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Consistent Image Registration

G. E. Christensen* and H. J. Johnson

Abstract—This paper presents a new method for image registra- .S and from.S to 7" while enforcing the consistency constraint
tion based on jointly estimating the forward and reverse transfor- that these transforms are inverses of one another.
mations between two images while constraining these transforms The forward transformatioh from imageZ’ to S and the re-

to be inverses of one another. This approach produces a consistent ¢ f tion f StoT h in Eio. 1. Ideall
set of transformations that have less pairwise registration error, Verse transtormatiogirom 5 10 £ are shown in Fig. 1. laeally,

i.e., better correspondence, than traditional methods that estimate the transformations andg should be uniquely determined and
the forward and reverse transformations independently. The trans-  should be inverses of one another. Estimafirendg indepen-
formations are estimated iteratively and are restricted to preserve dently very rarely results in a consistent set of transformations
topology by constraining them to obey the laws of continuum me- 46 14 3 Jarge number of local minima. To overcome this defi-
chanics. The transformations are parameterized by a Fourier se- . . . . - .
ries to diagonalize the covariance structure imposed by the con- CIENCY IN currentregistration systems, we propose to jointly esti-
tinuum mechanics constraints and to provide a computationally Mateh andg while constraining these transforms to be inverses
efficient numerical implementation. Results using a linear elastic of one another. Jointly estimating the forward and reverse trans-
material constraint are presented using both magnetic resonance formations provides additional correspondence information and
and X-ray computed tomography image data. The results show pe|ng ensyre that these transformations define a consistent cor-
that the joint estimation of a consistent set of forward and reverse . . .
transformations constrained by linear-elasticity give better regis- re.s.pondence F’et""?e” the_ |me}ges. AlthQUQh .unlquengs.s IS very
tration results than using either constraint alone or none at all. difficult to achieve in medical image registration, the joint es-
timation should lead to more consistent and biologically mean-
ingful results.
Image registration algorithms use landmarks [1]-[4],
contours [5]-[7], surfaces [8]-[11], volumes [12]-[18], [6],
. INTRODUCTION [19]-[21], or a combination of these features [22] to manually,
MAGE registration has many uses in medicine such mi-automatically or automatically define correspondences
I multimodality fusion, image segmentation, deformabl@etween two images. The need to impose the invertibility
atlas registration, functional brain mapping, image-guidé&@®nsistency constraint depends on the particular_appl_ication
surgery, and characterization of normal versus abnornfld on the correspondence model used for registration. In
anatomical shape and variation. The fundamental assumptitiieral, registration techniques that do not uniquely determine
in each of these applications is that image registration can )& correspondence between image volumes should benefit
used to define a meaningful correspondence mapping betwd@in the consistency constraint. This is because such tech-
anatomical images collected from imaging devices such Bi§lu€s often rely on minimize/maximize a similarity measure
computed tomography (CT), magnetic resonance imagiMgich has a large number of local minima/maxima due to the
(MRI), cryosectioning, etc. It is often assumed that this corr€0rréspondence ambiguity. Examples include methods that
spondence mapping or transformation is one-to-one, i.e., edgiimizing/maximizing similarity measures between features
point in imageT” is mapped to only one point in imageand in the source and targetimages such as image intensities, object
vice versaA fundamental problem with a large class of imag@oundaries/surfaces, etc. In theory, the higher the dimension
registration techniques is that the estimated transformatighthe transformation, the more local minima these similarity
from imageT’ to S does not equal the inverse of the estimatgdeasures have. Methods that use specified correspondences
transform fromS to 7'. This inconsistency is a result of thefor registration will benefit less or not at all from the invert-
matching criteria’s inability to uniquely describe the corresporRility consistency constraint. For example, landmark-based

dences between two images. This paper seeks to overcome fpgstration methods implicitly impose an invertibility con-
limitation by jointly estimating the transformation froffi to ~Straint at the landmarks because the correspondence defined

between landmarks is the same for estimating the forward and
reverse transformations. However, the drawbacks of specifying
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Fig. 1. Consistentimage registration is based on the principle that the mapirmgs 7" to S andg from S to T' define a point by point correspondence between
T andS that are consistent with each other. This consistency is enforced mathematically by jointly estimarichg while constraining: andg to be inverse
mappings of one another.

g

two images have the same structures and neighborhood relatanme dropped when a statement is true for both continuous and
ships but have different shapes. discrete functions or where the context is clear due to the use of
Diffeomorphic transformations maintain the topology angarentheses or square brackets. Let the continuous ifiage
guarantee that connected subregions of an image remf@minz € Q. be related to the discrete imagg[n] for n € Q4 in
connected, neighborhood relationships between structures taeenormal multidimensional sampling seff3¢n] = T.(n/N)
preserved, and surfaces are mapped to surfaces. Preserwihgre the notation /N is defined as the & 1 column vector
topology is important for synthesizing individualized electronif, /Ny, na/Na, na/N3]T. Likewise, letSy[n] = S.(n/N) for
atlases the knowledge base of the atlas maybe transferred tathe 2,. The discrete images are extended to the continuum
target anatomy through the topology preserving transformatiasing trilinear interpolation.
providing automatic labeling and segmentation. If total volume The transformations are vector-valued functions that map the
of a nucleus, ventricle, or cortical subregion are an importaimhage coordinate systefa. to itself, i.e.,h.: €. — €. and
statistic it can be generated automatically. Topology preserving 2. — €2.. Regularization constraints are placedioandg
transformations that map the template to the target also cansoethat they preserve topology. Throughout it is assumed that
used to study the physical properties of the target anatomy suciz) = = + u.(z), b7 (z) = = + G.(z), go(z) = = +
as mean shape and variation. Likewise, preserving topology ai-(x) andg.!(z) = z + w.(z) whereh.(h7!(z)) = x and
lows data from multiple individuals to be mapped to a standagd(g1(z)) = =. The vector-valued functions w, @, anchu are
atlas coordinate space [23]. Registration to an atlas remowadled displacement fields since they define the transformation
individual anatomical variation and allows information fromn terms of a displacement from a locatienAll of the func-
many experiments to be combined and associated with a sinites i, g., h. 1, g1, ue, tie, we, andw, are (3x 1) vector-
canonical anatomy. valued functions defined on the.. The continuous transfor-
mations and displacement fields are extended to the continuum
from their corresponding discrete representations using trilinear
Il. REGISTRATION ALGORITHM interpolation. For exampléyu[n] = he(n/N) = (n/N) +
uc(n/N) = (n/N) + uq[n].
Registration is defined using a symmetric similarity cost
Traditionally, the image registration problem has been statgghction that describes the distance between the transformed
as: Find the transformatioh that maps the template imagetemplateZ” o h and targetS, and the distance between the
volumeT into correspondence with the targetimage volufne transformed targef o ¢ and templatd’. To ensure the desired
Alternatively, the problem can be stated as: Find the transfornfoperties, the transformatiohsandg are jointly estimated by
tion g that transformsS' into correspondence witl. For this  minimizing the similarity cost function while satisfying regu-
paper, the previous two statements are combined into a singigzation constraints and inverse transformation consistency
problem and restated as follows. constraints. The regularization constraints are enforced on the
Problem Statementlointly estimate the transforma- transformations by constraining the them to satisfy the laws of
tionsh andg such that: maps7 to S andg mapsS to I’ continuum mechanics [24].
subject to the constraint that= g—1. o _
The image registration algorithm is formulated on the cof?: Symmetric Similarity Cost Function
tinuum and is discretized for implementation. lieand.S rep- The problem with many image registration techniques is that
resent three—dimensional (3-D) image volumes of voxels dhe image similarity function does not uniquely determine the
mensionN; x Ny x Nz corresponding to medical imagingcorrespondence between two image volumes. In general, simi-
modalities such as MRI, functional MRI, CT, cryosection imharity cost functions have many local minima due to the com-
agery, etc. Lef2y = {(n1, n2, n3)|0 < n; < N1; 0 < ny < plexity of the images being matched and the dimensionality of
N3; 0 < ng < N3; andny, na, ng are integers correspond to the transformation. It is these local minima (ambiguities) that
the set voxel lattice coordinates of the discrete imajesdS cause the estimated transformation from im&ge S to be dif-
and let2. = [0, 1)2. Continuous functions will be denoted withferent from the inverse of the estimated transformation fgom
a subscriptc and parentheses while discrete functions will b 7°. In general, this becomes more of a problem as the dimen-
denoted with a subscriptand square brackets. The subscriptsionality of the transformation increases.

A. Problem Statement
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To overcome correspondence ambiguities, the transforntdtoice is dependent on the particular registration application
tions from imagel’ to .S and fromS to 1" are jointly estimated. (see Section V).
This is accomplished by defining a cost function to measure
the shape differences between the deformed infage: and C. Inverse Consistency Constraint
image 5 and the differences between the deformed image Minimizing a symmetric cost function like (1) is not sufficient
S o g and imagel’. Ideally, the transformations andg should  to guarantee thdt andg are inverses of each other because the
be inverses of one another, i.6.,= ¢~'. In this paper, the contributions ofi andg to the cost function are independent.
transformations: and g are estimated by minimizing a costn order to couple the estimation bfwith that ofg, an inverse

function consistency constraint is imposed that is minimized whea
Csn(T o b, S) + Cs(S 0 g, T) ¢~L. The inverse consistency constraint is given by
= [ beta)) - Su(o do Creclu, @) + Ceclw, w)
. : :
' = [ |hole) = gt 2d+/ o(x) = h7H )| d
[ TP @ W)= I e [ ot =2
§2.

~ 2 ~ 2
where the intensities &f. and.S,. are assumed to be scaled be- = /Q [[ue(z) — we(2)||” dow + /Q lwe(@) — te(z)||” da
tween 0 and 1. To use this similarity function, the imageand ¢ ¢ 3)
S must correspond to the same imaging modality and they may
require preprocessing to equalize the intensities of the imagderefc.(z) = z + u.(z), h; ' (z) = @ + Gc(x), ge(z) =
In practice, MRI images require intensity equalization while + w.(x) andg;'(x) = = + w.(z). Notice that the inverse
CT images do not. A simple but effective method for intensitgonsistency constraint is written in a symmetric form like the
equalizing MRI data is to compute the histograms of the two insymmetric cost function for similar reasons. The discretized in-
ages, scale the axis of one histogram so that the gray and wNiése consistency constraint is given by

matter maximums match, and then apply the intensity scaling @ICC(U/ @) + Creo(w, @)

the image. )
In practice, the image$ and1” are discrete and the integrals  _ ” o 2 o~ 2
. ’ - ) ) = d|n| — wa|n]||” + ||wa|n] — va|n|||”-
in (1) are discretized and implemented as summations N1 N2N3 ng;d fualn] [l A+ lwaln] i
Csiv (T oh, S) + OSIM(S og, T) (4)
_ ! 3| (hc (ﬁ)) — S, (ﬁ)r The procedure used to compute the inverse transformation of
NiN2N3 == N N a transformation with minimum Jacobian greater than zero is
n ny|2 as follows. Assume thdi.(z) is a continuously differentiable
+ |5 (gc (N)) -1 (N)‘ transformation that map3. onto$2. and has a positive Jacobian
1 5 for all z € Q.. The fact that the Jacobian is positive at a point
= N.NyNs Z |T¢ (ha[n]) — Sa[n]| z € Q. implies that it is locally one-to-one and, therefore, has
neEfla ) alocal inverse. It is, therefore, possible to select a ppiat(2,.
+1S: (gan]) — Tuln]| and iteratively search for a pointe . such thal|y — h(z)||
_ 1 2 is less than some threshold provided that the initial guess of
" NNy N z; [ [Nhan]] = Saln] is close to the final value of.
et 5 The discretized inverse transformation is related to the contin-
+ [Sa [Vga[n]] — Taln]| )

uous inverse transformation lhy;[n] = h.(n/N). This implies
where the notatiorthgn] is defined as the 3« 1 column thatthe discrete inverse transformation only needs to be calcu-
vector [Nlhfll)[ﬂ], Nth)[n], Nghflg)[ﬂ]]T and the terms lated at each sample pointe €24. The following procedure is
Ty[Nhy[n]] and S4[Nga[n]] are evaluated using trilinearused to compute the discrete invefsg' of the transformation
interpolation. Equation (2) is a discrete approximation to tH:-

integral cost defined in (1) which becomes exach\as— o,

Ny — oo, and N3 — oo. The discretized cost defined in For each n € Q, do {

(2) demonstrates a tradeoff between computational time and Set &6 =1, 1, 1]¥, z=n/N, iteration =0.

accuracy. This tradeoff can be exploited by using a low-res- While ( ||6]| > threshold) do {

olution computational grid?,; during the early iterations of §=n/N — hg[Nz]

the algorithm when accuracy is less important and using a z=x+06/2

high-resolution grid2, in the later iterations to get an accurate iteration = iteration + 1

final result. if (iteration > max_iteration) then
Note that this joint estimation approach applies to both linear Report algorithm failed to converge

and nonlinear transformations. In general, the squared-error and exit.

similarity functions in (1) can be replaced by any suitable }
similarity function—mutual information [25], [26], demons h;l[n] =z
[6], an intensity variance cost function [27], etc.—where the }
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As before where.J denotes the Jacobian operator. Further examples of reg-
T ularization constraints that penalize large and small Jacobians
n_ [ﬂ e B} can be found in Ashburnest al.[21].
N N1 Ny’ N3
Nz =[Nizy1, Noxo, Ng.’L’g]T E. Transformation Parameterization

. . o . . . A 3-D Fourier series representation [17] is used to parame-
andhg[N ] is computed using trilinear interpolation. We typl'terize the forward and reverse transformations. This parameter-
cally set threshold= 10~* and max_iteratior= 1000. In prac- ' P

tice, the algorithm converges when the minimum Jacobizin 01;zatlon is simpler than the parameterizations used in our pre-

) : vi?us work [14], [28], [29] and each basis coefficient can be in-
is greater than zero although we have not proved this mathen}a - ; . . .
rpreted as the weight of a harmonic component in a single co-

ically. Reducing the value of the threshold gives a more accuratge,. o

. . . . : ordinate direction. Let = [ky, k2, k3] andn = [n1, na, ns|.
inverse but increases the iteration time. To reduce computatipn =~ . . ,
. . ; e . e displacement fields are defined to have the form
time, the above algorithm is modified by rastering through the

elements of2; and initializingz = (n/N )+ wheree is equal wo() = Z u[k]e”’”’ NO[k])

to the displacement of the previously estimated grid point.

keQy
D. Regularization Constraint and
- h .g. . " w.(z) = Z nk]e?t= NIkl (6)
Minimizing the cost function in (3) does not ensure that the Pyt

transformationg andg are diffeomorphic transformations ex-
cept for whenCrcc = 0. Continuum mechanical models suctfor = € Q. where p[k] and n[k] are (3 x 1) com-
as linear elasticity [28], [22] and viscous fluid [22], [15] can b@lex-valued vectord[k] = [2xki /Ny, 2xky /Ny, 2wks/Na]”

used to regularize the transformations. In this paper, a lineand NO[k] = [2nky, 2nk,, 2nks]”. The notation
elastic constraint of the form (-, -} denotes the dot product of two vectors such that
(x, NOk]) = 2nkiz1 + 2mkoxe + 27k3zs. The discretized
Crig(u) + Crra(w) displacement fields are defined as
_ 2 2 '
- 0 ||LCUIC($)|| dx + /QHLcwc(x)H dx (5) U,d[TL] =u, (%) — Z u[/{i]6]<n’9[k1>
keQy

is used to regularize the transformations whester) = h.(z)— gnd

x andw,(z) = g.(x) — x. The linear elasticity operatdr. has B ny (o, B[K])

the form L u.(x) = —aV3u.(x) — BV(V - u.(x)) + yu.() ualn] =we (N) B Z nikle )
whereV = [9/0z1, 3/dx2, 8)dxs] and V2 = V .V = hES2a

[0%/0x7 + 07 023 + 8 /0x3]. In general L. can be any non- for n € Q. The basis coefficients are defined as

singular linear differential operator [29]. The limitation of using

linear differential operators is that they cannot prevent the trans- pulk] = 1 Z ugln]e™I ¢ ORD
formation from folding onto itself, i.e., destroying the topology N1N2N3 nCSl,
of the images under transformation [30]. This includes the lineand
elast|C|_ty and tr_un p_Iate spline models. The linear elaspcny op k] = Z waln]e=dm oD
erator is used in this paper to help prevent the Jacobian of the NiNyN; e

n d

transformation from going negative. At each iteration the Jaco-

bian of the transformation is checked to make sure thatitis pder £ € Q4. The displacement fields associated with the in-

itive for all points in§,; which implies that the transformationverse of the forward and reverse transformations are given by

preserves topology when transforming images. replacingu, w, i, andr in (7) with %, w0, i, ands, respectively.
The purpose of the regularization constraint is to ensure thafThe Fourier series parameterization is periodiczirand,

the transformations maintain the topology of the imafjeend therefore, has cyclic boundary conditions foon the boundary

S. Thus, the elasticity constraint can be replaced by or comf 2. Further more, the following proposition shows that the

bined with other regularization constraints that maintain desitisplacement fields are real assuming that the coefficients

able properties of the template (source) and target when d@gk] andn[k] have complex conjugate symmetry. It is shown

formed. An example would be a constraint that prevented the Section II-F thatu[k] and n[k] have complex conjugate

Jacobian of both the forward and reverse transformations fraymmetry by construction.

going to zero or infinity. A constraint that penalizes small and Proposition 1: A displacement field of the formu;[n] =

large Jacobian values is given by > req, MKl D 0 e Qg is real and can be written as

OJac(h) + O.]ac(g) (N1/2)=1 Ny—1 Ny—1

- /Q ((he(@)))? + (ﬁf el = ,;0 g::o g::o

> - (afk Re {000} _ pfg] 1 { o006
”J(“’C(””)”Q*(J(gj(x))) o ( ne@i } { })<s>
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if the (3 x 1) vectoru[k]
symmetryt

= a[k] + jb[k] has complex conjugate

Proof: The displacement field,; can be written as

ualn] = Y (afk] + jb[k])e! " 1D

kEQy

(N1/2)—1 Na—1 N3—

S 330 3

k1=0 ko=0 k3=0

+ (alt] — ol im0

a[k] + jb[k])e? ™ O1RD)
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Likewise, the inverse consistency constraint (3) can be sim-
plified in a similar manner. Substituting (7) into (4) and dis-
cretizing gives

Crec(u, ~)—i-CICC(w 71)

Z ) (k] — ii[k])

EQq

+ (nlK] = AlkD)T ([K] — kD). (10)

F. Estimation Procedure
The Fourier series parameterization in (6) is a multiresolution

because thg[k] coefficients are complex conjugate symmetricdecomposition of the displacement fields. Ee{r| = Q\G[r]

ie., pulk] = p*[N
result.

— k]. Simplifying the summand gives therepresent a family of subsets@f whereG[r] = {n € Qq4|r1 <

Q.E.D. m1 < Ny — 71572 < n2 < N2 — 273 < M3 < N3 — 13}
The Fourier series parameterization in (6) is useful for sindnd the set subtraction notatiet) 5 is defined as all elements

plifying the linear elasticity constraint given in (5). The operof A notin B. Fig. 2 illustrates the definition dR,[r] using a
ator L. can be thought of as a (8 3) matrix differential oper- two—dimensional example. In practice, the low-frequency basis
ator [29] such that the linear elasticity operator as shown in teeefficients are estimated before the higher ones allowing the
equation at the bottom of the page. Substituting (7) into (5) aBéPbal image features to be registered before the local features.
discretizing the continuous partial derivatives &f gives This is accomplished by replacing (7) by

ugln, r] = Z

kCSq [1‘1

11 OIAD)
Cric(u) + Crec(w) I

= " Wl ED2RIulk] + 9 KD RI0IK] (9)  and

wl = Y

keQq [7‘1

nlk]e? 1D (11)

wheret is the complex conjugate transpode[k] is a real-

valued, (3x 3) matrix with elements wherer € Q4 determines the number of harmonics used to

represent the displacement fields. Let the set of multiresolution
transformations be defined Ag[n, v] = (n/N)+uqy[n, r] and
ga[n, 7] = (n/N)+wqy[n, r]. The components ofare initially
) set small and are periodically increased throughout the iterative
N} minimization procedure. The s&;[r] can be replaced b$i,
)

2a { NZ(1 — cos(61[k]))
+NZ(1 — cos(6a[K]
+NZ(1 — cos(63[k]
+28N2(1 — cos(0,[k])) +v, r=s
BN, N, sin(6,.[k]) sin(8: [k]), r £ s.

DIE|],.. =
DI, when all of the components of are greater than or equal to
(N —1)/2 since the sef?[r] is empty. The constants, 2, and

r3 represent the largest, 2, andzs harmonic components of
the displacement fields. Each displacement field in (11) is effi-
ciently computed using thre®; x N, x N3 fast Fpurier trans-
forms (FFTs), i.e., each component of the 3 vectorsu, and

IThis proposition assumes tha is even. A similar statement can be made
whenX, is odd. 4 are computed with a FFT after zeroing out the coefficients

2Symmetric difference equatlons were used to dlscretlze the contmucﬂgt present in the summations. )
derivatives. For example, let;, = 1/N, and A, = 1/N, and then The image registration problem can be stated mathematically

OAZZ /%32 Waas reaplaced HV(»lrl erﬁh Tz, 12) - /‘(7:1A Ax, @2, 25)]/ py combining (2)—(4), and (9) and estimating the set of param-
andg®f /0w, 0> was replaced bl (1 + &1 12 + 8o wa) = I = gararnr] ATE]Y that minimize the combined cost function as

Al a2 + Ao, w3) + flor — Ay, 22 — Ao, 73)_f(71+A17T - !
Az, 23)]/ A1 A, shown in (12) at the bottom of the next page. The constants

- 82 82 82 -
_ 2_ 32 _ _
av /jax% T /3811812 /38118373
? ? o?
L.=—-aV?-pV.V = -3 —aV? - f— -3
“ £ T £ Ox10x9 oV —f z3 7 £ Ox20x5
o? o? 9 o?
L —[383718373 —[38.’1728373 —avi - ﬂa_x% + d
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Fig. 2. Example of elements contained in ar 8 lattice. (a)2. contains all of the points whil&[2, 2] contains the points within the doted lines. (b) Elements

i aC
X andp_ are used to enforce/balance the const_ralnts. The effects (1, m) —Re{L,[k] + s[4}
of varying these parameters are studied later in the paper. aclk]
The basis coefficient§u[k], n[k]} = {a[k] + Fb[k], c[k] + AC (11, m)
jd[k]} are determined by gradient descent using T[I;] =Im{—-L[k] + I3[k]}

aC(p™, ™)

D[] = ¢
a k] =a"V[k] + ¢ Bl where
80(u<") 77(n)) 4
b HD[E] = bI[k] 4 e — 2 (13) I[k] =
4 A 9b[k] oM = N A ;2
aC(u™, n™) T
(ADE = (W] e 2 2 7
C C £ . -] —
[K] (K] ot (a(Td[th[n, Al = SV
(n) p) N 0Tk
dTOE] = d k] + € 9Cw™, ) (14) + x(ugn, r] — wyln, 7’]))CJ< LKD)
ad[k]
. ) Il[]f] :4N1N2N3 Z
wheree is the step size. The superscripf) corresponds to the ey
value of, andn at thenth iteration. Each equation above repre-
sents a 3x 1 vector equatio,i.e., one equation for each com- ' ("(Sd[Ngd[”v = Laln)) VS Naa[n, ]

ponent of the vectors, b, ¢, andd. The partial derivativesof

1~ . iz, 6k
C(u, n) used in (13) and (14) are +x(waln, r] = daln, 7]))GJ< i

I[k] = 4pD?[k]u[k]

9C(w,m) _ _ _
pae el Ll I5[K] = 4p D KTnlH].
9, m) _ _
Ob[k] =Im{~Io[k] + I2[A]} The termsl, and; are 3x 1 vectors and are efficiently com-

) ] ) i puted for all% using 3-D FFTs; each component &f and I;
3The notatiordC'/da whereC is a scalar-valued function andis a 3x 1 requires a separate 3-D FFT for a total of six FFTs. The nota-

vector is defined as the 8 1 vector[0C'/day, 0C[daz, C[das]". . .
4The coefficientsi[k] andij[k] are assumed to be constant when computin&On Vi Nig[n, ] FEPresents the gradient'6f evaluated at the

the partial derivatives. pointNhgy[n, r]. The gradient is computed using symmetric dif-
Clu, m, r) =
1 1 2 1 2,1
TNy O [TaNal, 1l = Sabl* 4 84l Noabr, 7l Tl +x g 3
Nal, 7] = @l 112 + lfwaln, 1] = @aln, )P +p > pl D2 [kJulk] + 0l 1D Enk]. (12)

kEQq[r]
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ference equatioAsand trilinear interpolation is used to evaluatalifferent individuals using the same MR and CT machines and
the gradient at the poin¥iy[n, r]. The notatiorV.Sy|ng,[»,») the same scan parameters. The MRI data sets correspond to two
is defined similarly. The gradient descent insures thandn normal adults and the CT data sets correspond to two 3-mo.-old
have complex conjugate symmetry. Notice tligtand I; are infants, one normal and one abnormal (bilateral coronal synos-
the Fourier transforms of a real signal implying thigtand/;  tosis). The MRl and CT data sets were chosen to test registration
have complex conjugate symmetry. This in turn implies that treégorithm when matching anatomies with similar and dissimilar
gradients in (13) and (14) have conjugate symmetry and, thesbapes, respectively.

fore, the basis coefficienfsandn have complex conjugate sym- The MRI data were preprocessed by normalizing the

metry. image intensities, correcting for translation and rotation, and
The steps involved in estimating the basis coefficigned segmenting the brain from the head using Analyze (Mayo
7 are summarized in the following algorithm. Clinic, Rochester, MN). The translation aligned the anterior
Algorithm: commissure points, and the rotation aligned the corresponding
axial and sagittal planes containing the anterior and posterior
1. Set puk]=nk]=0 for kecQ, and set commissure points, respectively. The MRI data sets were
r=[1,1, 1]%. down-sampled and zero padded to form ax664 x 80 voxel
2. Compute gd_l[n, 7] using the procedure lattice. The CT data sets were corrected for translation and
described in Section II-C and set rotation and down-sampled to form a 64 64 x 48 voxel
waln, ] = gd_l[?% 7] — (n/N). lattice. The translation aligned the basion skull landmarks, and
3. Compute new forward basis coefficients the rotation aligned the corresponding Frankfort horizontal and
plk] = alk] + jb[k] using (13). midsagittal planes, respectively.
4. Compute the forward displacement field Tables | and Il show the results of 32 experiments for to
ug[n, 7] using (11). MRI-to-MRI and CT-to-CT registration, respectively, as the
5. Compute hgl[n, r] using the procedure weighting valuesp and y were varied. The weight for the
described in Section 1I-C and set similarity coste was set to one for all of the experiments. The
Ggln, r] = h(;l[n, r] — (n/N). values ofp and y ranged from 0.0 to 0.0125 and 0 to 5000
6. Compute new reverse basis coefficients for the MRI-to-MRI experiments, respectively. The values of
n[k] = c[k] + jd[k] using (14). p and y ranged from 0.0 to 0.00125 and 0 to 1275 for the
7. Compute the reverse displacement field CT-to-CT experiments, respectively. The gradient descent step
wy[n, 7] using (11). size was set to 0.000 04 for the MRI experiments and 0.0001
8. If the criteria is met to increase for the CT experiments. The difference in the parameters is
the number of basis functions then set due to the different intensity characteristics of each modality.
r=r+1, and set the new coefficients These ranges can be used as a guide for determining parameter
in (11) to zero. settings for registration of other modalities. We have found that
9. If the algorithm has not converged or there is no need to adjust the parameters for additional data sets
reached the maximum number of of the same modality.
iterations goto step 2. The data sets were registered initially with zero and first-order
10. Use forward displacement field ug[n) harmonics. Each experiment was run for 1000 iterations unless
to transform the template image Taln] the algorithm failed to converge. After every 100th iteration, the
and reverse displacement field wq[n] maximum harmonic was increased by one. Each experiment that
to transform the target image Sa[n]. ran for 1000 iterations took approximately 1.5 h to run on an Al-

phaPC clone using a single 667-MHz, alpha 21 264 processor. It
is expected that this time can be significantly decreased by opti-
mizing the code and using a better optimization technique than
Two sets of experiments were performed to demonstrate @dient descent. In some of the experiments the Jacobian of the
linear-elastic consistent image registration algorithm. The firgansformation went negative due to insufficient regularization
set of experiments were designed to show the effect of varyisgdue to a bad choice of parameters. In these cases, the experi-
the transformation parameters and the second set of experimeésits were stopped before the Jacobian went negative to report
demonstrate typical results that can be expected using a mk results. The numbers reported for the Similarity €gst.,
tiresolution approach to transform full resolution MRI and CThe linear elasticity cosPrrc, and the inverse consistency cost
data. Cioc, were scaled by 10 000 for presentation.
Experiments MRIO1 and CTO1 correspond to unconstrained
estimation in which the forward and reverse transformations
Two MRI and two CT image volumes were used to investivere estimated independently. These experiments produced the
gate the effect of varying the parameters used in the consisteatrst registration results as evident by the largest values of
image registration algorithm. The data sets were collected fraflann, Crra, andCree in the respective tables. These experi-
sTh _ , - ments were stopped before the 1000th iteration because the Ja-
e gradient off, evaluated atn is computed ad(N/2)(Tulns + 0 yhian \went negative during the gradient descent. This was ex-
1, no, ng] —Tulne — 1, ns, n3)), (N2/2)(Ty[n1, no + 1, n3] — .
Talny, ne —1, nal), (Na/2)(Ty[n, na, ns +1] =Ta[n1, ne, ns —1))]T  pected since the regularization terms help prevent the Jacobian

Ill. RESULTS

A. Parameter Evaluation
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TABLE |
MRI-TO-MRI CONSISTENTLINEAR-ELASTIC REGISTRATION EXPERIMENTAL PARAMETERS AND FINAL VALUES

Experiment | REG |ICC | Iterations p X Csiv CRrEG Cice Jacobian(h) | Jacobian(g)
For.|Rev.| For. | Rev. For. Rev. min |1/max| min |1/max

MRIO1 No | No 800 0.0 0 |[217]| 185 |342000(|243000| 2.76 2.41 [0.0268| 0.408 |0.237| 0.273
MRIO2 No | Yes 1000 0.0 1275|278 | 207 [127000(119000| 0.00962 | 0.00804 | 0.340 | 0.651 [0.585| 0.387
MRI03 No | Yes 1000 0.0 2500 328 | 245 | 87100 | 73100 | 0.00423 | 0.00349 | 0.344 | 0.682 |0.665| 0.392
MRI04 No | Yes 1000 0.0 5000399 | 301 | 59600 | 46000 | 0.00190 | 0.00158 | 0.365 | 0.707 |0.700| 0.414

MRIOS Yes | No 800 0.000125| 0 | 183|159 [302000(217000; 2.45 2.17 | 0.0458} 0.485 (0.417| 0.283
MRIO6 Yes | Yes 1000 |0.000125|1275| 289 | 216 | 96400 | 87400 | 0.00722 | 0.00587 | 0.374 | 0.694 {0.667| 0.411
MRIO7 Yes | Yes 1000 |0.000125|2500| 335 | 251 | 72500 | 59700 | 0.00342 | 0.00281 | 0.369 | 0.702 {0.692| 0.410
MRIO08 Yes | Yes 1000 |0.000125|5000| 403 | 305 | 53300 | 40900 | 0.00165 | 0.00138 | 0.383 | 0.719 [0.717| 0.425
MRI09 Yes | No 1000 0.00125 | 0 |276 228 | 72900 | 48400 1.01 0.922 | 0.381 | 0.686 |0.658| 0.486
MRI10 Yes | Yes 1000 0.00125 |1275| 339 | 254 | 45700 | 37700 | 0.00288 | 0.00215 | 0.489 | 0.737 [0.738| 0.502
MRI11 Yes | Yes 1000 0.00125 {25004 372 | 279 | 39300 { 31200 | 0.00153 | 0.00123 | 0.479 | 0.757 |0.756 | 0.498
MRI12 Yes | Yes 1000 0.00125 |5000| 431 | 327 | 32900 | 25100 |0.000838|0.000722| 0.477 | 0.772 |0.778| 0.502
MRI13 Yes | No 800 0.0125 | 0 {449 338 | 20300 | 16300 | 0.413 0.392 | 0.501 ] 0.779 [0.754| 0.563
MRI14 Yes | Yes 700 0.0125 |1275|478 | 368 | 17700 | 13600 | 0.0014 | 0.00123 | 0.555 | 0.790 |0.788] 0.566
MRI15 Yes | Yes 700 0.0125 [2500| 502 | 390 | 16400 | 12700 {0.0006860.000642 0.569 | 0.799 {0.798 0.568
MRI16 Yes | Yes 500 0.0125 {5000| 602 | 479 | 14500 | 11000 | 0.00104 | 0.000952| 0.601 | 0.786 |0.790| 0.602

REG: Linear-elastic regularization; ICC: Inverse consistency constyaifREG weight;x: ICC weight;o = 1: Similarity cost weight. The values
of Csiv, Creq, andCrac have been scaled by 10000

TABLE I
CT-10-CT CONSISTENTLINEAR-ELASTIC REGISTRATION EXPERIMENTAL PARAMETERS AND FINAL VALUES

Experiment [ REG | ICC | Iterations p X Csim CrEG Cice Jacobian(h) | Jacobian(g)
For.|Rev.| For. | Rev. For. Rev. min |1/max| min {1/max

CTo01 No | No 600 0.0 0 [170| 104 | 98000 |113000| 7.97 5.95 10.0272| 0.487 | 0.336 | 0.194
CTO02 No | Yes 1000 0.0 300 [82.8 58.7 [204000|144000( 0.0173 | 0.0144 | 0.170 | 0.444 | 0.347 | 0.209
CTo03 No | Yes 1000 0.0 600 [99.1| 73.8 [130000| 89500 |0.00799| 0.00652 | 0.198 | 0.533 | 0.449 | 0.248
CTo4 No | Yes 1000 0.0 1275|135 | 106 | 72600 | 50200 |0.00345| 0.00290 | 0.238 | 0.578 | 0.577 | 0.300

CTo05 Yes | No 600 0.0000125| 0 [130]75.1|169000|181000| 10.2 7.38 |0.0158| 0.325 |{0.0980| 0.132
CTo06 Yes | Yes 1000 |0.0000125| 300 (88.8|60.0 {187000|132000| 0.0159 | 0.0132 | 0.173 | 0.463 | 0.374 | 0.213
CTo7 Yes | Yes 1000 |0.0000125| 600 (99.7|75.0 | 123000 | 84400 |0.00758| 0.0062 | 0.201 | 0.542 | 0.463 | 0.251
CT08 Yes | Yes 1000 |0.0000125|1275| 135 | 107 | 70000 | 48400 [0.00340| 0.00281 | 0.241 | 0.583 | 0.584 [ 0.303
CTo09 Yes | No 700 0.000125 | 0 |[109 |65.9155000|148000]| 9.15 6.87 |0.0211| 0.419 | 0.165 | 0.128
CT10 Yes | Yes 1000 0.000125 | 300 {90.2|66.1 |118000| 83700 | 0.0102 | 0.00853 | 0.209 | 0.561 | 0.516 | 0.249
CT11 Yes | Yes 1000 0.000125 | 600 | 105 | 79.7 | 87200 | 60800 |0.00538 | 0.00449 | 0.229 | 0.590 | 0.567 | 0.278
CT12 Yes | Yes 1000 0.000125 {1275 139 | 110 | 55500 | 38800 {0.00262| 0.00225 | 0.269 | 0.618 | 0.620 | 0.327
CT13 Yes | No 1000 0.00125 | 0 |[108|76.0| 36600 | 34400 | 4.70 4.25 10.348 | 0.639 | 0.636 | 0.373
CT14 Yes | Yes 1000 0.00125 | 300 | 114 | 90.1 | 35500 { 26200 |0.00534 0.00451 | 0.361 | 0.704 | 0.701 | 0.388
CT15 Yes | Yes 1000 0.00125 | 600 | 129 | 103 | 30600 | 22600 |0.00233| 0.00208 | 0.377 | 0.719 | 0.717 | 0.397
CT16 Yes | Yes 1000 0.00125 |1275| 169 | 136 | 22400 | 17000 |0.00102]0.000977| 0.469 | 0.768 | 0.771 | 0.477

REG: Linear-elastic regularization; ICC: Inverse consistency constyailREG weight;x: ICC weight;o = 1: Similarity cost weight. The values
of CSIM; CREGv andCIcc; have been scaled by 10000

from going negative. The similarity cost is the lowest for thesgnd reverse transformations without enforcing the linear elas-
experiments since the algorithm finds the best match betweggity constraint. TheCicc values for these experiments are
the images without any constraint preventing the Jacobian franuch lower than the previous cases since they are being min-
going negative. imized. The forward and reverse transformations are inverses
Experiments MRIO5, MRI09, MRI13, CT05, CT09, andof each other whef®'icc are zero so that the smaller the costs
CT13 demonstrate the effect of estimating the forward ardcc, the closer the transformations are to being inverses of
reverse transformations independently while varyimnghe each other.
weight of the linear elastic cost. As before, the large differenceThe remaining experiments show the effect of jointly esti-
between the forward and reverse displacement fields as reponeating the forward and reverse transformations while varying
by Cspv confirms that linear elasticity alone is not sufficienthe weights on both the linear elasticity constraint and the in-
to guarantee that the forward and reverse transformations eeese consistency constraint. These experiments show that it is
inverses of one another. However, the linear elasticity constrapassible to find a set of parameters that produce better results
did improve the transformation over the unconstrained cassing both constraints than only using one or none. Notice that
because the minimum Jacobian and the inverse of the maximuncreasing the constraint weights causes the similarity costto in-
Jacobian is far from being singular. crease indicating a worse intensity match between the images.
Experiments MRI0O2, MRIO3, MRI0O4, CT02, CT03, andAtthe same time, the worst case values of the Jacobian increase
CT04 demonstrate the effect of jointly estimating the forwaras the constraint weights increase indicating less spatial distor-
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Fig. 4. Statistics associated with the CT15 experiment.

tion. The optimal set of parameters should be chosen to provitie inverse constraint decreased before increasing again. This
a good intensity match while producing the least amount of spa-due to the fact that a low-dimensional Fourier series does
tial distortion as measured by the Jacobian and an acceptaiméhave the degrees of freedom (DOFs) to faithfully represent
level of inverse consistency error. the inverse of a low-dimensional Fourier series. This is seen by
The time series statistics for experiments MRI11 and CT16oking at the high dimensionality of a Taylor series representa-
are shown in Figs. 3 and 4, respectively. These figures show tkiah of the inverse transformation. Finally, notice that the inverse
the gradient descent algorithm converged for each set of tranensistency constraint caused the extremal Jacobian values of
formation harmonics. In both cases, the similarity cOstys  the forward and reverse transformations to track together. The
decreased at each iteration while the prior terms increased betremal Jacobian values correspond to the worst case distor-
fore decreasing. Notice that the inverse consistency constrdiohs produced by the transformations.
increased as the images deformed for each particular harmoni€ig. 5 shows the effect of varyingandp on the inverse con-
resolution. Then when the number of harmonics were increassidtency cost’jcc as a function of iteration. Fig. 5(a) shows
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Fig. 6 shows three transverse sections from the 3-D result
from the templatd’, deformed targe$ o g, targetS, deformed
templatel’ o i MRI data sets. The first two columns and the last
two columns should look a like for a good registration. These

pairs of columns look similar with respect to the global struc-
p= D000 —— ’ ) tures but have small local differences as seen by the difference
25 | Slgﬁﬁg?if& images shown in the first two columns of Fig. 7. Notice that
p=0.012500 ] the outer contour of the deformed images match their respec-
tive target data sets and that there is good correspondence in the
region of the ventricles. The local mismatch is mostly due to
differences in the topology of the gray matter folds and due to
the low-frequency Fourier series parameterization of the trans-
05 ¢ - 1 formations.
0 . . . . The last two columns of Fig. 7 shows the normed differ-
0 200 400 600 800 1000 ence between the forward and reverse transformations for the
eration Number MRI-to-MRI experiment. These figures show the spatial loca-
() tions of where the forward and reverse transformations have the
Fig.5. Plots demonstrating the effect of (a) modifying the inverse consisterigrgest inverse consistency errors. The range on the difference
constraint weighty while p =0 and (b) modifying the linear-elasticity for the entire 3-D volume is from 0 to 0.002 234. This maximum
regularization weighp while y = 0. . . .
difference corresponds to a registration error between 0.571 and

. o ) 0.749 voxel unit$. Notice that most of the error is internal to
that Crcc increases with iteration and then drops every 100 ifae prain and that most of the error appears in the cortex re-

erations when additional parameters (DOFs) are added 10 figns The similarities between the absolute difference intensity
transformation. The curves decrease in amplitude 38 in-  jnages to the normed transformation difference images suggest
creased untik becomes to large and the algorithm fails to cOnp 4t most of the inverse consistency error occurs were the trans-
verge. Fig. 5(b) shows théfcc increases as the linear elasticityormed images are still mismatched. A further description and
weightp is increased. This makes sense because the two regigisional figures showing the effect of using or not using the

larization terms fight one another. The inverse consistency Cqgferse consistency cost as it relates to the spatial inverse con-
increases as the linear elasticity cost is penalized more. sistency error can be found in [31]

Three transverse slices from the 3-D full resolution CT-to-CT
experiment are shown in Fig. 8. Notice the good global registra-

A spatial and frequency multiresoltion procedure was usedn of the corresponding CT data sets. The first two columns
to estimate the full resolution registration of the data sets usefiFig. 9 shows the absolute intensity difference between these
in the previous section. In this approach, global structures afilces. As before, the errors show up along the boundaries of the
matched before local to reduce the likelihood of incorrect locabjects. The last two columns of this figure show the normed dif-
registration errors and to increase convergence. Table Ill sho@gence between the forward and reverse transformations. Again
the number of iterations, the harmonic increment iteration, thé see similarities between the intensity differences and the
initial number of harmonics, and the final number of harmoniagansformation differences. The maximum inverse consistency
at each resolution. This schedule proceeds from low resolutigfror for this experiment is between 0.871 and 1.16 voxel dnits.
to high resolution starting at one eight the spatial resolution and
increases to full resolution. The MRI-to-MRI registration following the schedule in

A set of parameters were chosen from Tables | and Il that gavgble 111 took approximately 4, 40, 60, and 55 min to compute
a good tradeoff between the image intensity match, the inveegghe 32x 32 x 40, 64x 64 x 80, 128x 128 x 160, and 256
consistency of the transformations, and low spatial distortion. 256 x 320 voxel resolutions, respectively. The CT-to-CT
The parameters used were time ste.000040 = 1.0,p = registration took approximately 2, 21, 33, and 30 min to

0.001 25, andy = 2500 for the MRI-to-MRI registration and

) & - .
time step= 0.0001,0 = 1.0, p = 0.001 25, andq = 600 for y Jggzmzlgllmum was computed as 2560.002 234 and the maximum as 320
the CT-to-CT registration. These parameters were used at alrpe minimum was computed as 1920.004 538 and the maximum as 256

resolutions. x 0.004538.

0 200 400 600 800 1000
lteration Number
@)
Effect of Linear Elastic Weighting

inverse Consistency Cost
(4]

B. Multiresolution Registration
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Fig. 6. Transverse slices 109, 135, and 165 (rows top to bottom) from the full resolution MRI-to-MRI registration experiment. The columns froighleft to
correspond to the templafe, the deformed targef o g, the targetS and the deformed templao k. The intensities are on a range from 0 to 1.0.

compute at the 3% 32 x 24, 64 x 64 x 48, 128x 128 x A. Measurement of Transformation Distortion
96, and 256x 256 x 192 voxel resolutions, respectively. All

times are for an AlphaPC clone using a single 667-MHz, alphaIt Is impartant o _track bf)th the m"."m“.m and maximum
21264 processor. values of the Jacobian during the estimation procedure. The

Jacobian measures the differential volume change of a point
being mapped through the transformation. At the start of the
estimation, the transformation is the identity mapping and,

The experiments presented in this paper were designed to thstefore, has a Jacobian of one. If the minimum Jacobian
the validity of the new inverse transformation consistency cogees negative, the transformation is no longer a one-to-one
straint as applied to a linear-elastic transformation algorithm. Asapping and as a result folds the domain inside out [30].
such, there was no effort made to optimize the rate of conv&@enversely, the reciprocal of the maximum value of the
gence of the algorithm. The convergence rate of the algorithfacobian corresponds to the minimum value of the Jacobian
can be greatly improved by using a more efficient optimizatioof the inverse mapping. Thus, as the maximum value of the
technique than gradient descent such as conjugate gradientaaiobian goes to infinity, the minimum value of the Jacobian
each parameterization resolution. In addition, a convergence afi-the inverse mapping goes to zero. In the present approach,
teria can be used to determine when to increment the numbettd inverse transformation consistency constraint was used
parameters in the model. The CT data used in the experimettgpenalize transformations that deviated from their inverse
was selected to stress the registration algorithm. The convieansformation. A limitation of this approach is that cost
gence of the algorithm would have been much faster if the ddtaction in (3) is an average metric and cannot enforce the
sets were adjusted for global scale initially. pointwise constraints thatin,{J(h)} = 1/ max,{J(g)} and

IV. DISCUSSION
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Fig. 7. The first two columns correspond to the absolute intensity difference between the template and the deforr{iBd-t&tgeq (column one) and between
the target and the deformed templife— T" o 1| (column two) in Fig. 6. The intensity range for the absolute difference is on a range from 0 to 0.892. The last two
columns correspond to the normed difference between the forward and inverse of the reverse transfipkrratort || (column three), and between the reverse

transformation and the inverse of the forward transformgtigr- 2 —*|| (column four). The intensity range for the normed transformation differences is from 0
to 0.002234.

ming{J(¢9)} = 1/max,{J(h)}. This point is illustrated by advantage of solving the problem on a course grid is that the al-
Tables | and Il by the fact that the minimum values.tfh) gorithm requires fewer computations/iteration that a finer grid.
and.J(g) differ from the reciprocal of the maximum values ofThis results in reduced computation time at low resolution. Each
J(g) andJ(h), respectively, However, these extremal Jacobiaime the resolution of the grid is increase by a factor of two in
values do give an upper bound on the worst case distorticzech dimension, the computation time increases by a factor of
produced by the transformations demonstrating the consisterayht. The drawback of solving the problem at low resolution is
between the forward and reverse transformations. that there can be significant registration errors due to the loss
of detail in the down sampling procedure. The tradeoff between
guicker execution times at low resolution and more accurate reg-
B. Spatial Multiresolution istration at higher resolution can exploited by solving the regis-
tration problem at low spatial resolution during the initial iter-
The minimization problem is discretized so it can be impleations to approximate the result and then increasing the spatial
mented on a digital computer. The higher the sampling rate tressolution to get a more accurate result at the later iterations.
more accurate the discrete approximation is to the continuousThe spatial multiresolution approach works well with the
case. An advantage of discretizing a continuous formulatidrequency multiresolution approach provided by increasing the
is that the problem can be solved at different spatial samplingmber of harmonics used to represent the displacement fields.
rates. The approach that is taken is to solve the minimizatidhe number of harmonics used to represent the displacement
at a course resolution initially to approximate the solution. THelds is initially set small and then increased as the number
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Tch

Fig. 8. Transverse slices 068, 116, and 124 (rows top to bottom) from the full resolution CT-to-CT registration experiment. The columns fromghleft to ri
correspond to the templafe, the deformed targef o g, the targetS and the deformed templa#o %. The intensities are on a range from 0 to 1.0.

of iterations are increased. A low-frequency registration resuif the residual- is mapped througlt and added tgy. After

is an approximation of the desired high-frequency registratiguerforming this operatior, o ¢ is close to the identity transfor-
result. Computing the gradient descent for a low-frequenayation. The advantage of Thirion’s method is that it enforces
basis coefficient at low spatial resolution gives approximatetiie inverse consistency constraint without having to explicitly
the same answer as using high spatial resolution but tb@mpute the inverse transformations as in (3). The residual

computational burden is much less. method is an approximation to the inverse consistency method
in that the residual method approximates the correspondences
C. Comparison to Other Methods between the forward and reverse transformations while the

Other investigators have proposed methods for enforciH’%’erse consi.stency method computes those correspondences.
pairwise consistent transformations. For example, Woeds 1hUs, the residual approach only works under a small deforma-
al. [27] computes all pairwise registrations of a population ¢fon @ssumption since the residual is computed between points
image volumes using a linear transformation model, i.e.>a athat do not correspond to one another. This drawback limits
3 matrix transformation. They then average the transformatigf residual approach to small deformations and it, therefore,

from T to S with all the transformations frorfi to X to S. The cannot be extended to nonlinear transformation models. On

original transformation froni” to S is replaced with average the other hand, the approach presented in this paper can be

transformation. The procedure is repeated for all the imag¥tended to the nonlinear case by modifying the procedure used

pairs until convergence. This technique is limited by the fa calculatg the inverse transformation to include nonlinear

that it cannot be applied to two data sets. Also, there is fg@nsformations.

guarantee that the generated set of consistent transformations | | | ) ) )

are valid. For example, a poorly registered pair of images ckh Limitations of Diffeomorphic Transformations

adversely effect all of the pairwise transformations. Diffeomorphictransformationsare validforregisteringimages
The method proposed in this paper is most similar to ttomllected from the same individual imaged by two different

heuristic approach described by Thirion [6]. Thirion’s idea wamodalities such as MRI and CT, but it is not necessarily valid

to iteratively estimate the forward, reverseg, and residual when registering images before and after surgery. Likewise, a

r = h o g transformations in order to register the imageand diffeomorphic mapping assumption may be valid for registering

S. At each iteration, half of the residuals added tah and half MRI data from two different normal individuals if the goal
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Fig. 9. The first two columns correspond to the absolute intensity difference between the template and the deforr{iBd-t&tgeq (column one) and between

the target and the deformed templife— T" o 1| (column two) in Fig. 6. The intensity range for the absolute difference is on a range from 0to 0.776. The last two
columns correspond to the normed difference between the forward and inverse of the reverse transfipkrragort || (column three), and between the reverse
transformation and the inverse of the forward transformgtigr- 2 —*|| (column four). The intensity range for the normed transformation differences is from 0
to 0.004 538.

is to match the deep nuclei of the brain, but it may not beondiffeomorphic mappings by including the proper boundary
valid for the same data sets if the goal is to match the sulaa@nditions around regions that differ topologically.
patterns.

Alternatively, diffeomorphic transformations may be used to
identify areas where two image volumes differ topologically by
analyzing the properties of the resulting transformation. For ex-This paper presented a new algorithm for jointly estimating a
ample, consider the problem of matching an MRI image wittonsistent set of transformations that map one image to another
a tumor to one without a tumor. A possibly valid diffeomorandvice versa A new parameterization based on the Fourier
phic transformation would be one that registers all of the coseries was presented and was used to simplify the discretized
responding brain structures by shrinking the tumor to a sméhear-elasticity constraint. The Fourier series parameterization
point. Such a transformation would have an unusually small Ja-simpler than our previous parameterizations and each basis
cobian which could be used to detect or identify the location abefficient can be interpreted as the weight of a harmonic com-
the tumor. Conversely, consider the inverse problem of matchipgnentin a single coordinate direction. The algorithm was tested
the image without the tumor to the one with the tumor. A validn both MRI and CT data. It was found that the unconstrained
registration in this case is to register all of the correspondimgtimation leads to singular or near singular transformations. It
brain structures by allowing the transformation to “tear” (i.ewas also shown that the linear-elastic constraint alone is not suf-
not be diffeomorphic) at the site of the tumor [29]. Just as valfitient to guarantee that the forward and reverse transformations
could be a diffeomorphic transformation that registers all of thare inverses of one another. Results were presented that sug-
corresponding brain structures by allowing the transformatigest that even though the inverse consistency constraint is not
to stretch at the site of the tumor. guaranteed to generate nonsingular transformations, in practice

As in the previous examples, we assume that a valid transf@rmay be possible to use the inverse consistency as the only
mation is diffeomorphic everywhere except possibly in regior®nstraint. Finally, it was shown that the most consistent trans-
where the source and target images differ topologically, e.g.,foirmations were generated using both the inverse consistency
the neighborhood of the tumor. These ideas can be extendedrtd the linear-elastic constraints.

V. SUMMARY AND CONCLUSION
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