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Consistent Image Registration
G. E. Christensen* and H. J. Johnson

Abstract—This paper presents a new method for image registra-
tion based on jointly estimating the forward and reverse transfor-
mations between two images while constraining these transforms
to be inverses of one another. This approach produces a consistent
set of transformations that have less pairwise registration error,
i.e., better correspondence, than traditional methods that estimate
the forward and reverse transformations independently. The trans-
formations are estimated iteratively and are restricted to preserve
topology by constraining them to obey the laws of continuum me-
chanics. The transformations are parameterized by a Fourier se-
ries to diagonalize the covariance structure imposed by the con-
tinuum mechanics constraints and to provide a computationally
efficient numerical implementation. Results using a linear elastic
material constraint are presented using both magnetic resonance
and X-ray computed tomography image data. The results show
that the joint estimation of a consistent set of forward and reverse
transformations constrained by linear-elasticity give better regis-
tration results than using either constraint alone or none at all.

Index Terms—Correspondence, deformable templates, image
registration, inverse transformation.

I. INTRODUCTION

I MAGE registration has many uses in medicine such as
multimodality fusion, image segmentation, deformable

atlas registration, functional brain mapping, image-guided
surgery, and characterization of normal versus abnormal
anatomical shape and variation. The fundamental assumption
in each of these applications is that image registration can be
used to define a meaningful correspondence mapping between
anatomical images collected from imaging devices such as
computed tomography (CT), magnetic resonance imaging
(MRI), cryosectioning, etc. It is often assumed that this corre-
spondence mapping or transformation is one-to-one, i.e., each
point in image is mapped to only one point in imageand
vice versa. A fundamental problem with a large class of image
registration techniques is that the estimated transformation
from image to does not equal the inverse of the estimated
transform from to . This inconsistency is a result of the
matching criteria’s inability to uniquely describe the correspon-
dences between two images. This paper seeks to overcome this
limitation by jointly estimating the transformation from to
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and from to while enforcing the consistency constraint
that these transforms are inverses of one another.

The forward transformation from image to and the re-
verse transformation from to are shown in Fig. 1. Ideally,
the transformations and should be uniquely determined and
should be inverses of one another. Estimatingand indepen-
dently very rarely results in a consistent set of transformations
due to a large number of local minima. To overcome this defi-
ciency in current registration systems, we propose to jointly esti-
mate and while constraining these transforms to be inverses
of one another. Jointly estimating the forward and reverse trans-
formations provides additional correspondence information and
helps ensure that these transformations define a consistent cor-
respondence between the images. Although uniqueness is very
difficult to achieve in medical image registration, the joint es-
timation should lead to more consistent and biologically mean-
ingful results.

Image registration algorithms use landmarks [1]–[4],
contours [5]–[7], surfaces [8]–[11], volumes [12]–[18], [6],
[19]–[21], or a combination of these features [22] to manually,
semi-automatically or automatically define correspondences
between two images. The need to impose the invertibility
consistency constraint depends on the particular application
and on the correspondence model used for registration. In
general, registration techniques that do not uniquely determine
the correspondence between image volumes should benefit
from the consistency constraint. This is because such tech-
niques often rely on minimize/maximize a similarity measure
which has a large number of local minima/maxima due to the
correspondence ambiguity. Examples include methods that
minimizing/maximizing similarity measures between features
in the source and target images such as image intensities, object
boundaries/surfaces, etc. In theory, the higher the dimension
of the transformation, the more local minima these similarity
measures have. Methods that use specified correspondences
for registration will benefit less or not at all from the invert-
ibility consistency constraint. For example, landmark-based
registration methods implicitly impose an invertibility con-
straint at the landmarks because the correspondence defined
between landmarks is the same for estimating the forward and
reverse transformations. However, the drawbacks of specifying
correspondences include requiring user interaction to specify
landmarks, unique correspondences cannot always be specified,
and such methods usually only provide coarse registration due
to the small number of correspondences specified.

In this paper, we will restrict our analysis to the class of ap-
plications that can be solved using diffeomorphic transforma-
tions. A diffeomorphic transformation is defined to be contin-
uous, one-to-one, onto, and differentiable. The diffeomorphic
restriction is valid for a large number of problems in which the
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Fig. 1. Consistent image registration is based on the principle that the mappingsh fromT toS andg fromS toT define a point by point correspondence between
T andS that are consistent with each other. This consistency is enforced mathematically by jointly estimatingh andg while constrainingh andg to be inverse
mappings of one another.

two images have the same structures and neighborhood relation-
ships but have different shapes.

Diffeomorphic transformations maintain the topology and
guarantee that connected subregions of an image remain
connected, neighborhood relationships between structures are
preserved, and surfaces are mapped to surfaces. Preserving
topology is important for synthesizing individualized electronic
atlases the knowledge base of the atlas maybe transferred to the
target anatomy through the topology preserving transformation
providing automatic labeling and segmentation. If total volume
of a nucleus, ventricle, or cortical subregion are an important
statistic it can be generated automatically. Topology preserving
transformations that map the template to the target also can be
used to study the physical properties of the target anatomy such
as mean shape and variation. Likewise, preserving topology al-
lows data from multiple individuals to be mapped to a standard
atlas coordinate space [23]. Registration to an atlas removes
individual anatomical variation and allows information from
many experiments to be combined and associated with a single
canonical anatomy.

II. REGISTRATION ALGORITHM

A. Problem Statement

Traditionally, the image registration problem has been stated
as: Find the transformation that maps the template image
volume into correspondence with the target image volume.
Alternatively, the problem can be stated as: Find the transforma-
tion that transforms into correspondence with. For this
paper, the previous two statements are combined into a single
problem and restated as follows.

Problem Statement:Jointly estimate the transforma-
tions and such that maps to and maps to
subject to the constraint that .
The image registration algorithm is formulated on the con-

tinuum and is discretized for implementation. Letand rep-
resent three–dimensional (3-D) image volumes of voxels di-
mension corresponding to medical imaging
modalities such as MRI, functional MRI, CT, cryosection im-
agery, etc. Let

; and are integers correspond to
the set voxel lattice coordinates of the discrete imagesand
and let . Continuous functions will be denoted with
a subscript and parentheses while discrete functions will be
denoted with a subscriptand square brackets. The subscripts

are dropped when a statement is true for both continuous and
discrete functions or where the context is clear due to the use of
parentheses or square brackets. Let the continuous image
for be related to the discrete image for in
the normal multidimensional sampling sense
where the notation is defined as the 3 1 column vector

. Likewise, let for
. The discrete images are extended to the continuum

using trilinear interpolation.
The transformations are vector-valued functions that map the

image coordinate system to itself, i.e., and
. Regularization constraints are placed onand

so that they preserve topology. Throughout it is assumed that
, ,

and where and
. The vector-valued functions, , , and are

called displacement fields since they define the transformation
in terms of a displacement from a location. All of the func-
tions , , , , , , , and are (3 1) vector-
valued functions defined on the . The continuous transfor-
mations and displacement fields are extended to the continuum
from their corresponding discrete representations using trilinear
interpolation. For example,

.
Registration is defined using a symmetric similarity cost

function that describes the distance between the transformed
template and target , and the distance between the
transformed target and template . To ensure the desired
properties, the transformationsand are jointly estimated by
minimizing the similarity cost function while satisfying regu-
larization constraints and inverse transformation consistency
constraints. The regularization constraints are enforced on the
transformations by constraining the them to satisfy the laws of
continuum mechanics [24].

B. Symmetric Similarity Cost Function

The problem with many image registration techniques is that
the image similarity function does not uniquely determine the
correspondence between two image volumes. In general, simi-
larity cost functions have many local minima due to the com-
plexity of the images being matched and the dimensionality of
the transformation. It is these local minima (ambiguities) that
cause the estimated transformation from imageto to be dif-
ferent from the inverse of the estimated transformation from
to . In general, this becomes more of a problem as the dimen-
sionality of the transformation increases.
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To overcome correspondence ambiguities, the transforma-
tions from image to and from to are jointly estimated.
This is accomplished by defining a cost function to measure
the shape differences between the deformed image and
image and the differences between the deformed image

and image . Ideally, the transformationsand should
be inverses of one another, i.e., . In this paper, the
transformations and are estimated by minimizing a cost
function

(1)

where the intensities of and are assumed to be scaled be-
tween 0 and 1. To use this similarity function, the imagesand

must correspond to the same imaging modality and they may
require preprocessing to equalize the intensities of the image.
In practice, MRI images require intensity equalization while
CT images do not. A simple but effective method for intensity
equalizing MRI data is to compute the histograms of the two im-
ages, scale the axis of one histogram so that the gray and white
matter maximums match, and then apply the intensity scaling to
the image.

In practice, the images and are discrete and the integrals
in (1) are discretized and implemented as summations

(2)

where the notation is defined as the 3 1 column
vector and the terms

and are evaluated using trilinear
interpolation. Equation (2) is a discrete approximation to the
integral cost defined in (1) which becomes exact as ,

, and . The discretized cost defined in
(2) demonstrates a tradeoff between computational time and
accuracy. This tradeoff can be exploited by using a low-res-
olution computational grid during the early iterations of
the algorithm when accuracy is less important and using a
high-resolution grid in the later iterations to get an accurate
final result.

Note that this joint estimation approach applies to both linear
and nonlinear transformations. In general, the squared-error
similarity functions in (1) can be replaced by any suitable
similarity function—mutual information [25], [26], demons
[6], an intensity variance cost function [27], etc.—where the

choice is dependent on the particular registration application
(see Section IV).

C. Inverse Consistency Constraint

Minimizing a symmetric cost function like (1) is not sufficient
to guarantee that and are inverses of each other because the
contributions of and to the cost function are independent.
In order to couple the estimation ofwith that of , an inverse
consistency constraint is imposed that is minimized when

. The inverse consistency constraint is given by

(3)

where , ,
and . Notice that the inverse

consistency constraint is written in a symmetric form like the
symmetric cost function for similar reasons. The discretized in-
verse consistency constraint is given by

(4)

The procedure used to compute the inverse transformation of
a transformation with minimum Jacobian greater than zero is
as follows. Assume that is a continuously differentiable
transformation that maps onto and has a positive Jacobian
for all . The fact that the Jacobian is positive at a point

implies that it is locally one-to-one and, therefore, has
a local inverse. It is, therefore, possible to select a point
and iteratively search for a point such that
is less than some threshold provided that the initial guess of
is close to the final value of.

The discretized inverse transformation is related to the contin-
uous inverse transformation by . This implies
that the discrete inverse transformation only needs to be calcu-
lated at each sample point . The following procedure is
used to compute the discrete inverse of the transformation

.

For each do
Set , , iteration .
While ( threshold) do

iteration iteration 1
if (iteration max_iteration) then

Report algorithm failed to converge
and exit.
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As before

and is computed using trilinear interpolation. We typi-
cally set threshold 10 and max_iteration 1000. In prac-
tice, the algorithm converges when the minimum Jacobian of
is greater than zero although we have not proved this mathemat-
ically. Reducing the value of the threshold gives a more accurate
inverse but increases the iteration time. To reduce computation
time, the above algorithm is modified by rastering through the
elements of and initializing where is equal
to the displacement of the previously estimated grid point.

D. Regularization Constraint

Minimizing the cost function in (3) does not ensure that the
transformations and are diffeomorphic transformations ex-
cept for when . Continuum mechanical models such
as linear elasticity [28], [22] and viscous fluid [22], [15] can be
used to regularize the transformations. In this paper, a linear-
elastic constraint of the form

(5)

is used to regularize the transformations where
and . The linear elasticity operator has

the form
where and

. In general, can be any non-
singular linear differential operator [29]. The limitation of using
linear differential operators is that they cannot prevent the trans-
formation from folding onto itself, i.e., destroying the topology
of the images under transformation [30]. This includes the linear
elasticity and thin-plate spline models. The linear elasticity op-
erator is used in this paper to help prevent the Jacobian of the
transformation from going negative. At each iteration the Jaco-
bian of the transformation is checked to make sure that it is pos-
itive for all points in which implies that the transformation
preserves topology when transforming images.

The purpose of the regularization constraint is to ensure that
the transformations maintain the topology of the imagesand

. Thus, the elasticity constraint can be replaced by or com-
bined with other regularization constraints that maintain desir-
able properties of the template (source) and target when de-
formed. An example would be a constraint that prevented the
Jacobian of both the forward and reverse transformations from
going to zero or infinity. A constraint that penalizes small and
large Jacobian values is given by

where denotes the Jacobian operator. Further examples of reg-
ularization constraints that penalize large and small Jacobians
can be found in Ashburneret al. [21].

E. Transformation Parameterization

A 3-D Fourier series representation [17] is used to parame-
terize the forward and reverse transformations. This parameter-
ization is simpler than the parameterizations used in our pre-
vious work [14], [28], [29] and each basis coefficient can be in-
terpreted as the weight of a harmonic component in a single co-
ordinate direction. Let and .
The displacement fields are defined to have the form

and

(6)

for where and are (3 1) com-
plex-valued vectors,
and . The notation

denotes the dot product of two vectors such that
. The discretized

displacement fields are defined as

and

(7)

for . The basis coefficients are defined as

and

for . The displacement fields associated with the in-
verse of the forward and reverse transformations are given by
replacing , , , and in (7) with , , , and , respectively.

The Fourier series parameterization is periodic inand,
therefore, has cyclic boundary conditions foron the boundary
of . Further more, the following proposition shows that the
displacement fields are real assuming that the coefficients

and have complex conjugate symmetry. It is shown
in Section II-F that and have complex conjugate
symmetry by construction.

Proposition 1: A displacement field of the form
, is real and can be written as

(8)
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if the (3 1) vector has complex conjugate
symmetry.1

Proof: The displacement field can be written as

because the coefficients are complex conjugate symmetric,
i.e., . Simplifying the summand gives the
result. Q.E.D.

The Fourier series parameterization in (6) is useful for sim-
plifying the linear elasticity constraint given in (5). The oper-
ator can be thought of as a (3 3) matrix differential oper-
ator [29] such that the linear elasticity operator as shown in the
equation at the bottom of the page. Substituting (7) into (5) and
discretizing2 the continuous partial derivatives of gives

(9)

where is the complex conjugate transpose. is a real-
valued, (3 3) matrix with elements

1This proposition assumes thatN is even. A similar statement can be made
whenN is odd.

2Symmetric difference equations were used to discretize the continuous
derivatives. For example, let� = 1=N and � = 1=N and then
@ f=@x was replaced by[f(x + � ; x ; x ) � f(x � � ; x ; x )]=
� and@ f=@x @x was replaced by[f(x +� ; x +� ; x )� f(x �

� ; x + � ; x ) + f(x � � ; x � � ; x ) � f(x + � ; x �

� ; x )]=� � :

Likewise, the inverse consistency constraint (3) can be sim-
plified in a similar manner. Substituting (7) into (4) and dis-
cretizing gives

(10)

F. Estimation Procedure

The Fourier series parameterization in (6) is a multiresolution
decomposition of the displacement fields. Let
represent a family of subsets of where

and the set subtraction notation is defined as all elements
of not in . Fig. 2 illustrates the definition of using a
two–dimensional example. In practice, the low-frequency basis
coefficients are estimated before the higher ones allowing the
global image features to be registered before the local features.
This is accomplished by replacing (7) by

and

(11)

where determines the number of harmonics used to
represent the displacement fields. Let the set of multiresolution
transformations be defined as and

. The components ofare initially
set small and are periodically increased throughout the iterative
minimization procedure. The set can be replaced by
when all of the components of are greater than or equal to

since the set is empty. The constants, , and
represent the largest , , and harmonic components of

the displacement fields. Each displacement field in (11) is effi-
ciently computed using three fast Fpurier trans-
forms (FFTs), i.e., each component of the 31 vectors and

are computed with a FFT after zeroing out the coefficients
not present in the summations.

The image registration problem can be stated mathematically
by combining (2)–(4), and (9) and estimating the set of param-
eters that minimize the combined cost function as
shown in (12) at the bottom of the next page. The constants,
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Fig. 2. Example of elements contained in an 8� 8 lattice. (a)
 contains all of the points whileG[2; 2] contains the points within the doted lines. (b) Elements
of 
 [2; 2] = 
 nG[2; 2].

and are used to enforce/balance the constraints. The effects
of varying these parameters are studied later in the paper.

The basis coefficients
are determined by gradient descent using

(13)

(14)

where is the step size. The superscript corresponds to the
value of and at the th iteration. Each equation above repre-
sents a 3 1 vector equation,3 i.e., one equation for each com-
ponent of the vectors, , , and . The partial derivatives4 of

used in (13) and (14) are

3The notation@C=@a whereC is a scalar-valued function anda is a 3� 1
vector is defined as the 3� 1 vector[@C=@a ; @C=@a ; @C=@a ] .

4The coefficients~�[k] and~�[k] are assumed to be constant when computing
the partial derivatives.

where

The terms and are 3 1 vectors and are efficiently com-
puted for all using 3-D FFTs; each component of and
requires a separate 3-D FFT for a total of six FFTs. The nota-
tion represents the gradient of evaluated at the
point . The gradient is computed using symmetric dif-

(12)
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ference equations5 and trilinear interpolation is used to evaluate
the gradient at the point . The notation
is defined similarly. The gradient descent insures thatand
have complex conjugate symmetry. Notice thatand are
the Fourier transforms of a real signal implying thatand
have complex conjugate symmetry. This in turn implies that the
gradients in (13) and (14) have conjugate symmetry and, there-
fore, the basis coefficientsand have complex conjugate sym-
metry.

The steps involved in estimating the basis coefficientsand
are summarized in the following algorithm.
Algorithm:

1. Set for and set
.

2. Compute using the procedure
described in Section II-C and set

.
3. Compute new forward basis coefficients

using (13).
4. Compute the forward displacement field

using (11).
5. Compute using the procedure

described in Section II-C and set
.

6. Compute new reverse basis coefficients
using (14).

7. Compute the reverse displacement field
using (11).

8. If the criteria is met to increase
the number of basis functions then set

, and set the new coefficients
in (11) to zero.

9. If the algorithm has not converged or
reached the maximum number of
iterations goto step 2.

10. Use forward displacement field
to transform the template image
and reverse displacement field
to transform the target image .

III. RESULTS

Two sets of experiments were performed to demonstrate the
linear-elastic consistent image registration algorithm. The first
set of experiments were designed to show the effect of varying
the transformation parameters and the second set of experiments
demonstrate typical results that can be expected using a mul-
tiresolution approach to transform full resolution MRI and CT
data.

A. Parameter Evaluation

Two MRI and two CT image volumes were used to investi-
gate the effect of varying the parameters used in the consistent
image registration algorithm. The data sets were collected from

5The gradient ofT evaluated atn is computed as[(N =2)(T [n +
1; n ; n ] �T [n � 1; n ; n ]); (N =2)(T [n ; n + 1; n ] �
T [n ; n � 1; n ]), (N =2)(T [n ; n ; n +1]�T [n ; n ; n � 1])]

different individuals using the same MR and CT machines and
the same scan parameters. The MRI data sets correspond to two
normal adults and the CT data sets correspond to two 3-mo.-old
infants, one normal and one abnormal (bilateral coronal synos-
tosis). The MRI and CT data sets were chosen to test registration
algorithm when matching anatomies with similar and dissimilar
shapes, respectively.

The MRI data were preprocessed by normalizing the
image intensities, correcting for translation and rotation, and
segmenting the brain from the head using Analyze (Mayo
Clinic, Rochester, MN). The translation aligned the anterior
commissure points, and the rotation aligned the corresponding
axial and sagittal planes containing the anterior and posterior
commissure points, respectively. The MRI data sets were
down-sampled and zero padded to form a 6464 80 voxel
lattice. The CT data sets were corrected for translation and
rotation and down-sampled to form a 64 64 48 voxel
lattice. The translation aligned the basion skull landmarks, and
the rotation aligned the corresponding Frankfort horizontal and
midsagittal planes, respectively.

Tables I and II show the results of 32 experiments for to
MRI-to-MRI and CT-to-CT registration, respectively, as the
weighting values and were varied. The weight for the
similarity cost was set to one for all of the experiments. The
values of and ranged from 0.0 to 0.0125 and 0 to 5000
for the MRI-to-MRI experiments, respectively. The values of

and ranged from 0.0 to 0.001 25 and 0 to 1275 for the
CT-to-CT experiments, respectively. The gradient descent step
size was set to 0.000 04 for the MRI experiments and 0.0001
for the CT experiments. The difference in the parameters is
due to the different intensity characteristics of each modality.
These ranges can be used as a guide for determining parameter
settings for registration of other modalities. We have found that
there is no need to adjust the parameters for additional data sets
of the same modality.

The data sets were registered initially with zero and first-order
harmonics. Each experiment was run for 1000 iterations unless
the algorithm failed to converge. After every 100th iteration, the
maximum harmonic was increased by one. Each experiment that
ran for 1000 iterations took approximately 1.5 h to run on an Al-
phaPC clone using a single 667-MHz, alpha 21 264 processor. It
is expected that this time can be significantly decreased by opti-
mizing the code and using a better optimization technique than
gradient descent. In some of the experiments the Jacobian of the
transformation went negative due to insufficient regularization
or due to a bad choice of parameters. In these cases, the experi-
ments were stopped before the Jacobian went negative to report
the results. The numbers reported for the Similarity cost ,
the linear elasticity cost , and the inverse consistency cost

, were scaled by 10 000 for presentation.
Experiments MRI01 and CT01 correspond to unconstrained

estimation in which the forward and reverse transformations
were estimated independently. These experiments produced the
worst registration results as evident by the largest values of

, , and in the respective tables. These experi-
ments were stopped before the 1000th iteration because the Ja-
cobian went negative during the gradient descent. This was ex-
pected since the regularization terms help prevent the Jacobian
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TABLE I
MRI-TO-MRI CONSISTENTLINEAR-ELASTIC REGISTRATION EXPERIMENTAL PARAMETERS AND FINAL VALUES

REG: Linear-elastic regularization; ICC: Inverse consistency constraint;: REG weight; : ICC weight; 1: Similarity cost weight. The values
of , , and have been scaled by 10 000

TABLE II
CT-TO-CT CONSISTENTLINEAR-ELASTIC REGISTRATION EXPERIMENTAL PARAMETERS AND FINAL VALUES

REG: Linear-elastic regularization; ICC: Inverse consistency constraint;: REG weight; : ICC weight; 1: Similarity cost weight. The values
of , , and have been scaled by 10 000

from going negative. The similarity cost is the lowest for these
experiments since the algorithm finds the best match between
the images without any constraint preventing the Jacobian from
going negative.

Experiments MRI05, MRI09, MRI13, CT05, CT09, and
CT13 demonstrate the effect of estimating the forward and
reverse transformations independently while varyingthe
weight of the linear elastic cost. As before, the large difference
between the forward and reverse displacement fields as reported
by confirms that linear elasticity alone is not sufficient
to guarantee that the forward and reverse transformations are
inverses of one another. However, the linear elasticity constraint
did improve the transformation over the unconstrained case
because the minimum Jacobian and the inverse of the maximum
Jacobian is far from being singular.

Experiments MRI02, MRI03, MRI04, CT02, CT03, and
CT04 demonstrate the effect of jointly estimating the forward

and reverse transformations without enforcing the linear elas-
ticity constraint. The values for these experiments are
much lower than the previous cases since they are being min-
imized. The forward and reverse transformations are inverses
of each other when are zero so that the smaller the costs

, the closer the transformations are to being inverses of
each other.

The remaining experiments show the effect of jointly esti-
mating the forward and reverse transformations while varying
the weights on both the linear elasticity constraint and the in-
verse consistency constraint. These experiments show that it is
possible to find a set of parameters that produce better results
using both constraints than only using one or none. Notice that
increasing the constraint weights causes the similarity cost to in-
crease indicating a worse intensity match between the images.
At the same time, the worst case values of the Jacobian increase
as the constraint weights increase indicating less spatial distor-
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Fig. 3. Statistics associated with the MRI11 experiment.

Fig. 4. Statistics associated with the CT15 experiment.

tion. The optimal set of parameters should be chosen to provide
a good intensity match while producing the least amount of spa-
tial distortion as measured by the Jacobian and an acceptable
level of inverse consistency error.

The time series statistics for experiments MRI11 and CT15
are shown in Figs. 3 and 4, respectively. These figures show that
the gradient descent algorithm converged for each set of trans-
formation harmonics. In both cases, the similarity cost
decreased at each iteration while the prior terms increased be-
fore decreasing. Notice that the inverse consistency constraint
increased as the images deformed for each particular harmonic
resolution. Then when the number of harmonics were increased,

the inverse constraint decreased before increasing again. This
is due to the fact that a low-dimensional Fourier series does
not have the degrees of freedom (DOFs) to faithfully represent
the inverse of a low-dimensional Fourier series. This is seen by
looking at the high dimensionality of a Taylor series representa-
tion of the inverse transformation. Finally, notice that the inverse
consistency constraint caused the extremal Jacobian values of
the forward and reverse transformations to track together. The
extremal Jacobian values correspond to the worst case distor-
tions produced by the transformations.

Fig. 5 shows the effect of varyingand on the inverse con-
sistency cost as a function of iteration. Fig. 5(a) shows
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(a)

(b)

Fig. 5. Plots demonstrating the effect of (a) modifying the inverse consistency
constraint weight� while � =0 and (b) modifying the linear-elasticity
regularization weight� while � = 0.

that increases with iteration and then drops every 100 it-
erations when additional parameters (DOFs) are added to the
transformation. The curves decrease in amplitude asis in-
creased until becomes to large and the algorithm fails to con-
verge. Fig. 5(b) shows that increases as the linear elasticity
weight is increased. This makes sense because the two regu-
larization terms fight one another. The inverse consistency cost
increases as the linear elasticity cost is penalized more.

B. Multiresolution Registration

A spatial and frequency multiresoltion procedure was used
to estimate the full resolution registration of the data sets used
in the previous section. In this approach, global structures are
matched before local to reduce the likelihood of incorrect local
registration errors and to increase convergence. Table III shows
the number of iterations, the harmonic increment iteration, the
initial number of harmonics, and the final number of harmonics
at each resolution. This schedule proceeds from low resolution
to high resolution starting at one eight the spatial resolution and
increases to full resolution.

A set of parameters were chosen from Tables I and II that gave
a good tradeoff between the image intensity match, the inverse
consistency of the transformations, and low spatial distortion.
The parameters used were time step0.000 04, 1.0,
0.001 25, and 2500 for the MRI-to-MRI registration and
time step 0.0001, 1.0, 0.001 25, and 600 for
the CT-to-CT registration. These parameters were used at all
resolutions.

TABLE III
MULTIRESOLUTION ITERATION SCHEDULE USED TOGENERATE THEFULL

RESOLUTIONMRI-TO-MRI AND CT-TO-CT REGISTRATIONRESULTS

Fig. 6 shows three transverse sections from the 3-D result
from the template , deformed target , target , deformed
template MRI data sets. The first two columns and the last
two columns should look a like for a good registration. These
pairs of columns look similar with respect to the global struc-
tures but have small local differences as seen by the difference
images shown in the first two columns of Fig. 7. Notice that
the outer contour of the deformed images match their respec-
tive target data sets and that there is good correspondence in the
region of the ventricles. The local mismatch is mostly due to
differences in the topology of the gray matter folds and due to
the low-frequency Fourier series parameterization of the trans-
formations.

The last two columns of Fig. 7 shows the normed differ-
ence between the forward and reverse transformations for the
MRI-to-MRI experiment. These figures show the spatial loca-
tions of where the forward and reverse transformations have the
largest inverse consistency errors. The range on the difference
for the entire 3-D volume is from 0 to 0.002 234. This maximum
difference corresponds to a registration error between 0.571 and
0.749 voxel units.6 Notice that most of the error is internal to
the brain and that most of the error appears in the cortex re-
gions. The similarities between the absolute difference intensity
images to the normed transformation difference images suggest
that most of the inverse consistency error occurs were the trans-
formed images are still mismatched. A further description and
additional figures showing the effect of using or not using the
inverse consistency cost as it relates to the spatial inverse con-
sistency error can be found in [31].

Three transverse slices from the 3-D full resolution CT-to-CT
experiment are shown in Fig. 8. Notice the good global registra-
tion of the corresponding CT data sets. The first two columns
of Fig. 9 shows the absolute intensity difference between these
slices. As before, the errors show up along the boundaries of the
objects. The last two columns of this figure show the normed dif-
ference between the forward and reverse transformations. Again
we see similarities between the intensity differences and the
transformation differences. The maximum inverse consistency
error for this experiment is between 0.871 and 1.16 voxel units.7

The MRI-to-MRI registration following the schedule in
Table III took approximately 4, 40, 60, and 55 min to compute
at the 32 32 40, 64 64 80, 128 128 160, and 256

256 320 voxel resolutions, respectively. The CT-to-CT
registration took approximately 2, 21, 33, and 30 min to

6The minimum was computed as 256� 0.002 234 and the maximum as 320
� 0.002 234.

7The minimum was computed as 192� 0.004 538 and the maximum as 256
� 0.004 538.
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Fig. 6. Transverse slices 109, 135, and 165 (rows top to bottom) from the full resolution MRI-to-MRI registration experiment. The columns from left toright
correspond to the templateT , the deformed targetS � g, the targetS and the deformed templateT � h. The intensities are on a range from 0 to 1.0.

compute at the 32 32 24, 64 64 48, 128 128
96, and 256 256 192 voxel resolutions, respectively. All
times are for an AlphaPC clone using a single 667-MHz, alpha
21 264 processor.

IV. DISCUSSION

The experiments presented in this paper were designed to test
the validity of the new inverse transformation consistency con-
straint as applied to a linear-elastic transformation algorithm. As
such, there was no effort made to optimize the rate of conver-
gence of the algorithm. The convergence rate of the algorithm
can be greatly improved by using a more efficient optimization
technique than gradient descent such as conjugate gradient at
each parameterization resolution. In addition, a convergence cri-
teria can be used to determine when to increment the number of
parameters in the model. The CT data used in the experiments
was selected to stress the registration algorithm. The conver-
gence of the algorithm would have been much faster if the data
sets were adjusted for global scale initially.

A. Measurement of Transformation Distortion

It is important to track both the minimum and maximum
values of the Jacobian during the estimation procedure. The
Jacobian measures the differential volume change of a point
being mapped through the transformation. At the start of the
estimation, the transformation is the identity mapping and,
therefore, has a Jacobian of one. If the minimum Jacobian
goes negative, the transformation is no longer a one-to-one
mapping and as a result folds the domain inside out [30].
Conversely, the reciprocal of the maximum value of the
Jacobian corresponds to the minimum value of the Jacobian
of the inverse mapping. Thus, as the maximum value of the
Jacobian goes to infinity, the minimum value of the Jacobian
of the inverse mapping goes to zero. In the present approach,
the inverse transformation consistency constraint was used
to penalize transformations that deviated from their inverse
transformation. A limitation of this approach is that cost
function in (3) is an average metric and cannot enforce the
pointwise constraints that and
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Fig. 7. The first two columns correspond to the absolute intensity difference between the template and the deformed targetjT �S �gj (column one) and between
the target and the deformed templatejS�T �hj (column two) in Fig. 6. The intensity range for the absolute difference is on a range from 0 to 0.892. The last two
columns correspond to the normed difference between the forward and inverse of the reverse transformationkh� g k (column three), and between the reverse
transformation and the inverse of the forward transformationkg � h k (column four). The intensity range for the normed transformation differences is from 0
to 0.002 234.

. This point is illustrated by
Tables I and II by the fact that the minimum values of
and differ from the reciprocal of the maximum values of

and , respectively, However, these extremal Jacobian
values do give an upper bound on the worst case distortions
produced by the transformations demonstrating the consistency
between the forward and reverse transformations.

B. Spatial Multiresolution

The minimization problem is discretized so it can be imple-
mented on a digital computer. The higher the sampling rate the
more accurate the discrete approximation is to the continuous
case. An advantage of discretizing a continuous formulation
is that the problem can be solved at different spatial sampling
rates. The approach that is taken is to solve the minimization
at a course resolution initially to approximate the solution. The

advantage of solving the problem on a course grid is that the al-
gorithm requires fewer computations/iteration that a finer grid.
This results in reduced computation time at low resolution. Each
time the resolution of the grid is increase by a factor of two in
each dimension, the computation time increases by a factor of
eight. The drawback of solving the problem at low resolution is
that there can be significant registration errors due to the loss
of detail in the down sampling procedure. The tradeoff between
quicker execution times at low resolution and more accurate reg-
istration at higher resolution can exploited by solving the regis-
tration problem at low spatial resolution during the initial iter-
ations to approximate the result and then increasing the spatial
resolution to get a more accurate result at the later iterations.

The spatial multiresolution approach works well with the
frequency multiresolution approach provided by increasing the
number of harmonics used to represent the displacement fields.
The number of harmonics used to represent the displacement
fields is initially set small and then increased as the number
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Fig. 8. Transverse slices 068, 116, and 124 (rows top to bottom) from the full resolution CT-to-CT registration experiment. The columns from left to right
correspond to the templateT , the deformed targetS � g, the targetS and the deformed templateT � h. The intensities are on a range from 0 to 1.0.

of iterations are increased. A low-frequency registration result
is an approximation of the desired high-frequency registration
result. Computing the gradient descent for a low-frequency
basis coefficient at low spatial resolution gives approximately
the same answer as using high spatial resolution but the
computational burden is much less.

C. Comparison to Other Methods

Other investigators have proposed methods for enforcing
pairwise consistent transformations. For example, Woodset
al. [27] computes all pairwise registrations of a population of
image volumes using a linear transformation model, i.e., a 3
3 matrix transformation. They then average the transformation
from to with all the transformations from to to . The
original transformation from to is replaced with average
transformation. The procedure is repeated for all the image
pairs until convergence. This technique is limited by the fact
that it cannot be applied to two data sets. Also, there is no
guarantee that the generated set of consistent transformations
are valid. For example, a poorly registered pair of images can
adversely effect all of the pairwise transformations.

The method proposed in this paper is most similar to the
heuristic approach described by Thirion [6]. Thirion’s idea was
to iteratively estimate the forward, reverse , and residual

transformations in order to register the imagesand
. At each iteration, half of the residualis added to and half

of the residual is mapped through and added to . After
performing this operation, is close to the identity transfor-
mation. The advantage of Thirion’s method is that it enforces
the inverse consistency constraint without having to explicitly
compute the inverse transformations as in (3). The residual
method is an approximation to the inverse consistency method
in that the residual method approximates the correspondences
between the forward and reverse transformations while the
inverse consistency method computes those correspondences.
Thus, the residual approach only works under a small deforma-
tion assumption since the residual is computed between points
that do not correspond to one another. This drawback limits
the residual approach to small deformations and it, therefore,
cannot be extended to nonlinear transformation models. On
the other hand, the approach presented in this paper can be
extended to the nonlinear case by modifying the procedure used
to calculate the inverse transformation to include nonlinear
transformations.

D. Limitations of Diffeomorphic Transformations

Diffeomorphictransformationsarevalidforregisteringimages
collected from the same individual imaged by two different
modalities such as MRI and CT, but it is not necessarily valid
when registering images before and after surgery. Likewise, a
diffeomorphic mapping assumption may be valid for registering
MRI data from two different normal individuals if the goal
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Fig. 9. The first two columns correspond to the absolute intensity difference between the template and the deformed targetjT �S �gj (column one) and between
the target and the deformed templatejS�T �hj (column two) in Fig. 6. The intensity range for the absolute difference is on a range from 0 to 0.776. The last two
columns correspond to the normed difference between the forward and inverse of the reverse transformationkh� g k (column three), and between the reverse
transformation and the inverse of the forward transformationkg � h k (column four). The intensity range for the normed transformation differences is from 0
to 0.004 538.

is to match the deep nuclei of the brain, but it may not be
valid for the same data sets if the goal is to match the sulcal
patterns.

Alternatively, diffeomorphic transformations may be used to
identify areas where two image volumes differ topologically by
analyzing the properties of the resulting transformation. For ex-
ample, consider the problem of matching an MRI image with
a tumor to one without a tumor. A possibly valid diffeomor-
phic transformation would be one that registers all of the cor-
responding brain structures by shrinking the tumor to a small
point. Such a transformation would have an unusually small Ja-
cobian which could be used to detect or identify the location of
the tumor. Conversely, consider the inverse problem of matching
the image without the tumor to the one with the tumor. A valid
registration in this case is to register all of the corresponding
brain structures by allowing the transformation to “tear” (i.e.,
not be diffeomorphic) at the site of the tumor [29]. Just as valid
could be a diffeomorphic transformation that registers all of the
corresponding brain structures by allowing the transformation
to stretch at the site of the tumor.

As in the previous examples, we assume that a valid transfor-
mation is diffeomorphic everywhere except possibly in regions
where the source and target images differ topologically, e.g., in
the neighborhood of the tumor. These ideas can be extended to

nondiffeomorphic mappings by including the proper boundary
conditions around regions that differ topologically.

V. SUMMARY AND CONCLUSION

This paper presented a new algorithm for jointly estimating a
consistent set of transformations that map one image to another
andvice versa. A new parameterization based on the Fourier
series was presented and was used to simplify the discretized
linear-elasticity constraint. The Fourier series parameterization
is simpler than our previous parameterizations and each basis
coefficient can be interpreted as the weight of a harmonic com-
ponent in a single coordinate direction. The algorithm was tested
on both MRI and CT data. It was found that the unconstrained
estimation leads to singular or near singular transformations. It
was also shown that the linear-elastic constraint alone is not suf-
ficient to guarantee that the forward and reverse transformations
are inverses of one another. Results were presented that sug-
gest that even though the inverse consistency constraint is not
guaranteed to generate nonsingular transformations, in practice
it may be possible to use the inverse consistency as the only
constraint. Finally, it was shown that the most consistent trans-
formations were generated using both the inverse consistency
and the linear-elastic constraints.
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