) that satisfies ∇4f1(x) = 0 subject to f1(rl) = pl − rl ∀l using the
periodic boundary UL-TPS algorithm.

3. Compute f2(x) that satisfies ∇4f2(x) = 0 subject to f2(sl) = ql − sl ∀l using the
periodic boundary UL-TPS algorithm.

4. Set u(x) = u(x) + αf1(x) and w(x) = w(x) + αf2(x).

5. Set rl = ql + u(rl) and sl = pl + w(sl).

6. Compute h−1 and g−1 using procedure described in [6].

7. Set ũ(x) = h−1(x)− x and w̃(x) = g−1(x)− x.

8. Set u(x) = u(x) + β[u(x)− w̃(x)] and w(x) = w(x) + β[w(x)− ũ(x)].

9. If the maximum landmark error |u(ql)−(pl−ql)| or |w(pl)−(ql−pl)| is greater than a
threshold ε1 or the maximum inverse consistency error |u(x)− w̃(x)| or |w(x)− ũ(x)|
is greater than a threshold ε2 then Goto 2.

Figure 3: Consistent Landmark Thin-plate Spline (CL-TPS) Registration Algorithm
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2.4 Appending the Consistent Landmark and Intensity Regis-

tration Algorithms

The parameterization of the transformations used in the consistent landmark (CL-TPS)

algorithm and the consistent intensity (CI-TPS) algorithm are different. A spatial sam-

pling parameterization of the displacement field is used in the CL-TPS algorithm while a

Fourier series parameterization of the displacement field is used in the CI-TPS algorithm.

The parameterization used in one algorithm must be converted into the parameterization

of the other in order to use the result from one algorithm to initialize the other as out-

lined in the CLI-TPS algorithm defined in Fig. 1. This is accomplished by using the Fast

Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT) to convert the

spatial representation of the displacement field to the Fourier Series representation and

vica versa.

3 Results

3.1 Landmark Registration

The first experiment compares the inverse consistency error associated with the traditional

unidirectional landmark thin-plate spline (UL-TPS) algorithm to that of the consistent

landmark thin-plate spline (CL-TPS) algorithm. This simple experiment is designed to

show that the UL-TPS algorithm can have significant inverse consistency error while this

error is minimized using the CL-TPS algorithm. The experiment shown in Fig. 4 consisted

of matching eight landmarks in one image to their corresponding landmarks in a second

image using both the UL-TPS and the CL-TPS algorithm. The arrows in the first and

second panels show the displacement between the corresponding landmarks in the forward

and reverse directions, respectively. The four landmarks in the corners of the images were

fixed. The forward transformation h maps the four inner points to the four outer points

and the reverse transformation g maps the outer points to the inner points. Applying the

CL-TPS transformations to a rectangular grid shows that the forward transformation—
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Forward Trans. h(x) Reverse Trans. g(y) Forward Trans. h Reverse Trans. g
Applied to Grid Applied to Grid

(66,34)

(66,66)

(34,34)

(34,66)

(76,24)

(76,76)

(24,24)

(24,76)

(66,34)

(66,66)

(34,34)

(34,66)

(76,24)

(76,76)

(24,24)

(24,76)

Figure 4: The location of local displacements at the landmarks points for the forward, and
reverse transformations of images with 100×100 pixels. Application of the thin-plate spline
deformation fields to uniformly spaced grids for the forward and reverse transformations.

defined with respect to a Eulerian frame of reference—causes the center of the image to

expand (third panel of Fig. 4) while the reverse transformation causes a contraction of the

central portion of the image (fourth panel of Fig. 4).

The top row of Fig. 5 shows the spatial locations and magnitudes of the inverse con-

sistency errors of the forward and reverse transformations generated by the UL-TPS al-

gorithm. The images in the left column were computed by taking the Euclidean norm of

the difference between the forward transformation h and the inverse of the reverse trans-

formation g−1. The images in the center column were computed in a similar fashion with

g and h−1. The CL-TPS result was created using AUL-TPS initialization and minimizing

for 100 iterations with α = 0.5 and β = 0.012. This registration took approximately 3

minutes on a single 667MHz alpha processor.

The tables in Fig. 5 tabulate the inverse consistency error at four representative points

in the images. The points A and C are located at points away from landmarks while

the points B and D are located at landmark locations. The inverse consistency error

at the landmark points is small for both algorithms. However, the landmark error is

quite large away from the landmark locations in the UL-TPS algorithm. The range of

intensities on the color bar for each method shows that the range of inverse consistency

errors for the UL-TPS algorithm was in the range of 0.002 to 4.9 pixels while this same

error for the CL-TPS algorithm ranged from 0.00 to 0.009. This shows that the CL-TPS
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Inv. Consistency Err. Inv. Consistency Err. Inv. Consistency Err.
||h(x)− g−1(x)|| ||g(y)− h−1(y)||

U
L
-T
P
S

A

B C

D
4.9

0.002

UL-TPS
Label Point Pixel Err.
A (10,50) 4.9
B (24,76) 0.0073
C (20,40) 3.9
D (34,66) 0.0060

C
L
-T
P
S

A

B C

D
0.009

0.00

CL-TPS
Label Point Pixel Err.
A (10,50) 0.0030
B (24,76) 0.000064
C (20,40) 0.0034
D (34,66) 0.000081

Figure 5: The left and center panels show the inverse consistency errors of the forward
and reverse transformations, respectively. The tables in the right columns list the fiducial
errors associated with selected image points. The top and bottom rows are the inverse
consistency errors associated with the unidirectional (UL-TPS) and consistent (CL-TPS)
landmark thin-plate spline algorithms, respectively.

algorithm reduced the inverse consistency error by over 500 times that of the UL-TPS

algorithm for this example. A pair of transformations are point-wise consistent if the

composite function h(g(x)) maps a point x to itself. Spatial deviations from the identity

mapping can be visualized by applying the composite mapping to a uniformly spaced grid.

The grid is deformed by the composite transformation in regions where the forward and

reverse transformations have inverse consistency errors. The composite transformation

does not deform the grid for a perfectly inverse consistent set of forward and reverse

transformations. Fig. 6 shows the composite mapping produced by the UL-TPS (left) and

the CL-TPS (right) applied to a rectangular grid for this experiment. Notice that there is

a considerable amount of inverse consistency error in the UL-TPS algorithm while there

is no visually detectable inverse consistency error produced by the CL-TPS algorithm.

The minimum and maximum Jacobian values of the forward (reverse) transforma-
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Concat. of forward & reverse Concat. of forward & reverse
thin-plate spline transformations CL-TPS transformations

applied to grid applied to grid

Figure 6: Deformed grids showing the error between the forward and reverse transfor-
mations estimated with the landmark-based thin-plate spline algorithm(left panel) and
the CL-TPS algorithm(right panel). The grids were deformed by the transformation con-
structed by composing the forward and reverse transformations together, i.e., g(h(x)).
Ideally, the composition of the forward and reverse transformations is the identity map-
ping which produces no distortion of the grid as in the right panel.

tion specify the maximum expansion and contraction of the transformation, respectively.

The Jacobian error, calculated as 1
2
|min{Jac(h)} − 1/max{Jac(g)}| + 1

2
|min{Jac(g)} −

1/max{Jac(h)}|, provides an indirect measure of the inconsistency between the forward
and reverse transformations. The Jacobian error is zero if the forward and reverse transfor-

mations are inverses of one another, but the converse is not true. Notice that the Jacobian

error was 1000 times smaller for the CL-TPS algorithm compared to the UL-TPS algo-

rithm.

3.2 Landmark and Intensity Registration

The five 2D transverse MRI data sets shown in Fig. 7 were used to compare the per-

formance of the unidirectional landmark (UL-TPS); consistent landmark (CL-TPS); con-

sistent intensity (CI-TPS); and consistent landmark and intensity (CLI-TPS) thin-plate

spline algorithms. These 256 × 320 pixel images with 1 millimeter isotropic pixel dimen-
sion were extracted from 3D MRI data sets such that they roughly corresponded to one

another. A set 39 of corresponding landmarks were manually defined in data sets two and

four and a subset of the 39 landmarks were manually defined in the additional 3 data-sets
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Table 1: Comparison between the unidirectional (UL-TPS), averaged unidirectional (AUL-
TPS), and consistent (CL-TPS) thin-plate spline image registration algorithms. The table
columns are the Experiment, (ICC), transformation Direction (TD), average fiducial error
(AFE) in pixels, maximum fiducial error (MFE), maximum inverse error (MIE) in pix-
els, average inverse error (AIE) in pixels, minimum Jacobian value (MJ), inverse of the
maximum Jacobian value (IJ), and the Jacobian error (JE).

Experiment ICC TD AFE MFE AIE MIE MJ IJ JE

UL-TPS No Forward 0.010 0.016 2.2 4.1 2.4 4.8 1.4
Reverse 0.0056 0.010 2.0 4.9 2.9 3.2

AUL-TPS No Forward 0.0074 0.013 0.091 0.20 0.28 0.47 0.011
Reverse 0.0072 0.012 0.082 0.29 0.45 0.27

CL-TPS Yes Forward 0.00055 0.0011 0.0028 0.0078 0.28 0.48 0.0012
(100 iter.) Reverse 0.00046 0.00094 0.0024 0.0088 0.48 0.28

B1 B2 B3 B4 B5

Figure 7: Five corresponding image slices from MRI acquired brains with manually iden-
tified points of correspondence.

(see Fig. 7). Data set two was chosen as the template and was deformed into the shape of

the other four data sets using all four registration algorithms. Only the landmarks that

were defined in both the template and target data sets were used in the landmark-based

algorithms. All four algorithms were initialized with the averaged unidirectional landmark

thin-plate spline (AUL-TPS) registration algorithm defined in Section 2.2.

Table 2 lists the parameters used for each algorithm and the computation time that

each algorithm required to run on a single 667MHz alpha processor. The algorithmic

parameters were chosen to demonstrate the registration performance of the algorithms
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Table 2: Summary of algorithm parameters and computation times on a single 667MHz
alpha processor.
Algorithm Iterations Computation Time χ ρ σ α β
UL-TPS 1 5 seconds NA NA NA NA NA
CL-TPS 20 3 minutes NA NA NA 1.0 0.0061
CI-TPS 1000 1 hour 500 0.0000075 0.10 NA NA
CLI-TPS 300 1 hour 500 0.0000075 0.50 1.0 0.0061

independent of optimizing the run times. These computation times can be decreased

significantly by optimizing the computer code and reducing the number of iterations. The

CLI-TPS algorithm was run for 5 iterations of the CL-TPS registration algorithm followed

by 95 iterations of the CI-TPS registration algorithm.

The result of transforming MRI data set B5 in to the shape of B2 using each of the four

registration algorithms is shown in Fig. 8. These results are typical of the other pairwise

registration combinations. The images are arranged left to right from the worst to the

best similarity match as shown by the corresponding difference images shown below the

transformed images. The UL-TPS and CL-TPS algorithms perform almost identically with

respect to similarity matching. The CI-TPS and CLI-TPS intensity based registrations

produce better similarity match than the two landmark only methods. In particular, the

intensity based methods match the border locations and non-landmark locations better

than the landmark thin-plate spline or CL-TPS algorithms.

The images in Fig. 9 show the Jacobian of the forward and reverse transformations

between images B2 and B1 produced by the CL-TPS(left two panels) and CLI-TPS(right

two panels) algorithms, respectively. The value of the Jacobian at a point is encoded

such that bright pixels represent expansion, and dark pixels represent contractions. No-

tice that the intensity pattern of the forward and reverse Jacobian images appear nearly

opposite of one another since expansion in one domain corresponds to contraction in the

other domain. These images show the advantage of using both landmark and intensity

information together as opposed to just using landmark information alone. Notice that

the CL-TPS algorithm has very smooth Jacobian images compared to the CLI-TPS algo-
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No Registration UL-TPS CL-TPS CI-TPS CLI-TPS

Figure 8: Intensity matching results for registering dataset B5 to dataset B2 with the four
registration algorithms. The top row shows the data set B5 transformed into the shape of
B2 using each algorithm and the bottom row shows the absolute difference image between
the transformed B5 image and the target B2 image.

rithm. This is because the CL-TPS algorithm matches the images at the corresponding

landmarks and smoothly interpolates the transformation between the landmarks. Con-

versely, the patterning of the local distortions in the CLI-TPS registration resemble the

underlying intensity patterning. This indicates that combining the intensity information

with the landmark information provides additional local deformation as compared to using

the landmark information alone. This improved registration between landmarks produces

more distortion of the template image and therefore there is a larger range of Jacobian

values for the CLI-TPS algorithm than the CL-TPS algorithm as shown by the color bar

scales.

Inverse consistency error images are computed by taking the Euclidean norm of the

difference between the forward and the inverse of the reverse transformations at each

voxel location in the image domain. Figure 10 shows the inverse consistency error images

for the registration of data sets B2 and B5 using the UL-TPS, CL-TPS, CI-TPS, and

and CLI-TPS algorithms. Note that each images is on its own color-scale and that the

UL-TPS algorithm has 10 to 200 times more maximum inverse consistency error than
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CL-TPS CLI-TPS
For. Tns. Jac. Rev. Tns. Jac. For. Tns. Jac. Rev. Tns. Jac.

0.59 1.4 0.59 1.4 0.14 6.5 0.14 6.5

Figure 9: This figure shows the Jacobians of the forward and reverse transformations
for the registration of data sets B2 and B1 for the CL-TPS(left two panels) and CLI-
TPS(right two panels) algorithms. The bright pixels of the Jacobian images represent
regions of expansion, and dark pixels represent regions of contraction.

the consistent registration algorithms. The UL-TPS algorithm had 50 to 500 times more

average inverse consistency error than the consistent registrations algorithms. This can

be seen by comparing large regions of bright pixels in the UL-TPS image to the small

regions of bright pixels in the other images. This figure shows that consistent registra-

tion algorithms produced forward and reverse transformations that had sub-voxel inverse

consistency errors at all voxel locations. The inverse consistent errors in the UL-TPS and

CL-TPS algorithms are greatest away from the landmark driving forces because the land-

mark driving forces are implicitly inverse consistent. The largest inverse consistency errors

in the CI-TPS and CLI-TPS algorithms occur near edges where there is a correspondence

ambiguity associated with the intensity matching solution.

Fig. 11 shows plots of the intensity similarity cost, landmark error cost, and the max-

imum inverse consistency error costs as a function of iteration for CLI-TPS registration

of data sets B2 and B4. The protocol used for this experiment was 5 iterations of the

CL-TPS algorithm followed by 95 iterations of the CI-TPS algorithm. The intensity sim-

ilarity cost decreases during the CI-TPS algorithm when the intensity is being matched

and increases during the CL-TPS algorithm as the landmarks are matched. Conversely,

the landmark error decreases during the CL-TPS algorithm and increases during CI-TPS

algorithm as the intensity is matched. The plot of the maximum inverse consistency error
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Inverse Consistency Error ||h(x)− g−1(x)||
UL-TPS CL-TPS CI-TPS CLI-TPS

0.0 4.0 0.0 0.02 0.0 0.1 0.0 0.4

Figure 10: Images that display the magnitude and location of forward transformation
inverse consistency errors for matching data sets B2 and B5 with UL-TPS, CL-TPS,
CI-TPS, and CLI-TPS registration algorithms.

shows that switching from the intensity (CI-TPS) to the landmark (CL-TPS) algorithm

causes a jump in the inverse consistency error which is quickly minimized. We observed

that smaller landmark and intensity error is achieved by the CLI-TPS in one-third the

number of iterations than by either CI-TPS or CL-TPS alone.

The lower-right panel of Fig. 11 shows the minimum and maximum Jacobian values

of the forward and reverse transformations as a function of iteration. These plots show

that the inverse consistency constraint (ICC) causes the minimum Jacobian value of the

forward transformation to track with the inverse of the maximum Jacobian value of the

reverse transformation and vice versa. Note that these plots give an upper bound on the

inverse consistency error since the minimum and maximum Jacobian values of the forward

and reverse transformations do not correspond to the same points.

Table 3 summarizes the representative statistics collected from the experiments. Com-

paring the results of the UL-TPS and CL-TPS algorithms shows that the addition of

inverse consistency constraint (ICC) improved the inverse consistency of the transforma-

tions with no degradation of the fiducial landmark matching. Note that for the UL-TPS

algorithm, the inverse consistency error tends to be be larger as one moves away from

landmarks and that the inverse consistency error can be decreased by defining more cor-

responding landmarks.
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Figure 11: Plots of the intensity and landmark costs as a function of iteration for the
CLI-TPS registration of data-sets B2 and B4.

Table 3 also demonstrates that the CI-TPS and CLI-TPS registrations have a smaller

average intensity difference, but larger fiducial landmark errors. The CLI-TPS has smaller

average intensity difference and smaller fiducial landmark errors than the CI-TPS registra-

tion algorithm. The CLI-TPS algorithm produces a better similarity match because the

landmark driving force pulls the intensity driving function out of local minima. It should

be noted that the large number of landmarks used in the CLI-TPS registration limits the

effect of the intensity driving force in neighborhoods of the landmarks. In practice, when

the the landmark points are more sparse the intensity driving force plays a more important

role.

4 Summary and Conclusions

This work presented two new image registration algorithms based on thin-plate spline reg-

ularization: landmark-based consistent thin-plate spline (CL-TPS) image registration and

landmark and intensity-based consistent thin-plate spline image registration (CLI-TPS). It

was shown that the inverse consistency error between the forward and reverse transforma-
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tions generated from the traditional unidirectional thin-plate spline algorithm(UL-TPS)

could be minimized using the CL-TPS algorithm. Inverse consistency error images showed

that the largest error occurred away from the landmark points for the UL-TPS algorithm

and near the landmark points for the CL-TPS algorithm. The maximum CL-TPS inverse

consistency error was reduced by 500 times in the inner-to-outer dots example and greater

than 6 times in the MRI brain example when compared with the UL-TPS registration.

The Jacobian error was reduced from 1.4 to 0.0012 for the inner-to-outer dots example

and from 0.050 to 0.034 for the MRI brain example. Using landmark and intensity infor-

mation with the MRI brain example gave a better intensity matching between the images

than just using the landmark information as visualized in Fig. 8 and by a decrease in the

average intensity difference recorded in table 3. It was shown that using both landmark

and intensity information gave a better registration of the MRI brain images than using

the intensity or landmark information alone.
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Table 3: Experimental results produced by mapping MRI brain image 2 into images 1,
3, 4, and 5 (see Fig. 7). The thin-plate spline algorithms compared in this table are the
unidirectional landmark (UL-TPS), averaged unidirectional landmark (AUL-TPS), con-
sistent landmark (CL-TPS), consistent intensity (CI-TPS), and consistent landmark and
intensity (CLI-TPS) algorithms. The statistics computed for these experiments were the
average fiducial error (AFE) in pixels, maximum fiducial error (MFE), maximum inverse
error (MIE) in pixels, average inverse error (AIE) in pixels, masked average intensity dif-
ference (MAID), minimum Jacobian value (MJ), inverse of the maximum Jacobian value
(IJ) and the Jacobian error (JE).

Algorithm Exp. AFE MFE AIE MIE MAID MJ IJ JE

None b2b1 6.9 12 0.23
b2b3 4.9 13 0.19
b2b4 8.8 21 0.22
b2b5 8.7 19 0.26

UL-TPS b2b1 0.066 0.087 0.90 2.7 0.16 0.56 0.75 0.053
b2b3 0.073 0.098 0.78 3.1 0.18 0.50 0.57 0.092
b2b4 0.062 0.088 0.94 3.4 0.13 0.51 0.66 0.090
b2b5 0.030 0.061 1.2 3.8 0.16 0.56 0.67 0.050

AUL-TPS b2b1 0.016 0.029 0.0057 0.13 0.16 0.59 0.73 0.00048
b2b3 0.017 0.053 0.0066 0.10 0.18 0.55 0.53 0.0023
b2b4 0.030 0.065 0.0096 0.22 0.13 0.54 0.62 0.0010
b2b5 0.031 0.046 0.0096 0.12 0.16 0.56 0.62 0.0011

CL-TPS b2b1 0.000030 0.00011 0.0012 0.028 0.16 0.59 0.73 0.0011
20 iter. b2b3 0.000034 0.00014 0.0016 0.022 0.18 0.55 0.53 0.0014

b2b4 0.0083 0.083 0.079 0.42 0.13 0.54 0.62 0.0011
b2b5 0.000006 0.00037 0.0024 0.015 0.16 0.56 0.62 0.00021

CI-TPS b2b1 1.5 3.1 0.0045 0.048 0.097 0.26 0.47 0.011
1000 iter. b2b3 1.6 2.9 0.0043 0.052 0.11 0.25 0.29 0.017

b2b4 1.0 2.2 0.0040 0.063 0.084 0.26 0.44 0.0075
b2b5 1.4 3.4 0.0044 0.099 0.092 0.18 0.32 0.0091

CLI-TPS b2b1 1.1 2.0 0.020 0.40 0.091 0.19 0.37 0.036
300 iter. b2b3 1.1 2.0 0.021 0.62 0.10 0.13 0.23 0.030

b2b4 0.75 1.6 0.017 0.61 0.080 0.12 0.39 0.025
b2b5 1.1 2.8 0.021 0.96 0.088 0.10 0.17 0.034
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A Estimating Thin-plate Spline Parameters

The unknown UL-TPS parameters W = [ξ1, . . . , ξM , a1, a2, b]
T in Eq. 3 are determined by

solving the linear system of equations that result by fixing the displacement field values
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at landmark locations. Let φi,j = φ(|pi − pj|) and build the matrix

K =


 Φ Λ

ΛT O


 where Φ =




φ1,1 φ1,2 . . . φ1,M

φ2,1 φ2,2 . . . φ2,M

...
...

. . .
...

φM,1 φM,2 . . . φM,M



, Λ =




p1 q1 1

p2 q2 1
...

...
...

pM qM 1



,

(5)

where O is a 3 × 3 matrix of zeros. Also, define the (M + 3) × 2 matrix of landmark

displacements as D = [d1, . . . , dM , 0, 0, 0]T where di = qi − pi for i = 1, . . . ,M . The

equations formed by substituting the landmark constrains into Eq. 3 can be written in

matrix form as D = KW . The solution W to this matrix equation is determined by least

squares estimation since the matrix K is not guaranteed to be full rank.

B Consistent Intensity-based Registration

The consistent intensity-based registration (CI-TPS) algorithm [5, 6, 10] using thin-plate

spline regularization is briefly described here. It is based on minimizing the cost function

given by

C = σ

∫
Ω

|T (h(x))− S(x)|2 + |S(g(x))− T (x)|2dx (6)

+ ρ

∫
Ω

||Lu(x)||2 + ||Lw(x)||2dx+ χ

∫
Ω

||u(x)− w̃(x)||2 + ||w(x)− ũ(x)||2dx

The intensities of T and S are assumed to be scaled between 0 and 1. The first inte-

gral of the cost function defines the cumulative squared error similarity cost between the

transformed template T (h(x)) and target image S(x) and between the transformed target

S(g(y)) and the template image T (y). To use this similarity function, the images T and

S must correspond to the same imaging modality and they may require pre-processing to

equalize the intensities of the image. The similarity function defines the correspondence

between the template and target images as the forward and reverse transformations h and
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g, respectively, that minimize the squared error intensity differences between the images.

The second integral is used to regularize the forward and reverse displacement fields u and

w, respectively. This term is used to enforce the displacement fields to be smooth and

continuous. The third integral is called the inverse consistency constraint and is minimized

when the forward and reverse transformations h and g, respectively, are inverses of each

other. The constants σ, ρ, and χ define the relative importance of each term of the cost

function.

The cost function in Eq. 7 is discretized to numerically minimize it. The forward and

reverse transformations h and g and their associated displacement fields u and w are

parameterized by the discrete Fourier series defined by

ud[n] =
∑
k∈Ωd

µ[k]ej<n,θ[k]> and wd[n] =
∑
k∈Ωd

η[k]ej<n,θ[k]> (7)

for n ∈ Ωd where the basis coefficients µ[k] and η[k] are (2 × 1) complex-valued vectors
and θ[k] = [2πk1

N1
, 2πk2

N2
]T . The basis coefficients have the property that they have complex

conjugate symmetry, i.e., µ[k] = µ∗[N − k] and η[k] = η∗[N − k]. The notation < ·, · >
denotes the dot product of two vectors such that < n, θ[k] >= 2πk1n1

N1
+ 2πk2n2

N2
. The basis

coefficients µ[k] and η[k] of the discretized forward and reverse displacement fields are then

minimized using gradient descent as described in [5, 6].

The intensity similarity component of the cost function is forced to register the global

intensity patterns before local intensity patterns by restricting the similarity gradient

to modify only the low frequencies of the displacement field parameters. Restricting the

similarity cost gradient to modifying the low frequency components is analogous to filtering

with a zonal low-pass filter. To mitigate the Gibbs ringing associated with zonal low-pass

filters, a low-pass Butterworth filter is applied to the similarity cost gradient in the gradient

decent algorithm.
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